/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/GrGpu.h" #include "include/gpu/GrBackendSemaphore.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrContext.h" #include "src/core/SkMathPriv.h" #include "src/gpu/GrAuditTrail.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrDataUtils.h" #include "src/gpu/GrGpuResourcePriv.h" #include "src/gpu/GrMesh.h" #include "src/gpu/GrPathRendering.h" #include "src/gpu/GrPipeline.h" #include "src/gpu/GrRenderTargetPriv.h" #include "src/gpu/GrResourceCache.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrSemaphore.h" #include "src/gpu/GrStencilAttachment.h" #include "src/gpu/GrStencilSettings.h" #include "src/gpu/GrSurfacePriv.h" #include "src/gpu/GrTexturePriv.h" #include "src/gpu/GrTextureProxyPriv.h" #include "src/gpu/GrTracing.h" #include "src/utils/SkJSONWriter.h" //////////////////////////////////////////////////////////////////////////////// GrGpu::GrGpu(GrContext* context) : fResetBits(kAll_GrBackendState), fContext(context) {} GrGpu::~GrGpu() {} void GrGpu::disconnect(DisconnectType) {} //////////////////////////////////////////////////////////////////////////////// bool GrGpu::IsACopyNeededForRepeatWrapMode(const GrCaps* caps, GrTextureProxy* texProxy, int width, int height, GrSamplerState::Filter filter, GrTextureProducer::CopyParams* copyParams, SkScalar scaleAdjust[2]) { if (!caps->npotTextureTileSupport() && (!SkIsPow2(width) || !SkIsPow2(height))) { SkASSERT(scaleAdjust); copyParams->fWidth = GrNextPow2(width); copyParams->fHeight = GrNextPow2(height); SkASSERT(scaleAdjust); scaleAdjust[0] = ((SkScalar)copyParams->fWidth) / width; scaleAdjust[1] = ((SkScalar)copyParams->fHeight) / height; switch (filter) { case GrSamplerState::Filter::kNearest: copyParams->fFilter = GrSamplerState::Filter::kNearest; break; case GrSamplerState::Filter::kBilerp: case GrSamplerState::Filter::kMipMap: // We are only ever scaling up so no reason to ever indicate kMipMap. copyParams->fFilter = GrSamplerState::Filter::kBilerp; break; } return true; } if (texProxy) { // If the texture format itself doesn't support repeat wrap mode or mipmapping (and // those capabilities are required) force a copy. if (texProxy->hasRestrictedSampling()) { copyParams->fFilter = GrSamplerState::Filter::kNearest; copyParams->fWidth = texProxy->width(); copyParams->fHeight = texProxy->height(); return true; } } return false; } bool GrGpu::IsACopyNeededForMips(const GrCaps* caps, const GrTextureProxy* texProxy, GrSamplerState::Filter filter, GrTextureProducer::CopyParams* copyParams) { SkASSERT(texProxy); bool willNeedMips = GrSamplerState::Filter::kMipMap == filter && caps->mipMapSupport(); // If the texture format itself doesn't support mipmapping (and those capabilities are required) // force a copy. if (willNeedMips && texProxy->mipMapped() == GrMipMapped::kNo) { copyParams->fFilter = GrSamplerState::Filter::kNearest; copyParams->fWidth = texProxy->width(); copyParams->fHeight = texProxy->height(); return true; } return false; } static bool validate_levels(int w, int h, const GrMipLevel texels[], int mipLevelCount, int bpp, const GrCaps* caps, bool mustHaveDataForAllLevels = false) { SkASSERT(mipLevelCount > 0); bool hasBasePixels = texels[0].fPixels; int levelsWithPixelsCnt = 0; for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; ++currentMipLevel) { if (texels[currentMipLevel].fPixels) { const size_t minRowBytes = w * bpp; if (caps->writePixelsRowBytesSupport()) { if (texels[currentMipLevel].fRowBytes < minRowBytes) { return false; } if (texels[currentMipLevel].fRowBytes % bpp) { return false; } } else { if (texels[currentMipLevel].fRowBytes != minRowBytes) { return false; } } ++levelsWithPixelsCnt; } if (w == 1 && h == 1) { if (currentMipLevel != mipLevelCount - 1) { return false; } } else { w = std::max(w / 2, 1); h = std::max(h / 2, 1); } } // Either just a base