/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #ifndef _WIN32 #include #endif #include #include "util/mesa-sha1.h" #include "util/os_time.h" #include "ac_debug.h" #include "radv_debug.h" #include "radv_shader.h" #include "sid.h" #define TRACE_BO_SIZE 4096 #define TMA_BO_SIZE 4096 #define COLOR_RESET "\033[0m" #define COLOR_RED "\033[31m" #define COLOR_GREEN "\033[1;32m" #define COLOR_YELLOW "\033[1;33m" #define COLOR_CYAN "\033[1;36m" #define RADV_DUMP_DIR "radv_dumps" /* Trace BO layout (offsets are 4 bytes): * * [0]: primary trace ID * [1]: secondary trace ID * [2-3]: 64-bit GFX ring pipeline pointer * [4-5]: 64-bit COMPUTE ring pipeline pointer * [6-7]: Vertex descriptors pointer * [8-9]: 64-bit Vertex prolog pointer * [10-11]: 64-bit descriptor set #0 pointer * ... * [72-73]: 64-bit descriptor set #31 pointer */ bool radv_init_trace(struct radv_device *device) { struct radeon_winsys *ws = device->ws; VkResult result; result = ws->buffer_create( ws, TRACE_BO_SIZE, 8, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM | RADEON_FLAG_VA_UNCACHED, RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, &device->trace_bo); if (result != VK_SUCCESS) return false; result = ws->buffer_make_resident(ws, device->trace_bo, true); if (result != VK_SUCCESS) return false; device->trace_id_ptr = ws->buffer_map(device->trace_bo); if (!device->trace_id_ptr) return false; ac_vm_fault_occured(device->physical_device->rad_info.gfx_level, &device->dmesg_timestamp, NULL); return true; } void radv_finish_trace(struct radv_device *device) { struct radeon_winsys *ws = device->ws; if (unlikely(device->trace_bo)) { ws->buffer_make_resident(ws, device->trace_bo, false); ws->buffer_destroy(ws, device->trace_bo); } } static void radv_dump_trace(struct radv_device *device, struct radeon_cmdbuf *cs, FILE *f) { fprintf(f, "Trace ID: %x\n", *device->trace_id_ptr); device->ws->cs_dump(cs, f, (const int *)device->trace_id_ptr, 2); } static void radv_dump_mmapped_reg(struct radv_device *device, FILE *f, unsigned offset) { struct radeon_winsys *ws = device->ws; uint32_t value; if (ws->read_registers(ws, offset, 1, &value)) ac_dump_reg(f, device->physical_device->rad_info.gfx_level, offset, value, ~0); } static void radv_dump_debug_registers(struct radv_device *device, FILE *f) { struct radeon_info *info = &device->physical_device->rad_info; fprintf(f, "Memory-mapped registers:\n"); radv_dump_mmapped_reg(device, f, R_008010_GRBM_STATUS); radv_dump_mmapped_reg(device, f, R_008008_GRBM_STATUS2); radv_dump_mmapped_reg(device, f, R_008014_GRBM_STATUS_SE0); radv_dump_mmapped_reg(device, f, R_008018_GRBM_STATUS_SE1); radv_dump_mmapped_reg(device, f, R_008038_GRBM_STATUS_SE2); radv_dump_mmapped_reg(device, f, R_00803C_GRBM_STATUS_SE3); radv_dump_mmapped_reg(device, f, R_00D034_SDMA0_STATUS_REG); radv_dump_mmapped_reg(device, f, R_00D834_SDMA1_STATUS_REG); if (info->gfx_level <= GFX8) { radv_dump_mmapped_reg(device, f, R_000E50_SRBM_STATUS); radv_dump_mmapped_reg(device, f, R_000E4C_SRBM_STATUS2); radv_dump_mmapped_reg(device, f, R_000E54_SRBM_STATUS3); } radv_dump_mmapped_reg(device, f, R_008680_CP_STAT); radv_dump_mmapped_reg(device, f, R_008674_CP_STALLED_STAT1); radv_dump_mmapped_reg(device, f, R_008678_CP_STALLED_STAT2); radv_dump_mmapped_reg(device, f, R_008670_CP_STALLED_STAT3); radv_dump_mmapped_reg(device, f, R_008210_CP_CPC_STATUS); radv_dump_mmapped_reg(device, f, R_008214_CP_CPC_BUSY_STAT); radv_dump_mmapped_reg(device, f, R_008218_CP_CPC_STALLED_STAT1); radv_dump_mmapped_reg(device, f, R_00821C_CP_CPF_STATUS); radv_dump_mmapped_reg(device, f, R_008220_CP_CPF_BUSY_STAT); radv_dump_mmapped_reg(device, f, R_008224_CP_CPF_STALLED_STAT1); fprintf(f, "\n"); } static