/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/SkSLMetalCodeGenerator.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/ir/SkSLExpressionStatement.h" #include "src/sksl/ir/SkSLExtension.h" #include "src/sksl/ir/SkSLIndexExpression.h" #include "src/sksl/ir/SkSLModifiersDeclaration.h" #include "src/sksl/ir/SkSLNop.h" #include "src/sksl/ir/SkSLVariableReference.h" #ifdef SK_MOLTENVK static const uint32_t MVKMagicNum = 0x19960412; #endif namespace SkSL { void MetalCodeGenerator::setupIntrinsics() { #define METAL(x) std::make_pair(kMetal_IntrinsicKind, k ## x ## _MetalIntrinsic) #define SPECIAL(x) std::make_pair(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic) fIntrinsicMap[String("sample")] = SPECIAL(Texture); fIntrinsicMap[String("mod")] = SPECIAL(Mod); fIntrinsicMap[String("equal")] = METAL(Equal); fIntrinsicMap[String("notEqual")] = METAL(NotEqual); fIntrinsicMap[String("lessThan")] = METAL(LessThan); fIntrinsicMap[String("lessThanEqual")] = METAL(LessThanEqual); fIntrinsicMap[String("greaterThan")] = METAL(GreaterThan); fIntrinsicMap[String("greaterThanEqual")] = METAL(GreaterThanEqual); } void MetalCodeGenerator::write(const char* s) { if (!s[0]) { return; } if (fAtLineStart) { for (int i = 0; i < fIndentation; i++) { fOut->writeText(" "); } } fOut->writeText(s); fAtLineStart = false; } void MetalCodeGenerator::writeLine(const char* s) { this->write(s); fOut->writeText(fLineEnding); fAtLineStart = true; } void MetalCodeGenerator::write(const String& s) { this->write(s.c_str()); } void MetalCodeGenerator::writeLine(const String& s) { this->writeLine(s.c_str()); } void MetalCodeGenerator::writeLine() { this->writeLine(""); } void MetalCodeGenerator::writeExtension(const Extension& ext) { this->writeLine("#extension " + ext.fName + " : enable"); } void MetalCodeGenerator::writeType(const Type& type) { switch (type.kind()) { case Type::kStruct_Kind: for (const Type* search : fWrittenStructs) { if (*search == type) { // already written this->write(type.name()); return; } } fWrittenStructs.push_back(&type); this->writeLine("struct " + type.name() + " {"); fIndentation++; this->writeFields(type.fields(), type.fOffset); fIndentation--; this->write("}"); break; case Type::kVector_Kind: this->writeType(type.componentType()); this->write(to_string(type.columns())); break; case Type::kMatrix_Kind: this->writeType(type.componentType()); this->write(to_string(type.columns())); this->write("x"); this->write(to_string(type.rows())); break; case Type::kSampler_Kind: this->write("texture2d "); // FIXME - support other texture types; break; default: if (type == *fContext.fHalf_Type) { // FIXME - Currently only supporting floats in MSL to avoid type coercion issues. this->write(fContext.fFloat_Type->name()); } else if (type == *fContext.fByte_Type) { this->write("char"); } else if (type == *fContext.fUByte_Type) { this->write("uchar"); } else { this->write(type.name()); } } } void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { switch (expr.fKind) { case Expression::kBinary_Kind: this->writeBinaryExpression((BinaryExpression&) expr, parentPrecedence); break; case Expression::kBoolLiteral_Kind: this->writeBoolLiteral((BoolLiteral&) expr); break; case Expression::kConstructor_Kind: this->writeConstructor((Constructor&) expr, parentPrecedence); break; case Expression::kIntLiteral_Kind: this->writeIntLiteral((IntLiteral&) expr); break; case Expression::kFieldAccess_Kind: this->writeFieldAccess(((FieldAccess&) expr)); break; case Expression::kFloatLiteral_Kind: this->writeFloatLiteral(((FloatLiteral&) expr)); break; case Expression::kFunctionCall_Kind: this->writeFunctionCall((FunctionCall&) expr); break; case Expression::kPrefix_Kind: this->writePrefixExpression((PrefixExpression&) expr, parentPrecedence); break; case Expression::kPostfix_Kind: this->writePostfixExpression((PostfixExpression&) expr, parentPrecedence); break; case Expression::kSetting_Kind: this->writeSetting((Setting&) expr); break; case Expression::kSwizzle_Kind: this->writeSwizzle((Swizzle&) expr); break; case Expression::kVariableReference_Kind: this->writeVariableReference((VariableReference&) expr); break; case Expression::kTernary_Kind: this->writeTernaryExpression((TernaryExpression&) expr, parentPrecedence); break; case Expression::kIndex_Kind: this->writeIndexExpression((IndexExpression&) expr); break; default: ABORT("unsupported expression: %s", expr.description().c_str()); } } void MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c) { auto i = fIntrinsicMap.find(c.fFunction.fName); SkASSERT(i != fIntrinsicMap.end()); Intrinsic intrinsic = i->second; int32_t intrinsicId = intrinsic.second; switch (intrinsic.first) { case kSpecial_IntrinsicKind: return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId); break; case kMetal_IntrinsicKind: this->writeExpression(*c.fArguments[0], kSequence_Precedence); switch ((MetalIntrinsic) intrinsicId) { case kEqual_MetalIntrinsic: this->write(" == "); break; case kNotEqual_MetalIntrinsic: this->write(" != "); break; case kLessThan_MetalIntrinsic: this->write(" < "); break; case kLessThanEqual_MetalIntrinsic: this->write(" <= "); break; case kGreaterThan_MetalIntrinsic: this->write(" > "); break; case kGreaterThanEqual_MetalIntrinsic: this->write(" >= "); break; default: ABORT("unsupported metal intrinsic kind"); } this->writeExpression(*c.fArguments[1], kSequence_Precedence); break; default: ABORT("unsupported intrinsic kind"); } } void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) { const auto& entry = fIntrinsicMap.find(c.fFunction.fName); if (entry != fIntrinsicMap.end()) { this->writeIntrinsicCall(c); return; } if (c.fFunction.fBuiltin && "atan" == c.fFunction.fName && 2 == c.fArguments.size()) { this->write("atan2"); } else if (c.fFunction.fBuiltin && "inversesqrt" == c.fFunction.fName) { this->write("rsqrt"); } else if (c.fFunction.fBuiltin && "inverse" == c.fFunction.fName) { SkASSERT(c.fArguments.size() == 1); this->writeInverseHack(*c.fArguments[0]); } else if (c.fFunction.fBuiltin && "dFdx" == c.fFunction.fName) { this->write("dfdx"); } else if (c.fFunction.fBuiltin && "dFdy" == c.fFunction.fName) { // Flipping Y also negates the Y derivatives. this->write((fProgram.fSettings.fFlipY) ? "-dfdy" : "dfdy"); } else { this->writeName(c.fFunction.fName); } this->write("("); const char* separator = ""; if (this->requirements(c.fFunction) & kInputs_Requirement) { this->write("_in"); separator = ", "; } if (this->requirements(c.fFunction) & kOutputs_Requirement) { this->write(separator); this->write("_out"); separator = ", "; } if (this->requirements(c.fFunction) & kUniforms_Requirement) { this->write(separator); this->write("_uniforms"); separator = ", "; } if (this->requirements(c.fFunction) & kGlobals_Requirement) { this->write(separator); this->write("_globals"); separator = ", "; } if (this->requirements(c.fFunction) & kFragCoord_Requirement) { this->write(separator); this->write("_fragCoord"); separator = ", "; } for (size_t i = 0; i < c.fArguments.size(); ++i) { const Expression& arg = *c.fArguments[i]; this->write(separator); separator = ", "; if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) { this->write("&"); } this->writeExpression(arg, kSequence_Precedence); } this->write(")"); } void MetalCodeGenerator::writeInverseHack(const Expression& mat) { String typeName = mat.fType.name(); String name = typeName + "_inverse"; if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) { if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( typeName + " " + name + "(" + typeName + " m) {" " return float2x2(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m));" "}" ).c_str()); } } else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) { if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( typeName + " " + name + "(" + typeName + " m) {" " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];" " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];" " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];" " float b01 = a22 * a11 - a12 * a21;" " float b11 = -a22 * a10 + a12 * a20;" " float b21 = a21 * a10 - a11 * a20;" " float det = a00 * b01 + a01 * b11 + a02 * b21;" " return " + typeName + " (b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11)," " b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10)," " b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) * " " (1/det);" "}" ).c_str()); } } else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) { if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( typeName + " " + name + "(" + typeName + " m) {" " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];" " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];" " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];" " float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];" " float b00 = a00 * a11 - a01 * a10;" " float b01 = a00 * a12 - a02 * a10;" " float b02 = a00 * a13 - a03 * a10;" " float b03 = a01 * a12 - a02 * a11;" " float b04 = a01 * a13 - a03 * a11;" " float b05 = a02 * a13 - a03 * a12;" " float b06 = a20 * a31 - a21 * a30;" " float b07 = a20 * a32 - a22 * a30;" " float b08 = a20 * a33 - a23 * a30;" " float b09 = a21 * a32 - a22 * a31;" " float b10 = a21 * a33 - a23 * a31;" " float b11 = a22 * a33 - a23 * a32;" " float det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - " " b04 * b07 + b05 * b06;" " return " + typeName + "(a11 * b11 - a12 * b10 + a13 * b09," " a02 * b10 - a01 * b11 - a03 * b09," " a31 * b05 - a32 * b04 + a33 * b03," " a22 * b04 - a21 * b05 - a23 * b03," " a12 * b08 - a10 * b11 - a13 * b07," " a00 * b11 - a02 * b08 + a03 * b07," " a32 * b02 - a30 * b05 - a33 * b01," " a20 * b05 - a22 * b02 + a23 * b01," " a10 * b10 - a11 * b08 + a13 * b06," " a01 * b08 - a00 * b10 - a03 * b06," " a30 * b04 - a31 * b02 + a33 * b00," " a21 * b02 - a20 * b04 - a23 * b00," " a11 * b07 - a10 * b09 - a12 * b06," " a00 * b09 - a01 * b07 + a02 * b06," " a31 * b01 - a30 * b03 - a32 * b00," " a20 * b03 - a21 * b01 + a22 * b00) / det;" "}" ).c_str()); } } this->write(name); } void MetalCodeGenerator::writeSpecialIntrinsic(const FunctionCall & c, SpecialIntrinsic kind) { switch (kind) { case kTexture_SpecialIntrinsic: this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(".sample("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(SAMPLER_SUFFIX); this->write(", "); this->writeExpression(*c.fArguments[1], kSequence_Precedence); if (c.fArguments[1]->fType == *fContext.fFloat3_Type) { this->write(".xy)"); // FIXME - add projection functionality } else { SkASSERT(c.fArguments[1]->fType == *fContext.fFloat2_Type); this->write(")"); } break; case kMod_SpecialIntrinsic: // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y) this->write("(("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(") - ("); this->writeExpression(*c.fArguments[1], kSequence_Precedence); this->write(") * floor(("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(") / ("); this->writeExpression(*c.fArguments[1], kSequence_Precedence); this->write(")))"); break; default: ABORT("unsupported special intrinsic kind"); } } // If it hasn't already been written, writes a constructor for 'matrix' which takes a single value // of type 'arg'. String MetalCodeGenerator::getMatrixConstructHelper(const Type& matrix, const Type& arg) { String key = matrix.name() + arg.name(); auto found = fHelpers.find(key); if (found != fHelpers.end()) { return found->second; } String name; int columns = matrix.columns(); int rows = matrix.rows(); if (arg.isNumber()) { // creating a matrix from a single scalar value name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float"; fExtraFunctions.printf("float%dx%d %s(float x) {\n", columns, rows, name.c_str()); fExtraFunctions.printf(" return float%dx%d(", columns, rows); for (int i = 0; i < columns; ++i) { if (i > 0) { fExtraFunctions.writeText(", "); } fExtraFunctions.printf("float%d(", rows); for (int j = 0; j < rows; ++j) { if (j > 0) { fExtraFunctions.writeText(", "); } if (i == j) { fExtraFunctions.writeText("x"); } else { fExtraFunctions.writeText("0"); } } fExtraFunctions.writeText(")"); } fExtraFunctions.writeText(");\n}\n"); } else if (arg.kind() == Type::kMatrix_Kind) { // creating