layer or a full stack is required. if (mipLevelCount != 1 && (w != 1 || h != 1)) { return false; } // Can specify just the base, all levels, or no levels. if (!hasBasePixels) { return levelsWithPixelsCnt == 0; } if (levelsWithPixelsCnt == 1 && !mustHaveDataForAllLevels) { return true; } return levelsWithPixelsCnt == mipLevelCount; } sk_sp GrGpu::createTexture(const GrSurfaceDesc& desc, const GrBackendFormat& format, GrRenderable renderable, int renderTargetSampleCnt, SkBudgeted budgeted, GrProtected isProtected, const GrMipLevel texels[], int mipLevelCount) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); if (this->caps()->isFormatCompressed(format)) { // Call GrGpu::createCompressedTexture. return nullptr; } GrMipMapped mipMapped = mipLevelCount > 1 ? GrMipMapped::kYes : GrMipMapped::kNo; if (!this->caps()->validateSurfaceParams({desc.fWidth, desc.fHeight}, format, desc.fConfig, renderable, renderTargetSampleCnt, mipMapped)) { return nullptr; } if (renderable == GrRenderable::kYes) { renderTargetSampleCnt = this->caps()->getRenderTargetSampleCount(renderTargetSampleCnt, format); } // Attempt to catch un- or wrongly initialized sample counts. SkASSERT(renderTargetSampleCnt > 0 && renderTargetSampleCnt <= 64); bool mustHaveDataForAllLevels = this->caps()->createTextureMustSpecifyAllLevels(); if (mipLevelCount) { int bpp = GrBytesPerPixel(desc.fConfig); if (!validate_levels(desc.fWidth, desc.fHeight, texels, mipLevelCount, bpp, this->caps(), mustHaveDataForAllLevels)) { return nullptr; } } else if (mustHaveDataForAllLevels) { return nullptr; } this->handleDirtyContext(); sk_sp tex = this->onCreateTexture(desc, format, renderable, renderTargetSampleCnt, budgeted, isProtected, texels, mipLevelCount); if (tex) { if (!this->caps()->reuseScratchTextures() && renderable == GrRenderable::kNo) { tex->resourcePriv().removeScratchKey(); } fStats.incTextureCreates(); if (mipLevelCount) { if (texels[0].fPixels) { fStats.incTextureUploads(); } } SkASSERT(tex->backendFormat() == format); if (desc.isGrTagValid()) { // 0, 1, 2, 3: index of array fGrTag. GrGpuResourceTag tag(desc.fGrTag[0], desc.fGrTag[1], desc.fGrTag[2], desc.fGrTag[3]); tex->setResourceTag(tag); } } return tex; } sk_sp GrGpu::createTexture(const GrSurfaceDesc& desc, const GrBackendFormat& format, GrRenderable renderable, int renderTargetSampleCnt, SkBudgeted budgeted, GrProtected isProtected) { return this->createTexture(desc, format, renderable, renderTargetSampleCnt, budgeted, isProtected, nullptr, 0); } sk_sp GrGpu::createCompressedTexture(int width, int height, const GrBackendFormat& format, SkImage::CompressionType compressionType, SkBudgeted budgeted, const void* data, size_t dataSize) { // If we ever add a new CompressionType, we should add a check here to make sure the // GrBackendFormat and CompressionType are compatible with eachother. SkASSERT(compressionType == SkImage::kETC1_CompressionType || compressionType == SkImage::kASTC_CompressionType); this->handleDirtyContext(); if (width < 1 || width > this->caps()->maxTextureSize() || height < 1 || height > this->caps()->maxTextureSize()) { return nullptr; } // Note if we relax the requirement that data must be provided then we must check // caps()->shouldInitializeTextures() here. if (!data) { return nullptr; } if (!this->caps()->isFormatTexturable(format)) { return nullptr; } if (dataSize < GrCompressedDataSize(compressionType, width, height)) { return nullptr; } return this->onCreateCompressedTexture(width, height, format, compressionType, budgeted, data); } sk_sp GrGpu::wrapBackendTexture(const GrBackendTexture& backendTex, GrColorType colorType, GrWrapOwnership ownership, GrWrapCacheable cacheable, GrIOType ioType) { SkASSERT(ioType != kWrite_GrIOType); this->handleDirtyContext(); const GrCaps* caps = this->caps(); SkASSERT(caps); if (!caps->isFormatTexturable(backendTex.getBackendFormat())) { return