/************************************************************************** * * Copyright 2010 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * **************************************************************************/ #include "util/u_debug.h" #include "util/u_cpu_detect.h" #include "util/u_math.h" #include "lp_bld_debug.h" #include "lp_bld_const.h" #include "lp_bld_format.h" #include "lp_bld_gather.h" #include "lp_bld_swizzle.h" #include "lp_bld_type.h" #include "lp_bld_init.h" #include "lp_bld_intr.h" #include "lp_bld_pack.h" /** * Get the pointer to one element from scatter positions in memory. * * @sa lp_build_gather() */ LLVMValueRef lp_build_gather_elem_ptr(struct gallivm_state *gallivm, unsigned length, LLVMValueRef base_ptr, LLVMValueRef offsets, unsigned i) { LLVMValueRef offset; LLVMValueRef ptr; ASSERTED LLVMTypeRef element_type = LLVMInt8TypeInContext(gallivm->context); assert(LLVMTypeOf(base_ptr) == LLVMPointerType(element_type, 0)); if (length == 1) { assert(i == 0); offset = offsets; } else { LLVMValueRef index = lp_build_const_int32(gallivm, i); offset = LLVMBuildExtractElement(gallivm->builder, offsets, index, ""); } ptr = LLVMBuildGEP2(gallivm->builder, element_type, base_ptr, &offset, 1, ""); return ptr; } /** * Gather one element from scatter positions in memory. * * @sa lp_build_gather() */ LLVMValueRef lp_build_gather_elem(struct gallivm_state *gallivm, unsigned length, unsigned src_width, unsigned dst_width, boolean aligned, LLVMValueRef base_ptr, LLVMValueRef offsets, unsigned i, boolean vector_justify) { LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, src_width); LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width); LLVMValueRef ptr; LLVMValueRef res; assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0)); ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i); ptr = LLVMBuildBitCast(gallivm->builder, ptr, LLVMPointerType(src_type, 0), ""); res = LLVMBuildLoad2(gallivm->builder, src_type, ptr, ""); /* XXX * On some archs we probably really want to avoid having to deal * with alignments lower than 4 bytes (if fetch size is a power of * two >= 32). On x86 it doesn't matter, however. * We should be able to guarantee full alignment for any kind of texture * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends * but I don't think that's quite what we wanted). * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT * looks like a good fit, but it seems this cap bit (and OpenGL) aren't * enforcing what we want (which is what d3d10 does, the offset needs to * be aligned to element size, but GL has bytes regardless of element * size which would only leave us with minimum alignment restriction of 16 * which doesn't make much sense if the type isn't 4x32bit). Due to * translation of offsets to first_elem in sampler_views it actually seems * gallium could not do anything else except 16 no matter what... */ if (!aligned) { LLVMSetAlignment(res, 1); } else if (!util_is_power_of_two_or_zero(src_width)) { /* * Full alignment is impossible, assume the caller really meant * the individual elements were aligned (e.g. 3x32bit format). * And yes the generated code may otherwise crash, llvm will * really assume 128bit alignment with a 96bit fetch (I suppose * that makes sense as it can just assume the upper 32bit to be * whatever). * Maybe the caller should be able to explicitly set this, but * this should cover all the 3-channel formats. */ if (((src_width / 24) * 24 == src_width) && util_is_power_of_two_or_zero(src_width / 24)) { LLVMSetAlignment(res, src_width / 24); } else { LLVMSetAlignment(res, 1); } } assert(src_width <= dst_width); if (src_width < dst_width) { res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, ""); if (vector_justify) { #if UTIL_ARCH_BIG_ENDIAN res = LLVMBuildShl(gallivm->builder, res, LLVMConstInt(dst_elem_type, dst_width - src_width, 0), ""); #endif } } return res; } /** * Gather one element from scatter positions in memory. * Nearly the same as above, however the individual elements * may be vectors themselves, and fetches may be float type. * Can also do pad vector instead of ZExt. * * @sa lp_build_gather() */ static LLVMValueRef lp_build_gather_elem_vec(struct gallivm_state *gallivm, unsigned length, unsigned src_width, LLVMTypeRef src_type, struct lp_type dst_type, boolean aligned, LLVMValueRef base_ptr, LLVMValueRef offsets, unsigned i, boolean vector_justify) { LLVMValueRef ptr, res; assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0)); ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i); ptr = LLVMBuildBitCast(gallivm->builder, ptr, LLVMPointerType(src_type, 0), ""); res = LLVMBuildLoad2(gallivm->builder, src_type, ptr, ""); /* XXX * On some archs we probably really want to avoid having to deal * with alignments lower than 4 bytes (if fetch size is a power of * two >= 32). On x86 it doesn't matter, however. * We should be able to guarantee full alignment for any kind of texture * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends * but I don't think that's quite what we wanted). * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT * looks like a good fit, but it seems this cap bit (and OpenGL) aren't * enforcing what we want (which is what d3d10 does, the offset needs to * be aligned to element size, but GL has bytes regardless of element * size which would only leave us with minimum alignment restriction of 16 * which doesn't make much sense if the type isn't 4x32bit). Due to * translation of offsets to first_elem in sampler_views it actually seems * gallium could not do anything else except 16 no matter what... */ if (!aligned) { LLVMSetAlignment(res, 1); } else if (!util_is_power_of_two_or_zero(src_width)) { /* * Full alignment is impossible, assume the caller really meant * the individual elements were aligned (e.g. 3x32bit format). * And yes the generated code may otherwise crash, llvm will * really assume 128bit alignment with a 96bit fetch (I suppose * that makes sense as it can just assume the upper 32bit to be * whatever). * Maybe the caller should be able to explicitly set this, but * this should cover all the 3-channel formats. */ if (((src_width / 24) * 24 == src_width) && util_is_power_of_two_or_zero(src_width / 24)) { LLVMSetAlignment(res, src_width / 24); } else { LLVMSetAlignment(res, 1); } } assert(src_width <= dst_type.width * dst_type.length); if (src_width < dst_type.width * dst_type.length) { if (dst_type.length > 1) { res = lp_build_pad_vector(gallivm, res, dst_type.length); /* * vector_justify hopefully a non-issue since we only deal * with src_width >= 32 here? */ } else { LLVMTypeRef dst_elem_type = lp_build_vec_type(gallivm, dst_type); /* * Only valid if src_ptr_type is int type... */ res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, ""); #if UTIL_ARCH_BIG_ENDIAN if (vector_justify) { res = LLVMBuildShl(gallivm->builder, res, LLVMConstInt(dst_elem_type, dst_type.width - src_width, 0), ""); } if (src_width == 48) { /* Load 3x16 bit vector. * The sequence of loads on big-endian hardware proceeds as follows. * 16-bit fields are denoted by X, Y, Z, and 0. In memory, the sequence * of three fields appears in the order X, Y, Z. * * Load 32-bit word: 0.0.X.Y * Load 16-bit halfword: 0.0.0.Z * Rotate left: 0.X.Y.0 * Bitwise OR: 0.X.Y.Z * * The order in which we need the fields in the result is 0.Z.Y.X, * the same as on little-endian; permute 16-bit fields accordingly * within 64-bit register: */ LLVMValueRef shuffles[4] = { lp_build_const_int32(gallivm, 2), lp_build_const_int32(gallivm, 1), lp_build_const_int32(gallivm, 