a matrix from another matrix int argColumns = arg.columns(); int argRows = arg.rows(); name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float" + to_string(argColumns) + "x" + to_string(argRows); fExtraFunctions.printf("float%dx%d %s(float%dx%d m) {\n", columns, rows, name.c_str(), argColumns, argRows); fExtraFunctions.printf(" return float%dx%d(", columns, rows); for (int i = 0; i < columns; ++i) { if (i > 0) { fExtraFunctions.writeText(", "); } fExtraFunctions.printf("float%d(", rows); for (int j = 0; j < rows; ++j) { if (j > 0) { fExtraFunctions.writeText(", "); } if (i < argColumns && j < argRows) { fExtraFunctions.printf("m[%d][%d]", i, j); } else { fExtraFunctions.writeText("0"); } } fExtraFunctions.writeText(")"); } fExtraFunctions.writeText(");\n}\n"); } else if (matrix.rows() == 2 && matrix.columns() == 2 && arg == *fContext.fFloat4_Type) { // float2x2(float4) doesn't work, need to split it into float2x2(float2, float2) name = "float2x2_from_float4"; fExtraFunctions.printf( "float2x2 %s(float4 v) {\n" " return float2x2(float2(v[0], v[1]), float2(v[2], v[3]));\n" "}\n", name.c_str() ); } else { SkASSERT(false); name = ""; } fHelpers[key] = name; return name; } bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) { if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) { return false; } if (t1.columns() > 1) { return this->canCoerce(t1.componentType(), t2.componentType()); } return t1.isFloat() && t2.isFloat(); } void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) { if (c.fArguments.size() == 1 && this->canCoerce(c.fType, c.fArguments[0]->fType)) { this->writeExpression(*c.fArguments[0], parentPrecedence); return; } if (c.fType.kind() == Type::kMatrix_Kind && c.fArguments.size() == 1) { const Expression& arg = *c.fArguments[0]; String name = this->getMatrixConstructHelper(c.fType, arg.fType); this->write(name); this->write("("); this->writeExpression(arg, kSequence_Precedence); this->write(")"); } else { this->writeType(c.fType); this->write("("); const char* separator = ""; int scalarCount = 0; for (const auto& arg : c.fArguments) { this->write(separator); separator = ", "; if (Type::kMatrix_Kind == c.fType.kind() && arg->fType.columns() != c.fType.rows()) { // merge scalars and smaller vectors together if (!scalarCount) { this->writeType(c.fType.componentType()); this->write(to_string(c.fType.rows())); this->write("("); } scalarCount += arg->fType.columns(); } this->writeExpression(*arg, kSequence_Precedence); if (scalarCount && scalarCount == c.fType.rows()) { this->write(")"); scalarCount = 0; } } this->write(")"); } } void MetalCodeGenerator::writeFragCoord() { if (fRTHeightName.length()) { this->write("float4(_fragCoord.x, "); this->write(fRTHeightName.c_str()); this->write(" - _fragCoord.y, 0.0, _fragCoord.w)"); } else { this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)"); } } void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) { switch (ref.fVariable.fModifiers.fLayout.fBuiltin) { case SK_FRAGCOLOR_BUILTIN: this->write("_out->sk_FragColor"); break; case SK_FRAGCOORD_BUILTIN: this->writeFragCoord(); break; case SK_VERTEXID_BUILTIN: this->write("sk_VertexID"); break; case SK_INSTANCEID_BUILTIN: this->write("sk_InstanceID"); break; case SK_CLOCKWISE_BUILTIN: // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter // clockwise to match Skia convention. This is also the default in MoltenVK. this->write(fProgram.fSettings.fFlipY ? "_frontFacing" : "(!_frontFacing)"); break; default: if (Variable::kGlobal_Storage == ref.fVariable.fStorage) { if (ref.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) { this->write("_in."); } else if (ref.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) { this->write("_out->"); } else if (ref.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag && ref.fVariable.fType.kind() != Type::kSampler_Kind) { this->write("_uniforms."); } else { this->write("_globals->"); } } this->writeName(ref.fVariable.fName); } } void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) { this->writeExpression(*expr.fBase, kPostfix_Precedence); this->write("["); this->writeExpression(*expr.fIndex, kTopLevel_Precedence); this->write("]"); } void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) { const Type::Field* field = &f.fBase->fType.fields()[f.fFieldIndex]; if (FieldAccess::kDefault_OwnerKind == f.fOwnerKind) { this->writeExpression(*f.fBase, kPostfix_Precedence); this->write("."); } switch (field->fModifiers.fLayout.fBuiltin) { case SK_CLIPDISTANCE_BUILTIN: this->write("gl_ClipDistance"); break; case SK_POSITION_BUILTIN: this->write("_out->sk_Position"); break; default: if (field->fName == "sk_PointSize") { this->write("_out->sk_PointSize"); } else { if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) { this->write("_globals->"); this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]); this->write("->"); } this->writeName(field->fName); } } } void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) { int last = swizzle.fComponents.back(); if (last == SKSL_SWIZZLE_0 || last == SKSL_SWIZZLE_1) { this->writeType(swizzle.fType); this->write("("); } this->writeExpression(*swizzle.fBase, kPostfix_Precedence); this->write("."); for (int c : swizzle.fComponents) { if (c >= 0) { this->write(&("x\0y\0z\0w\0"[c * 2])); } } if (last == SKSL_SWIZZLE_0) { this->write(", 0)"); } else if (last == SKSL_SWIZZLE_1) { this->write(", 1)"); } } MetalCodeGenerator::Precedence MetalCodeGenerator::GetBinaryPrecedence(Token::Kind op) { switch (op) { case Token::STAR: // fall through case Token::SLASH: // fall through case Token::PERCENT: return MetalCodeGenerator::kMultiplicative_Precedence; case Token::PLUS: // fall through case Token::MINUS: return MetalCodeGenerator::kAdditive_Precedence; case Token::SHL: // fall through case Token::SHR: return MetalCodeGenerator::kShift_Precedence; case Token::LT: // fall through case Token::GT: // fall through case Token::LTEQ: // fall through case Token::GTEQ: return MetalCodeGenerator::kRelational_Precedence; case Token::EQEQ: // fall through case Token::NEQ: return MetalCodeGenerator::kEquality_Precedence; case