/* * Copyright 2013 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Resource binding slots and sampler states (each described with 8 or * 4 dwords) are stored in lists in memory which is accessed by shaders * using scalar load instructions. * * This file is responsible for managing such lists. It keeps a copy of all * descriptors in CPU memory and re-uploads a whole list if some slots have * been changed. * * This code is also responsible for updating shader pointers to those lists. * * Note that CP DMA can't be used for updating the lists, because a GPU hang * could leave the list in a mid-IB state and the next IB would get wrong * descriptors and the whole context would be unusable at that point. * (Note: The register shadowing can't be used due to the same reason) * * Also, uploading descriptors to newly allocated memory doesn't require * a KCACHE flush. * * * Possible scenarios for one 16 dword image+sampler slot: * * | Image | w/ FMASK | Buffer | NULL * [ 0: 3] Image[0:3] | Image[0:3] | Null[0:3] | Null[0:3] * [ 4: 7] Image[4:7] | Image[4:7] | Buffer[0:3] | 0 * [ 8:11] Null[0:3] | Fmask[0:3] | Null[0:3] | Null[0:3] * [12:15] Sampler[0:3] | Fmask[4:7] | Sampler[0:3] | Sampler[0:3] * * FMASK implies MSAA, therefore no sampler state. * Sampler states are never unbound except when FMASK is bound. */ #include "si_pipe.h" #include "si_compute.h" #include "si_build_pm4.h" #include "sid.h" #include "util/format/u_format.h" #include "util/hash_table.h" #include "util/u_idalloc.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" /* NULL image and buffer descriptor for textures (alpha = 1) and images * (alpha = 0). * * For images, all fields must be zero except for the swizzle, which * supports arbitrary combinations of 0s and 1s. The texture type must be * any valid type (e.g. 1D). If the texture type isn't set, the hw hangs. * * For buffers, all fields must be zero. If they are not, the hw hangs. * * This is the only reason why the buffer descriptor must be in words [4:7]. */ static uint32_t null_texture_descriptor[8] = { 0, 0, 0, S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) | S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static uint32_t null_image_descriptor[8] = { 0, 0, 0, S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static uint64_t si_desc_extract_buffer_address(const uint32_t *desc) { uint64_t va = desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32); /* Sign-extend the 48-bit address. */ va <<= 16; va = (int64_t)va >> 16; return va; } static void si_init_descriptor_list(uint32_t *desc_list, unsigned element_dw_size, unsigned num_elements, const uint32_t *null_descriptor) { int i; /* Initialize the array to NULL descriptors if the element size is 8. */ if (null_descriptor) { assert(element_dw_size % 8 == 0); for (i = 0; i < num_elements * element_dw_size / 8; i++) memcpy(desc_list + i * 8, null_descriptor, 8 * 4); } } static void si_init_descriptors(struct si_descriptors *desc, short shader_userdata_rel_index, unsigned element_dw_size, unsigned num_elements) { desc->list = CALLOC(num_elements, element_dw_size * 4); desc->element_dw_size = element_dw_size; desc->num_elements = num_elements; desc->shader_userdata_offset = shader_userdata_rel_index * 4; desc->slot_index_to_bind_directly = -1; } static void si_release_descriptors(struct si_descriptors *desc) { si_resource_reference(&desc->buffer, NULL); FREE(desc->list); } static bool si_upload_descriptors(struct si_context *sctx, struct si_descriptors *desc) { unsigned slot_size = desc->element_dw_size * 4; unsigned first_slot_offset = desc->first_active_slot * slot_size; unsigned upload_size = desc->num_active_slots * slot_size; /* Skip the upload if no shader is using the descriptors. dirty_mask * will stay dirty and the descriptors will be uploaded when there is * a shader using them. */ if (!upload_size) return true; /* If there is just one active descriptor, bind it directly. */ if ((int)desc->first_active_slot == desc->slot_index_to_bind_directly && desc->num_active_slots == 1) { uint32_t *descriptor = &desc->list[desc->slot_index_to_bind_directly * desc->element_dw_size]; /* The buffer is already in the buffer list. */ si_resource_reference(&desc->buffer, NULL); desc->gpu_list = NULL; desc->gpu_address = si_desc_extract_buffer_address(descriptor); return true; } uint32_t *ptr; unsigned buffer_offset; u_upload_alloc(sctx->b.const_uploader, first_slot_offset, upload_size, si_optimal_tcc_alignment(sctx, upload_size), &buffer_offset, (struct pipe_resource **)&desc->buffer, (void **)&ptr); if (!desc->buffer) { desc->gpu_address = 0; return false; /* skip the draw call */ } util_memcpy_cpu_to_le32(ptr, (char *)desc->list + first_slot_offset, upload_size); desc->gpu_list = ptr - first_slot_offset / 4; radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, desc->buffer, RADEON_USAGE_READ | RADEON_PRIO_DESCRIPTORS); /* The shader pointer should point to slot 0. */ buffer_offset -= first_slot_offset; desc->gpu_address = desc->buffer->gpu_address + buffer_offset; assert(desc->buffer->flags & RADEON_FLAG_32BIT); assert((desc->buffer->gpu_address >> 32) == sctx->screen->info.address32_hi); assert((desc->gpu_address >> 32) == sctx->screen->info.address32_hi); return true; } static void si_add_descriptors_to_bo_list(struct si_context *sctx, struct si_descriptors *desc) { if (!desc->buffer) return; radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, desc->buffer, RADEON_USAGE_READ | RADEON_PRIO_DESCRIPTORS); } /* SAMPLER VIEWS */ static inline unsigned si_get_sampler_view_priority(struct si_resource *res) { if (res->b.b.target == PIPE_BUFFER) return RADEON_PRIO_SAMPLER_BUFFER; if (res->b.b.nr_samples > 1) return RADEON_PRIO_SAMPLER_TEXTURE_MSAA; return RADEON_PRIO_SAMPLER_TEXTURE; } static struct si_descriptors *si_sampler_and_image_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_sampler_and_image_descriptors_idx(shader)]; } static void si_release_sampler_views(struct si_samplers *samplers) { int i; for (i = 0; i < ARRAY_SIZE(samplers->views); i++) { pipe_sampler_view_reference(&samplers->views[i], NULL); } } static void si_sampler_view_add_buffer(struct si_context *sctx, struct pipe_resource *resource, unsigned usage, bool is_stencil_sampler, bool check_mem) { struct si_texture *tex = (struct si_texture *)resource; unsigned priority; if (!resource) return; /* Use the flushed depth texture if direct sampling is unsupported. */ if (resource->target != PIPE_BUFFER && tex->is_depth && !si_can_sample_zs(tex, is_stencil_sampler)) tex = tex->flushed_depth_texture; priority = si_get_sampler_view_priority(&tex->buffer); radeon_add_to_gfx_buffer_list_check_mem(sctx, &tex->buffer, usage | priority, check_mem); } static void si_sampler_views_begin_new_cs(struct si_context *sctx, struct si_samplers *samplers) { unsigned mask = samplers->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[i]; si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } } static bool si_sampler_views_check_encrypted(struct si_context *sctx, struct si_samplers *samplers, unsigned samplers_declared) { unsigned mask = samplers->enabled_mask & samplers_declared; /* Verify if a samplers uses an encrypted resource */ while (mask) { int i = u_bit_scan(&mask); struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[i]; struct si_resource *res = si_resource(sview->base.texture); if (res->flags & RADEON_FLAG_ENCRYPTED) return true; } return false; } /* Set buffer descriptor fields that can be changed by reallocations. */ static void si_set_buf_desc_address(struct si_resource *buf, uint64_t offset, uint32_t *state) { uint64_t va = buf->gpu_address + offset; state[0] = va; state[1] &= C_008F04_BASE_ADDRESS_HI; state[1] |= S_008F04_BASE_ADDRESS_HI(va >> 32); } /* Set texture descriptor fields that can be changed by reallocations. * * \param tex texture * \param base_level_info information of the level of BASE_ADDRESS * \param base_level the level of BASE_ADDRESS * \param first_level pipe_sampler_view.u.tex.first_level * \param block_width util_format_get_blockwidth() * \param is_stencil select between separate Z & Stencil * \param state descriptor to update */ void si_set_mutable_tex_desc_fields(struct si_screen *sscreen, struct si_texture *tex, const struct legacy_surf_level *base_level_info, unsigned base_level, unsigned first_level, unsigned block_width, /* restrict decreases overhead of si_set_sampler_view_desc ~8x. */ bool is_stencil, uint16_t access, uint32_t * restrict state) { uint64_t va, meta_va = 0; if (tex->is_depth && !si_can_sample_zs(tex, is_stencil)) { tex = tex->flushed_depth_texture; is_stencil = false; } va = tex->buffer.gpu_address; if (sscreen->info.gfx_level >= GFX9) { /* Only stencil_offset needs to be added here. */ if (is_stencil) va += tex->surface.u.gfx9.zs.stencil_offset; else va += tex->surface.u.gfx9.surf_offset; } else { va += (uint64_t)base_level_info->offset_256B * 256; } state[0] = va >> 8; state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40); /* Only macrotiled modes can set tile swizzle. * GFX9 doesn't use (legacy) base_level_info. */ if (sscreen->info.gfx_level >= GFX9 || base_level_info->mode == RADEON_SURF_MODE_2D) state[0] |= tex->surface.tile_swizzle; if (sscreen->info.gfx_level >= GFX8) { if (!(access & SI_IMAGE_ACCESS_DCC_OFF) && vi_dcc_enabled(tex, first_level)) { meta_va = tex->buffer.gpu_address + tex->surface.meta_offset; if (sscreen->info.gfx_level == GFX8) { meta_va += tex->surface.u.legacy.color.dcc_level[base_level].dcc_offset; assert(base_level_info->mode == RADEON_SURF_MODE_2D); } unsigned dcc_tile_swizzle = tex->surface.tile_swizzle << 8; dcc_tile_swizzle &= (1 << tex->surface.meta_alignment_log2) - 1; meta_va |= dcc_tile_swizzle; } else if (vi_tc_compat_htile_enabled(tex, first_level, is_stencil ? PIPE_MASK_S : PIPE_MASK_Z)) { meta_va = tex->buffer.gpu_address + tex->surface.meta_offset; } if (meta_va) state[6] |= S_008F28_COMPRESSION_EN(1); } if (sscreen->info.gfx_level >= GFX8 && sscreen->info.gfx_level <= GFX9) state[7] = meta_va >> 8; if (sscreen->info.gfx_level >= GFX10) { if (is_stencil) { state[3] |= S_00A00C_SW_MODE(tex->surface.u.gfx9.zs.stencil_swizzle_mode); } else { state[3] |= S_00A00C_SW_MODE(tex->surface.u.gfx9.swizzle_mode); } if (meta_va) { struct gfx9_surf_meta_flags meta = { .rb_aligned = 1, .pipe_aligned = 1, }; if (!tex->is_depth && tex->surface.meta_offset) meta = tex->surface.u.gfx9.color.dcc; state[6] |= S_00A018_META_PIPE_ALIGNED(meta.pipe_aligned) | S_00A018_META_DATA_ADDRESS_LO(meta_va >> 8) | /* DCC image stores require the following settings: * - INDEPENDENT_64B_BLOCKS = 0 * - INDEPENDENT_128B_BLOCKS = 1 * - MAX_COMPRESSED_BLOCK_SIZE = 128B * - MAX_UNCOMPRESSED_BLOCK_SIZE = 256B (always used) * * The same limitations apply to SDMA compressed stores because * SDMA uses the same DCC codec. */ S_00A018_WRITE_COMPRESS_ENABLE(ac_surface_supports_dcc_image_stores(sscreen->info.gfx_level, &tex->surface) && (access & SI_IMAGE_ACCESS_ALLOW_DCC_STORE)); /* TC-compatible MSAA HTILE requires ITERATE_256. */ if (tex->is_depth && tex->buffer.b.b.nr_samples >= 2) state[6] |= S_00A018_ITERATE_256(1); } state[7] = meta_va >> 16; } else if (sscreen->info.gfx_level == GFX9) { if (is_stencil) { state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.zs.stencil_swizzle_mode); state[4] |= S_008F20_PITCH(tex->surface.u.gfx9.zs.stencil_epitch); } else { uint16_t epitch = tex->surface.u.gfx9.epitch; if (tex->buffer.b.b.format == PIPE_FORMAT_R8G8_R8B8_UNORM && block_width == 1) { /* epitch is patched in ac_surface for sdma/vcn blocks to get * a value expressed in elements unit. * But here the texture is used with block_width == 1 so we * need epitch in pixel units. */ epitch = (epitch + 1) / tex->surface.blk_w - 1; } state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.swizzle_mode); state[4] |= S_008F20_PITCH(epitch); } state[5] &= C_008F24_META_DATA_ADDRESS & C_008F24_META_PIPE_ALIGNED & C_008F24_META_RB_ALIGNED; if (meta_va) { struct gfx9_surf_meta_flags meta = { .rb_aligned = 1, .pipe_aligned = 1, }; if (!tex->is_depth && tex->surface.meta_offset) meta = tex->surface.u.gfx9.color.dcc; state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) | S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) | S_008F24_META_RB_ALIGNED(meta.rb_aligned); } } else { /* GFX6-GFX8 */ unsigned pitch = base_level_info->nblk_x * block_width; unsigned index = si_tile_mode_index(tex, base_level, is_stencil); state[3] |= S_008F1C_TILING_INDEX(index); state[4] |= S_008F20_PITCH(pitch - 1); } if (tex->swap_rgb_to_bgr) { unsigned swizzle_x = G_008F1C_DST_SEL_X(state[3]); unsigned swizzle_z = G_008F1C_DST_SEL_Z(state[3]); state[3] &= C_008F1C_DST_SEL_X; state[3] |= S_008F1C_DST_SEL_X(swizzle_z); state[3] &= C_008F1C_DST_SEL_Z; state[3] |= S_008F1C_DST_SEL_Z(swizzle_x); } } static void si_set_sampler_state_desc(struct si_sampler_state *sstate, struct si_sampler_view *sview, struct si_texture *tex, uint32_t *desc) { if (tex && tex->upgraded_depth && sview && !sview->is_stencil_sampler) memcpy(desc, sstate->upgraded_depth_val, 4 * 4); else memcpy(desc, sstate->val, 4 * 4); } static void si_set_sampler_view_desc(struct si_context *sctx, struct si_sampler_view *sview, struct si_sampler_state *sstate, /* restrict decreases overhead of si_set_sampler_view_desc ~8x. */ uint32_t * restrict desc) { struct pipe_sampler_view *view = &sview->base; struct si_texture *tex = (struct si_texture *)view->texture; assert(tex); /* views with texture == NULL aren't supported */ if (tex->buffer.b.b.target == PIPE_BUFFER) { memcpy(desc, sview->state, 8 * 4); memcpy(desc + 8, null_texture_descriptor, 4 * 4); /* Disable FMASK. */ si_set_buf_desc_address(&tex->buffer, sview->base.u.buf.offset, desc + 4); return; } if (unlikely(sview->dcc_incompatible)) { if (vi_dcc_enabled(tex, view->u.tex.first_level)) if (!si_texture_disable_dcc(sctx, tex)) si_decompress_dcc(sctx, tex); sview->dcc_incompatible = false; } bool is_separate_stencil = tex->db_compatible && sview->is_stencil_sampler; memcpy(desc, sview->state, 8 * 4); si_set_mutable_tex_desc_fields(sctx->screen, tex, sview->base_level_info, 0, sview->base.u.tex.first_level, sview->block_width, is_separate_stencil, 0, desc); if (tex->surface.fmask_size) { memcpy(desc + 8, sview->fmask_state, 8 * 4); } else { /* Disable FMASK and bind sampler state in [12:15]. */ memcpy(desc + 8, null_texture_descriptor, 4 * 4); if (sstate) si_set_sampler_state_desc(sstate, sview, tex, desc + 12); } } static bool color_needs_decompression(struct si_texture *tex) { if (tex->is_depth) return false; return tex->surface.fmask_size || (tex->dirty_level_mask && (tex->cmask_buffer || tex->surface.meta_offset)); } static bool depth_needs_decompression(struct si_texture *tex, bool is_stencil) { /* If the depth/stencil texture is TC-compatible, no decompression * will be done. The decompression function will only flush DB caches * to make it coherent with shaders. That's necessary because the driver * doesn't flush DB caches in any other case. */ return tex->db_compatible && (tex->dirty_level_mask || (is_stencil && tex->stencil_dirty_level_mask)); } static void si_reset_sampler_view_slot(struct si_samplers *samplers, unsigned slot, uint32_t * restrict desc) { pipe_sampler_view_reference(&samplers->views[slot], NULL); memcpy(desc, null_texture_descriptor, 8 * 4); /* Only clear the lower dwords of FMASK. */ memcpy(desc + 8, null_texture_descriptor, 4 * 4); /* Re-set the sampler state if we are transitioning from FMASK. */ if (samplers->sampler_states[slot]) si_set_sampler_state_desc(samplers->sampler_states[slot], NULL, NULL, desc + 12); } static void si_set_sampler_views(struct si_context *sctx, unsigned shader, unsigned start_slot, unsigned count, unsigned unbind_num_trailing_slots, bool take_ownership, struct pipe_sampler_view **views, bool disallow_early_out) { struct si_samplers *samplers = &sctx->samplers[shader]; struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader); uint32_t unbound_mask = 0; if (views) { for (unsigned i = 0; i < count; i++) { unsigned slot = start_slot + i; struct si_sampler_view *sview = (struct si_sampler_view *)views[i]; unsigned desc_slot = si_get_sampler_slot(slot); /* restrict decreases overhead of si_set_sampler_view_desc ~8x. */ uint32_t *restrict desc = descs->list + desc_slot * 16; if (samplers->views[slot] == &sview->base && !disallow_early_out) { if (take_ownership) { struct pipe_sampler_view *view = views[i]; pipe_sampler_view_reference(&view, NULL); } continue; } if (sview) { struct si_texture *tex = (struct si_texture *)sview->base.texture; si_set_sampler_view_desc(sctx, sview, samplers->sampler_states[slot], desc); if (tex->buffer.b.b.target == PIPE_BUFFER) { tex->buffer.bind_history |= SI_BIND_SAMPLER_BUFFER(shader); samplers->needs_depth_decompress_mask &= ~(1u << slot); samplers->needs_color_decompress_mask &= ~(1u << slot); } else { if (tex->is_depth) { samplers->has_depth_tex_mask |= 1u << slot; samplers->needs_color_decompress_mask &= ~(1u << slot); if (depth_needs_decompression(tex, sview->is_stencil_sampler)) { samplers->needs_depth_decompress_mask |= 1u << slot; } else { samplers->needs_depth_decompress_mask &= ~(1u << slot); } } else { samplers->has_depth_tex_mask &= ~(1u << slot); samplers->needs_depth_decompress_mask &= ~(1u << slot); if (color_needs_decompression(tex)) { samplers->needs_color_decompress_mask |= 1u << slot; } else { samplers->needs_color_decompress_mask &= ~(1u << slot); } } if (vi_dcc_enabled(tex, sview->base.u.tex.first_level) && p_atomic_read(&tex->framebuffers_bound)) sctx->need_check_render_feedback = true; } if (take_ownership) { pipe_sampler_view_reference(&samplers->views[slot], NULL); samplers->views[slot] = &sview->base; } else { pipe_sampler_view_reference(&samplers->views[slot], &sview->base); } samplers->enabled_mask |= 1u << slot; /* Since this can flush, it must be done after enabled_mask is * updated. */ si_sampler_view_add_buffer(sctx, &tex->buffer.b.b, RADEON_USAGE_READ, sview->is_stencil_sampler, true); } else { si_reset_sampler_view_slot(samplers, slot, desc); unbound_mask |= 1u << slot; } } } else { unbind_num_trailing_slots += count; count = 0; } for (unsigned i = 0; i < unbind_num_trailing_slots; i++) { unsigned slot = start_slot + count + i; unsigned desc_slot = si_get_sampler_slot(slot); uint32_t * restrict desc = descs->list + desc_slot * 16; if (samplers->views[slot]) si_reset_sampler_view_slot(samplers, slot, desc); } unbound_mask |= BITFIELD_RANGE(start_slot + count, unbind_num_trailing_slots); samplers->enabled_mask &= ~unbound_mask; samplers->has_depth_tex_mask &= ~unbound_mask; samplers->needs_depth_decompress_mask &= ~unbound_mask; samplers->needs_color_decompress_mask &= ~unbound_mask; sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); } static void si_update_shader_needs_decompress_mask(struct si_context *sctx, unsigned shader) { struct si_samplers *samplers = &sctx->samplers[shader]; unsigned shader_bit = 1 << shader; if (samplers->needs_depth_decompress_mask || samplers->needs_color_decompress_mask || sctx->images[shader].needs_color_decompress_mask) sctx->shader_needs_decompress_mask |= shader_bit; else sctx->shader_needs_decompress_mask &= ~shader_bit; if (samplers->has_depth_tex_mask) sctx->shader_has_depth_tex |= shader_bit; else sctx->shader_has_depth_tex &= ~shader_bit; } static void si_pipe_set_sampler_views(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, unsigned unbind_num_trailing_slots, bool take_ownership, struct pipe_sampler_view **views) { struct si_context *sctx = (struct si_context *)ctx; if ((!count && !unbind_num_trailing_slots) || shader >= SI_NUM_SHADERS) return; si_set_sampler_views(sctx, shader, start, count, unbind_num_trailing_slots, take_ownership, views, false); si_update_shader_needs_decompress_mask(sctx, shader); } static void si_samplers_update_needs_color_decompress_mask(struct si_samplers *samplers) { unsigned mask = samplers->enabled_mask; while (mask) { int i = u_bit_scan(&mask); struct pipe_resource *res = samplers->views[i]->texture; if (res && res->target != PIPE_BUFFER) { struct si_texture *tex = (struct si_texture *)res; if (color_needs_decompression(tex)) { samplers->needs_color_decompress_mask |= 1u << i; } else { samplers->needs_color_decompress_mask &= ~(1u << i); } } } } /* IMAGE VIEWS */ static void si_release_image_views(struct si_images *images) { unsigned i; for (i = 0; i < SI_NUM_IMAGES; ++i) { struct pipe_image_view *view = &images->views[i]; pipe_resource_reference(&view->resource, NULL); } } static void si_image_views_begin_new_cs(struct si_context *sctx, struct si_images *images) { uint mask = images->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; assert(view->resource); si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false); } } static bool si_image_views_check_encrypted(struct si_context *sctx, struct si_images *images, unsigned images_declared) { uint mask = images->enabled_mask & images_declared; while (mask) { int i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; assert(view->resource); struct si_texture *tex = (struct si_texture *)view->resource; if (tex->buffer.flags & RADEON_FLAG_ENCRYPTED) return true; } return false; } static void si_disable_shader_image(struct si_context *ctx, unsigned shader, unsigned slot) { struct si_images *images = &ctx->images[shader]; if (images->enabled_mask & (1u << slot)) { struct si_descriptors *descs = si_sampler_and_image_descriptors(ctx, shader); unsigned desc_slot = si_get_image_slot(slot); pipe_resource_reference(&images->views[slot].resource, NULL); images->needs_color_decompress_mask &= ~(1 << slot); memcpy(descs->list + desc_slot * 8, null_image_descriptor, 8 * 4); images->enabled_mask &= ~(1u << slot); images->display_dcc_store_mask &= ~(1u << slot); ctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); } } static void si_mark_image_range_valid(const struct pipe_image_view *view) { struct si_resource *res = si_resource(view->resource); if (res->b.b.target != PIPE_BUFFER) return; util_range_add(&res->b.b, &res->valid_buffer_range, view->u.buf.offset, view->u.buf.offset + view->u.buf.size); } static void si_set_shader_image_desc(struct si_context *ctx, const struct pipe_image_view *view, bool skip_decompress, uint32_t *desc, uint32_t *fmask_desc) { struct si_screen *screen = ctx->screen; struct si_resource *res; res = si_resource(view->resource); if (res->b.b.target == PIPE_BUFFER) { if (view->access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(view); uint32_t elements = si_clamp_texture_texel_count(screen->max_texel_buffer_elements, view->format, view->u.buf.size); si_make_buffer_descriptor(screen, res, view->format, view->u.buf.offset, elements, desc); si_set_buf_desc_address(res, view->u.buf.offset, desc + 4); } else { static const unsigned char swizzle[4] = {0, 1, 2, 3}; struct si_texture *tex = (struct si_texture *)res; unsigned level = view->u.tex.level; bool uses_dcc = vi_dcc_enabled(tex, level); unsigned access = view->access; if (uses_dcc && screen->always_allow_dcc_stores) access |= SI_IMAGE_ACCESS_ALLOW_DCC_STORE; assert(!tex->is_depth); assert(fmask_desc || tex->surface.fmask_offset == 0); if (uses_dcc && !skip_decompress && !