/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include #include #include #include #include #include #include /* _NSGetExecutablePath */ #include #include #include /* sysconf */ #include "darwin-stub.h" static uv_once_t once = UV_ONCE_INIT; static uint64_t (*time_func)(void); static mach_timebase_info_data_t timebase; typedef unsigned char UInt8; int uv__platform_loop_init(uv_loop_t* loop) { loop->cf_state = NULL; if (uv__kqueue_init(loop)) return UV__ERR(errno); return 0; } void uv__platform_loop_delete(uv_loop_t* loop) { uv__fsevents_loop_delete(loop); } static void uv__hrtime_init_once(void) { if (KERN_SUCCESS != mach_timebase_info(&timebase)) abort(); time_func = (uint64_t (*)(void)) dlsym(RTLD_DEFAULT, "mach_continuous_time"); if (time_func == NULL) time_func = mach_absolute_time; } uint64_t uv__hrtime(uv_clocktype_t type) { uv_once(&once, uv__hrtime_init_once); return time_func() * timebase.numer / timebase.denom; } int uv_exepath(char* buffer, size_t* size) { /* realpath(exepath) may be > PATH_MAX so double it to be on the safe side. */ char abspath[PATH_MAX * 2 + 1]; char exepath[PATH_MAX + 1]; uint32_t exepath_size; size_t abspath_size; if (buffer == NULL || size == NULL || *size == 0) return UV_EINVAL; exepath_size = sizeof(exepath); if (_NSGetExecutablePath(exepath, &exepath_size)) return UV_EIO; if (realpath(exepath, abspath) != abspath) return UV__ERR(errno); abspath_size = strlen(abspath); if (abspath_size == 0) return UV_EIO; *size -= 1; if (*size > abspath_size) *size = abspath_size; memcpy(buffer, abspath, *size); buffer[*size] = '\0'; return 0; } uint64_t uv_get_free_memory(void) { vm_statistics_data_t info; mach_msg_type_number_t count = sizeof(info) / sizeof(integer_t); if (host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&info, &count) != KERN_SUCCESS) { return UV_EINVAL; /* FIXME(bnoordhuis) Translate error. */ } return (uint64_t) info.free_count * sysconf(_SC_PAGESIZE); } uint64_t uv_get_total_memory(void) { uint64_t info; int which[] = {CTL_HW, HW_MEMSIZE}; size_t size = sizeof(info); if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0)) return UV__ERR(errno); return (uint64_t) info; } uint64_t uv_get_constrained_memory(void) { return 0; /* Memory constraints are unknown. */ } void uv_loadavg(double avg[3]) { struct loadavg info; size_t size = sizeof(info); int which[] = {CTL_VM, VM_LOADAVG}; if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0) < 0) return; avg[0] = (double) info.ldavg[0] / info.fscale; avg[1] = (double) info.ldavg[1] / info.fscale; avg[2] = (double) info.ldavg[2] / info.fscale; } int uv_resident_set_memory(size_t* rss) { mach_msg_type_number_t count; task_basic_info_data_t info; kern_return_t err; count = TASK_BASIC_INFO_COUNT; err = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t) &info, &count); (void) &err; /* task_info(TASK_BASIC_INFO) cannot really fail. Anything other than * KERN_SUCCESS implies a libuv bug. */ assert(err == KERN_SUCCESS); *rss = info.resident_size; return 0; } int uv_uptime(double* uptime) { time_t now; struct timeval info; size_t size = sizeof(info); static int which[] = {CTL_KERN, KERN_BOOTTIME}; if (sysctl(which, ARRAY_SIZE(which), &info, &size, NULL, 0)) return UV__ERR(errno); now = time(NULL); *uptime = now - info.tv_sec; return 0; } static int uv__get_cpu_speed(uint64_t* speed) { /* IOKit */ void (*pIOObjectRelease)(io_object_t); kern_return_t (*pIOMasterPort)(mach_port_t, mach_port_t*); CFMutableDictionaryRef (*pIOServiceMatching)(const char*); kern_return_t (*pIOServiceGetMatchingServices)(mach_port_t, CFMutableDictionaryRef, io_iterator_t*); io_service_t (*pIOIteratorNext)(io_iterator_t); CFTypeRef (*pIORegistryEntryCreateCFProperty)(io_registry_entry_t, CFStringRef, CFAllocatorRef, IOOptionBits); /* CoreFoundation */ CFStringRef (*pCFStringCreateWithCString)(CFAllocatorRef, const char*, CFStringEncoding); CFStringEncoding (*pCFStringGetSystemEncoding)(void); UInt8 *(*pCFDataGetBytePtr)(CFDataRef); CFIndex (*pCFDataGetLength)(CFDataRef); void (*pCFDataGetBytes)(CFDataRef, CFRange, UInt8*); void (*pCFRelease)(CFTypeRef); void* core_foundation_handle; void* iokit_handle; int