void radv_dump_buffer_descriptor(enum amd_gfx_level gfx_level, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, gfx_level, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, desc[j], 0xffffffff); } static void radv_dump_image_descriptor(enum amd_gfx_level gfx_level, const uint32_t *desc, FILE *f) { unsigned sq_img_rsrc_word0 = gfx_level >= GFX10 ? R_00A000_SQ_IMG_RSRC_WORD0 : R_008F10_SQ_IMG_RSRC_WORD0; fprintf(f, COLOR_CYAN " Image:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, gfx_level, sq_img_rsrc_word0 + j * 4, desc[j], 0xffffffff); fprintf(f, COLOR_CYAN " FMASK:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, gfx_level, sq_img_rsrc_word0 + j * 4, desc[8 + j], 0xffffffff); } static void radv_dump_sampler_descriptor(enum amd_gfx_level gfx_level, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN " Sampler state:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) { ac_dump_reg(f, gfx_level, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4, desc[j], 0xffffffff); } } static void radv_dump_combined_image_sampler_descriptor(enum amd_gfx_level gfx_level, const uint32_t *desc, FILE *f) { radv_dump_image_descriptor(gfx_level, desc, f); radv_dump_sampler_descriptor(gfx_level, desc + 16, f); } static void radv_dump_descriptor_set(struct radv_device *device, struct radv_descriptor_set *set, unsigned id, FILE *f) { enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; const struct radv_descriptor_set_layout *layout; int i; if (!set) return; layout = set->header.layout; for (i = 0; i < set->header.layout->binding_count; i++) { uint32_t *desc = set->header.mapped_ptr + layout->binding[i].offset / 4; switch (layout->binding[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: radv_dump_buffer_descriptor(gfx_level, desc, f); break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: radv_dump_image_descriptor(gfx_level, desc, f); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: radv_dump_combined_image_sampler_descriptor(gfx_level, desc, f); break; case VK_DESCRIPTOR_TYPE_SAMPLER: radv_dump_sampler_descriptor(gfx_level, desc, f); break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE: case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: /* todo */ break; default: assert(!"unknown descriptor type"); break; } fprintf(f, "\n"); } fprintf(f, "\n\n"); } static void radv_dump_descriptors(struct radv_device *device, FILE *f) { uint64_t *ptr = (uint64_t *)device->trace_id_ptr; int i; fprintf(f, "Descriptors:\n"); for (i = 0; i < MAX_SETS; i++) { struct radv_descriptor_set *set = *(struct radv_descriptor_set **)(ptr + i + 5); radv_dump_descriptor_set(device, set, i, f); } } struct radv_shader_inst { char text[160]; /* one disasm line */ unsigned offset; /* instruction offset */ unsigned size; /* instruction size = 4 or 8 */ }; /* Split a disassembly string into lines and add them to the array pointed * to by "instructions". */ static void si_add_split_disasm(const char *disasm, uint64_t start_addr, unsigned *num, struct radv_shader_inst *instructions) { struct radv_shader_inst *last_inst = *num ? &instructions[*num - 1] : NULL; char *next; while ((next = strchr(disasm, '\n'))) { struct radv_shader_inst *inst = &instructions[*num]; unsigned len = next - disasm; if (!memchr(disasm, ';', len)) { /* Ignore everything that is not an instruction. */ disasm = next + 1; continue; } assert(len < ARRAY_SIZE(inst->text)); memcpy(inst->text, disasm, len); inst->text[len] = 0; inst->offset = last_inst ? last_inst->offset + last_inst->size : 0; const char *semicolon = strchr(disasm, ';'); assert(semicolon); /* More than 16 chars after ";" means the instruction is 8 bytes long. */ inst->size = next - semicolon > 16 ? 