Token::BITWISEAND: return MetalCodeGenerator::kBitwiseAnd_Precedence; case Token::BITWISEXOR: return MetalCodeGenerator::kBitwiseXor_Precedence; case Token::BITWISEOR: return MetalCodeGenerator::kBitwiseOr_Precedence; case Token::LOGICALAND: return MetalCodeGenerator::kLogicalAnd_Precedence; case Token::LOGICALXOR: return MetalCodeGenerator::kLogicalXor_Precedence; case Token::LOGICALOR: return MetalCodeGenerator::kLogicalOr_Precedence; case Token::EQ: // fall through case Token::PLUSEQ: // fall through case Token::MINUSEQ: // fall through case Token::STAREQ: // fall through case Token::SLASHEQ: // fall through case Token::PERCENTEQ: // fall through case Token::SHLEQ: // fall through case Token::SHREQ: // fall through case Token::LOGICALANDEQ: // fall through case Token::LOGICALXOREQ: // fall through case Token::LOGICALOREQ: // fall through case Token::BITWISEANDEQ: // fall through case Token::BITWISEXOREQ: // fall through case Token::BITWISEOREQ: return MetalCodeGenerator::kAssignment_Precedence; case Token::COMMA: return MetalCodeGenerator::kSequence_Precedence; default: ABORT("unsupported binary operator"); } } void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right, const Type& result) { String key = "TimesEqual" + left.name() + right.name(); if (fHelpers.find(key) == fHelpers.end()) { fExtraFunctions.printf("%s operator*=(thread %s& left, thread const %s& right) {\n" " left = left * right;\n" " return left;\n" "}", result.name().c_str(), left.name().c_str(), right.name().c_str()); } } void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { Precedence precedence = GetBinaryPrecedence(b.fOperator); bool needParens = precedence >= parentPrecedence; switch (b.fOperator) { case Token::EQEQ: if (b.fLeft->fType.kind() == Type::kVector_Kind) { this->write("all"); needParens = true; } break; case Token::NEQ: if (b.fLeft->fType.kind() == Type::kVector_Kind) { this->write("any"); needParens = true; } break; default: break; } if (needParens) { this->write("("); } if (Compiler::IsAssignment(b.fOperator) && Expression::kVariableReference_Kind == b.fLeft->fKind && Variable::kParameter_Storage == ((VariableReference&) *b.fLeft).fVariable.fStorage && (((VariableReference&) *b.fLeft).fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) { // writing to an out parameter. Since we have to turn those into pointers, we have to // dereference it here. this->write("*"); } if (b.fOperator == Token::STAREQ && b.fLeft->fType.kind() == Type::kMatrix_Kind && b.fRight->fType.kind() == Type::kMatrix_Kind) { this->writeMatrixTimesEqualHelper(b.fLeft->fType, b.fRight->fType, b.fType); } this->writeExpression(*b.fLeft, precedence); if (b.fOperator != Token::EQ && Compiler::IsAssignment(b.fOperator) && Expression::kSwizzle_Kind == b.fLeft->fKind && !b.fLeft->hasSideEffects()) { // This doesn't compile in Metal: // float4 x = float4(1); // x.xy *= float2x2(...); // with the error message "non-const reference cannot bind to vector element", // but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation // as long as the LHS has no side effects, and hope for the best otherwise. this->write(" = "); this->writeExpression(*b.fLeft, kAssignment_Precedence); this->write(" "); String op = Compiler::OperatorName(b.fOperator); SkASSERT(op.endsWith("=")); this->write(op.substr(0, op.size() - 1).c_str()); this->write(" "); } else { this->write(String(" ") + Compiler::OperatorName(b.fOperator) + " "); } this->writeExpression(*b.fRight, precedence); if (needParens) { this->write(")"); } } void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t, Precedence parentPrecedence) { if (kTernary_Precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*t.fTest, kTernary_Precedence); this->write(" ? "); this->writeExpression(*t.fIfTrue, kTernary_Precedence); this->write(" : "); this->writeExpression(*t.fIfFalse, kTernary_Precedence); if (kTernary_Precedence >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p, Precedence parentPrecedence) { if (kPrefix_Precedence >= parentPrecedence) { this->write("("); } this->write(Compiler::OperatorName(p.fOperator)); this->writeExpression(*p.fOperand, kPrefix_Precedence); if (kPrefix_Precedence >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p, Precedence parentPrecedence) { if (kPostfix_Precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*p.fOperand, kPostfix_Precedence); this->write(Compiler::OperatorName(p.fOperator)); if (kPostfix_Precedence >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { this->write(b.fValue ? "true" : "false"); } void MetalCodeGenerator::writeIntLiteral(const IntLiteral& i) { if (i.fType == *fContext.fUInt_Type) { this->write(to_string(i.fValue & 0xffffffff) + "u"); } else { this->write(to_string((int32_t) i.fValue)); } } void MetalCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { this->write(to_string(f.fValue)); } void MetalCodeGenerator::writeSetting(const Setting& s) { ABORT("internal error; setting was not folded to a constant during compilation\n"); } void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) { fRTHeightName = fProgram.fInputs.fRTHeight ? "_globals->_anonInterface0->u_skRTHeight" : ""; const char* separator = ""; if ("main" == f.fDeclaration.fName) { switch (fProgram.fKind) { case Program::kFragment_Kind: #ifdef SK_MOLTENVK this->write("fragment Outputs main0"); #else this->write("fragment Outputs fragmentMain"); #endif break; case Program::kVertex_Kind: #ifdef SK_MOLTENVK this->write("vertex Outputs main0"); #else this->write("vertex Outputs vertexMain"); #endif break; default: SkASSERT(false); } this->write("(Inputs _in [[stage_in]]"); if (-1 != fUniformBuffer) { this->write(", constant Uniforms& _uniforms [[buffer(" + to_string(fUniformBuffer) + ")]]"); } for (const auto& e : fProgram) { if (ProgramElement::kVar_Kind == e.fKind) { VarDeclarations& decls = (VarDeclarations&) e; if (!decls.fVars.size()) { continue; } for (const auto& stmt: decls.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; if (var.fVar->fType.kind() == Type::kSampler_Kind) { this->write(", texture2d "); // FIXME - support other texture types this->writeName(var.fVar->fName); this->write("[[texture("); this->write(to_string(var.fVar->fModifiers.fLayout.fBinding)); this->write(")]]"); this->write(", sampler "); this->writeName(var.fVar->fName); this->write(SAMPLER_SUFFIX); this->write("[[sampler("); this->write(to_string(var.fVar->fModifiers.fLayout.fBinding)); this->write(")]]"); } } } else if (ProgramElement::kInterfaceBlock_Kind == e.fKind) { InterfaceBlock& intf = (InterfaceBlock&) e; if ("sk_PerVertex" == intf.fTypeName) { continue; } this->write(", constant "); this->writeType(intf.fVariable.fType); this->write("& " ); this->write(fInterfaceBlockNameMap[&intf]); this->write(" [[buffer("); #ifdef SK_MOLTENVK this->write(to_string(intf.fVariable.fModifiers.fLayout.fSet)); #else this->write(to_string(intf.fVariable.fModifiers.fLayout.fBinding)); #endif this->write(")]]"); } } if (fProgram.fKind == Program::kFragment_Kind) { if (fProgram.fInputs.fRTHeight && fInterfaceBlockNameMap.empty()) { #ifdef SK_MOLTENVK this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(0)]]"); #else this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]"); #endif fRTHeightName = "_anonInterface0.u_skRTHeight"; } this->write(", bool _frontFacing [[front_facing]]"); this->write(", float4 _fragCoord [[position]]"); } else if (fProgram.fKind == Program::kVertex_Kind) { this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]"); } separator = ", "; } else { this->writeType(f.fDeclaration.fReturnType); this->write(" "); this->writeName(f.fDeclaration.fName); this->write("("); Requirements requirements = this->requirements(f.fDeclaration); if (requirements & kInputs_Requirement) { this->write("Inputs _in"); separator = ", "; } if (requirements & kOutputs_Requirement) { this->write(separator); this->write("thread Outputs* _out"); separator = ", "; } if (requirements & kUniforms_Requirement) { this->write(separator); this->write("Uniforms _uniforms"); separator = ", "; } if (requirements & kGlobals_Requirement) { this->write(separator); this->write("thread Globals* _globals"); separator = ", "; } if (requirements & kFragCoord_Requirement) { this->write(separator); this->write("float4 _fragCoord"); separator = ", "; } } for (const auto& param : f.fDeclaration.fParameters) { this->write(separator); separator = ", "; this->writeModifiers(param->fModifiers, false); std::vector sizes; const Type* type = ¶m->fType; while (Type::kArray_Kind == type->kind()) { sizes.push_back(type->columns()); type = &type->componentType(); } this->writeType(*type); if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { this->write("*"); } this->write(" "); this->writeName(param->fName); for (int s : sizes) { if (s <= 0) { this->write("[]"); } else { this->write("[" + to_string(s) + "]"); } } } this->writeLine(") {"); SkASSERT(!fProgram.fSettings.fFragColorIsInOut); if ("main" == f.fDeclaration.fName) { if (fNeedsGlobalStructInit) { this->writeLine(" Globals globalStruct;"); this->writeLine(" thread Globals* _globals = &globalStruct;"); for (const auto& intf: fInterfaceBlockNameMap) { const auto& intfName = intf.second; this->write(" _globals->"); this->writeName(intfName); this->write(" = &"); this->writeName(intfName); this->write(";\n"); } for (const auto& var: fInitNonConstGlobalVars) { this->write(" _globals->"); this->writeName(var->fVar->fName); this->write(" = "); this->writeVarInitializer(*var->fVar, *var->fValue); this->writeLine(";"); } for (const auto& texture: fTextures) { this->write(" _globals->"); this->writeName(texture->fName); this->write(" = "); this->writeName(texture->fName); this->write(";\n"); this->write(" _globals->"); this->writeName(texture->fName); this->write(SAMPLER_SUFFIX); this->write(" = "); this->writeName(texture->fName); this->write(SAMPLER_SUFFIX); this->write(";\n"); } } this->writeLine(" Outputs _outputStruct;"); this->writeLine(" thread Outputs* _out = &_outputStruct;"); } fFunctionHeader = ""; OutputStream* oldOut = fOut; StringStream buffer; fOut = &buffer; fIndentation++; this->writeStatements(((Block&) *f.fBody).fStatements); if ("main" == f.fDeclaration.fName) { switch (fProgram.fKind) { case Program::kFragment_Kind: this->writeLine("return *_out;"); break; case Program::kVertex_Kind: this->writeLine("_out->sk_Position.y = -_out->sk_Position.y;"); this->writeLine("return *_out;"); // FIXME - detect if function already has return break; default: SkASSERT(false); } } fIndentation--; this->writeLine("}"); fOut = oldOut; this->write(fFunctionHeader); this->write(buffer.str()); } void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers, bool globalContext) { if (modifiers.fFlags & Modifiers::kOut_Flag) { this->write("thread "); } if (modifiers.fFlags & Modifiers::kConst_Flag) { this->write("constant "); } } void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { if ("sk_PerVertex" == intf.fTypeName) { return; } this->writeModifiers(intf.fVariable.fModifiers, true); this->write("struct "); this->writeLine(intf.fTypeName + " {"); const Type* structType = &intf.fVariable.fType; fWrittenStructs.push_back(structType); while (Type::kArray_Kind == structType->kind()) { structType = &structType->componentType(); } fIndentation++; writeFields(structType->fields(), structType->fOffset, &intf); if (fProgram.fInputs.fRTHeight) { this->writeLine("float u_skRTHeight;"); } fIndentation--; this->write("}"); if (intf.fInstanceName.size()) { this->write(" "); this->write(intf.fInstanceName); for (const auto& size : intf.fSizes) { this->write("["); if (size) { this->writeExpression(*size, kTopLevel_Precedence); } this->write("]"); } fInterfaceBlockNameMap[&intf] = intf.fInstanceName; } else { fInterfaceBlockNameMap[&intf] = "_anonInterface" + to_string(fAnonInterfaceCount++); } this->writeLine(";"); } void MetalCodeGenerator::writeFields(const std::vector& fields, int parentOffset, const InterfaceBlock* parentIntf) { #ifdef SK_MOLTENVK MemoryLayout memoryLayout(MemoryLayout::k140_Standard); #else MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard); #endif int currentOffset = 0; for (const auto& field: fields) { int