0), lp_build_const_int32(gallivm, 3), }; res = LLVMBuildBitCast(gallivm->builder, res, lp_build_vec_type(gallivm, lp_type_uint_vec(16, 4*16)), ""); res = LLVMBuildShuffleVector(gallivm->builder, res, res, LLVMConstVector(shuffles, 4), ""); res = LLVMBuildBitCast(gallivm->builder, res, dst_elem_type, ""); } #endif } } return res; } static LLVMValueRef lp_build_gather_avx2(struct gallivm_state *gallivm, unsigned length, unsigned src_width, struct lp_type dst_type, LLVMValueRef base_ptr, LLVMValueRef offsets) { LLVMBuilderRef builder = gallivm->builder; LLVMTypeRef src_type, src_vec_type; LLVMValueRef res; struct lp_type res_type = dst_type; res_type.length *= length; if (dst_type.floating) { src_type = src_width == 64 ? LLVMDoubleTypeInContext(gallivm->context) : LLVMFloatTypeInContext(gallivm->context); } else { src_type = LLVMIntTypeInContext(gallivm->context, src_width); } src_vec_type = LLVMVectorType(src_type, length); /* XXX should allow hw scaling (can handle i8, i16, i32, i64 for x86) */ assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0)); if (0) { /* * XXX: This will cause LLVM pre 3.7 to hang; it works on LLVM 3.8 but * will not use the AVX2 gather instrinsics (even with llvm 4.0), at * least with Haswell. See * http://lists.llvm.org/pipermail/llvm-dev/2016-January/094448.html * And the generated code doing the emulation is quite a bit worse * than what we get by doing it ourselves too. */ LLVMTypeRef i32_type = LLVMIntTypeInContext(gallivm->context, 32); LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length); LLVMTypeRef i1_type = LLVMIntTypeInContext(gallivm->context, 1); LLVMTypeRef i1_vec_type = LLVMVectorType(i1_type, length); LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0); LLVMValueRef src_ptr; base_ptr = LLVMBuildBitCast(builder, base_ptr, src_ptr_type, ""); /* Rescale offsets from bytes to elements */ LLVMValueRef scale = LLVMConstInt(i32_type, src_width/8, 0); scale = lp_build_broadcast(gallivm, i32_vec_type, scale); assert(LLVMTypeOf(offsets) == i32_vec_type); offsets = LLVMBuildSDiv(builder, offsets, scale, ""); src_ptr = LLVMBuildGEP2(builder, src_type, base_ptr, &offsets, 1, "vector-gep"); char intrinsic[64]; snprintf(intrinsic, sizeof intrinsic, "llvm.masked.gather.v%u%s%u", length, dst_type.floating ? "f" : "i", src_width); LLVMValueRef alignment = LLVMConstInt(i32_type, src_width/8, 0); LLVMValueRef mask = LLVMConstAllOnes(i1_vec_type); LLVMValueRef passthru = LLVMGetUndef(src_vec_type); LLVMValueRef args[] = { src_ptr, alignment, mask, passthru }; res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 4, 0); } else { LLVMTypeRef i8_type = LLVMIntTypeInContext(gallivm->context, 8); const char *intrinsic = NULL; unsigned l_idx = 0; assert(src_width == 32 || src_width == 64); if (src_width == 32) { assert(length == 4 || length == 8); } else { assert(length == 2 || length == 4); } static const char *intrinsics[2][2][2] = { {{"llvm.x86.avx2.gather.d.d", "llvm.x86.avx2.gather.d.d.256"}, {"llvm.x86.avx2.gather.d.q", "llvm.x86.avx2.gather.d.q.256"}}, {{"llvm.x86.avx2.gather.d.ps", "llvm.x86.avx2.gather.d.ps.256"}, {"llvm.x86.avx2.gather.d.pd", "llvm.x86.avx2.gather.d.pd.256"}}, }; if ((src_width == 32 && length == 8) || (src_width == 64 && length == 4)) { l_idx = 1; } intrinsic = intrinsics[dst_type.floating][src_width == 64][l_idx]; LLVMValueRef passthru = LLVMGetUndef(src_vec_type); LLVMValueRef mask = LLVMConstAllOnes(src_vec_type); mask = LLVMConstBitCast(mask, src_vec_type); LLVMValueRef scale = LLVMConstInt(i8_type, 1, 0); LLVMValueRef args[] = { passthru, base_ptr, offsets, mask, scale }; res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 5, 0); } res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, res_type), ""); return res; } /** * Gather elements from scatter