/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_float_to_q15.c * Description: Converts the elements of the floating-point vector to Q15 vector * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/support_functions_f16.h" #if defined(ARM_FLOAT16_SUPPORTED) /** @ingroup groupSupport */ /** @addtogroup f16_to_x @{ */ /** @brief Converts the elements of the f16 vector to Q15 vector. @param[in] pSrc points to the f16 input vector @param[out] pDst points to the Q15 output vector @param[in] blockSize number of samples in each vector @return none @par Details The equation used for the conversion process is:
pDst[n] = (q15_t)(pSrc[n] * 32768); 0 <= n < blockSize.@par Scaling and Overflow Behavior The function uses saturating arithmetic. Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. @note In order to apply rounding in scalar version, the library should be rebuilt with the ROUNDING macro defined in the preprocessor section of project options. */ #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) void arm_f16_to_q15( const float16_t * pSrc, q15_t * pDst, uint32_t blockSize) { float16_t maxQ = (float16_t) Q15_MAX; float16x8_t vecDst; do { mve_pred16_t p = vctp16q(blockSize); vecDst = vldrhq_z_f16((float16_t const *) pSrc, p); /* C = A * 32767 */ /* convert from float to Q15 and then store the results in the destination buffer */ vecDst = vmulq_m(vuninitializedq_f16(), vecDst, maxQ, p); vstrhq_p_s16(pDst, vcvtaq_m(vuninitializedq_s16(), vecDst, p), p); /* * Decrement the blockSize loop counter * Advance vector source and destination pointers */ pSrc += 8; pDst += 8; blockSize -= 8; } while ((int32_t) blockSize > 0); } #else void arm_f16_to_q15( const float16_t * pSrc, q15_t * pDst, uint32_t blockSize) { const float16_t *pIn = pSrc; /* Src pointer */ uint32_t blkCnt; /* loop counter */ #ifdef ARM_MATH_ROUNDING float16_t in; #endif /* #ifdef ARM_MATH_ROUNDING */ /* * Loop over blockSize number of values */ blkCnt = blockSize; while (blkCnt > 0U) { #ifdef ARM_MATH_ROUNDING /* * C = A * 65536 */ /* * convert from float to Q31 and then store the results in the destination buffer */ in = *pIn++; in = (in * 32768.0); in += in > 0.0 ? 0.5 : -0.5; *pDst++ = clip_q31_to_q15((q31_t) (in)); #else /* * C = A * 32768 */ /* * convert from float to Q31 and then store the results in the destination buffer */ *pDst++ = clip_q31_to_q15((q31_t) (*pIn++ * 32768.0)); #endif /* #ifdef ARM_MATH_ROUNDING */ /* * Decrement the loop counter */ blkCnt--; } } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of f16_to_x group */ #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */