/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/gpu/GrBackendSurface.h" #include "include/gpu/vk/GrVkBackendContext.h" #include "include/gpu/vk/GrVkExtensions.h" #include "src/gpu/GrRenderTarget.h" #include "src/gpu/GrRenderTargetProxy.h" #include "src/gpu/GrShaderCaps.h" #include "src/gpu/GrUtil.h" #include "src/gpu/SkGr.h" #include "src/gpu/vk/GrVkCaps.h" #include "src/gpu/vk/GrVkInterface.h" #include "src/gpu/vk/GrVkTexture.h" #include "src/gpu/vk/GrVkUniformHandler.h" #include "src/gpu/vk/GrVkUtil.h" #ifdef SK_BUILD_FOR_ANDROID #include #endif GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features, uint32_t instanceVersion, uint32_t physicalDeviceVersion, const GrVkExtensions& extensions, GrProtected isProtected) : INHERITED(contextOptions) { /************************************************************************** * GrCaps fields **************************************************************************/ fMipMapSupport = true; // always available in Vulkan fSRGBSupport = true; // always available in Vulkan fNPOTTextureTileSupport = true; // always available in Vulkan fReuseScratchTextures = true; //TODO: figure this out fGpuTracingSupport = false; //TODO: figure this out fOversizedStencilSupport = false; //TODO: figure this out fInstanceAttribSupport = true; fSemaphoreSupport = true; // always available in Vulkan fFenceSyncSupport = true; // always available in Vulkan fCrossContextTextureSupport = true; fHalfFloatVertexAttributeSupport = true; // We always copy in/out of a transfer buffer so it's trivial to support row bytes. fReadPixelsRowBytesSupport = true; fWritePixelsRowBytesSupport = true; fTransferBufferSupport = true; fMaxRenderTargetSize = 4096; // minimum required by spec fMaxTextureSize = 4096; // minimum required by spec fDynamicStateArrayGeometryProcessorTextureSupport = true; fShaderCaps.reset(new GrShaderCaps(contextOptions)); this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions, isProtected); } namespace { /** * This comes from section 37.1.6 of the Vulkan spec. Format is * (|)__. */ enum class FormatCompatibilityClass { k8_1_1, k16_2_1, k24_3_1, k32_4_1, k64_8_1, k128_16_1, kETC2_RGB_8_16, }; } // anonymous namespace static FormatCompatibilityClass format_compatibility_class(VkFormat format) { switch (format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_SFLOAT: return FormatCompatibilityClass::k32_4_1; case VK_FORMAT_R8_UNORM: return FormatCompatibilityClass::k8_1_1; case VK_FORMAT_R5G6B5_UNORM_PACK16: case VK_FORMAT_R16_SFLOAT: case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_B4G4R4A4_UNORM_PACK16: case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_R16_UNORM: return FormatCompatibilityClass::k16_2_1; case VK_FORMAT_R16G16B16A16_SFLOAT: case VK_FORMAT_R16G16B16A16_UNORM: return FormatCompatibilityClass::k64_8_1; case VK_FORMAT_R8G8B8_UNORM: return FormatCompatibilityClass::k24_3_1; case VK_FORMAT_R32G32B32A32_SFLOAT: return FormatCompatibilityClass::k128_16_1; case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: return FormatCompatibilityClass::kETC2_RGB_8_16; default: SK_ABORT("Unsupported VkFormat"); } } bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const { if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) { return false; } if (dstHasYcbcr || srcHasYcbcr) { return false; } // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src // as image usage flags. return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat); } bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear, bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt, bool srcIsLinear, bool srcHasYcbcr) const { // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src // as image usage flags. if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) || !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) { return false; } // We cannot blit images that are multisampled. Will need to figure out if we can blit the // resolved msaa though. if (dstSampleCnt > 1 || srcSampleCnt > 1) { return false; } if (dstHasYcbcr || srcHasYcbcr) { return false; } return true; } bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const { // The src surface must be multisampled. if (srcSampleCnt <= 1) { return false; } // The dst must not be multisampled. if (dstSampleCnt > 1) { return false; } // Surfaces must have the same format. if (srcFormat != dstFormat) { return false; } if (dstHasYcbcr || srcHasYcbcr) { return false; } return true; } bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src, const SkIRect& srcRect, const SkIPoint& dstPoint) const { if (src->isProtected() && !dst->isProtected()) { return false; } // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g. // PromiseImage which won't get instantiated right away. Does this need a similar thing like the // tracking of external or rectangle textures in GL? For now we don't create linear textures // internally, and I don't believe anyone is wrapping them. bool srcIsLinear = false; bool dstIsLinear = false; int dstSampleCnt = 0; int srcSampleCnt = 0; if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) { // Copying to or from render targets that wrap a secondary command buffer is not allowed // since they would require us to know the VkImage, which we don't have, as well as need us // to stop and start the VkRenderPass which we don't have access to. if (rtProxy->wrapsVkSecondaryCB()) { return false; } dstSampleCnt = rtProxy->numSamples(); } if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) { // Copying to or from render targets that wrap a secondary command buffer is not allowed // since they would require us to know the VkImage, which we don't have, as well as need us // to stop and start the VkRenderPass which we don't have access to. if (rtProxy->wrapsVkSecondaryCB()) { return false; } srcSampleCnt = rtProxy->numSamples(); } SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy())); SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy())); bool dstHasYcbcr = false; if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) { if (ycbcr->isValid()) { dstHasYcbcr = true; } } bool srcHasYcbcr = false; if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) { if (ycbcr->isValid()) { srcHasYcbcr = true; } } VkFormat dstFormat, srcFormat; SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat)); SkAssertResult(src->backendFormat().asVkFormat(&srcFormat)); return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr, srcFormat, srcSampleCnt, srcHasYcbcr) || this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr, srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) || this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr, srcFormat, srcSampleCnt, srcHasYcbcr); } template T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features, VkStructureType type) { // All Vulkan structs that could be part of the features chain will start with the // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader // so we can get access to the pNext for the next struct. struct CommonVulkanHeader { VkStructureType sType; void* pNext; }; void* pNext = features.pNext; while (pNext) { CommonVulkanHeader* header = static_cast(pNext); if (header->sType == type) { return static_cast(pNext); } pNext = header->pNext; } return nullptr; } void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features, uint32_t physicalDeviceVersion, const GrVkExtensions& extensions, GrProtected isProtected) { VkPhysicalDeviceProperties properties; GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties)); VkPhysicalDeviceMemoryProperties memoryProperties; GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties)); SkASSERT(physicalDeviceVersion <= properties.apiVersion); if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) { fSupportsSwapchain = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) { fSupportsPhysicalDeviceProperties2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) { fSupportsMemoryRequirements2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) { fSupportsBindMemory2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) { fSupportsMaintenance1 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) { fSupportsMaintenance2 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) { fSupportsMaintenance3 = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) && this->supportsMemoryRequirements2())) { fSupportsDedicatedAllocation = true; } if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) && this->supportsPhysicalDeviceProperties2() && extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) && this->supportsDedicatedAllocation())) { fSupportsExternalMemory = true; } #ifdef SK_BUILD_FOR_ANDROID // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they // do we don't explicitly require it here even the spec says it is required. if (extensions.hasExtension( VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) && /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/ this->supportsExternalMemory() && this->supportsBindMemory2()) { fSupportsAndroidHWBExternalMemory = true; fSupportsAHardwareBufferImages = true; } #endif auto ycbcrFeatures = get_extension_feature_struct( features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES); if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion && (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) && this->supportsMaintenance1() && this->supportsBindMemory2() && this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) { fSupportsYcbcrConversion = true; } // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion // will return a key of 0. fYcbcrInfos.push_back(GrVkYcbcrConversionInfo()); if ((isProtected == GrProtected::kYes) && (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) { fSupportsProtectedMemory = true; fAvoidUpdateBuffers = true; fShouldAlwaysUseDedicatedImageMemory = true; } this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions); this->initShaderCaps(properties, features); if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { #if defined(SK_CPU_X86) // We need to do this before initing the config table since it uses fSRGBSupport if (kImagination_VkVendor == properties.vendorID) { fSRGBSupport = false; } #endif } if (kQualcomm_VkVendor == properties.vendorID) { // A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a // scissored clear. // On NVIDIA and Intel, the discard load followed by clear is faster. // TODO: Evaluate on ARM, Imagination, and ATI. fPreferFullscreenClears = true; } if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) { // On Qualcomm and ARM mapping a gpu buffer and doing both reads and writes to it is slow. // Thus for index and vertex buffers we will force to use a cpu side buffer and then copy // the whole buffer up to the gpu. fBufferMapThreshold = SK_MaxS32; } if (kQualcomm_VkVendor == properties.vendorID) { // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer // even for small sizes. fAvoidUpdateBuffers = true; } if (kARM_VkVendor == properties.vendorID) { // ARM seems to do better with more fine triangles as opposed to using the sample mask. // (At least in our current round rect op.) fPreferTrianglesOverSampleMask = true; } this->initFormatTable(vkInterface, physDev, properties); this->initStencilFormat(vkInterface, physDev); if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { this->applyDriverCorrectnessWorkarounds(properties); } this->applyOptionsOverrides(contextOptions); fShaderCaps->applyOptionsOverrides(contextOptions); } void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) { if (kQualcomm_VkVendor == properties.vendorID) { fMustDoCopiesFromOrigin = true; // Transfer doesn't support this workaround. fTransferBufferSupport = false; } #if defined(SK_BUILD_FOR_WIN) if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) { fMustSleepOnTearDown = true; } #elif defined(SK_BUILD_FOR_ANDROID) if (kImagination_VkVendor == properties.vendorID) { fMustSleepOnTearDown = true; } #endif #if defined(SK_BUILD_FOR_ANDROID) // Protected memory features have problems in Android P and earlier. if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) { char androidAPIVersion[PROP_VALUE_MAX]; int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersion); if (strLength == 0 || atoi(androidAPIVersion) <= 28) { fSupportsProtectedMemory = false; } } #endif // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages. if (kARM_VkVendor == properties.vendorID) { fShouldAlwaysUseDedicatedImageMemory = true; } //////////////////////////////////////////////////////////////////////////// // GrCaps workarounds //////////////////////////////////////////////////////////////////////////// if (kARM_VkVendor == properties.vendorID) { fInstanceAttribSupport = false; fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064 } // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32. if (kAMD_VkVendor == properties.vendorID) { fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32); } //////////////////////////////////////////////////////////////////////////// // GrShaderCaps workarounds //////////////////////////////////////////////////////////////////////////// if (kImagination_VkVendor == properties.vendorID) { fShaderCaps->fAtan2ImplementedAsAtanYOverX = true; } } int get_max_sample_count(VkSampleCountFlags flags) { SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT); if (!(flags & VK_SAMPLE_COUNT_2_BIT)) { return 0; } if (!(flags & VK_SAMPLE_COUNT_4_BIT)) { return 2; } if (!(flags & VK_SAMPLE_COUNT_8_BIT)) { return 4; } if (!(flags & VK_SAMPLE_COUNT_16_BIT)) { return 8; } if (!(flags & VK_SAMPLE_COUNT_32_BIT)) { return 16; } if (!(flags & VK_SAMPLE_COUNT_64_BIT)) { return 32; } return 64; } void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties, const VkPhysicalDeviceMemoryProperties& memoryProperties, const VkPhysicalDeviceFeatures2& features, const GrVkExtensions& extensions) { // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no // need for us ever to support that amount, and it makes tests which tests all the vertex // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if // we ever find that need. static const uint32_t kMaxVertexAttributes = 64; fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes); // We could actually query and get a max size for each config, however maxImageDimension2D will // give the minimum max size across all configs. So for simplicity we will use that for now. fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); if (fDriverBugWorkarounds.max_texture_size_limit_4096) { fMaxTextureSize = SkTMin(fMaxTextureSize, 4096); } // Our render targets are always created with textures as the color // attachment, hence this min: fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize); // TODO: check if RT's larger than 4k incur a performance cost on ARM. fMaxPreferredRenderTargetSize = fMaxRenderTargetSize; // Assuming since we will always map in the end to upload the data we might as well just map // from the get go. There is no hard data to suggest this is faster or slower. fBufferMapThreshold = 0; fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag; fOversizedStencilSupport = true; if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) && this->supportsPhysicalDeviceProperties2()) { VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps; blendProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT; blendProps.pNext = nullptr; VkPhysicalDeviceProperties2 props; props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; props.pNext = &blendProps; GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props)); if (blendProps.advancedBlendAllOperations == VK_TRUE) { fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction; auto blendFeatures = get_extension_feature_struct( features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT); if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) { fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport; } else { // TODO: Currently non coherent blends are not supported in our vulkan backend. They // require us to support self dependencies in our render passes. // fBlendEquationSupport = kAdvanced_BlendEquationSupport; } } } } void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties, const VkPhysicalDeviceFeatures2& features) { GrShaderCaps* shaderCaps = fShaderCaps.get(); shaderCaps->fVersionDeclString = "#version 330\n"; // Vulkan is based off ES 3.0 so the following should all be supported shaderCaps->fUsesPrecisionModifiers = true; shaderCaps->fFlatInterpolationSupport = true; // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed // to be true with Vulkan as well. shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID; // GrShaderCaps shaderCaps->fShaderDerivativeSupport = true; // FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly. // shaderCaps->fGeometryShaderSupport = // shaderCaps->fGSInvocationsSupport = features.features.geometryShader; shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend; shaderCaps->fIntegerSupport = true; shaderCaps->fVertexIDSupport = true; shaderCaps->fFPManipulationSupport = true; // Assume the minimum precisions mandated by the SPIR-V spec. shaderCaps->fFloatIs32Bits = true; shaderCaps->fHalfIs32Bits = false; shaderCaps->fMaxFragmentSamplers = SkTMin( SkTMin(properties.limits.maxPerStageDescriptorSampledImages, properties.limits.maxPerStageDescriptorSamplers), (uint32_t)INT_MAX); } bool stencil_format_supported(const GrVkInterface* interface, VkPhysicalDevice physDev, VkFormat format) { VkFormatProperties props; memset(&props, 0, sizeof(VkFormatProperties)); GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures); } void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) { // List of legal stencil formats (though perhaps not supported on // the particular gpu/driver) from most preferred to least. We are guaranteed to have either // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT // can optionally have 24 unused bits at the end so we assume the total bits is 64. static const StencilFormat // internal Format stencil bits total bits packed? gS8 = { VK_FORMAT_S8_UINT, 8, 8, false }, gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true }, gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true }; if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) { fPreferredStencilFormat = gS8; } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) { fPreferredStencilFormat = gD24S8; } else { SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT)); fPreferredStencilFormat = gD32S8; } } static bool format_is_srgb(VkFormat format) { SkASSERT(GrVkFormatIsSupported(format)); switch (format) { case VK_FORMAT_R8G8B8A8_SRGB: return true; default: return false; } } // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most // frequently used to least to improve look up times in arrays. static constexpr VkFormat kVkFormats[] = { VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_R8G8_UNORM, VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_SRGB, VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM, VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, // Experimental (for Y416 and mutant P016/P010) VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16_SFLOAT, }; void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list formats) { #ifdef SK_DEBUG for (size_t i = 0; i < kNumVkFormats; ++i) { const auto& formatInfo = fFormatTable[i]; for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) { const auto& ctInfo = formatInfo.fColorTypeInfos[j]; if (ctInfo.fColorType == colorType && !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) { bool found = false; for (auto it = formats.begin(); it != formats.end(); ++it) { if (kVkFormats[i] == *it) { found = true; } } SkASSERT(found); } } } #endif int idx = static_cast(colorType); for (auto it = formats.begin(); it != formats.end(); ++it) { const auto& info = this->getFormatInfo(*it); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { if (info.fColorTypeInfos[i].fColorType == colorType) { fColorTypeToFormatTable[idx] = *it; return; } } } } const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const { GrVkCaps* nonConstThis = const_cast(this); return nonConstThis->getFormatInfo(format); } GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) { static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats, "Size of VkFormats array must match static value in header"); for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) { if (kVkFormats[i] == format) { return fFormatTable[i]; } } static FormatInfo kInvalidFormat; return kInvalidFormat; } void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties) { static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats, "Size of VkFormats array must match static value in header"); std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED); // Go through all the formats and init their support surface and data GrColorTypes. // Format: VK_FORMAT_R8G8B8A8_UNORM { constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 2; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888 { constexpr GrColorType ct = GrColorType::kRGBA_8888; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x { constexpr GrColorType ct = GrColorType::kRGB_888x; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; ctInfo.fTextureSwizzle = GrSwizzle::RGB1(); } } } // Format: VK_FORMAT_R8_UNORM { constexpr VkFormat format = VK_FORMAT_R8_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 2; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8 { constexpr GrColorType ct = GrColorType::kAlpha_8; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; ctInfo.fTextureSwizzle = GrSwizzle::RRRR(); ctInfo.fOutputSwizzle = GrSwizzle::AAAA(); } // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8 { constexpr GrColorType ct = GrColorType::kGray_8; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; ctInfo.fTextureSwizzle = GrSwizzle("rrr1"); } } } // Format: VK_FORMAT_B8G8R8A8_UNORM { constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888 { constexpr GrColorType ct = GrColorType::kBGRA_8888; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R5G6B5_UNORM_PACK16 { constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565 { constexpr GrColorType ct = GrColorType::kBGR_565; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R16G16B16A16_SFLOAT { constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 2; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16 { constexpr GrColorType ct = GrColorType::kRGBA_F16; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped { constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R16_SFLOAT { constexpr VkFormat format = VK_FORMAT_R16_SFLOAT; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16 { constexpr GrColorType ct = GrColorType::kAlpha_F16; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; ctInfo.fTextureSwizzle = GrSwizzle::RRRR(); ctInfo.fOutputSwizzle = GrSwizzle::AAAA(); } } } // Format: VK_FORMAT_R8G8B8_UNORM { constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x { constexpr GrColorType ct = GrColorType::kRGB_888x; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R8G8_UNORM { constexpr VkFormat format = VK_FORMAT_R8G8_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88 { constexpr GrColorType ct = GrColorType::kRG_88; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32 { constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102 { constexpr GrColorType ct = GrColorType::kRGBA_1010102; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16 { constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444 { constexpr GrColorType ct = GrColorType::kABGR_4444; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; ctInfo.fTextureSwizzle = GrSwizzle::BGRA(); ctInfo.fOutputSwizzle = GrSwizzle::BGRA(); } } } // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16 { constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444 { constexpr GrColorType ct = GrColorType::kABGR_4444; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R32G32B32A32_SFLOAT { constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R32G32B32A32_SFLOAT, Surface: kRGBA_F32 { constexpr GrColorType ct = GrColorType::kRGBA_F32; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R8G8B8A8_SRGB { constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB; auto& info = this->getFormatInfo(format); if (fSRGBSupport) { info.init(interface, physDev, properties, format); } if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB { constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R16_UNORM { constexpr VkFormat format = VK_FORMAT_R16_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R16_UNORM, Surface: kR_16 { constexpr GrColorType ct = GrColorType::kR_16; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R16G16_UNORM { constexpr VkFormat format = VK_FORMAT_R16G16_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616 { constexpr GrColorType ct = GrColorType::kRG_1616; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R16G16B16A16_UNORM { constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616 { constexpr GrColorType ct = GrColorType::kRGBA_16161616; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_R16G16_SFLOAT { constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16 { constexpr GrColorType ct = GrColorType::kRG_F16; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; } } } // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM { constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM; auto& info = this->getFormatInfo(format); if (fSupportsYcbcrConversion) { info.init(interface, physDev, properties, format); } if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x { constexpr GrColorType ct = GrColorType::kRGB_888x; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag; } } } // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM { constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM; auto& info = this->getFormatInfo(format); if (fSupportsYcbcrConversion) { info.init(interface, physDev, properties, format); } if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]()); int ctIdx = 0; // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x { constexpr GrColorType ct = GrColorType::kRGB_888x; auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = ct; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag; } } } // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK { constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; auto& info = this->getFormatInfo(format); info.init(interface, physDev, properties, format); // No supported GrColorTypes. } //////////////////////////////////////////////////////////////////////////// // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats // are passed into the setColorType function indicates the priority in selecting which format // we use for a given GrcolorType. this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM }); this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 }); this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_B4G4R4A4_UNORM_PACK16 }); this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM }); this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB }); this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_R8G8B8A8_UNORM }); this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM }); this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM }); this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 }); this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM }); this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT }); this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT }); this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT }); this->setColorType(GrColorType::kRGBA_F32, { VK_FORMAT_R32G32B32A32_SFLOAT }); this->setColorType(GrColorType::kR_16, { VK_FORMAT_R16_UNORM }); this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM }); this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM }); this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT }); } void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) { if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) && SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) { *flags = *flags | kTexturable_Flag; // Ganesh assumes that all renderable surfaces are also texturable if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) { *flags = *flags | kRenderable_Flag; } } if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) { *flags = *flags | kBlitSrc_Flag; } if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) { *flags = *flags | kBlitDst_Flag; } } void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& physProps, VkFormat format) { VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; VkImageFormatProperties properties; GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev, format, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, usage, 0, // createFlags &properties)); VkSampleCountFlags flags = properties.sampleCounts; if (flags & VK_SAMPLE_COUNT_1_BIT) { fColorSampleCounts.push_back(1); } if (kImagination_VkVendor == physProps.vendorID) { // MSAA does not work on imagination return; } if (kIntel_VkVendor == physProps.vendorID) { // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926 return; } if (flags & VK_SAMPLE_COUNT_2_BIT) { fColorSampleCounts.push_back(2); } if (flags & VK_SAMPLE_COUNT_4_BIT) { fColorSampleCounts.push_back(4); } if (flags & VK_SAMPLE_COUNT_8_BIT) { fColorSampleCounts.push_back(8); } if (flags & VK_SAMPLE_COUNT_16_BIT) { fColorSampleCounts.push_back(16); } if (flags & VK_SAMPLE_COUNT_32_BIT) { fColorSampleCounts.push_back(32); } if (flags & VK_SAMPLE_COUNT_64_BIT) { fColorSampleCounts.push_back(64); } } void GrVkCaps::FormatInfo::init(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties, VkFormat format) { VkFormatProperties props; memset(&props, 0, sizeof(VkFormatProperties)); GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); InitFormatFlags(props.linearTilingFeatures, &fLinearFlags); InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags); if (fOptimalFlags & kRenderable_Flag) { this->initSampleCounts(interface, physDev, properties, format); } } bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } return format_is_srgb(vkFormat); } bool GrVkCaps::isFormatCompressed(const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } SkASSERT(GrVkFormatIsSupported(vkFormat)); return vkFormat == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; } bool GrVkCaps::isFormatTexturableAndUploadable(GrColorType ct, const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } uint32_t ctFlags = this->getFormatInfo(vkFormat).colorTypeFlags(ct); return this->isVkFormatTexturable(vkFormat) && SkToBool(ctFlags & ColorTypeInfo::kUploadData_Flag); } bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } return this->isVkFormatTexturable(vkFormat); } bool GrVkCaps::isVkFormatTexturable(VkFormat format) const { const FormatInfo& info = this->getFormatInfo(format); return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags); } bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format, int sampleCount) const { if (!this->isFormatRenderable(format, sampleCount)) { return false; } VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } const auto& info = this->getFormatInfo(vkFormat); if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) { return false; } return true; } bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } return this->isFormatRenderable(vkFormat, sampleCount); } bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const { return sampleCount <= this->maxRenderTargetSampleCount(format); } int GrVkCaps::getRenderTargetSampleCount(int requestedCount, const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return 0; } return this->getRenderTargetSampleCount(requestedCount, vkFormat); } int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const { requestedCount = SkTMax(1, requestedCount); const FormatInfo& info = this->getFormatInfo(format); int count = info.fColorSampleCounts.count(); if (!count) { return 0; } if (1 == requestedCount) { SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1); return 1; } for (int i = 0; i < count; ++i) { if (info.fColorSampleCounts[i] >= requestedCount) { return info.fColorSampleCounts[i]; } } return 0; } int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return 0; } return this->maxRenderTargetSampleCount(vkFormat); } int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const { const FormatInfo& info = this->getFormatInfo(format); const auto& table = info.fColorSampleCounts; if (!table.count()) { return 0; } return table[table.count() - 1]; } static inline size_t