err; kern_return_t kr; mach_port_t mach_port; io_iterator_t it; io_object_t service; mach_port = 0; err = UV_ENOENT; core_foundation_handle = dlopen("/System/Library/Frameworks/" "CoreFoundation.framework/" "CoreFoundation", RTLD_LAZY | RTLD_LOCAL); iokit_handle = dlopen("/System/Library/Frameworks/IOKit.framework/" "IOKit", RTLD_LAZY | RTLD_LOCAL); if (core_foundation_handle == NULL || iokit_handle == NULL) goto out; #define V(handle, symbol) \ do { \ *(void **)(&p ## symbol) = dlsym((handle), #symbol); \ if (p ## symbol == NULL) \ goto out; \ } \ while (0) V(iokit_handle, IOMasterPort); V(iokit_handle, IOServiceMatching); V(iokit_handle, IOServiceGetMatchingServices); V(iokit_handle, IOIteratorNext); V(iokit_handle, IOObjectRelease); V(iokit_handle, IORegistryEntryCreateCFProperty); V(core_foundation_handle, CFStringCreateWithCString); V(core_foundation_handle, CFStringGetSystemEncoding); V(core_foundation_handle, CFDataGetBytePtr); V(core_foundation_handle, CFDataGetLength); V(core_foundation_handle, CFDataGetBytes); V(core_foundation_handle, CFRelease); #undef V #define S(s) pCFStringCreateWithCString(NULL, (s), kCFStringEncodingUTF8) kr = pIOMasterPort(MACH_PORT_NULL, &mach_port); assert(kr == KERN_SUCCESS); CFMutableDictionaryRef classes_to_match = pIOServiceMatching("IOPlatformDevice"); kr = pIOServiceGetMatchingServices(mach_port, classes_to_match, &it); assert(kr == KERN_SUCCESS); service = pIOIteratorNext(it); CFStringRef device_type_str = S("device_type"); CFStringRef clock_frequency_str = S("clock-frequency"); while (service != 0) { CFDataRef data; data = pIORegistryEntryCreateCFProperty(service, device_type_str, NULL, 0); if (data) { const UInt8* raw = pCFDataGetBytePtr(data); if (strncmp((char*)raw, "cpu", 3) == 0 || strncmp((char*)raw, "processor", 9) == 0) { CFDataRef freq_ref; freq_ref = pIORegistryEntryCreateCFProperty(service, clock_frequency_str, NULL, 0); if (freq_ref) { const UInt8* freq_ref_ptr = pCFDataGetBytePtr(freq_ref); CFIndex len = pCFDataGetLength(freq_ref); if (len == 8) memcpy(speed, freq_ref_ptr, 8); else if (len == 4) { uint32_t v; memcpy(&v, freq_ref_ptr, 4); *speed = v; } else { *speed = 0; } pCFRelease(freq_ref); pCFRelease(data); break; } } pCFRelease(data); } service = pIOIteratorNext(it); } pIOObjectRelease(it); err = 0; if (device_type_str != NULL) pCFRelease(device_type_str); if (clock_frequency_str != NULL) pCFRelease(clock_frequency_str); out: if (core_foundation_handle != NULL) dlclose(core_foundation_handle); if (iokit_handle != NULL) dlclose(iokit_handle); mach_port_deallocate(mach_task_self(), mach_port); return err; } int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) { unsigned int ticks = (unsigned int)sysconf(_SC_CLK_TCK), multiplier = ((uint64_t)1000L / ticks); char model[512]; size_t size; unsigned int i; natural_t numcpus; mach_msg_type_number_t msg_type; processor_cpu_load_info_data_t *info; uv_cpu_info_t* cpu_info; uint64_t cpuspeed; int err; size = sizeof(model); if (sysctlbyname("machdep.cpu.brand_string", &model, &size, NULL, 0) && sysctlbyname("hw.model", &model, &size, NULL, 0)) { return UV__ERR(errno); } err = uv__get_cpu_speed(&cpuspeed); if (err < 0) return err; if (host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &numcpus, (processor_info_array_t*)&info, &msg_type) != KERN_SUCCESS) { return UV_EINVAL; /* FIXME(bnoordhuis) Translate error. */ } *cpu_infos = uv__malloc(numcpus * sizeof(**cpu_infos)); if (!(*cpu_infos)) { vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type); return UV_ENOMEM; } *count = numcpus; for (i = 0; i < numcpus; i++) { cpu_info = &(*cpu_infos)[i]; cpu_info->cpu_times.user = (uint64_t)(info[i].cpu_ticks[0]) * multiplier; cpu_info->cpu_times.nice = (uint64_t)(info[i].cpu_ticks[3]) * multiplier; cpu_info->cpu_times.sys = (uint64_t)(info[i].cpu_ticks[1]) * multiplier; cpu_info->cpu_times.idle = (uint64_t)(info[i].cpu_ticks[2]) * multiplier; cpu_info->cpu_times.irq = 0; cpu_info->model = uv__strdup(model); cpu_info->speed = cpuspeed/1000000; } vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type); return 0; }