positions in memory into a single vector. * Use for fetching texels from a texture. * For SSE, typical values are length=4, src_width=32, dst_width=32. * * When src_width < dst_width, the return value can be justified in * one of two ways: * "integer justification" is used when the caller treats the destination * as a packed integer bitmask, as described by the channels' "shift" and * "width" fields; * "vector justification" is used when the caller casts the destination * to a vector and needs channel X to be in vector element 0. * * @param length length of the offsets * @param src_width src element width in bits * @param dst_type result element type (src will be expanded to fit, * but truncation is not allowed) * (this may be a vector, must be pot sized) * @param aligned whether the data is guaranteed to be aligned (to src_width) * @param base_ptr base pointer, needs to be a i8 pointer type. * @param offsets vector with offsets * @param vector_justify select vector rather than integer justification */ LLVMValueRef lp_build_gather(struct gallivm_state *gallivm, unsigned length, unsigned src_width, struct lp_type dst_type, boolean aligned, LLVMValueRef base_ptr, LLVMValueRef offsets, boolean vector_justify) { LLVMValueRef res; boolean need_expansion = src_width < dst_type.width * dst_type.length; boolean vec_fetch; struct lp_type fetch_type, fetch_dst_type; LLVMTypeRef src_type; assert(src_width <= dst_type.width * dst_type.length); /* * This is quite a mess... * Figure out if the fetch should be done as: * a) scalar or vector * b) float or int * * As an example, for a 96bit fetch expanded into 4x32bit, it is better * to use (3x32bit) vector type (then pad the vector). Otherwise, the * zext will cause extra instructions. * However, the same isn't true for 3x16bit (the codegen for that is * completely worthless on x86 simd, and for 3x8bit is is way worse * still, don't try that... (To get really good code out of llvm for * these cases, the only way is to decompose the fetches manually * into 1x32bit/1x16bit, or 1x16/1x8bit respectively, although the latter * case requires sse41, otherwise simple scalar zext is way better. * But probably not important enough, so don't bother.) * Also, we try to honor the floating bit of destination (but isn't * possible if caller asks for instance for 2x32bit dst_type with * 48bit fetch - the idea would be to use 3x16bit fetch, pad and * cast to 2x32f type, so the fetch is always int and on top of that * we avoid the vec pad and use scalar zext due the above mentioned * issue). * Note this is optimized for x86 sse2 and up backend. Could be tweaked * for other archs if necessary... */ if (((src_width % 32) == 0) && ((src_width % dst_type.width) == 0) && (dst_type.length > 1)) { /* use vector fetch (if dst_type is vector) */ vec_fetch = TRUE; if (dst_type.floating) { fetch_type = lp_type_float_vec(dst_type.width, src_width); } else { fetch_type = lp_type_int_vec(dst_type.width, src_width); } /* intentionally not using lp_build_vec_type here */ src_type = LLVMVectorType(lp_build_elem_type(gallivm, fetch_type), fetch_type.length); fetch_dst_type = fetch_type; fetch_dst_type.length = dst_type.length; } else { /* use scalar fetch */ vec_fetch = FALSE; if (dst_type.floating && ((src_width == 32) || (src_width == 64))) { fetch_type = lp_type_float(src_width); } else { fetch_type = lp_type_int(src_width); } src_type = lp_build_vec_type(gallivm, fetch_type); fetch_dst_type = fetch_type; fetch_dst_type.width = dst_type.width * dst_type.length; } if (length == 1) { /* Scalar */ res = lp_build_gather_elem_vec(gallivm, length, src_width, src_type, fetch_dst_type, aligned, base_ptr, offsets, 0, vector_justify); return LLVMBuildBitCast(gallivm->builder, res, lp_build_vec_type(gallivm, dst_type), ""); /* * Excluding