(access & SI_IMAGE_ACCESS_DCC_OFF) && ((!(access & SI_IMAGE_ACCESS_ALLOW_DCC_STORE) && (access & PIPE_IMAGE_ACCESS_WRITE)) || !vi_dcc_formats_compatible(screen, res->b.b.format, view->format))) { /* If DCC can't be disabled, at least decompress it. * The decompression is relatively cheap if the surface * has been decompressed already. */ if (!si_texture_disable_dcc(ctx, tex)) si_decompress_dcc(ctx, tex); } unsigned width = res->b.b.width0; unsigned height = res->b.b.height0; unsigned depth = res->b.b.depth0; unsigned hw_level = level; if (ctx->gfx_level <= GFX8) { /* Always force the base level to the selected level. * * This is required for 3D textures, where otherwise * selecting a single slice for non-layered bindings * fails. It doesn't hurt the other targets. */ width = u_minify(width, level); height = u_minify(height, level); depth = u_minify(depth, level); hw_level = 0; } if (access & SI_IMAGE_ACCESS_BLOCK_FORMAT_AS_UINT) { if (ctx->gfx_level >= GFX9) { /* Since the aligned width and height are derived from the width and height * by the hw, set them directly as the width and height, so that UINT formats * get exactly the same layout as BCn formats. */ width = tex->surface.u.gfx9.base_mip_width; height = tex->surface.u.gfx9.base_mip_height; } else { width = util_format_get_nblocksx(tex->buffer.b.b.format, width); height = util_format_get_nblocksy(tex->buffer.b.b.format, height); } } screen->make_texture_descriptor( screen, tex, false, res->b.b.target, view->format, swizzle, hw_level, hw_level, view->u.tex.first_layer, view->u.tex.last_layer, width, height, depth, desc, fmask_desc); si_set_mutable_tex_desc_fields(screen, tex, &tex->surface.u.legacy.level[level], level, level, util_format_get_blockwidth(view->format), false, access, desc); } } static void si_set_shader_image(struct si_context *ctx, unsigned shader, unsigned slot, const struct pipe_image_view *view, bool skip_decompress) { struct si_images *images = &ctx->images[shader]; struct si_descriptors *descs = si_sampler_and_image_descriptors(ctx, shader); struct si_resource *res; if (!view || !view->resource) { si_disable_shader_image(ctx, shader, slot); return; } res = si_resource(view->resource); si_set_shader_image_desc(ctx, view, skip_decompress, descs->list + si_get_image_slot(slot) * 8, descs->list + si_get_image_slot(slot + SI_NUM_IMAGES) * 8); if (&images->views[slot] != view) util_copy_image_view(&images->views[slot], view); if (res->b.b.target == PIPE_BUFFER) { images->needs_color_decompress_mask &= ~(1 << slot); images->display_dcc_store_mask &= ~(1u << slot); res->bind_history |= SI_BIND_IMAGE_BUFFER(shader); } else { struct si_texture *tex = (struct si_texture *)res; unsigned level = view->u.tex.level; if (color_needs_decompression(tex)) { images->needs_color_decompress_mask |= 1 << slot; } else { images->needs_color_decompress_mask &= ~(1 << slot); } if (tex->surface.display_dcc_offset && view->access & PIPE_IMAGE_ACCESS_WRITE) { images->display_dcc_store_mask |= 1u << slot; /* Set displayable_dcc_dirty for non-compute stages conservatively (before draw calls). */ if (shader != PIPE_SHADER_COMPUTE) tex->displayable_dcc_dirty = true; } else { images->display_dcc_store_mask &= ~(1u << slot); } if (vi_dcc_enabled(tex, level) && p_atomic_read(&tex->framebuffers_bound)) ctx->need_check_render_feedback = true; } images->enabled_mask |= 1u << slot; ctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); /* Since this can flush, it must be done after enabled_mask is updated. */ si_sampler_view_add_buffer( ctx, &res->b.b, (view->access & PIPE_IMAGE_ACCESS_WRITE) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, false, true); } static void si_set_shader_images(struct pipe_context *pipe, enum pipe_shader_type shader, unsigned start_slot, unsigned count, unsigned unbind_num_trailing_slots, const struct pipe_image_view *views) { struct si_context *ctx = (struct si_context *)pipe; unsigned i, slot; assert(shader < SI_NUM_SHADERS); if (!count && !unbind_num_trailing_slots) return; assert(start_slot + count + unbind_num_trailing_slots <= SI_NUM_IMAGES); if (views) { for (i = 0, slot = start_slot; i < count; ++i, ++slot) si_set_shader_image(ctx, shader, slot, &views[i], false); } else { for (i = 0, slot = start_slot; i < count; ++i, ++slot) si_set_shader_image(ctx, shader, slot, NULL, false); } for (i = 0; i < unbind_num_trailing_slots; ++i, ++slot) si_set_shader_image(ctx, shader, slot, NULL, false); if (shader == PIPE_SHADER_COMPUTE && ctx->cs_shader_state.program && start_slot < ctx->cs_shader_state.program->sel.cs_num_images_in_user_sgprs) ctx->compute_image_sgprs_dirty = true; si_update_shader_needs_decompress_mask(ctx, shader); } static void si_images_update_needs_color_decompress_mask(struct si_images *images) { unsigned mask = images->enabled_mask; while (mask) { int i = u_bit_scan(&mask); struct pipe_resource *res = images->views[i].resource; if (res && res->target != PIPE_BUFFER) { struct si_texture *tex = (struct si_texture *)res; if (color_needs_decompression(tex)) { images->needs_color_decompress_mask |= 1 << i; } else { images->needs_color_decompress_mask &= ~(1 << i); } } } } void si_update_ps_colorbuf0_slot(struct si_context *sctx) { struct si_buffer_resources *buffers = &sctx->internal_bindings; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_INTERNAL]; unsigned slot = SI_PS_IMAGE_COLORBUF0; struct pipe_surface *surf = NULL; /* si_texture_disable_dcc can get us here again. */ if (sctx->in_update_ps_colorbuf0_slot || sctx->blitter_running) { assert(!sctx->ps_uses_fbfetch || sctx->framebuffer.state.cbufs[0]); return; } sctx->in_update_ps_colorbuf0_slot = true; /* See whether FBFETCH is used and color buffer 0 is set. */ if (sctx->shader.ps.cso && sctx->shader.ps.cso->info.base.fs.uses_fbfetch_output && sctx->framebuffer.state.nr_cbufs && sctx->framebuffer.state.cbufs[0]) surf = sctx->framebuffer.state.cbufs[0]; /* Return if FBFETCH transitions from disabled to disabled. */ if (!buffers->buffers[slot] && !surf) { assert(!sctx->ps_uses_fbfetch); sctx->in_update_ps_colorbuf0_slot = false; return; } sctx->ps_uses_fbfetch = surf != NULL; si_update_ps_iter_samples(sctx); if (surf) { struct si_texture *tex = (struct si_texture *)surf->texture; struct pipe_image_view view = {0}; assert(tex); assert(!tex->is_depth); /* Disable DCC, because the texture is used as both a sampler * and color buffer. */ si_texture_disable_dcc(sctx, tex); if (tex->buffer.b.b.nr_samples <= 1 && tex->cmask_buffer) { /* Disable CMASK. */ assert(tex->cmask_buffer != &tex->buffer); si_eliminate_fast_color_clear(sctx, tex, NULL); si_texture_discard_cmask(sctx->screen, tex); } view.resource = surf->texture; view.format = surf->format; view.access = PIPE_IMAGE_ACCESS_READ; view.u.tex.first_layer = surf->u.tex.first_layer; view.u.tex.last_layer = surf->u.tex.last_layer; view.u.tex.level = surf->u.tex.level; /* Set the descriptor. */ uint32_t *desc = descs->list + slot * 4; memset(desc, 0, 16 * 4); si_set_shader_image_desc(sctx, &view, true, desc, desc + 8); pipe_resource_reference(&buffers->buffers[slot], &tex->buffer.b.b); radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, &tex->buffer, RADEON_USAGE_READ | RADEON_PRIO_SHADER_RW_IMAGE); buffers->enabled_mask |= 1llu << slot; } else { /* Clear the descriptor. */ memset(descs->list + slot * 4, 0, 8 * 4); pipe_resource_reference(&buffers->buffers[slot], NULL); buffers->enabled_mask &= ~(1llu << slot); } sctx->descriptors_dirty |= 1u << SI_DESCS_INTERNAL; sctx->in_update_ps_colorbuf0_slot = false; } /* SAMPLER STATES */ static void si_bind_sampler_states(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, void **states) { struct si_context *sctx = (struct si_context *)ctx; struct si_samplers *samplers = &sctx->samplers[shader]; struct si_descriptors *desc = si_sampler_and_image_descriptors(sctx, shader); struct si_sampler_state **sstates = (struct si_sampler_state **)states; int i; if (!count || shader >= SI_NUM_SHADERS || !sstates) return; for (i = 0; i < count; i++) { unsigned slot = start + i; unsigned desc_slot = si_get_sampler_slot(slot); if (!sstates[i] || sstates[i] == samplers->sampler_states[slot]) continue; #ifndef NDEBUG assert(sstates[i]->magic == SI_SAMPLER_STATE_MAGIC); #endif samplers->sampler_states[slot] = sstates[i]; /* If FMASK is bound, don't overwrite it. * The sampler state will be set after FMASK is unbound. */ struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[slot]; struct si_texture *tex = NULL; if (sview && sview->base.texture && sview->base.texture->target != PIPE_BUFFER) tex = (struct si_texture *)sview->base.texture; if (tex && tex->surface.fmask_size) continue; si_set_sampler_state_desc(sstates[i], sview, tex, desc->list + desc_slot * 16 + 12); sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); } } /* BUFFER RESOURCES */ static void si_init_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, struct si_descriptors *descs, unsigned num_buffers, short shader_userdata_rel_index, unsigned priority, unsigned priority_constbuf) { buffers->priority = priority; buffers->priority_constbuf = priority_constbuf; buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource *)); buffers->offsets = CALLOC(num_buffers, sizeof(buffers->offsets[0])); si_init_descriptors(descs, shader_userdata_rel_index, 4, num_buffers); /* Initialize buffer descriptors, so that we don't have to do it at bind time. */ for (unsigned i = 0; i < num_buffers; i++) { uint32_t *desc = descs->list + i * 4; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (sctx->gfx_level >= GFX11) { desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW); } else if (sctx->gfx_level >= GFX10) { desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } } } static void si_release_buffer_resources(struct si_buffer_resources *buffers, struct si_descriptors *descs) { int i; for (i = 0; i < descs->num_elements; i++) { pipe_resource_reference(&buffers->buffers[i], NULL); } FREE(buffers->buffers); FREE(buffers->offsets); } static void si_buffer_resources_begin_new_cs(struct si_context *sctx, struct si_buffer_resources *buffers) { uint64_t mask = buffers->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan64(&mask); radeon_add_to_buffer_list( sctx, &sctx->gfx_cs, si_resource(buffers->buffers[i]), (buffers->writable_mask & (1llu << i) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ) | (i < SI_NUM_SHADER_BUFFERS ? buffers->priority : buffers->priority_constbuf)); } } static bool si_buffer_resources_check_encrypted(struct si_context *sctx, struct si_buffer_resources *buffers) { uint64_t mask = buffers->enabled_mask; while (mask) { int i = u_bit_scan64(&mask); if (si_resource(buffers->buffers[i])->flags & RADEON_FLAG_ENCRYPTED) return true; } return false; } static void si_get_buffer_from_descriptors(struct si_buffer_resources *buffers, struct si_descriptors *descs, unsigned idx, struct pipe_resource **buf, unsigned *offset, unsigned *size) { pipe_resource_reference(buf, buffers->buffers[idx]); if (*buf) { struct si_resource *res = si_resource(*buf); const uint32_t *desc = descs->list + idx * 4; uint64_t va; *size = desc[2]; assert(G_008F04_STRIDE(desc[1]) == 0); va = si_desc_extract_buffer_address(desc); assert(va >= res->gpu_address && va + *size <= res->gpu_address + res->bo_size); *offset = va - res->gpu_address; } } /* VERTEX BUFFERS */ static void si_vertex_buffers_begin_new_cs(struct si_context *sctx) { int count = sctx->num_vertex_elements; int i; for (i = 0; i < count; i++) { int vb = sctx->vertex_elements->vertex_buffer_index[i]; if (vb >= ARRAY_SIZE(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer.resource) continue; radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(sctx->vertex_buffer[vb].buffer.resource), RADEON_USAGE_READ | RADEON_PRIO_VERTEX_BUFFER); } if (!sctx->vb_descriptors_buffer) return; radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->vb_descriptors_buffer, RADEON_USAGE_READ | RADEON_PRIO_DESCRIPTORS); } /* CONSTANT BUFFERS */ static struct si_descriptors *si_const_and_shader_buffer_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_const_and_shader_buffer_descriptors_idx(shader)]; } static void si_upload_const_buffer(struct si_context *sctx, struct si_resource **buf, const uint8_t *ptr, unsigned size, uint32_t *const_offset) { void *tmp; u_upload_alloc(sctx->b.const_uploader, 0, size, si_optimal_tcc_alignment(sctx, size), const_offset, (struct pipe_resource **)buf, &tmp); if (*buf) util_memcpy_cpu_to_le32(tmp, ptr, size); } static void si_set_constant_buffer(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, uint slot, bool take_ownership, const struct pipe_constant_buffer *input) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; assert(slot < descs->num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); /* GFX7 cannot unbind a constant buffer (S_BUFFER_LOAD is buggy * with a NULL buffer). We need to use a dummy buffer instead. */ if (sctx->gfx_level == GFX7 && (!input || (!input->buffer && !input->user_buffer))) input = &sctx->null_const_buf; if (input && (input->buffer || input->user_buffer)) { struct pipe_resource *buffer = NULL; uint64_t va; unsigned buffer_offset; /* Upload the user buffer if needed. */ if (input->user_buffer) { si_upload_const_buffer(sctx, (struct si_resource **)&buffer, input->user_buffer, input->buffer_size, &buffer_offset); if (!buffer) { /* Just unbind on failure. */ si_set_constant_buffer(sctx, buffers, descriptors_idx, slot, false, NULL); return; } } else { if (take_ownership) { buffer = input->buffer; } else { pipe_resource_reference(&buffer, input->buffer); } buffer_offset = input->buffer_offset; } va = si_resource(buffer)->gpu_address + buffer_offset; /* Set the descriptor. */ uint32_t *desc = descs->list + slot * 4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = input->buffer_size; buffers->buffers[slot] = buffer; buffers->offsets[slot] = buffer_offset; radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READ | buffers->priority_constbuf, true); buffers->enabled_mask |= 1llu << slot; } else { /* Clear the descriptor. Only 3 dwords are cleared. The 4th dword is immutable. */ memset(descs->list + slot * 4, 0, sizeof(uint32_t) * 3); buffers->enabled_mask &= ~(1llu << slot); } sctx->descriptors_dirty |= 1u << descriptors_idx; } void si_get_inline_uniform_state(union si_shader_key *key, enum pipe_shader_type shader, bool *inline_uniforms, uint32_t **inlined_values) { if (shader == PIPE_SHADER_FRAGMENT) { *inline_uniforms = key->ps.opt.inline_uniforms; *inlined_values = key->ps.opt.inlined_uniform_values; } else { *inline_uniforms = key->ge.opt.inline_uniforms; *inlined_values = key->ge.opt.inlined_uniform_values; } } void si_invalidate_inlinable_uniforms(struct si_context *sctx, enum pipe_shader_type shader) { if (shader == PIPE_SHADER_COMPUTE) return; bool inline_uniforms; uint32_t *inlined_values; si_get_inline_uniform_state(&sctx->shaders[shader].key, shader, &inline_uniforms, &inlined_values); if (inline_uniforms) { if (shader == PIPE_SHADER_FRAGMENT) sctx->shaders[shader].key.ps.opt.inline_uniforms = false; else sctx->shaders[shader].key.ge.opt.inline_uniforms = false; memset(inlined_values, 0, MAX_INLINABLE_UNIFORMS * 4); sctx->do_update_shaders = true; } } static void si_pipe_set_constant_buffer(struct pipe_context *ctx, enum pipe_shader_type shader, uint slot, bool take_ownership, const struct pipe_constant_buffer *input) { struct si_context *sctx = (struct si_context *)ctx; if (shader >= SI_NUM_SHADERS) return; if (input) { if (input->buffer) { if (slot == 0 && !(si_resource(input->buffer)->flags & RADEON_FLAG_32BIT)) { assert(!"constant buffer 0 must have a 32-bit VM address, use const_uploader"); return; } si_resource(input->buffer)->bind_history |= SI_BIND_CONSTANT_BUFFER(shader); } if (slot == 0) si_invalidate_inlinable_uniforms(sctx, shader); } slot = si_get_constbuf_slot(slot); si_set_constant_buffer(sctx, &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors_idx(shader), slot, take_ownership, input); } static void si_set_inlinable_constants(struct pipe_context *ctx, enum pipe_shader_type shader, uint num_values, uint32_t *values) { struct si_context *sctx = (struct si_context *)ctx; if (shader == PIPE_SHADER_COMPUTE) return; bool inline_uniforms; uint32_t *inlined_values; si_get_inline_uniform_state(&sctx->shaders[shader].key, shader, &inline_uniforms, &inlined_values); if (!inline_uniforms) { /* It's the first time we set the constants. Always update shaders. */ if (shader == PIPE_SHADER_FRAGMENT) sctx->shaders[shader].key.ps.opt.inline_uniforms = true; else sctx->shaders[shader].key.ge.opt.inline_uniforms = true; memcpy(inlined_values, values, num_values * 4); sctx->do_update_shaders = true; return; } /* We have already set inlinable constants for this shader. Update the shader only if * the constants are being changed so as not to update shaders needlessly. */ if (memcmp(inlined_values, values, num_values * 4)) { memcpy(inlined_values, values, num_values * 4); sctx->do_update_shaders = true; } } void si_get_pipe_constant_buffer(struct si_context *sctx, uint shader, uint slot, struct pipe_constant_buffer *cbuf) { cbuf->user_buffer = NULL; si_get_buffer_from_descriptors( &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors(sctx, shader), si_get_constbuf_slot(slot), &cbuf->buffer, &cbuf->buffer_offset, &cbuf->buffer_size); } /* SHADER BUFFERS */ static void si_set_shader_buffer(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, uint slot, const struct pipe_shader_buffer *sbuffer, bool writable, unsigned priority) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; uint32_t *desc = descs->list + slot * 4; if (!sbuffer || !sbuffer->buffer) { pipe_resource_reference(&buffers->buffers[slot], NULL); /* Clear the descriptor. Only 3 dwords are cleared. The 4th dword is immutable. */ memset(desc, 0, sizeof(uint32_t) * 3); buffers->enabled_mask &= ~(1llu << slot); buffers->writable_mask &= ~(1llu << slot); sctx->descriptors_dirty |= 1u << descriptors_idx; return; } struct si_resource *buf = si_resource(sbuffer->buffer); uint64_t va = buf->gpu_address + sbuffer->buffer_offset; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = sbuffer->buffer_size; pipe_resource_reference(&buffers->buffers[slot], &buf->b.b); buffers->offsets[slot] = sbuffer->buffer_offset; radeon_add_to_gfx_buffer_list_check_mem( sctx, buf, (writable ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ) | priority, true); if (writable) buffers->writable_mask |= 1llu << slot; else buffers->writable_mask &= ~(1llu << slot); buffers->enabled_mask |= 1llu << slot; sctx->descriptors_dirty |= 1lu << descriptors_idx; util_range_add(&buf->b.b, &buf->valid_buffer_range, sbuffer->buffer_offset, sbuffer->buffer_offset + sbuffer->buffer_size); } void si_set_shader_buffers(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_shader_buffer *sbuffers, unsigned writable_bitmask, bool internal_blit) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->const_and_shader_buffers[shader]; unsigned descriptors_idx = si_const_and_shader_buffer_descriptors_idx(shader); unsigned i; assert(start_slot + count <= SI_NUM_SHADER_BUFFERS); if (shader == PIPE_SHADER_COMPUTE && sctx->cs_shader_state.program && start_slot < sctx->cs_shader_state.program->sel.cs_num_shaderbufs_in_user_sgprs) sctx->compute_shaderbuf_sgprs_dirty = true; for (i = 0; i < count; ++i) { const struct pipe_shader_buffer *sbuffer = sbuffers ? &sbuffers[i] : NULL; unsigned slot = si_get_shaderbuf_slot(start_slot + i); /* Don't track bind history for internal blits, such as clear_buffer and copy_buffer * to prevent unnecessary synchronization before compute blits later. */ if (!internal_blit && sbuffer && sbuffer->buffer) si_resource(sbuffer->buffer)->bind_history |= SI_BIND_SHADER_BUFFER(shader); si_set_shader_buffer(sctx, buffers, descriptors_idx, slot, sbuffer, !!(writable_bitmask & (1u << i)), buffers->priority); } } static void si_pipe_set_shader_buffers(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_shader_buffer *sbuffers, unsigned writable_bitmask) { si_set_shader_buffers(ctx, shader, start_slot, count, sbuffers, writable_bitmask, false); } void si_get_shader_buffers(struct si_context *sctx, enum pipe_shader_type shader, uint start_slot, uint count, struct pipe_shader_buffer *sbuf) { struct si_buffer_resources *buffers = &sctx->const_and_shader_buffers[shader]; struct si_descriptors *descs = si_const_and_shader_buffer_descriptors(sctx, shader); for (unsigned i = 0; i < count; ++i) { si_get_buffer_from_descriptors(buffers, descs, si_get_shaderbuf_slot(start_slot + i), &sbuf[i].buffer, &sbuf[i].buffer_offset, &sbuf[i].buffer_size); } } /* RING BUFFERS */ void si_set_internal_const_buffer(struct si_context *sctx, uint slot, const struct pipe_constant_buffer *input) { si_set_constant_buffer(sctx, &sctx->internal_bindings, SI_DESCS_INTERNAL, slot, false, input); } void si_set_internal_shader_buffer(struct si_context *sctx, uint slot, const struct pipe_shader_buffer *sbuffer) { si_set_shader_buffer(sctx, &sctx->internal_bindings, SI_DESCS_INTERNAL, slot, sbuffer, true, RADEON_PRIO_SHADER_RW_BUFFER); } void si_set_ring_buffer(struct si_context *sctx, uint slot, struct pipe_resource *buffer, unsigned stride, unsigned num_records, bool add_tid, bool swizzle, unsigned element_size, unsigned index_stride, uint64_t offset) { struct si_buffer_resources *buffers = &sctx->internal_bindings; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_INTERNAL]; /* The stride field in the resource descriptor has 14 bits */ assert(stride < (1 << 14)); assert(slot < descs->num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); if (buffer) { uint64_t va; va = si_resource(buffer)->gpu_address + offset; switch (element_size) { default: assert(!"Unsupported ring buffer element size"); case 0: case 2: element_size = 0; break; case 4: element_size = 1; break; case 8: element_size = 2; break; case 16: element_size = 3; break; } switch (index_stride) { default: assert(!"Unsupported ring buffer index stride"); case 0: case 8: index_stride = 0; break; case 16: index_stride = 1; break; case 32: index_stride = 2; break; case 64: index_stride = 3; break; } if (sctx->gfx_level >= GFX8 && stride) num_records *= stride; /* Set the descriptor. */ uint32_t *desc = descs->list + slot * 4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride); desc[2] = num_records; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(add_tid); if (sctx->gfx_level >= GFX11) { assert(!swizzle || element_size == 1 || element_size == 3); /* 4 or 16 bytes */ desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX11(swizzle ? element_size : 0); } else if (sctx->gfx_level >= GFX9) { assert(!swizzle || element_size == 1); /* only 4 bytes on GFX9 */ desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX6(swizzle); } else { desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX6(swizzle); desc[3] |= S_008F0C_ELEMENT_SIZE(element_size); } if (sctx->gfx_level >= GFX11) { desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); } else if (sctx->gfx_level >= GFX10) { desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } pipe_resource_reference(&buffers->buffers[slot], buffer); radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(buffer), RADEON_USAGE_READWRITE | buffers->priority); buffers->enabled_mask |= 1llu << slot; } else { /* Clear the descriptor. */ memset(descs->list + slot * 4, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1llu << slot); } sctx->descriptors_dirty |= 1u << SI_DESCS_INTERNAL; } /* INTERNAL CONST BUFFERS */ static void si_set_polygon_stipple(struct pipe_context *ctx, const struct pipe_poly_stipple *state) { struct si_context *sctx = (struct si_context *)ctx; struct pipe_constant_buffer cb = {}; unsigned stipple[32]; int i; for (i = 0; i < 32; i++) stipple[i] = util_bitreverse(state->stipple[i]); cb.user_buffer = stipple; cb.buffer_size = sizeof(stipple); si_set_internal_const_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &cb); } /* TEXTURE METADATA ENABLE/DISABLE */ static void si_resident_handles_update_needs_color_decompress(struct si_context *sctx) { util_dynarray_clear(&sctx->resident_tex_needs_color_decompress); util_dynarray_clear(&sctx->resident_img_needs_color_decompress); util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct pipe_resource *res = (*tex_handle)->view->texture; struct si_texture *tex; if (!res || res->target == PIPE_BUFFER) continue; tex = (struct si_texture *)res; if (!color_needs_decompression(tex)) continue; util_dynarray_append(&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, *tex_handle); } util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; struct pipe_resource *res = view->resource; struct si_texture *tex; if (!res || res->target == PIPE_BUFFER) continue; tex = (struct si_texture *)res; if (!color_needs_decompression(tex)) continue; util_dynarray_append(&sctx->resident_img_needs_color_decompress, struct si_image_handle *, *img_handle); } } /* CMASK can be enabled (for fast clear) and disabled (for texture export) * while the texture is bound, possibly by a different context. In that case, * call this function to update needs_*_decompress_masks. */ void si_update_needs_color_decompress_masks(struct si_context *sctx) { for (int i = 0; i < SI_NUM_SHADERS; ++i) { si_samplers_update_needs_color_decompress_mask(&sctx->samplers[i]); si_images_update_needs_color_decompress_mask(&sctx->images[i]); si_update_shader_needs_decompress_mask(sctx, i); } si_resident_handles_update_needs_color_decompress(sctx); } /* BUFFER DISCARD/INVALIDATION */ /* Reset descriptors of buffer resources after \p buf has been invalidated. * If buf == NULL, reset all descriptors. */ static bool si_reset_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, uint64_t slot_mask, struct pipe_resource *buf, unsigned priority) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; bool noop = true; uint64_t mask = buffers->enabled_mask & slot_mask; while (mask) { unsigned i = u_bit_scan64(&mask); struct pipe_resource *buffer = buffers->buffers[i]; if (buffer && (!buf || buffer == buf)) { si_set_buf_desc_address(si_resource(buffer), buffers->offsets[i], descs->list + i * 4); sctx->descriptors_dirty |= 1u << descriptors_idx; radeon_add_to_gfx_buffer_list_check_mem( sctx, si_resource(buffer), (buffers->writable_mask & (1llu << i) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ) | priority, true); noop = false; } } return !noop; } /* Update all buffer bindings where the buffer is bound, including * all resource descriptors. This is invalidate_buffer without * the invalidation. * * If buf == NULL, update all buffer bindings. */ void si_rebind_buffer(struct si_context *sctx, struct pipe_resource *buf) { struct si_resource *buffer = si_resource(buf); unsigned i; unsigned num_elems = sctx->num_vertex_elements; /* We changed the buffer, now we need to bind it where the old one * was bound. This consists of 2 things: * 1) Updating the resource descriptor and dirtying it. * 2) Adding a relocation to the CS, so that it's usable. */ /* Vertex buffers. */ if (!buffer) { sctx->vertex_buffers_dirty = num_elems > 0; } else if (buffer->bind_history & SI_BIND_VERTEX_BUFFER) { for (i = 0; i < num_elems; i++) { int vb = sctx->vertex_elements->vertex_buffer_index[i]; if (vb >= ARRAY_SIZE(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer.resource) continue; if (sctx->vertex_buffer[vb].buffer.resource == buf) { sctx->vertex_buffers_dirty = num_elems > 0; break; } } } /* Streamout buffers. (other internal buffers can't be invalidated) */ if (!buffer || buffer->bind_history & SI_BIND_STREAMOUT_BUFFER) { for (i = SI_VS_STREAMOUT_BUF0; i <= SI_VS_STREAMOUT_BUF3; i++) { struct si_buffer_resources *buffers = &sctx->internal_bindings; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_INTERNAL]; struct pipe_resource *buffer = buffers->buffers[i]; if (!buffer || (buf && buffer != buf)) continue; si_set_buf_desc_address(si_resource(buffer), buffers->offsets[i], descs->list + i * 4); sctx->descriptors_dirty |= 1u << SI_DESCS_INTERNAL; radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_WRITE | RADEON_PRIO_SHADER_RW_BUFFER, true); /* Update the streamout state. */ if (sctx->streamout.begin_emitted) si_emit_streamout_end(sctx); sctx->streamout.append_bitmask = sctx->streamout.enabled_mask; si_streamout_buffers_dirty(sctx); } } /* Constant and shader buffers. */ if (!buffer || buffer->bind_history & SI_BIND_CONSTANT_BUFFER_ALL) { unsigned mask = buffer ? (buffer->bind_history & SI_BIND_CONSTANT_BUFFER_ALL) >> SI_BIND_CONSTANT_BUFFER_SHIFT : BITFIELD_MASK(SI_NUM_SHADERS); u_foreach_bit(shader, mask) { si_reset_buffer_resources(sctx, &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors_idx(shader), u_bit_consecutive64(SI_NUM_SHADER_BUFFERS, SI_NUM_CONST_BUFFERS), buf, sctx->const_and_shader_buffers[shader].priority_constbuf); } } if (!buffer || buffer->bind_history & SI_BIND_SHADER_BUFFER_ALL) { unsigned mask = buffer ? (buffer->bind_history & SI_BIND_SHADER_BUFFER_ALL) >> SI_BIND_SHADER_BUFFER_SHIFT : BITFIELD_MASK(SI_NUM_SHADERS); u_foreach_bit(shader, mask) { if (si_reset_buffer_resources(sctx, &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors_idx(shader), u_bit_consecutive64(0, SI_NUM_SHADER_BUFFERS), buf, sctx->const_and_shader_buffers[shader].priority) && shader == PIPE_SHADER_COMPUTE) { sctx->compute_shaderbuf_sgprs_dirty = true; } } } if (!buffer || buffer->bind_history & SI_BIND_SAMPLER_BUFFER_ALL) { unsigned mask = buffer ? (buffer->bind_history & SI_BIND_SAMPLER_BUFFER_ALL) >> SI_BIND_SAMPLER_BUFFER_SHIFT : BITFIELD_MASK(SI_NUM_SHADERS); /* Texture buffers - update bindings. */ u_foreach_bit(shader, mask) { struct si_samplers *samplers = &sctx->samplers[shader]; struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader); unsigned mask = samplers->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_resource *buffer = samplers->views[i]->texture; if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) { unsigned desc_slot = si_get_sampler_slot(i); si_set_buf_desc_address(si_resource(buffer), samplers->views[i]->u.buf.offset, descs->list + desc_slot * 16 + 4); sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READ | RADEON_PRIO_SAMPLER_BUFFER, true); } } } } /* Shader images */ if (!buffer || buffer->bind_history & SI_BIND_IMAGE_BUFFER_ALL) { unsigned mask = buffer ? (buffer->bind_history & SI_BIND_IMAGE_BUFFER_SHIFT) >> SI_BIND_IMAGE_BUFFER_SHIFT : BITFIELD_MASK(SI_NUM_SHADERS); u_foreach_bit(shader, mask) { struct si_images *images = &sctx->images[shader]; struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader); unsigned mask = images->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_resource *buffer = images->views[i].resource; if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) { unsigned desc_slot = si_get_image_slot(i); if (images->views[i].access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(&images->views[i]); si_set_buf_desc_address(si_resource(buffer), images->views[i].u.buf.offset, descs->list + desc_slot * 8 + 4); sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READWRITE | RADEON_PRIO_SAMPLER_BUFFER, true); if (shader == PIPE_SHADER_COMPUTE) sctx->compute_image_sgprs_dirty = true; } } } } /* Bindless texture handles */ if (!buffer || buffer->texture_handle_allocated) { struct si_descriptors *descs = &sctx->bindless_descriptors; util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct pipe_sampler_view *view = (*tex_handle)->view; unsigned desc_slot = (*tex_handle)->desc_slot; struct pipe_resource *buffer = view->texture; if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) { si_set_buf_desc_address(si_resource(buffer), view->u.buf.offset, descs->list + desc_slot * 16 + 4); (*tex_handle)->desc_dirty = true; sctx->bindless_descriptors_dirty = true; radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READ | RADEON_PRIO_SAMPLER_BUFFER, true); } } } /* Bindless image handles */ if (!buffer || buffer->image_handle_allocated) { struct si_descriptors *descs = &sctx->bindless_descriptors; util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; unsigned desc_slot = (*img_handle)->desc_slot; struct pipe_resource *buffer = view->resource; if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) { if (view->access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(view); si_set_buf_desc_address(si_resource(buffer), view->u.buf.offset, descs->list + desc_slot * 16 + 4); (*img_handle)->desc_dirty = true; sctx->bindless_descriptors_dirty = true; radeon_add_to_gfx_buffer_list_check_mem( sctx, si_resource(buffer), RADEON_USAGE_READWRITE | RADEON_PRIO_SAMPLER_BUFFER, true); } } } if (buffer) { /* Do the same for other contexts. They will invoke this function * with buffer == NULL. */ unsigned new_counter = p_atomic_inc_return(&sctx->screen->dirty_buf_counter); /* Skip the update for the current context, because we have already updated * the buffer bindings. */ if (new_counter == sctx->last_dirty_buf_counter + 1) sctx->last_dirty_buf_counter = new_counter; } } static void si_upload_bindless_descriptor(struct si_context *sctx, unsigned desc_slot, unsigned num_dwords) { struct si_descriptors *desc = &sctx->bindless_descriptors; unsigned desc_slot_offset = desc_slot * 16; uint32_t *data; uint64_t va; data = desc->list + desc_slot_offset; va = desc->gpu_address + desc_slot_offset * 4; si_cp_write_data(sctx, desc->buffer, va - desc->buffer->gpu_address, num_dwords * 4, V_370_TC_L2, V_370_ME, data); } static void si_upload_bindless_descriptors(struct si_context *sctx) { if (!sctx->bindless_descriptors_dirty) return; /* Wait for graphics/compute to be idle before updating the resident * descriptors directly in memory, in case the GPU is using them. */ sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH; sctx->emit_cache_flush(sctx, &sctx->gfx_cs); util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { unsigned desc_slot = (*tex_handle)->desc_slot; if (!(*tex_handle)->desc_dirty) continue; si_upload_bindless_descriptor(sctx, desc_slot, 16); (*tex_handle)->desc_dirty = false; } util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) { unsigned desc_slot = (*img_handle)->desc_slot; if (!