8 : 4; snprintf(inst->text + len, ARRAY_SIZE(inst->text) - len, " [PC=0x%" PRIx64 ", off=%u, size=%u]", start_addr + inst->offset, inst->offset, inst->size); last_inst = inst; (*num)++; disasm = next + 1; } } static void radv_dump_annotated_shader(struct radv_shader *shader, gl_shader_stage stage, struct ac_wave_info *waves, unsigned num_waves, FILE *f) { uint64_t start_addr, end_addr; unsigned i; if (!shader) return; start_addr = radv_shader_get_va(shader); end_addr = start_addr + shader->code_size; /* See if any wave executes the shader. */ for (i = 0; i < num_waves; i++) { if (start_addr <= waves[i].pc && waves[i].pc <= end_addr) break; } if (i == num_waves) return; /* the shader is not being executed */ /* Remember the first found wave. The waves are sorted according to PC. */ waves = &waves[i]; num_waves -= i; /* Get the list of instructions. * Buffer size / 4 is the upper bound of the instruction count. */ unsigned num_inst = 0; struct radv_shader_inst *instructions = calloc(shader->code_size / 4, sizeof(struct radv_shader_inst)); si_add_split_disasm(shader->disasm_string, start_addr, &num_inst, instructions); fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n", radv_get_shader_name(&shader->info, stage)); /* Print instructions with annotations. */ for (i = 0; i < num_inst; i++) { struct radv_shader_inst *inst = &instructions[i]; fprintf(f, "%s\n", inst->text); /* Print which waves execute the instruction right now. */ while (num_waves && start_addr + inst->offset == waves->pc) { fprintf(f, " " COLOR_GREEN "^ SE%u SH%u CU%u " "SIMD%u WAVE%u EXEC=%016" PRIx64 " ", waves->se, waves->sh, waves->cu, waves->simd, waves->wave, waves->exec); if (inst->size == 4) { fprintf(f, "INST32=%08X" COLOR_RESET "\n", waves->inst_dw0); } else { fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n", waves->inst_dw0, waves->inst_dw1); } waves->matched = true; waves = &waves[1]; num_waves--; } } fprintf(f, "\n\n"); free(instructions); } static void radv_dump_annotated_shaders(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages, FILE *f) { struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP]; enum amd_gfx_level gfx_level = pipeline->device->physical_device->rad_info.gfx_level; unsigned num_waves = ac_get_wave_info(gfx_level, waves); fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET "\n\n", num_waves); /* Dump annotated active graphics shaders. */ unsigned stages = active_stages; while (stages) { int stage = u_bit_scan(&stages); radv_dump_annotated_shader(pipeline->shaders[stage], stage, waves, num_waves, f); } /* Print waves executing shaders that are not currently bound. */ unsigned i; bool found = false; for (i = 0; i < num_waves; i++) { if (waves[i].matched) continue; if (!found) { fprintf(f, COLOR_CYAN "Waves not executing currently-bound shaders:" COLOR_RESET "\n"); found = true; } fprintf(f, " SE%u SH%u CU%u SIMD%u WAVE%u EXEC=%016" PRIx64 " INST=%08X %08X PC=%" PRIx64 "\n", waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd, waves[i].wave, waves[i].exec, waves[i].inst_dw0, waves[i].inst_dw1, waves[i].pc); } if (found) fprintf(f, "\n\n"); } static void radv_dump_spirv(struct radv_shader *shader, const char *sha1, const char *dump_dir) { char dump_path[512]; FILE *f; snprintf(dump_path, sizeof(dump_path), "%s/%s.spv", dump_dir, sha1); f = fopen(dump_path, "w+"); if (f) { fwrite(shader->spirv, shader->spirv_size, 1, f); fclose(f); } } static void radv_dump_shader(struct radv_pipeline *pipeline, struct radv_shader *shader, gl_shader_stage stage, const char *dump_dir, FILE *f) { if (!shader) return; fprintf(f, "%s:\n\n", radv_get_shader_name(&shader->info, stage)); if (shader->spirv) { unsigned char sha1[21]; char sha1buf[41]; _mesa_sha1_compute(shader->spirv, shader->spirv_size, sha1); _mesa_sha1_format(sha1buf, sha1); fprintf(f, "SPIRV (see %s.spv)\n\n", sha1buf); radv_dump_spirv(shader, sha1buf, dump_dir); } if (shader->nir_string) { fprintf(f, "NIR:\n%s\n", shader->nir_string); } fprintf(f, "%s IR:\n%s\n", pipeline->device->physical_device->use_llvm ? "LLVM" : "ACO", shader->ir_string); fprintf(f, "DISASM:\n%s\n", shader->disasm_string); radv_dump_shader_stats(pipeline->device, pipeline, stage, f); } static void radv_dump_shaders(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages, const char *dump_dir, FILE *f) { /* Dump active graphics shaders. */ unsigned stages = active_stages; while (stages) { int stage = u_bit_scan(&stages); radv_dump_shader(pipeline, pipeline->shaders[stage], stage, dump_dir, f); } } static void radv_dump_vertex_descriptors(struct radv_graphics_pipeline *pipeline, FILE *f) { void *ptr = (uint64_t *)pipeline->base.device->trace_id_ptr; uint32_t count = util_bitcount(pipeline->vb_desc_usage_mask); uint32_t *vb_ptr = &((uint32_t *)ptr)[3]; if (!count) return; fprintf(f, "Num vertex %s: %d\n", pipeline->use_per_attribute_vb_descs ? "attributes" : "bindings", count); for (uint32_t i = 0; i < count; i++) { uint32_t *desc = &((uint32_t *)vb_ptr)[i * 4]; uint64_t va = 0; va |= desc[0]; va |= (uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32; fprintf(f, "VBO#%d:\n", i); fprintf(f, "\tVA: 0x%" PRIx64 "\n", va); fprintf(f, "\tStride: %d\n", G_008F04_STRIDE(desc[1])); fprintf(f, "\tNum records: %d (0x%x)\n", desc[2], desc[2]); } } static struct radv_shader_part * radv_get_saved_vs_prolog(struct radv_device *device) { uint64_t *ptr = (uint64_t *)device->trace_id_ptr; return *(struct radv_shader_part **)(ptr + 4); } static void radv_dump_vs_prolog(struct radv_pipeline *pipeline, FILE *f) { struct radv_shader_part *vs_prolog = radv_get_saved_vs_prolog(pipeline->device); struct radv_shader *vs_shader = radv_get_shader(pipeline, MESA_SHADER_VERTEX); if (!vs_prolog || !vs_shader || !vs_shader->info.vs.has_prolog) return; fprintf(f, "Vertex prolog:\n\n"); fprintf(f, "DISASM:\n%s\n", vs_prolog->disasm_string); } static struct radv_pipeline * radv_get_saved_pipeline(struct radv_device *device, enum amd_ip_type ring) { uint64_t *ptr = (uint64_t *)device->trace_id_ptr; int offset = ring == AMD_IP_GFX ? 1 : 2; return *(struct radv_pipeline **)(ptr + offset); } static void radv_dump_queue_state(struct radv_queue *queue, const char *dump_dir, FILE *f) { enum amd_ip_type ring = radv_queue_ring(queue); struct radv_pipeline *pipeline; fprintf(f, "AMD_IP_%s:\n", ring == AMD_IP_GFX ? "GFX" : "COMPUTE"); pipeline = radv_get_saved_pipeline(queue->device, ring); if (pipeline) { struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); VkShaderStageFlags active_stages; if (pipeline->type == RADV_PIPELINE_GRAPHICS) { active_stages = graphics_pipeline->active_stages; } else { active_stages = VK_SHADER_STAGE_COMPUTE_BIT; } radv_dump_vs_prolog(pipeline, f); radv_dump_shaders(pipeline, active_stages, dump_dir, f); if (!