align_to_4(size_t v) { switch (v & 0b11) { // v is already a multiple of 4. case 0: return v; // v is a multiple of 2 but not 4. case 2: return 2 * v; // v is not a multiple of 2. default: return 4 * v; } } GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType, const GrBackendFormat& surfaceFormat, GrColorType srcColorType) const { VkFormat vkFormat; if (!surfaceFormat.asVkFormat(&vkFormat)) { return {GrColorType::kUnknown, 0}; } if (GrVkFormatNeedsYcbcrSampler(vkFormat)) { return {GrColorType::kUnknown, 0}; } // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel. size_t offsetAlignment = align_to_4(GrVkBytesPerFormat(vkFormat)); const auto& info = this->getFormatInfo(vkFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { const auto& ctInfo = info.fColorTypeInfos[i]; if (ctInfo.fColorType == surfaceColorType) { return {surfaceColorType, offsetAlignment}; } } return {GrColorType::kUnknown, 0}; } GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels( const GrSurface* surface) const { if (surface->isProtected()) { return SurfaceReadPixelsSupport::kUnsupported; } if (auto tex = static_cast(surface->asTexture())) { // We can't directly read from a VkImage that has a ycbcr sampler. if (tex->ycbcrConversionInfo().isValid()) { return SurfaceReadPixelsSupport::kCopyToTexture2D; } // We can't directly read from a compressed format SkImage::CompressionType compressionType; if (GrVkFormatToCompressionType(tex->imageFormat(), &compressionType)) { return SurfaceReadPixelsSupport::kCopyToTexture2D; } } return SurfaceReadPixelsSupport::kSupported; } bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const { if (auto rt = surface->asRenderTarget()) { return rt->numSamples() <= 1 && SkToBool(surface->asTexture()); } // We can't write to a texture that has a ycbcr sampler. if (auto tex = static_cast(surface->asTexture())) { // We can't directly read from a VkImage that has a ycbcr sampler. if (tex->ycbcrConversionInfo().isValid()) { return false; } } return true; } bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct, const GrBackendFormat& format) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return false; } const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo(); SkASSERT(ycbcrInfo); if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) { // Format may be undefined for external images, which are required to have YCbCr conversion. if (VK_FORMAT_UNDEFINED == vkFormat) { return true; } return false; } const auto& info = this->getFormatInfo(vkFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { if (info.fColorTypeInfos[i].fColorType == ct) { return true; } } return false; } static GrPixelConfig validate_image_info(VkFormat format, GrColorType ct, bool hasYcbcrConversion) { if (hasYcbcrConversion) { if (GrVkFormatNeedsYcbcrSampler(format)) { return kRGB_888X_GrPixelConfig; } // Format may be undefined for external images, which are required to have YCbCr conversion. if (VK_FORMAT_UNDEFINED == format) { // We don't actually care what the color type or config are since we won't use those // values for external textures. However, for read pixels we will draw to a non ycbcr // texture of this config so we set RGBA here for that. return kRGBA_8888_GrPixelConfig; } return kUnknown_GrPixelConfig; } if (VK_FORMAT_UNDEFINED == format) { return kUnknown_GrPixelConfig; } switch (ct) { case GrColorType::kUnknown: break; case GrColorType::kAlpha_8: if (VK_FORMAT_R8_UNORM == format) { return kAlpha_8_as_Red_GrPixelConfig; } break; case GrColorType::kBGR_565: if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) { return kRGB_565_GrPixelConfig; } break; case GrColorType::kABGR_4444: if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format || VK_FORMAT_R4G4B4A4_UNORM_PACK16 == format) { return kRGBA_4444_GrPixelConfig; } break; case GrColorType::kRGBA_8888: if (VK_FORMAT_R8G8B8A8_UNORM == format) { return kRGBA_8888_GrPixelConfig; } break; case GrColorType::kRGBA_8888_SRGB: if (VK_FORMAT_R8G8B8A8_SRGB == format) { return kSRGBA_8888_GrPixelConfig; } break; case GrColorType::kRGB_888x: if (VK_FORMAT_R8G8B8_UNORM == format) { return kRGB_888_GrPixelConfig; } else if (VK_FORMAT_R8G8B8A8_UNORM == format) { return kRGB_888X_GrPixelConfig; } else if (VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK == format) { return kRGB_ETC1_GrPixelConfig; } break; case GrColorType::kRG_88: if (VK_FORMAT_R8G8_UNORM == format) { return kRG_88_GrPixelConfig; } break; case GrColorType::kBGRA_8888: if (VK_FORMAT_B8G8R8A8_UNORM == format) { return kBGRA_8888_GrPixelConfig; } break; case GrColorType::kRGBA_1010102: if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) { return kRGBA_1010102_GrPixelConfig; } break; case GrColorType::kGray_8: if (VK_FORMAT_R8_UNORM == format) { return kGray_8_as_Red_GrPixelConfig; } break; case GrColorType::kAlpha_F16: if (VK_FORMAT_R16_SFLOAT == format) { return kAlpha_half_as_Red_GrPixelConfig; } break; case GrColorType::kRGBA_F16: if (VK_FORMAT_R16G16B16A16_SFLOAT == format) { return kRGBA_half_GrPixelConfig; } break; case GrColorType::kRGBA_F16_Clamped: if (VK_FORMAT_R16G16B16A16_SFLOAT == format) { return kRGBA_half_Clamped_GrPixelConfig; } break; case GrColorType::kRGBA_F32: if (VK_FORMAT_R32G32B32A32_SFLOAT == format) { return kRGBA_float_GrPixelConfig; } break; case GrColorType::kR_16: if (VK_FORMAT_R16_UNORM == format) { return kR_16_GrPixelConfig; } break; case GrColorType::kRG_1616: if (VK_FORMAT_R16G16_UNORM == format) { return