nullptr; } if (backendTex.width() > caps->maxTextureSize() || backendTex.height() > caps->maxTextureSize()) { return nullptr; } return this->onWrapBackendTexture(backendTex, colorType, ownership, cacheable, ioType); } sk_sp GrGpu::wrapRenderableBackendTexture(const GrBackendTexture& backendTex, int sampleCnt, GrColorType colorType, GrWrapOwnership ownership, GrWrapCacheable cacheable) { this->handleDirtyContext(); if (sampleCnt < 1) { return nullptr; } const GrCaps* caps = this->caps(); if (!caps->isFormatTexturable(backendTex.getBackendFormat()) || !caps->isFormatRenderable(backendTex.getBackendFormat(), sampleCnt)) { return nullptr; } if (backendTex.width() > caps->maxRenderTargetSize() || backendTex.height() > caps->maxRenderTargetSize()) { return nullptr; } sk_sp tex = this->onWrapRenderableBackendTexture(backendTex, sampleCnt, colorType, ownership, cacheable); SkASSERT(!tex || tex->asRenderTarget()); return tex; } sk_sp GrGpu::wrapBackendRenderTarget(const GrBackendRenderTarget& backendRT, GrColorType colorType) { this->handleDirtyContext(); const GrCaps* caps = this->caps(); if (!caps->isFormatRenderable(backendRT.getBackendFormat(), backendRT.sampleCnt())) { return nullptr; } return this->onWrapBackendRenderTarget(backendRT, colorType); } sk_sp GrGpu::wrapBackendTextureAsRenderTarget(const GrBackendTexture& backendTex, int sampleCnt, GrColorType colorType) { this->handleDirtyContext(); const GrCaps* caps = this->caps(); int maxSize = caps->maxTextureSize(); if (backendTex.width() > maxSize || backendTex.height() > maxSize) { return nullptr; } if (!caps->isFormatRenderable(backendTex.getBackendFormat(), sampleCnt)) { return nullptr; } return this->onWrapBackendTextureAsRenderTarget(backendTex, sampleCnt, colorType); } sk_sp GrGpu::wrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { return this->onWrapVulkanSecondaryCBAsRenderTarget(imageInfo, vkInfo); } sk_sp GrGpu::onWrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { // This is only supported on Vulkan so we default to returning nullptr here return nullptr; } sk_sp GrGpu::createBuffer(size_t size, GrGpuBufferType intendedType, GrAccessPattern accessPattern, const void* data) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); this->handleDirtyContext(); sk_sp buffer = this->onCreateBuffer(size, intendedType, accessPattern, data); if (!this->caps()->reuseScratchBuffers()) { buffer->resourcePriv().removeScratchKey(); } return buffer; } bool GrGpu::copySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint, bool canDiscardOutsideDstRect) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(dst && src); if (dst->readOnly()) { return false; } this->handleDirtyContext(); return this->onCopySurface(dst, src, srcRect, dstPoint, canDiscardOutsideDstRect); } bool GrGpu::readPixels(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType dstColorType, void* buffer, size_t rowBytes) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(this->caps()->isFormatTexturable(surface->backendFormat())); auto subRect = SkIRect::MakeXYWH(left, top, width, height); auto bounds = SkIRect::MakeWH(surface->width(), surface->height()); if (!bounds.contains(subRect)) { return false; } size_t minRowBytes = SkToSizeT(GrColorTypeBytesPerPixel(dstColorType) * width); if (!this->caps()->readPixelsRowBytesSupport()) { if (rowBytes != minRowBytes) { return false; } } else { if (rowBytes < minRowBytes) { return false; } if (rowBytes % GrColorTypeBytesPerPixel(dstColorType)) { return false; } } if (this->caps()->isFormatCompressed(surface->backendFormat())) { return false; } this->handleDirtyContext(); return this->onReadPixels(surface, left, top, width, height, surfaceColorType, dstColorType, buffer, rowBytes); } bool GrGpu::writePixels(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType srcColorType, const GrMipLevel texels[], int