(*img_handle)->desc_dirty) continue; si_upload_bindless_descriptor(sctx, desc_slot, 8); (*img_handle)->desc_dirty = false; } /* Invalidate scalar L0 because the cache doesn't know that L2 changed. */ sctx->flags |= SI_CONTEXT_INV_SCACHE; sctx->bindless_descriptors_dirty = false; } /* Update mutable image descriptor fields of all resident textures. */ static void si_update_bindless_texture_descriptor(struct si_context *sctx, struct si_texture_handle *tex_handle) { struct si_sampler_view *sview = (struct si_sampler_view *)tex_handle->view; struct si_descriptors *desc = &sctx->bindless_descriptors; unsigned desc_slot_offset = tex_handle->desc_slot * 16; uint32_t desc_list[16]; if (sview->base.texture->target == PIPE_BUFFER) return; memcpy(desc_list, desc->list + desc_slot_offset, sizeof(desc_list)); si_set_sampler_view_desc(sctx, sview, &tex_handle->sstate, desc->list + desc_slot_offset); if (memcmp(desc_list, desc->list + desc_slot_offset, sizeof(desc_list))) { tex_handle->desc_dirty = true; sctx->bindless_descriptors_dirty = true; } } static void si_update_bindless_image_descriptor(struct si_context *sctx, struct si_image_handle *img_handle) { struct si_descriptors *desc = &sctx->bindless_descriptors; unsigned desc_slot_offset = img_handle->desc_slot * 16; struct pipe_image_view *view = &img_handle->view; struct pipe_resource *res = view->resource; uint32_t image_desc[16]; unsigned desc_size = (res->nr_samples >= 2 ? 16 : 8) * 4; if (res->target == PIPE_BUFFER) return; memcpy(image_desc, desc->list + desc_slot_offset, desc_size); si_set_shader_image_desc(sctx, view, true, desc->list + desc_slot_offset, desc->list + desc_slot_offset + 8); if (memcmp(image_desc, desc->list + desc_slot_offset, desc_size)) { img_handle->desc_dirty = true; sctx->bindless_descriptors_dirty = true; } } static void si_update_all_resident_texture_descriptors(struct si_context *sctx) { util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { si_update_bindless_texture_descriptor(sctx, *tex_handle); } util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) { si_update_bindless_image_descriptor(sctx, *img_handle); } si_upload_bindless_descriptors(sctx); } /* Update mutable image descriptor fields of all bound textures. */ void si_update_all_texture_descriptors(struct si_context *sctx) { unsigned shader; for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_samplers *samplers = &sctx->samplers[shader]; struct si_images *images = &sctx->images[shader]; unsigned mask; /* Images. */ mask = images->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; if (!view->resource || view->resource->target == PIPE_BUFFER) continue; si_set_shader_image(sctx, shader, i, view, true); } /* Sampler views. */ mask = samplers->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_sampler_view *view = samplers->views[i]; if (!view || !view->texture || view->texture->target == PIPE_BUFFER) continue; si_set_sampler_views(sctx, shader, i, 1, 0, false, &samplers->views[i], true); } si_update_shader_needs_decompress_mask(sctx, shader); } si_update_all_resident_texture_descriptors(sctx); si_update_ps_colorbuf0_slot(sctx); } /* SHADER USER DATA */ static void si_mark_shader_pointers_dirty(struct si_context *sctx, unsigned shader) { sctx->shader_pointers_dirty |= u_bit_consecutive(SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS, SI_NUM_SHADER_DESCS); if (shader == PIPE_SHADER_VERTEX) { unsigned num_vbos_in_user_sgprs = si_num_vbos_in_user_sgprs(sctx->screen); sctx->vertex_buffer_pointer_dirty = sctx->vb_descriptors_buffer != NULL && sctx->num_vertex_elements > num_vbos_in_user_sgprs; sctx->vertex_buffer_user_sgprs_dirty = sctx->num_vertex_elements > 0 && num_vbos_in_user_sgprs; } si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers); } void si_shader_pointers_mark_dirty(struct si_context *sctx) { unsigned num_vbos_in_user_sgprs = si_num_vbos_in_user_sgprs(sctx->screen); sctx->shader_pointers_dirty = u_bit_consecutive(0, SI_NUM_DESCS); sctx->vertex_buffer_pointer_dirty = sctx->vb_descriptors_buffer != NULL && sctx->num_vertex_elements > num_vbos_in_user_sgprs; sctx->vertex_buffer_user_sgprs_dirty = sctx->num_vertex_elements > 0 && num_vbos_in_user_sgprs; si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers); sctx->graphics_bindless_pointer_dirty = sctx->bindless_descriptors.buffer != NULL; sctx->compute_bindless_pointer_dirty = sctx->bindless_descriptors.buffer != NULL; sctx->compute_shaderbuf_sgprs_dirty = true; sctx->compute_image_sgprs_dirty = true; if (sctx->gfx_level >= GFX11) sctx->gs_attribute_ring_pointer_dirty = true; } /* Set a base register address for user data constants in the given shader. * This assigns a mapping from PIPE_SHADER_* to SPI_SHADER_USER_DATA_*. */ static void si_set_user_data_base(struct si_context *sctx, unsigned shader, uint32_t new_base) { uint32_t *base = &sctx->shader_pointers.sh_base[shader]; if (*base != new_base) { *base = new_base; if (new_base) si_mark_shader_pointers_dirty(sctx, shader); /* Any change in enabled shader stages requires re-emitting * the VS state SGPR, because it contains the clamp_vertex_color * state, which can be done in VS, TES, and GS. */ sctx->last_vs_state = ~0; sctx->last_gs_state = ~0; } } /* This must be called when these are changed between enabled and disabled * - geometry shader * - tessellation evaluation shader * - NGG */ void si_shader_change_notify(struct si_context *sctx) { si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, si_get_user_data_base(sctx->gfx_level, sctx->shader.tes.cso ? TESS_ON : TESS_OFF, sctx->shader.gs.cso ? GS_ON : GS_OFF, sctx->ngg ? NGG_ON : NGG_OFF, PIPE_SHADER_VERTEX)); si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, si_get_user_data_base(sctx->gfx_level, sctx->shader.tes.cso ? TESS_ON : TESS_OFF, sctx->shader.gs.cso ? GS_ON : GS_OFF, sctx->ngg ? NGG_ON : NGG_OFF, PIPE_SHADER_TESS_EVAL)); /* Update as_* flags in shader keys. Ignore disabled shader stages. * as_ls = VS before TCS * as_es = VS before GS or TES before GS * as_ngg = NGG enabled for the last geometry stage. * If GS sets as_ngg, the previous stage must set as_ngg too. */ if (sctx->shader.tes.cso) { sctx->shader.vs.key.ge.as_ls = 1; sctx->shader.vs.key.ge.as_es = 0; sctx->shader.vs.key.ge.as_ngg = 0; if (sctx->shader.gs.cso) { sctx->shader.tes.key.ge.as_es = 1; sctx->shader.tes.key.ge.as_ngg = sctx->ngg; sctx->shader.gs.key.ge.as_ngg = sctx->ngg; } else { sctx->shader.tes.key.ge.as_es = 0; sctx->shader.tes.key.ge.as_ngg = sctx->ngg; } } else if (sctx->shader.gs.cso) { sctx->shader.vs.key.ge.as_ls = 0; sctx->shader.vs.key.ge.as_es = 1; sctx->shader.vs.key.ge.as_ngg = sctx->ngg; sctx->shader.gs.key.ge.as_ngg = sctx->ngg; } else { sctx->shader.vs.key.ge.as_ls = 0; sctx->shader.vs.key.ge.as_es = 0; sctx->shader.vs.key.ge.as_ngg = sctx->ngg; } } #define si_emit_consecutive_shader_pointers(sctx, pointer_mask, sh_base) do { \ unsigned sh_reg_base = (sh_base); \ if (sh_reg_base) { \ unsigned mask = sctx->shader_pointers_dirty & (pointer_mask); \ \ while (mask) { \ int start, count; \ u_bit_scan_consecutive_range(&mask, &start, &count); \ \ struct si_descriptors *descs = &sctx->descriptors[start]; \ unsigned sh_offset = sh_reg_base + descs->shader_userdata_offset; \ \ radeon_set_sh_reg_seq(sh_offset, count); \ for (int i = 0; i < count; i++) \ radeon_emit_32bit_pointer(sctx->screen, descs[i].gpu_address); \ } \ } \ } while (0) static void si_emit_global_shader_pointers(struct si_context *sctx, struct si_descriptors *descs) { radeon_begin(&sctx->gfx_cs); if (sctx->gfx_level >= GFX11) { radeon_emit_one_32bit_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0); radeon_end(); return; } else if (sctx->gfx_level >= GFX10) { radeon_emit_one_32bit_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0); /* HW VS stage only used in non-NGG mode. */ radeon_emit_one_32bit_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0); radeon_end(); return; } else if (sctx->gfx_level == GFX9 && sctx->shadowed_regs) { /* We can't use the COMMON registers with register shadowing. */ radeon_emit_one_32bit_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B330_SPI_SHADER_USER_DATA_ES_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_LS_0); radeon_end(); return; } else if (sctx->gfx_level == GFX9) { /* Broadcast it to all shader stages. */ radeon_emit_one_32bit_pointer(sctx, descs, R_00B530_SPI_SHADER_USER_DATA_COMMON_0); radeon_end(); return; } radeon_emit_one_32bit_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B330_SPI_SHADER_USER_DATA_ES_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0); radeon_emit_one_32bit_pointer(sctx, descs, R_00B530_SPI_SHADER_USER_DATA_LS_0); radeon_end(); } void si_emit_graphics_shader_pointers(struct si_context *sctx) { uint32_t *sh_base = sctx->shader_pointers.sh_base; if (sctx->shader_pointers_dirty & (1 << SI_DESCS_INTERNAL)) { si_emit_global_shader_pointers(sctx, &sctx->descriptors[SI_DESCS_INTERNAL]); } radeon_begin(&sctx->gfx_cs); si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(VERTEX), sh_base[PIPE_SHADER_VERTEX]); si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(TESS_EVAL), sh_base[PIPE_SHADER_TESS_EVAL]); si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(FRAGMENT), sh_base[PIPE_SHADER_FRAGMENT]); si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(TESS_CTRL), sh_base[PIPE_SHADER_TESS_CTRL]); si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(GEOMETRY), sh_base[PIPE_SHADER_GEOMETRY]); if (sctx->gs_attribute_ring_pointer_dirty) { assert(sctx->gfx_level >= GFX11); radeon_set_sh_reg(R_00B230_SPI_SHADER_USER_DATA_GS_0 + GFX9_SGPR_ATTRIBUTE_RING_ADDR * 4, sctx->screen->attribute_ring->gpu_address); sctx->gs_attribute_ring_pointer_dirty = false; } radeon_end(); sctx->shader_pointers_dirty &= ~u_bit_consecutive(SI_DESCS_INTERNAL, SI_DESCS_FIRST_COMPUTE); if (sctx->graphics_bindless_pointer_dirty) { si_emit_global_shader_pointers(sctx, &sctx->bindless_descriptors); sctx->graphics_bindless_pointer_dirty = false; } } void si_emit_compute_shader_pointers(struct si_context *sctx) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; struct si_shader_selector *shader = &sctx->cs_shader_state.program->sel; unsigned base = R_00B900_COMPUTE_USER_DATA_0; radeon_begin(cs); si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(COMPUTE), R_00B900_COMPUTE_USER_DATA_0); sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(COMPUTE); if (sctx->compute_bindless_pointer_dirty) { radeon_emit_one_32bit_pointer(sctx, &sctx->bindless_descriptors, base); sctx->compute_bindless_pointer_dirty = false; } /* Set shader buffer descriptors in user SGPRs. */ unsigned num_shaderbufs = shader->cs_num_shaderbufs_in_user_sgprs; if (num_shaderbufs && sctx->compute_shaderbuf_sgprs_dirty) { struct si_descriptors *desc = si_const_and_shader_buffer_descriptors(sctx, PIPE_SHADER_COMPUTE); radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0 + shader->cs_shaderbufs_sgpr_index * 4, num_shaderbufs * 4); for (unsigned i = 0; i < num_shaderbufs; i++) radeon_emit_array(&desc->list[si_get_shaderbuf_slot(i) * 4], 4); sctx->compute_shaderbuf_sgprs_dirty = false; } /* Set image descriptors in user SGPRs. */ unsigned num_images = shader->cs_num_images_in_user_sgprs; if (num_images && sctx->compute_image_sgprs_dirty) { struct si_descriptors *desc = si_sampler_and_image_descriptors(sctx, PIPE_SHADER_COMPUTE); radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0 + shader->cs_images_sgpr_index * 4, shader->cs_images_num_sgprs); for (unsigned i = 0; i < num_images; i++) { unsigned desc_offset = si_get_image_slot(i) * 8; unsigned num_sgprs = 8; /* Image buffers are in desc[4..7]. */ if (BITSET_TEST(shader->info.base.image_buffers, i)) { desc_offset += 4; num_sgprs = 4; } radeon_emit_array(&desc->list[desc_offset], num_sgprs); } sctx->compute_image_sgprs_dirty = false; } radeon_end(); } /* BINDLESS */ static void si_init_bindless_descriptors(struct si_context *sctx, struct si_descriptors *desc, short shader_userdata_rel_index, unsigned num_elements) { ASSERTED unsigned desc_slot; si_init_descriptors(desc, shader_userdata_rel_index, 16, num_elements); sctx->bindless_descriptors.num_active_slots = num_elements; /* The first bindless descriptor is stored at slot 1, because 0 is not * considered to be a valid handle. */ sctx->num_bindless_descriptors = 1; /* Track which bindless slots are used (or not). */ util_idalloc_init(&sctx->bindless_used_slots, num_elements); /* Reserve slot 0 because it's an invalid handle for bindless. */ desc_slot = util_idalloc_alloc(&sctx->bindless_used_slots); assert(desc_slot == 0); } static void si_release_bindless_descriptors(struct si_context *sctx) { si_release_descriptors(&sctx->bindless_descriptors); util_idalloc_fini(&sctx->bindless_used_slots); } static unsigned si_get_first_free_bindless_slot(struct si_context *sctx) { struct si_descriptors *desc = &sctx->bindless_descriptors; unsigned desc_slot; desc_slot = util_idalloc_alloc(&sctx->bindless_used_slots); if (desc_slot >= desc->num_elements) { /* The array of bindless descriptors is full, resize it. */ unsigned slot_size = desc->element_dw_size * 4; unsigned new_num_elements = desc->num_elements * 2; desc->list = REALLOC(desc->list, desc->num_elements * slot_size, new_num_elements * slot_size); desc->num_elements = new_num_elements; desc->num_active_slots = new_num_elements; } assert(desc_slot); return desc_slot; } static unsigned si_create_bindless_descriptor(struct si_context *sctx, uint32_t *desc_list, unsigned size) { struct si_descriptors *desc = &sctx->bindless_descriptors; unsigned desc_slot, desc_slot_offset; /* Find a free slot. */ desc_slot = si_get_first_free_bindless_slot(sctx); /* For simplicity, sampler and image bindless descriptors use fixed * 16-dword slots for now. Image descriptors only need 8-dword but this * doesn't really matter because no real apps use image handles. */ desc_slot_offset = desc_slot * 16; /* Copy the descriptor into the array. */ memcpy(desc->list + desc_slot_offset, desc_list, size); /* Re-upload the whole array of bindless descriptors into a new buffer. */ if (!si_upload_descriptors(sctx, desc)) return 0; /* Make sure to re-emit the shader pointers for all stages. */ sctx->graphics_bindless_pointer_dirty = true; sctx->compute_bindless_pointer_dirty = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers); return desc_slot; } static void si_update_bindless_buffer_descriptor(struct si_context *sctx, unsigned desc_slot, struct pipe_resource *resource, uint64_t offset, bool *desc_dirty) { struct si_descriptors *desc = &sctx->bindless_descriptors; struct si_resource *buf = si_resource(resource); unsigned desc_slot_offset = desc_slot * 16; uint32_t *desc_list = desc->list + desc_slot_offset + 4; uint64_t old_desc_va; assert(resource->target == PIPE_BUFFER); /* Retrieve the old buffer addr from the descriptor. */ old_desc_va = si_desc_extract_buffer_address(desc_list); if (old_desc_va != buf->gpu_address + offset) { /* The buffer has been invalidated when the handle wasn't * resident, update the descriptor and the dirty flag. */ si_set_buf_desc_address(buf, offset, &desc_list[0]); *desc_dirty = true; } } static uint64_t si_create_texture_handle(struct pipe_context *ctx, struct pipe_sampler_view *view, const struct pipe_sampler_state *state) { struct si_sampler_view *sview = (struct si_sampler_view *)view; struct si_context *sctx = (struct si_context *)ctx; struct si_texture_handle *tex_handle; struct si_sampler_state *sstate; uint32_t desc_list[16]; uint64_t handle; tex_handle = CALLOC_STRUCT(si_texture_handle); if (!tex_handle) return 0; memset(desc_list, 0, sizeof(desc_list)); si_init_descriptor_list(&desc_list[0], 16, 1, null_texture_descriptor); sstate = ctx->create_sampler_state(ctx, state); if (!sstate) { FREE(tex_handle); return 0; } si_set_sampler_view_desc(sctx, sview, sstate, &desc_list[0]); memcpy(&tex_handle->sstate, sstate, sizeof(*sstate)); ctx->delete_sampler_state(ctx, sstate); tex_handle->desc_slot = si_create_bindless_descriptor(sctx, desc_list, sizeof(desc_list)); if (!tex_handle->desc_slot) { FREE(tex_handle); return 0; } handle = tex_handle->desc_slot; if (!_mesa_hash_table_insert(sctx->tex_handles, (void *)(uintptr_t)handle, tex_handle)) { FREE(tex_handle); return 0; } pipe_sampler_view_reference(&tex_handle->view, view); si_resource(sview->base.texture)->texture_handle_allocated = true; return handle; } static void si_delete_texture_handle(struct pipe_context *ctx, uint64_t handle) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture_handle *tex_handle; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->tex_handles, (void *)(uintptr_t)handle); if (!entry) return; tex_handle = (struct si_texture_handle *)entry->data; /* Allow this descriptor slot to be re-used. */ util_idalloc_free(&sctx->bindless_used_slots, tex_handle->desc_slot); pipe_sampler_view_reference(&tex_handle->view, NULL); _mesa_hash_table_remove(sctx->tex_handles, entry); FREE(tex_handle); } static void si_make_texture_handle_resident(struct pipe_context *ctx, uint64_t handle, bool resident) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture_handle *tex_handle; struct si_sampler_view *sview; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->tex_handles, (void *)(uintptr_t)handle); if (!entry) return; tex_handle = (struct si_texture_handle *)entry->data; sview = (struct si_sampler_view *)tex_handle->view; if (resident) { if (sview->base.texture->target != PIPE_BUFFER) { struct si_texture *tex = (struct si_texture *)sview->base.texture; if (depth_needs_decompression(tex, sview->is_stencil_sampler)) { util_dynarray_append(&sctx->resident_tex_needs_depth_decompress, struct si_texture_handle *, tex_handle); } if (color_needs_decompression(tex)) { util_dynarray_append(&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, tex_handle); } if (vi_dcc_enabled(tex, sview->base.u.tex.first_level) && p_atomic_read(&tex->framebuffers_bound)) sctx->need_check_render_feedback = true; si_update_bindless_texture_descriptor(sctx, tex_handle); } else { si_update_bindless_buffer_descriptor(sctx, tex_handle->desc_slot, sview->base.texture, sview->base.u.buf.offset, &tex_handle->desc_dirty); } /* Re-upload the descriptor if it has been updated while it * wasn't resident. */ if (tex_handle->desc_dirty) sctx->bindless_descriptors_dirty = true; /* Add the texture handle to the per-context list. */ util_dynarray_append(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle); /* Add the buffers to the current CS in case si_begin_new_cs() * is not going to be called. */ si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } else { /* Remove the texture handle from the per-context list. */ util_dynarray_delete_unordered(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle); if (sview->base.texture->target != PIPE_BUFFER) { util_dynarray_delete_unordered(&sctx->resident_tex_needs_depth_decompress, struct si_texture_handle *, tex_handle); util_dynarray_delete_unordered(&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, tex_handle); } } } static uint64_t si_create_image_handle(struct pipe_context *ctx, const struct pipe_image_view *view) { struct si_context *sctx = (struct si_context *)ctx; struct si_image_handle *img_handle; uint32_t desc_list[16]; uint64_t handle; if (!view || !view->resource) return 0; img_handle = CALLOC_STRUCT(si_image_handle); if (!img_handle) return 0; memset(desc_list, 0, sizeof(desc_list)); si_init_descriptor_list(&desc_list[0], 8, 2, null_image_descriptor); si_set_shader_image_desc(sctx, view, false, &desc_list[0], &desc_list[8]); img_handle->desc_slot = si_create_bindless_descriptor(sctx, desc_list, sizeof(desc_list)); if (!img_handle->desc_slot) { FREE(img_handle); return 0; } handle = img_handle->desc_slot; if (!_mesa_hash_table_insert(sctx->img_handles, (void *)(uintptr_t)handle, img_handle)) { FREE(img_handle); return 0; } util_copy_image_view(&img_handle->view, view); si_resource(view->resource)->image_handle_allocated = true; return handle; } static void si_delete_image_handle(struct pipe_context *ctx, uint64_t handle) { struct si_context *sctx = (struct si_context *)ctx; struct si_image_handle *img_handle; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->img_handles, (void *)(uintptr_t)handle); if (!entry) return; img_handle = (struct si_image_handle *)entry->data; util_copy_image_view(&img_handle->view, NULL); _mesa_hash_table_remove(sctx->img_handles, entry); FREE(img_handle); } static void si_make_image_handle_resident(struct pipe_context *ctx, uint64_t handle, unsigned access, bool resident) { struct si_context *sctx = (struct si_context *)ctx; struct si_image_handle *img_handle; struct pipe_image_view *view; struct si_resource *res; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->img_handles, (void *)(uintptr_t)handle); if (!entry) return; img_handle = (struct si_image_handle *)entry->data; view = &img_handle->view; res = si_resource(view->resource); if (resident) { if (res->b.b.target != PIPE_BUFFER) { struct si_texture *tex = (struct si_texture *)res; unsigned level = view->u.tex.level; if (color_needs_decompression(tex)) { util_dynarray_append(&sctx->resident_img_needs_color_decompress, struct si_image_handle *, img_handle); } if (vi_dcc_enabled(tex, level) && p_atomic_read(&tex->framebuffers_bound)) sctx->need_check_render_feedback = true; si_update_bindless_image_descriptor(sctx, img_handle); } else { si_update_bindless_buffer_descriptor(sctx, img_handle->desc_slot, view->resource, view->u.buf.offset, &img_handle->desc_dirty); } /* Re-upload the descriptor if it has been updated while it * wasn't resident. */ if (img_handle->desc_dirty) sctx->bindless_descriptors_dirty = true; /* Add the image handle to the per-context list. */ util_dynarray_append(&sctx->resident_img_handles, struct si_image_handle *, img_handle); /* Add the buffers to the current CS in case si_begin_new_cs() * is not going to be called. */ si_sampler_view_add_buffer( sctx, view->resource, (access & PIPE_IMAGE_ACCESS_WRITE) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, false, false); } else { /* Remove the image handle from the per-context list. */ util_dynarray_delete_unordered(&sctx->resident_img_handles, struct si_image_handle *, img_handle); if (res->b.b.target != PIPE_BUFFER) { util_dynarray_delete_unordered(&sctx->resident_img_needs_color_decompress, struct si_image_handle *, img_handle); } } } static void si_resident_buffers_add_all_to_bo_list(struct si_context *sctx) { unsigned num_resident_tex_handles, num_resident_img_handles; num_resident_tex_handles = sctx->resident_tex_handles.size / sizeof(struct si_texture_handle *); num_resident_img_handles = sctx->resident_img_handles.size / sizeof(struct si_image_handle *); /* Add all resident texture handles. */ util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct si_sampler_view *sview = (struct si_sampler_view *)(*tex_handle)->view; si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } /* Add all resident image handles. */ util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false); } sctx->num_resident_handles += num_resident_tex_handles + num_resident_img_handles; assert(sctx->bo_list_add_all_resident_resources); sctx->bo_list_add_all_resident_resources = false; } /* INIT/DEINIT/UPLOAD */ void si_init_all_descriptors(struct si_context *sctx) { int i; unsigned first_shader = sctx->has_graphics ? 