kRG_1616_GrPixelConfig; } break; case GrColorType::kRGBA_16161616: if (VK_FORMAT_R16G16B16A16_UNORM == format) { return kRGBA_16161616_GrPixelConfig; } break; case GrColorType::kRG_F16: if (VK_FORMAT_R16G16_SFLOAT == format) { return kRG_half_GrPixelConfig; } break; // These have no equivalent: case GrColorType::kAlpha_8xxx: case GrColorType::kAlpha_F32xxx: case GrColorType::kGray_8xxx: break; } return kUnknown_GrPixelConfig; } GrPixelConfig GrVkCaps::onGetConfigFromBackendFormat(const GrBackendFormat& format, GrColorType ct) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return kUnknown_GrPixelConfig; } const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo(); SkASSERT(ycbcrInfo); return validate_image_info(vkFormat, ct, ycbcrInfo->isValid()); } GrColorType GrVkCaps::getYUVAColorTypeFromBackendFormat(const GrBackendFormat& format, bool isAlphaChannel) const { VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { return GrColorType::kUnknown; } switch (vkFormat) { case VK_FORMAT_R8_UNORM: return isAlphaChannel ? GrColorType::kAlpha_8 : GrColorType::kGray_8; case VK_FORMAT_R8G8B8A8_UNORM: return GrColorType::kRGBA_8888; case VK_FORMAT_R8G8B8_UNORM: return GrColorType::kRGB_888x; case VK_FORMAT_R8G8_UNORM: return GrColorType::kRG_88; case VK_FORMAT_B8G8R8A8_UNORM: return GrColorType::kBGRA_8888; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return GrColorType::kRGBA_1010102; case VK_FORMAT_R16_UNORM: return GrColorType::kR_16; case VK_FORMAT_R16G16_UNORM: return GrColorType::kRG_1616; // Experimental (for Y416 and mutant P016/P010) case VK_FORMAT_R16G16B16A16_UNORM: return GrColorType::kRGBA_16161616; case VK_FORMAT_R16G16_SFLOAT: return GrColorType::kRG_F16; default: return GrColorType::kUnknown; } SkUNREACHABLE; } GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct, GrRenderable renderable) const { VkFormat format = this->getFormatFromColorType(ct); if (format == VK_FORMAT_UNDEFINED) { return GrBackendFormat(); } return GrBackendFormat::MakeVk(format); } GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType( SkImage::CompressionType compressionType) const { switch (compressionType) { case SkImage::kETC1_CompressionType: return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK); case SkImage::kASTC_CompressionType | SkImage::kLast_CompressionType: return GrBackendFormat::MakeVk(VK_FORMAT_ASTC_4x4_UNORM_BLOCK); } SK_ABORT("Invalid compression type"); } bool GrVkCaps::canClearTextureOnCreation() const { return true; } GrSwizzle GrVkCaps::getTextureSwizzle(const GrBackendFormat& format, GrColorType colorType) const { VkFormat vkFormat; SkAssertResult(format.asVkFormat(&vkFormat)); const auto& info = this->getFormatInfo(vkFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { const auto& ctInfo = info.fColorTypeInfos[i]; if (ctInfo.fColorType == colorType) { return ctInfo.fTextureSwizzle; } } return GrSwizzle::RGBA(); } GrSwizzle GrVkCaps::getOutputSwizzle(const GrBackendFormat& format, GrColorType colorType) const { VkFormat vkFormat; SkAssertResult(format.asVkFormat(&vkFormat)); const auto& info = this->getFormatInfo(vkFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { const auto& ctInfo = info.fColorTypeInfos[i]; if (ctInfo.fColorType == colorType) { return ctInfo.fOutputSwizzle; } } return GrSwizzle::RGBA(); } GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType( GrColorType srcColorType, const GrBackendFormat& srcBackendFormat, GrColorType dstColorType) const { VkFormat vkFormat; if (!srcBackendFormat.asVkFormat(&vkFormat)) { return {GrColorType::kUnknown, 0}; } if (GrVkFormatNeedsYcbcrSampler(vkFormat)) { return {GrColorType::kUnknown, 0}; } // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel. size_t offsetAlignment = align_to_4(GrVkBytesPerFormat(vkFormat)); const auto& info = this->getFormatInfo(vkFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { const auto& ctInfo = info.fColorTypeInfos[i]; if (ctInfo.fColorType == srcColorType) { return {srcColorType, offsetAlignment}; } } return {GrColorType::kUnknown, 0}; } int GrVkCaps::getFragmentUniformBinding() const { return GrVkUniformHandler::kUniformBinding; } int GrVkCaps::getFragmentUniformSet() const { return GrVkUniformHandler::kUniformBufferDescSet; } #if GR_TEST_UTILS std::vector GrVkCaps::getTestingCombinations() const { std::vector combos = { { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) }, { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) }, { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)}, { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)}, { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) }, { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)}, { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) }, { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) }, { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)}, { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) }, { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) }, { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) }, { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) }, { GrColorType::kRGBA_F32, GrBackendFormat::MakeVk(VK_FORMAT_R32G32B32A32_SFLOAT) }, { GrColorType::kR_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) }, { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) }, { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) }, { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) }, }; return combos; } #endif