mipLevelCount) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(this->caps()->isFormatTexturableAndUploadable(surfaceColorType, surface->backendFormat())); if (surface->readOnly()) { return false; } if (mipLevelCount == 0) { return false; } else if (mipLevelCount == 1) { // We require that if we are not mipped, then the write region is contained in the surface auto subRect = SkIRect::MakeXYWH(left, top, width, height); auto bounds = SkIRect::MakeWH(surface->width(), surface->height()); if (!bounds.contains(subRect)) { return false; } } else if (0 != left || 0 != top || width != surface->width() || height != surface->height()) { // We require that if the texels are mipped, than the write region is the entire surface return false; } size_t bpp = GrColorTypeBytesPerPixel(srcColorType); if (!validate_levels(width, height, texels, mipLevelCount, bpp, this->caps())) { return false; } this->handleDirtyContext(); if (this->onWritePixels(surface, left, top, width, height, surfaceColorType, srcColorType, texels, mipLevelCount)) { SkIRect rect = SkIRect::MakeXYWH(left, top, width, height); this->didWriteToSurface(surface, kTopLeft_GrSurfaceOrigin, &rect, mipLevelCount); fStats.incTextureUploads(); return true; } return false; } bool GrGpu::transferPixelsTo(GrTexture* texture, int left, int top, int width, int height, GrColorType textureColorType, GrColorType bufferColorType, GrGpuBuffer* transferBuffer, size_t offset, size_t rowBytes) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(texture); SkASSERT(transferBuffer); SkASSERT(this->caps()->isFormatTexturableAndUploadable(textureColorType, texture->backendFormat())); if (texture->readOnly()) { return false; } // We require that the write region is contained in the texture SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); if (!bounds.contains(subRect)) { return false; } size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); if (this->caps()->writePixelsRowBytesSupport()) { if (rowBytes < SkToSizeT(bpp * width)) { return false; } if (rowBytes % bpp) { return false; } } else { if (rowBytes != SkToSizeT(bpp * width)) { return false; } } this->handleDirtyContext(); if (this->onTransferPixelsTo(texture, left, top, width, height, textureColorType, bufferColorType, transferBuffer, offset, rowBytes)) { SkIRect rect = SkIRect::MakeXYWH(left, top, width, height); this->didWriteToSurface(texture, kTopLeft_GrSurfaceOrigin, &rect); fStats.incTransfersToTexture(); return true; } return false; } bool GrGpu::transferPixelsFrom(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType bufferColorType, GrGpuBuffer* transferBuffer, size_t offset) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(transferBuffer); SkASSERT(this->caps()->isFormatTexturable(surface->backendFormat())); #ifdef SK_DEBUG auto supportedRead = this->caps()->supportedReadPixelsColorType( surfaceColorType, surface->backendFormat(), bufferColorType); SkASSERT(supportedRead.fOffsetAlignmentForTransferBuffer); SkASSERT(offset % supportedRead.fOffsetAlignmentForTransferBuffer == 0); #endif // We require that the write region is contained in the texture SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(surface->width(), surface->height()); if (!bounds.contains(subRect)) { return false; } this->handleDirtyContext(); if (this->onTransferPixelsFrom(surface, left, top, width, height, surfaceColorType, bufferColorType, transferBuffer, offset)) { fStats.incTransfersFromSurface(); return true; } return false; } bool GrGpu::regenerateMipMapLevels(GrTexture* texture) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(texture); SkASSERT(this->caps()->mipMapSupport()); SkASSERT(texture->texturePriv().mipMapped() == GrMipMapped::kYes); SkASSERT(texture->texturePriv().mipMapsAreDirty()); SkASSERT(!texture->asRenderTarget() || !texture->asRenderTarget()->needsResolve()); if (texture->readOnly()) { return