fieldOffset = field.fModifiers.fLayout.fOffset; const Type* fieldType = field.fType; if (fieldOffset != -1) { if (currentOffset > fieldOffset) { fErrors.error(parentOffset, "offset of field '" + field.fName + "' must be at least " + to_string((int) currentOffset)); } else if (currentOffset < fieldOffset) { this->write("char pad"); this->write(to_string(fPaddingCount++)); this->write("["); this->write(to_string(fieldOffset - currentOffset)); this->writeLine("];"); currentOffset = fieldOffset; } int alignment = memoryLayout.alignment(*fieldType); if (fieldOffset % alignment) { fErrors.error(parentOffset, "offset of field '" + field.fName + "' must be a multiple of " + to_string((int) alignment)); } } #ifdef SK_MOLTENVK if (fieldType->kind() == Type::kVector_Kind && fieldType->columns() == 3) { SkASSERT(memoryLayout.size(*fieldType) == 3); // Pack all vec3 types so that their size in bytes will match what was expected in the // original SkSL code since MSL has vec3 sizes equal to 4 * component type, while SkSL // has vec3 equal to 3 * component type. // FIXME - Packed vectors can't be accessed by swizzles, but can be indexed into. A // combination of this being a problem which only occurs when using MoltenVK and the // fact that we haven't swizzled a vec3 yet means that this problem hasn't been // addressed. this->write(PACKED_PREFIX); } #endif currentOffset += memoryLayout.size(*fieldType); std::vector sizes; while (fieldType->kind() == Type::kArray_Kind) { sizes.push_back(fieldType->columns()); fieldType = &fieldType->componentType(); } this->writeModifiers(field.fModifiers, false); this->writeType(*fieldType); this->write(" "); this->writeName(field.fName); for (int s : sizes) { if (s <= 0) { this->write("[]"); } else { this->write("[" + to_string(s) + "]"); } } this->writeLine(";"); if (parentIntf) { fInterfaceBlockMap[&field] = parentIntf; } } } void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { this->writeExpression(value, kTopLevel_Precedence); } void MetalCodeGenerator::writeName(const String& name) { if (fReservedWords.find(name) != fReservedWords.end()) { this->write("_"); // adding underscore before name to avoid conflict with reserved words } this->write(name); } void MetalCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) { SkASSERT(decl.fVars.size() > 0); bool wroteType = false; for (const auto& stmt : decl.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; if (global && !(var.fVar->fModifiers.fFlags & Modifiers::kConst_Flag)) { continue; } if (wroteType) { this->write(", "); } else { this->writeModifiers(var.fVar->fModifiers, global); this->writeType(decl.fBaseType); this->write(" "); wroteType = true; } this->writeName(var.fVar->fName); for (const auto& size : var.fSizes) { this->write("["); if (size) { this->writeExpression(*size, kTopLevel_Precedence); } this->write("]"); } if (var.fValue) { this->write(" = "); this->writeVarInitializer(*var.fVar, *var.fValue); } } if (wroteType) { this->write(";"); } } void MetalCodeGenerator::writeStatement(const Statement& s) { switch (s.fKind) { case Statement::kBlock_Kind: this->writeBlock((Block&) s); break; case Statement::kExpression_Kind: this->writeExpression(*((ExpressionStatement&) s).fExpression, kTopLevel_Precedence); this->write(";"); break; case Statement::kReturn_Kind: this->writeReturnStatement((ReturnStatement&) s); break; case Statement::kVarDeclarations_Kind: this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, false); break; case Statement::kIf_Kind: this->writeIfStatement((IfStatement&) s); break; case Statement::kFor_Kind: this->writeForStatement((ForStatement&) s); break; case Statement::kWhile_Kind: this->writeWhileStatement((WhileStatement&) s); break; case Statement::kDo_Kind: this->writeDoStatement((DoStatement&) s); break; case Statement::kSwitch_Kind: this->writeSwitchStatement((SwitchStatement&) s); break; case Statement::kBreak_Kind: this->write("break;"); break; case Statement::kContinue_Kind: this->write("continue;"); break; case Statement::kDiscard_Kind: this->write("discard_fragment();"); break; case Statement::kNop_Kind: this->write(";"); break; default: ABORT("unsupported statement: %s", s.description().c_str()); } } void MetalCodeGenerator::writeStatements(const std::vector>& statements) { for (const auto& s : statements) { if (!s->isEmpty()) { this->writeStatement(*s); this->writeLine(); } } } void MetalCodeGenerator::writeBlock(const Block& b) { this->writeLine("{"); fIndentation++; this->writeStatements(b.fStatements); fIndentation--; this->write("}"); } void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) { this->write("if ("); this->writeExpression(*stmt.fTest, kTopLevel_Precedence); this->write(") "); this->writeStatement(*stmt.fIfTrue); if (stmt.fIfFalse) { this->write(" else "); this->writeStatement(*stmt.fIfFalse); } } void MetalCodeGenerator::writeForStatement(const ForStatement& f) { this->write("for ("); if (f.fInitializer && !f.fInitializer->isEmpty()) { this->writeStatement(*f.fInitializer); } else { this->write("; "); } if (f.fTest) { this->writeExpression(*f.fTest, kTopLevel_Precedence); } this->write("; "); if (f.fNext) { this->writeExpression(*f.fNext, kTopLevel_Precedence); } this->write(") "); this->writeStatement(*f.fStatement); } void MetalCodeGenerator::writeWhileStatement(const WhileStatement& w) { this->write("while ("); this->writeExpression(*w.fTest, kTopLevel_Precedence); this->write(") "); this->writeStatement(*w.fStatement); } void MetalCodeGenerator::writeDoStatement(const DoStatement& d) { this->write("do "); this->writeStatement(*d.fStatement); this->write(" while ("); this->writeExpression(*d.fTest, kTopLevel_Precedence); this->write(");"); } void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { this->write("switch ("); this->writeExpression(*s.fValue, kTopLevel_Precedence); this->writeLine(") {"); fIndentation++; for (const auto& c : s.fCases) { if (c->fValue) { this->write("case "); this->writeExpression(*c->fValue, kTopLevel_Precedence); this->writeLine(":"); } else { this->writeLine("default:"); } fIndentation++; for (const auto& stmt : c->fStatements) { this->writeStatement(*stmt); this->writeLine(); } fIndentation--; } fIndentation--; this->write("}"); } void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) { this->write("return"); if (r.fExpression) { this->write(" "); this->writeExpression(*r.fExpression, kTopLevel_Precedence); } this->write(";"); } void MetalCodeGenerator::writeHeader() { this->write("#include \n"); this->write("#include \n"); this->write("using namespace metal;\n"); } void MetalCodeGenerator::writeUniformStruct() { for (const auto& e : fProgram) { if (ProgramElement::kVar_Kind == e.fKind) { VarDeclarations& decls = (VarDeclarations&) e; if (!decls.fVars.size()) { continue; } const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar; if (first.fModifiers.fFlags & Modifiers::kUniform_Flag && first.fType.kind() != Type::kSampler_Kind) { if (-1 == fUniformBuffer) { this->write("struct Uniforms {\n"); fUniformBuffer = first.fModifiers.fLayout.fSet; if (-1 == fUniformBuffer) { fErrors.error(decls.fOffset, "Metal uniforms must have 'layout(set=...)'"); } } else if (first.fModifiers.fLayout.fSet != fUniformBuffer) { if (-1 == fUniformBuffer) { fErrors.error(decls.fOffset, "Metal backend requires all uniforms to have " "the same 'layout(set=...)'"); } } this->write(" "); this->writeType(first.fType); this->write(" "); for (const auto& stmt : decls.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; this->writeName(var.fVar->fName); } this->write(";\n"); } } } if (-1 != fUniformBuffer) { this->write("};\n"); } } void MetalCodeGenerator::writeInputStruct() { this->write("struct Inputs {\n"); for (const auto& e : fProgram) { if (ProgramElement::kVar_Kind == e.fKind) { VarDeclarations& decls = (VarDeclarations&) e; if (!decls.fVars.size()) { continue; } const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar; if (first.fModifiers.fFlags & Modifiers::kIn_Flag && -1 == first.fModifiers.fLayout.fBuiltin) { this->write(" "); this->writeType(first.fType); this->write(" "); for (const auto& stmt : decls.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; this->writeName(var.fVar->fName); if (-1 != var.fVar->fModifiers.fLayout.fLocation) { if (fProgram.fKind == Program::kVertex_Kind) { this->write(" [[attribute(" + to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]"); } else if (fProgram.fKind == Program::kFragment_Kind) { this->write(" [[user(locn" + to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]"); } } } this->write(";\n"); } } } this->write("};\n"); } void MetalCodeGenerator::writeOutputStruct() { this->write("struct Outputs {\n"); if (fProgram.fKind == Program::kVertex_Kind) { this->write(" float4 sk_Position [[position]];\n"); } else if (fProgram.fKind == Program::kFragment_Kind) { this->write(" float4 sk_FragColor [[color(0)]];\n"); } for (const auto& e : fProgram) { if (ProgramElement::kVar_Kind == e.fKind) { VarDeclarations& decls = (VarDeclarations&) e; if (!decls.fVars.size()) { continue; } const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar; if (first.fModifiers.fFlags & Modifiers::kOut_Flag && -1 == first.fModifiers.fLayout.fBuiltin) { this->write(" "); this->writeType(first.fType); this->write(" "); for (const auto& stmt : decls.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; this->writeName(var.fVar->fName); if (fProgram.fKind == Program::kVertex_Kind) { this->write(" [[user(locn" + to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]"); } else if (fProgram.fKind == Program::kFragment_Kind) { this->write(" [[color(" + to_string(var.fVar->fModifiers.fLayout.fLocation) +")"); int colorIndex = var.fVar->fModifiers.fLayout.fIndex; if (colorIndex) { this->write(", index(" + to_string(colorIndex) + ")"); } this->write("]]"); } } this->write(";\n"); } } } if (fProgram.fKind == Program::kVertex_Kind) { this->write(" float sk_PointSize;\n"); } this->write("};\n"); } void MetalCodeGenerator::writeInterfaceBlocks() { bool wroteInterfaceBlock = false; for (const auto& e : fProgram) { if (ProgramElement::kInterfaceBlock_Kind == e.fKind) { this->writeInterfaceBlock((InterfaceBlock&) e); wroteInterfaceBlock = true; } } if (!wroteInterfaceBlock && fProgram.fInputs.fRTHeight) { this->writeLine("struct sksl_synthetic_uniforms {"); this->writeLine(" float u_skRTHeight;"); this->writeLine("};"); } } void MetalCodeGenerator::writeGlobalStruct() { bool wroteStructDecl = false; for (const auto& intf : fInterfaceBlockNameMap) { if (!wroteStructDecl) { this->write("struct Globals {\n"); wroteStructDecl = true; } fNeedsGlobalStructInit = true; const auto& intfType = intf.first; const auto& intfName = intf.second; this->write(" constant "); this->write(intfType->fTypeName); this->write("* "); this->writeName(intfName); this->write(";\n"); } for (const auto& e : fProgram) { if (ProgramElement::kVar_Kind == e.fKind) { VarDeclarations& decls = (VarDeclarations&) e; if (!decls.fVars.size()) { continue; } const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar; if ((!first.fModifiers.fFlags && -1 == first.fModifiers.fLayout.fBuiltin) || first.fType.kind() == Type::kSampler_Kind) { if (!wroteStructDecl) { this->write("struct Globals {\n"); wroteStructDecl = true; } fNeedsGlobalStructInit = true; this->write(" "); this->writeType(first.fType); this->write(" "); for (const auto& stmt : decls.