0 : PIPE_SHADER_COMPUTE; unsigned hs_sgpr0, gs_sgpr0; if (sctx->gfx_level >= GFX11) { hs_sgpr0 = R_00B420_SPI_SHADER_PGM_LO_HS; gs_sgpr0 = R_00B220_SPI_SHADER_PGM_LO_GS; } else { hs_sgpr0 = R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS; gs_sgpr0 = R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS; } for (i = first_shader; i < SI_NUM_SHADERS; i++) { bool is_2nd = sctx->gfx_level >= GFX9 && (i == PIPE_SHADER_TESS_CTRL || i == PIPE_SHADER_GEOMETRY); unsigned num_sampler_slots = SI_NUM_IMAGE_SLOTS / 2 + SI_NUM_SAMPLERS; unsigned num_buffer_slots = SI_NUM_SHADER_BUFFERS + SI_NUM_CONST_BUFFERS; int rel_dw_offset; struct si_descriptors *desc; if (is_2nd) { if (i == PIPE_SHADER_TESS_CTRL) { rel_dw_offset = (hs_sgpr0 - R_00B430_SPI_SHADER_USER_DATA_LS_0) / 4; } else if (sctx->gfx_level >= GFX10) { /* PIPE_SHADER_GEOMETRY */ rel_dw_offset = (gs_sgpr0 - R_00B230_SPI_SHADER_USER_DATA_GS_0) / 4; } else { rel_dw_offset = (gs_sgpr0 - R_00B330_SPI_SHADER_USER_DATA_ES_0) / 4; } } else { rel_dw_offset = SI_SGPR_CONST_AND_SHADER_BUFFERS; } desc = si_const_and_shader_buffer_descriptors(sctx, i); si_init_buffer_resources(sctx, &sctx->const_and_shader_buffers[i], desc, num_buffer_slots, rel_dw_offset, RADEON_PRIO_SHADER_RW_BUFFER, RADEON_PRIO_CONST_BUFFER); desc->slot_index_to_bind_directly = si_get_constbuf_slot(0); if (is_2nd) { if (i == PIPE_SHADER_TESS_CTRL) { rel_dw_offset = (hs_sgpr0 + 4 - R_00B430_SPI_SHADER_USER_DATA_LS_0) / 4; } else if (sctx->gfx_level >= GFX10) { /* PIPE_SHADER_GEOMETRY */ rel_dw_offset = (gs_sgpr0 + 4 - R_00B230_SPI_SHADER_USER_DATA_GS_0) / 4; } else { rel_dw_offset = (gs_sgpr0 + 4 - R_00B330_SPI_SHADER_USER_DATA_ES_0) / 4; } } else { rel_dw_offset = SI_SGPR_SAMPLERS_AND_IMAGES; } desc = si_sampler_and_image_descriptors(sctx, i); si_init_descriptors(desc, rel_dw_offset, 16, num_sampler_slots); int j; for (j = 0; j < SI_NUM_IMAGE_SLOTS; j++) memcpy(desc->list + j * 8, null_image_descriptor, 8 * 4); for (; j < SI_NUM_IMAGE_SLOTS + SI_NUM_SAMPLERS * 2; j++) memcpy(desc->list + j * 8, null_texture_descriptor, 8 * 4); } si_init_buffer_resources(sctx, &sctx->internal_bindings, &sctx->descriptors[SI_DESCS_INTERNAL], SI_NUM_INTERNAL_BINDINGS, SI_SGPR_INTERNAL_BINDINGS, /* The second priority is used by * const buffers in RW buffer slots. */ RADEON_PRIO_SHADER_RINGS, RADEON_PRIO_CONST_BUFFER); sctx->descriptors[SI_DESCS_INTERNAL].num_active_slots = SI_NUM_INTERNAL_BINDINGS; /* Initialize an array of 1024 bindless descriptors, when the limit is * reached, just make it larger and re-upload the whole array. */ si_init_bindless_descriptors(sctx, &sctx->bindless_descriptors, SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES, 1024); sctx->descriptors_dirty = u_bit_consecutive(0, SI_NUM_DESCS); /* Set pipe_context functions. */ sctx->b.bind_sampler_states = si_bind_sampler_states; sctx->b.set_shader_images = si_set_shader_images; sctx->b.set_constant_buffer = si_pipe_set_constant_buffer; sctx->b.set_inlinable_constants = si_set_inlinable_constants; sctx->b.set_shader_buffers = si_pipe_set_shader_buffers; sctx->b.set_sampler_views = si_pipe_set_sampler_views; sctx->b.create_texture_handle = si_create_texture_handle; sctx->b.delete_texture_handle = si_delete_texture_handle; sctx->b.make_texture_handle_resident = si_make_texture_handle_resident; sctx->b.create_image_handle = si_create_image_handle; sctx->b.delete_image_handle = si_delete_image_handle; sctx->b.make_image_handle_resident = si_make_image_handle_resident; if (!sctx->has_graphics) return; sctx->b.set_polygon_stipple = si_set_polygon_stipple; /* Shader user data. */ sctx->atoms.s.shader_pointers.emit = si_emit_graphics_shader_pointers; /* Set default and immutable mappings. */ si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, si_get_user_data_base(sctx->gfx_level, TESS_OFF, GS_OFF, sctx->ngg, PIPE_SHADER_VERTEX)); si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, si_get_user_data_base(sctx->gfx_level, TESS_OFF, GS_OFF, NGG_OFF, PIPE_SHADER_TESS_CTRL)); si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, si_get_user_data_base(sctx->gfx_level, TESS_OFF, GS_OFF, NGG_OFF, PIPE_SHADER_GEOMETRY)); si_set_user_data_base(sctx, PIPE_SHADER_FRAGMENT, R_00B030_SPI_SHADER_USER_DATA_PS_0); si_set_ring_buffer(sctx, SI_GS_ATTRIBUTE_RING, &sctx->screen->attribute_ring->b.b, 0, ~0u, false, true, 16, 32, 0); } static bool si_upload_shader_descriptors(struct si_context *sctx, unsigned mask) { unsigned dirty = sctx->descriptors_dirty & mask; if (dirty) { unsigned iter_mask = dirty; do { if (!si_upload_descriptors(sctx, &sctx->descriptors[u_bit_scan(&iter_mask)])) return false; } while (iter_mask); sctx->descriptors_dirty &= ~dirty; sctx->shader_pointers_dirty |= dirty; si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers); } si_upload_bindless_descriptors(sctx); return true; } bool si_upload_graphics_shader_descriptors(struct si_context *sctx) { const unsigned mask = u_bit_consecutive(0, SI_DESCS_FIRST_COMPUTE); return si_upload_shader_descriptors(sctx, mask); } bool si_upload_compute_shader_descriptors(struct si_context *sctx) { /* This does not update internal bindings as that is not needed for compute shaders * and the input buffer is using the same SGPR's anyway. */ const unsigned mask = u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_DESCS - SI_DESCS_FIRST_COMPUTE); return si_upload_shader_descriptors(sctx, mask); } void si_release_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_release_buffer_resources(&sctx->const_and_shader_buffers[i], si_const_and_shader_buffer_descriptors(sctx, i)); si_release_sampler_views(&sctx->samplers[i]); si_release_image_views(&sctx->images[i]); } si_release_buffer_resources(&sctx->internal_bindings, &sctx->descriptors[SI_DESCS_INTERNAL]); for (i = 0; i < SI_NUM_VERTEX_BUFFERS; i++) pipe_vertex_buffer_unreference(&sctx->vertex_buffer[i]); for (i = 0; i < SI_NUM_DESCS; ++i) si_release_descriptors(&sctx->descriptors[i]); si_resource_reference(&sctx->vb_descriptors_buffer, NULL); sctx->vb_descriptors_gpu_list = NULL; /* points into a mapped buffer */ si_release_bindless_descriptors(sctx); } bool si_gfx_resources_check_encrypted(struct si_context *sctx) { bool use_encrypted_bo = false; for (unsigned i = 0; i < SI_NUM_GRAPHICS_SHADERS && !use_encrypted_bo; i++) { struct si_shader_ctx_state *current_shader = &sctx->shaders[i]; if (!current_shader->cso) continue; use_encrypted_bo |= si_buffer_resources_check_encrypted(sctx, &sctx->const_and_shader_buffers[i]); use_encrypted_bo |= si_sampler_views_check_encrypted(sctx, &sctx->samplers[i], current_shader->cso->info.base.textures_used[0]); use_encrypted_bo |= si_image_views_check_encrypted(sctx, &sctx->images[i], u_bit_consecutive(0, current_shader->cso->info.base.num_images)); } use_encrypted_bo |= si_buffer_resources_check_encrypted(sctx, &sctx->internal_bindings); struct si_state_blend *blend = sctx->queued.named.blend; for (int i = 0; i < sctx->framebuffer.state.nr_cbufs && !use_encrypted_bo; i++) { struct pipe_surface *surf = sctx->framebuffer.state.cbufs[i]; if (surf && surf->texture) { struct si_texture *tex = (struct si_texture *)surf->texture; if (!(tex->buffer.flags & RADEON_FLAG_ENCRYPTED)) continue; /* Are we reading from this framebuffer */ if (((blend->blend_enable_4bit >> (4 * i)) & 0xf) || vi_dcc_enabled(tex, 0)) { use_encrypted_bo = true; } } } if (sctx->framebuffer.state.zsbuf) { struct si_texture* zs = (struct si_texture *)sctx->framebuffer.state.zsbuf->texture; if (zs && (zs->buffer.flags & RADEON_FLAG_ENCRYPTED)) { /* TODO: This isn't needed if depth.func is PIPE_FUNC_NEVER or PIPE_FUNC_ALWAYS */ use_encrypted_bo = true; } } #ifndef NDEBUG if (use_encrypted_bo) { /* Verify that color buffers are encrypted */ for (int i = 0; i < sctx->framebuffer.state.nr_cbufs; i++) { struct pipe_surface *surf = sctx->framebuffer.state.cbufs[i]; if (!surf) continue; struct si_texture *tex = (struct si_texture *)surf->texture; assert(!surf->texture || (tex->buffer.flags & RADEON_FLAG_ENCRYPTED)); } /* Verify that depth/stencil buffer is encrypted */ if (sctx->framebuffer.state.zsbuf) { struct pipe_surface *surf = sctx->framebuffer.state.zsbuf; struct si_texture *tex = (struct si_texture *)surf->texture; assert(!surf->texture || (tex->buffer.flags & RADEON_FLAG_ENCRYPTED)); } } #endif return use_encrypted_bo; } void si_gfx_resources_add_all_to_bo_list(struct si_context *sctx) { for (unsigned i = 0; i < SI_NUM_GRAPHICS_SHADERS; i++) { si_buffer_resources_begin_new_cs(sctx, &sctx->const_and_shader_buffers[i]); si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i]); si_image_views_begin_new_cs(sctx, &sctx->images[i]); } si_buffer_resources_begin_new_cs(sctx, &sctx->internal_bindings); si_vertex_buffers_begin_new_cs(sctx); if (sctx->bo_list_add_all_resident_resources) si_resident_buffers_add_all_to_bo_list(sctx); assert(sctx->bo_list_add_all_gfx_resources); sctx->bo_list_add_all_gfx_resources = false; } bool si_compute_resources_check_encrypted(struct si_context *sctx) { unsigned sh = PIPE_SHADER_COMPUTE; struct si_shader_info* info = &sctx->cs_shader_state.program->sel.info; /* TODO: we should assert that either use_encrypted_bo is false, * or all writable buffers are encrypted. */ return si_buffer_resources_check_encrypted(sctx, &sctx->const_and_shader_buffers[sh]) || si_sampler_views_check_encrypted(sctx, &sctx->samplers[sh], info->base.textures_used[0]) || si_image_views_check_encrypted(sctx, &sctx->images[sh], u_bit_consecutive(0, info->base.num_images)) || si_buffer_resources_check_encrypted(sctx, &sctx->internal_bindings); } void si_compute_resources_add_all_to_bo_list(struct si_context *sctx) { unsigned sh = PIPE_SHADER_COMPUTE; si_buffer_resources_begin_new_cs(sctx, &sctx->const_and_shader_buffers[sh]); si_sampler_views_begin_new_cs(sctx, &sctx->samplers[sh]); si_image_views_begin_new_cs(sctx, &sctx->images[sh]); si_buffer_resources_begin_new_cs(sctx, &sctx->internal_bindings); if (sctx->bo_list_add_all_resident_resources) si_resident_buffers_add_all_to_bo_list(sctx); assert(sctx->bo_list_add_all_compute_resources); sctx->bo_list_add_all_compute_resources = false; } void si_add_all_descriptors_to_bo_list(struct si_context *sctx) { for (unsigned i = 0; i < SI_NUM_DESCS; ++i) si_add_descriptors_to_bo_list(sctx, &sctx->descriptors[i]); si_add_descriptors_to_bo_list(sctx, &sctx->bindless_descriptors); sctx->bo_list_add_all_resident_resources = true; sctx->bo_list_add_all_gfx_resources = true; sctx->bo_list_add_all_compute_resources = true; } void si_set_active_descriptors(struct si_context *sctx, unsigned desc_idx, uint64_t new_active_mask) { struct si_descriptors *desc = &sctx->descriptors[desc_idx]; /* Ignore no-op updates and updates that disable all slots. */ if (!new_active_mask || new_active_mask == u_bit_consecutive64(desc->first_active_slot, desc->num_active_slots)) return; int first, count; u_bit_scan_consecutive_range64(&new_active_mask, &first, &count); assert(new_active_mask == 0); /* Upload/dump descriptors if slots are being enabled. */ if (first < desc->first_active_slot || first + count > desc->first_active_slot + desc->num_active_slots) sctx->descriptors_dirty |= 1u << desc_idx; desc->first_active_slot = first; desc->num_active_slots = count; } void si_set_active_descriptors_for_shader(struct si_context *sctx, struct si_shader_selector *sel) { if (!sel) return; si_set_active_descriptors(sctx, sel->const_and_shader_buf_descriptors_index, sel->active_const_and_shader_buffers); si_set_active_descriptors(sctx, sel->sampler_and_images_descriptors_index, sel->active_samplers_and_images); }