expansion from these paths because if you need it for * 32bit/64bit fetches you're doing it wrong (this is gather, not * conversion) and it would be awkward for floats. */ } else if (util_get_cpu_caps()->has_avx2 && !need_expansion && src_width == 32 && (length == 4 || length == 8)) { return lp_build_gather_avx2(gallivm, length, src_width, dst_type, base_ptr, offsets); /* * This looks bad on paper wrt throughtput/latency on Haswell. * Even on Broadwell it doesn't look stellar. * Albeit no measurements were done (but tested to work). * Should definitely enable on Skylake. * (In general, should be more of a win if the fetch is 256bit wide - * this is true for the 32bit case above too.) */ } else if (0 && util_get_cpu_caps()->has_avx2 && !need_expansion && src_width == 64 && (length == 2 || length == 4)) { return lp_build_gather_avx2(gallivm, length, src_width, dst_type, base_ptr, offsets); } else { /* Vector */ LLVMValueRef elems[LP_MAX_VECTOR_WIDTH / 8]; unsigned i; boolean vec_zext = FALSE; struct lp_type res_type, gather_res_type; LLVMTypeRef res_t, gather_res_t; res_type = fetch_dst_type; res_type.length *= length; gather_res_type = res_type; if (src_width == 16 && dst_type.width == 32 && dst_type.length == 1) { /* * Note that llvm is never able to optimize zext/insert combos * directly (i.e. zero the simd reg, then place the elements into * the appropriate place directly). (I think this has to do with * scalar/vector transition.) And scalar 16->32bit zext simd loads * aren't possible (instead loading to scalar reg first). * No idea about other archs... * We could do this manually, but instead we just use a vector * zext, which is simple enough (and, in fact, llvm might optimize * this away). * (We're not trying that with other bit widths as that might not be * easier, in particular with 8 bit values at least with only sse2.) */ assert(vec_fetch == FALSE); gather_res_type.width /= 2; fetch_dst_type = fetch_type; src_type = lp_build_vec_type(gallivm, fetch_type); vec_zext = TRUE; } res_t = lp_build_vec_type(gallivm, res_type); gather_res_t = lp_build_vec_type(gallivm, gather_res_type); res = LLVMGetUndef(gather_res_t); for (i = 0; i < length; ++i) { LLVMValueRef index = lp_build_const_int32(gallivm, i); elems[i] = lp_build_gather_elem_vec(gallivm, length, src_width, src_type, fetch_dst_type, aligned, base_ptr, offsets, i, vector_justify); if (!vec_fetch) { res = LLVMBuildInsertElement(gallivm->builder, res, elems[i], index, ""); } } if (vec_zext) { res = LLVMBuildZExt(gallivm->builder, res, res_t, ""); if (vector_justify) { #if UTIL_ARCH_BIG_ENDIAN unsigned sv = dst_type.width - src_width; res = LLVMBuildShl(gallivm->builder, res, lp_build_const_int_vec(gallivm, res_type, sv), ""); #endif } } if (vec_fetch) { /* * Do bitcast now otherwise llvm might get some funny ideas wrt * float/int types... */ for (i = 0; i < length; i++) { elems[i] = LLVMBuildBitCast(gallivm->builder, elems[i], lp_build_vec_type(gallivm, dst_type), ""); } res = lp_build_concat(gallivm, elems, dst_type, length); } else { struct lp_type really_final_type = dst_type; assert(res_type.length * res_type.width == dst_type.length * dst_type.width * length); really_final_type.length *= length; res = LLVMBuildBitCast(gallivm->builder, res, lp_build_vec_type(gallivm, really_final_type), ""); } } return res; } LLVMValueRef lp_build_gather_values(struct gallivm_state * gallivm, LLVMValueRef * values, unsigned value_count) { LLVMTypeRef vec_type = LLVMVectorType(LLVMTypeOf(values[0]), value_count); LLVMBuilderRef builder = gallivm->builder; LLVMValueRef vec = LLVMGetUndef(vec_type); unsigned i; for (i = 0; i < value_count; i++) { LLVMValueRef index = lp_build_const_int32(gallivm, i); vec = LLVMBuildInsertElement(builder, vec, values[i], index, ""); } return vec; }