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; this->writeName(var.fVar->fName); if (var.fVar->fType.kind() == Type::kSampler_Kind) { fTextures.push_back(var.fVar); this->write(";\n"); this->write(" sampler "); this->writeName(var.fVar->fName); this->write(SAMPLER_SUFFIX); } if (var.fValue) { fInitNonConstGlobalVars.push_back(&var); } } this->write(";\n"); } } } if (wroteStructDecl) { this->write("};\n"); } } void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) { switch (e.fKind) { case ProgramElement::kExtension_Kind: break; case ProgramElement::kVar_Kind: { VarDeclarations& decl = (VarDeclarations&) e; if (decl.fVars.size() > 0) { int builtin = ((VarDeclaration&) *decl.fVars[0]).fVar->fModifiers.fLayout.fBuiltin; if (-1 == builtin) { // normal var this->writeVarDeclarations(decl, true); this->writeLine(); } else if (SK_FRAGCOLOR_BUILTIN == builtin) { // ignore } } break; } case ProgramElement::kInterfaceBlock_Kind: // handled in writeInterfaceBlocks, do nothing break; case ProgramElement::kFunction_Kind: this->writeFunction((FunctionDefinition&) e); break; case ProgramElement::kModifiers_Kind: this->writeModifiers(((ModifiersDeclaration&) e).fModifiers, true); this->writeLine(";"); break; default: printf("%s\n", e.description().c_str()); ABORT("unsupported program element"); } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression& e) { switch (e.fKind) { case Expression::kFunctionCall_Kind: { const FunctionCall& f = (const FunctionCall&) e; Requirements result = this->requirements(f.fFunction); for (const auto& e : f.fArguments) { result |= this->requirements(*e); } return result; } case Expression::kConstructor_Kind: { const Constructor& c = (const Constructor&) e; Requirements result = kNo_Requirements; for (const auto& e : c.fArguments) { result |= this->requirements(*e); } return result; } case Expression::kFieldAccess_Kind: { const FieldAccess& f = (const FieldAccess&) e; if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) { return kGlobals_Requirement; } return this->requirements(*((const FieldAccess&) e).fBase); } case Expression::kSwizzle_Kind: return this->requirements(*((const Swizzle&) e).fBase); case Expression::kBinary_Kind: { const BinaryExpression& b = (const BinaryExpression&) e; return this->requirements(*b.fLeft) | this->requirements(*b.fRight); } case Expression::kIndex_Kind: { const IndexExpression& idx = (const IndexExpression&) e; return this->requirements(*idx.fBase) | this->requirements(*idx.fIndex); } case Expression::kPrefix_Kind: return this->requirements(*((const PrefixExpression&) e).fOperand); case Expression::kPostfix_Kind: return this->requirements(*((const PostfixExpression&) e).fOperand); case Expression::kTernary_Kind: { const TernaryExpression& t = (const TernaryExpression&) e; return this->requirements(*t.fTest) | this->requirements(*t.fIfTrue) | this->requirements(*t.fIfFalse); } case Expression::kVariableReference_Kind: { const VariableReference& v = (const VariableReference&) e; Requirements result = kNo_Requirements; if (v.fVariable.fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { result = kGlobals_Requirement | kFragCoord_Requirement; } else if (Variable::kGlobal_Storage == v.fVariable.fStorage) { if (v.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) { result = kInputs_Requirement; } else if (v.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) { result = kOutputs_Requirement; } else if (v.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag && v.fVariable.fType.kind() != Type::kSampler_Kind) { result = kUniforms_Requirement; } else { result = kGlobals_Requirement; } } return result; } default: return kNo_Requirements; } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement& s) { switch (s.fKind) { case Statement::kBlock_Kind: { Requirements result = kNo_Requirements; for (const auto& child : ((const Block&) s).fStatements) { result |= this->requirements(*child); } return result; } case Statement::kVarDeclaration_Kind: { Requirements result = kNo_Requirements; const VarDeclaration& var = (const VarDeclaration&) s; if (var.fValue) { result = this->requirements(*var.fValue); } return result; } case Statement::kVarDeclarations_Kind: { Requirements result = kNo_Requirements; const VarDeclarations& decls = *((const VarDeclarationsStatement&) s).fDeclaration; for (const auto& stmt : decls.fVars) { result |= this->requirements(*stmt); } return result; } case Statement::kExpression_Kind: return this->requirements(*((const ExpressionStatement&) s).fExpression); case Statement::kReturn_Kind: { const ReturnStatement& r = (const ReturnStatement&) s; if (r.fExpression) { return this->requirements(*r.fExpression); } return kNo_Requirements; } case Statement::kIf_Kind: { const IfStatement& i = (const IfStatement&) s; return this->requirements(*i.fTest) | this->requirements(*i.fIfTrue) | (i.fIfFalse ? this->requirements(*i.fIfFalse) : 0); } case Statement::kFor_Kind: { const ForStatement& f = (const ForStatement&) s; return this->requirements(*f.fInitializer) | this->requirements(*f.fTest) | this->requirements(*f.fNext) | this->requirements(*f.fStatement); } case Statement::kWhile_Kind: { const WhileStatement& w = (const WhileStatement&) s; return this->requirements(*w.fTest) | this->requirements(*w.fStatement); } case Statement::kDo_Kind: { const DoStatement& d = (const DoStatement&) s; return this->requirements(*d.fTest) | this->requirements(*d.fStatement); } case Statement::kSwitch_Kind: { const SwitchStatement& sw = (const SwitchStatement&) s; Requirements result = this->requirements(*sw.fValue); for (const auto& c : sw.fCases) { for (const auto& st : c->fStatements) { result |= this->requirements(*st); } } return result; } default: return kNo_Requirements; } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) { if (f.fBuiltin) { return kNo_Requirements; } auto found = fRequirements.find(&f); if (found == fRequirements.end()) { fRequirements[&f] = kNo_Requirements; for (const auto& e : fProgram) { if (ProgramElement::kFunction_Kind == e.fKind) { const FunctionDefinition& def = (const FunctionDefinition&) e; if (&def.fDeclaration == &f) { Requirements reqs = this->requirements(*def.fBody); fRequirements[&f] = reqs; return reqs; } } } } return found->second; } bool MetalCodeGenerator::generateCode() { OutputStream* rawOut = fOut; fOut = &fHeader; #ifdef SK_MOLTENVK fOut->write((const char*) &MVKMagicNum, sizeof(MVKMagicNum)); #endif fProgramKind = fProgram.fKind; this->writeHeader(); this->writeUniformStruct(); this->writeInputStruct(); this->writeOutputStruct(); this->writeInterfaceBlocks(); this->writeGlobalStruct(); StringStream body; fOut = &body; for (const auto& e : fProgram) { this->writeProgramElement(e); } fOut = rawOut; write_stringstream(fHeader, *rawOut); write_stringstream(fExtraFunctions, *rawOut); write_stringstream(body, *rawOut); #ifdef SK_MOLTENVK this->write("\0"); #endif return true; } }