(queue->device->instance->debug_flags & RADV_DEBUG_NO_UMR)) radv_dump_annotated_shaders(pipeline, active_stages, f); radv_dump_vertex_descriptors(graphics_pipeline, f); radv_dump_descriptors(queue->device, f); } } static void radv_dump_cmd(const char *cmd, FILE *f) { #ifndef _WIN32 char line[2048]; FILE *p; p = popen(cmd, "r"); if (p) { while (fgets(line, sizeof(line), p)) fputs(line, f); fprintf(f, "\n"); pclose(p); } #endif } static void radv_dump_dmesg(FILE *f) { fprintf(f, "\nLast 60 lines of dmesg:\n\n"); radv_dump_cmd("dmesg | tail -n60", f); } void radv_dump_enabled_options(struct radv_device *device, FILE *f) { uint64_t mask; if (device->instance->debug_flags) { fprintf(f, "Enabled debug options: "); mask = device->instance->debug_flags; while (mask) { int i = u_bit_scan64(&mask); fprintf(f, "%s, ", radv_get_debug_option_name(i)); } fprintf(f, "\n"); } if (device->instance->perftest_flags) { fprintf(f, "Enabled perftest options: "); mask = device->instance->perftest_flags; while (mask) { int i = u_bit_scan64(&mask); fprintf(f, "%s, ", radv_get_perftest_option_name(i)); } fprintf(f, "\n"); } } static void radv_dump_app_info(struct radv_device *device, FILE *f) { struct radv_instance *instance = device->instance; fprintf(f, "Application name: %s\n", instance->vk.app_info.app_name); fprintf(f, "Application version: %d\n", instance->vk.app_info.app_version); fprintf(f, "Engine name: %s\n", instance->vk.app_info.engine_name); fprintf(f, "Engine version: %d\n", instance->vk.app_info.engine_version); fprintf(f, "API version: %d.%d.%d\n", VK_VERSION_MAJOR(instance->vk.app_info.api_version), VK_VERSION_MINOR(instance->vk.app_info.api_version), VK_VERSION_PATCH(instance->vk.app_info.api_version)); radv_dump_enabled_options(device, f); } static void radv_dump_device_name(struct radv_device *device, FILE *f) { struct radeon_info *info = &device->physical_device->rad_info; #ifndef _WIN32 char kernel_version[128] = {0}; struct utsname uname_data; #endif #ifdef _WIN32 fprintf(f, "Device name: %s (DRM %i.%i.%i)\n\n", device->physical_device->marketing_name, info->drm_major, info->drm_minor, info->drm_patchlevel); #else if (uname(&uname_data) == 0) snprintf(kernel_version, sizeof(kernel_version), " / %s", uname_data.release); fprintf(f, "Device name: %s (DRM %i.%i.%i%s)\n\n", device->physical_device->marketing_name, info->drm_major, info->drm_minor, info->drm_patchlevel, kernel_version); #endif } static void radv_dump_umr_ring(struct radv_queue *queue, FILE *f) { enum amd_ip_type ring = radv_queue_ring(queue); struct radv_device *device = queue->device; char cmd[128]; /* TODO: Dump compute ring. */ if (ring != AMD_IP_GFX) return; sprintf(cmd, "umr -R %s 2>&1", device->physical_device->rad_info.gfx_level >= GFX10 ? "gfx_0.0.0" : "gfx"); fprintf(f, "\nUMR GFX ring:\n\n"); radv_dump_cmd(cmd, f); } static void radv_dump_umr_waves(struct radv_queue *queue, FILE *f) { enum amd_ip_type ring = radv_queue_ring(queue); struct radv_device *device = queue->device; char cmd[128]; /* TODO: Dump compute ring. */ if (ring != AMD_IP_GFX) return; sprintf(cmd, "umr -O bits,halt_waves -go 0 -wa %s -go 1 2>&1", device->physical_device->rad_info.gfx_level >= GFX10 ? "gfx_0.0.0" : "gfx"); fprintf(f, "\nUMR GFX waves:\n\n"); radv_dump_cmd(cmd, f); } static bool radv_gpu_hang_occured(struct radv_queue *queue, enum amd_ip_type ring) { struct radeon_winsys *ws = queue->device->ws; if (!ws->ctx_wait_idle(queue->hw_ctx, ring, queue->vk.index_in_family)) return true; return false; } void radv_check_gpu_hangs(struct radv_queue *queue, struct radeon_cmdbuf *cs) { struct radv_device *device = queue->device; enum amd_ip_type ring; uint64_t addr; ring = radv_queue_ring(queue); bool hang_occurred = radv_gpu_hang_occured(queue, ring); bool vm_fault_occurred = false; if (queue->device->instance->debug_flags & RADV_DEBUG_VM_FAULTS) vm_fault_occurred = ac_vm_fault_occured(device->physical_device->rad_info.gfx_level, &device->dmesg_timestamp, &addr); if (!hang_occurred && !vm_fault_occurred) return; fprintf(stderr, "radv: GPU hang detected...\n"); #ifndef _WIN32 /* Create a directory into $HOME/radv_dumps__