false; } if (this->onRegenerateMipMapLevels(texture)) { texture->texturePriv().markMipMapsClean(); return true; } return false; } void GrGpu::resetTextureBindings() { this->handleDirtyContext(); this->onResetTextureBindings(); } void GrGpu::resolveRenderTarget(GrRenderTarget* target) { SkASSERT(target); this->handleDirtyContext(); this->onResolveRenderTarget(target); } void GrGpu::didWriteToSurface(GrSurface* surface, GrSurfaceOrigin origin, const SkIRect* bounds, uint32_t mipLevels) const { SkASSERT(surface); SkASSERT(!surface->readOnly()); // Mark any MIP chain and resolve buffer as dirty if and only if there is a non-empty bounds. if (nullptr == bounds || !bounds->isEmpty()) { if (GrRenderTarget* target = surface->asRenderTarget()) { SkIRect flippedBounds; if (kBottomLeft_GrSurfaceOrigin == origin && bounds) { flippedBounds = {bounds->fLeft, surface->height() - bounds->fBottom, bounds->fRight, surface->height() - bounds->fTop}; bounds = &flippedBounds; } target->flagAsNeedingResolve(bounds); } GrTexture* texture = surface->asTexture(); if (texture && 1 == mipLevels) { texture->texturePriv().markMipMapsDirty(); } } } int GrGpu::findOrAssignSamplePatternKey(GrRenderTarget* renderTarget) { SkASSERT(this->caps()->sampleLocationsSupport()); SkASSERT(renderTarget->numSamples() > 1 || (renderTarget->renderTargetPriv().getStencilAttachment() && renderTarget->renderTargetPriv().getStencilAttachment()->numSamples() > 1)); SkSTArray<16, SkPoint> sampleLocations; this->querySampleLocations(renderTarget, &sampleLocations); return fSamplePatternDictionary.findOrAssignSamplePatternKey(sampleLocations); } GrSemaphoresSubmitted GrGpu::finishFlush(GrSurfaceProxy* proxies[], int n, SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info, const GrPrepareForExternalIORequests& externalRequests) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); this->stats()->incNumFinishFlushes(); GrResourceProvider* resourceProvider = fContext->priv().resourceProvider(); if (this->caps()->semaphoreSupport()) { for (int i = 0; i < info.fNumSemaphores; ++i) { sk_sp semaphore; if (info.fSignalSemaphores[i].isInitialized()) { semaphore = resourceProvider->wrapBackendSemaphore( info.fSignalSemaphores[i], GrResourceProvider::SemaphoreWrapType::kWillSignal, kBorrow_GrWrapOwnership); } else { semaphore = resourceProvider->makeSemaphore(false); } this->insertSemaphore(semaphore); if (!info.fSignalSemaphores[i].isInitialized()) { info.fSignalSemaphores[i] = semaphore->backendSemaphore(); } } } this->onFinishFlush(proxies, n, access, info, externalRequests); return this->caps()->semaphoreSupport() ? GrSemaphoresSubmitted::kYes : GrSemaphoresSubmitted::kNo; } #ifdef SK_ENABLE_DUMP_GPU void GrGpu::dumpJSON(SkJSONWriter* writer) const { writer->beginObject(); // TODO: Is there anything useful in the base class to dump here? this->onDumpJSON(writer); writer->endObject(); } #else void GrGpu::dumpJSON(SkJSONWriter* writer) const { } #endif #if GR_TEST_UTILS #if GR_GPU_STATS void GrGpu::Stats::dump(SkString* out) { out->appendf("Render Target Binds: %d\n", fRenderTargetBinds); out->appendf("Shader Compilations: %d\n", fShaderCompilations); out->appendf("Textures Created: %d\n", fTextureCreates); out->appendf("Texture Uploads: %d\n", fTextureUploads); out->appendf("Transfers to Texture: %d\n", fTransfersToTexture); out->appendf("Transfers from Surface: %d\n", fTransfersFromSurface); out->appendf("Stencil Buffer Creates: %d\n", fStencilAttachmentCreates); out->appendf("Number of draws: %d\n", fNumDraws); out->appendf("Number of Scratch Textures reused %d\n", fNumScratchTexturesReused); } void GrGpu::Stats::dumpKeyValuePairs(SkTArray* keys, SkTArray* values) { keys->push_back(SkString("render_target_binds")); values->push_back(fRenderTargetBinds); keys->push_back(SkString("shader_compilations")); values->push_back(fShaderCompilations); } #endif #endif