/* * Copyright 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* The GPU load is measured as follows. * * There is a thread which samples the GRBM_STATUS register at a certain * frequency and the "busy" or "idle" counter is incremented based on * whether the GUI_ACTIVE bit is set or not. * * Then, the user can sample the counters twice and calculate the average * GPU load between the two samples. */ #include "si_pipe.h" #include "si_query.h" #include "util/os_time.h" /* For good accuracy at 1000 fps or lower. This will be inaccurate for higher * fps (there are too few samples per frame). */ #define SAMPLES_PER_SEC 10000 #define GRBM_STATUS 0x8010 #define TA_BUSY(x) (((x) >> 14) & 0x1) #define GDS_BUSY(x) (((x) >> 15) & 0x1) #define VGT_BUSY(x) (((x) >> 17) & 0x1) #define IA_BUSY(x) (((x) >> 19) & 0x1) #define SX_BUSY(x) (((x) >> 20) & 0x1) #define WD_BUSY(x) (((x) >> 21) & 0x1) #define SPI_BUSY(x) (((x) >> 22) & 0x1) #define BCI_BUSY(x) (((x) >> 23) & 0x1) #define SC_BUSY(x) (((x) >> 24) & 0x1) #define PA_BUSY(x) (((x) >> 25) & 0x1) #define DB_BUSY(x) (((x) >> 26) & 0x1) #define CP_BUSY(x) (((x) >> 29) & 0x1) #define CB_BUSY(x) (((x) >> 30) & 0x1) #define GUI_ACTIVE(x) (((x) >> 31) & 0x1) #define SRBM_STATUS2 0x0e4c #define SDMA_BUSY(x) (((x) >> 5) & 0x1) #define CP_STAT 0x8680 #define PFP_BUSY(x) (((x) >> 15) & 0x1) #define MEQ_BUSY(x) (((x) >> 16) & 0x1) #define ME_BUSY(x) (((x) >> 17) & 0x1) #define SURFACE_SYNC_BUSY(x) (((x) >> 21) & 0x1) #define DMA_BUSY(x) (((x) >> 22) & 0x1) #define SCRATCH_RAM_BUSY(x) (((x) >> 24) & 0x1) #define IDENTITY(x) x #define UPDATE_COUNTER(field, mask) \ do { \ if (mask(value)) \ p_atomic_inc(&counters->named.field.busy); \ else \ p_atomic_inc(&counters->named.field.idle); \ } while (0) static void si_update_mmio_counters(struct si_screen *sscreen, union si_mmio_counters *counters) { uint32_t value = 0; bool gui_busy, sdma_busy = false; /* GRBM_STATUS */ sscreen->ws->read_registers(sscreen->ws, GRBM_STATUS, 1, &value); UPDATE_COUNTER(ta, TA_BUSY); UPDATE_COUNTER(gds, GDS_BUSY); UPDATE_COUNTER(vgt, VGT_BUSY); UPDATE_COUNTER(ia, IA_BUSY); UPDATE_COUNTER(sx, SX_BUSY); UPDATE_COUNTER(wd, WD_BUSY); UPDATE_COUNTER(spi, SPI_BUSY); UPDATE_COUNTER(bci, BCI_BUSY); UPDATE_COUNTER(sc, SC_BUSY); UPDATE_COUNTER(pa, PA_BUSY); UPDATE_COUNTER(db, DB_BUSY); UPDATE_COUNTER(cp, CP_BUSY); UPDATE_COUNTER(cb, CB_BUSY); UPDATE_COUNTER(gui, GUI_ACTIVE); gui_busy = GUI_ACTIVE(value); if (sscreen->info.gfx_level == GFX7 || sscreen->info.gfx_level == GFX8) { /* SRBM_STATUS2 */ sscreen->ws->read_registers(sscreen->ws, SRBM_STATUS2, 1, &value); UPDATE_COUNTER(sdma, SDMA_BUSY); sdma_busy = SDMA_BUSY(value); } if (sscreen->info.gfx_level >= GFX8) { /* CP_STAT */ sscreen->ws->read_registers(sscreen->ws, CP_STAT, 1, &value); UPDATE_COUNTER(pfp, PFP_BUSY); UPDATE_COUNTER(meq, MEQ_BUSY); UPDATE_COUNTER(me, ME_BUSY); UPDATE_COUNTER(surf_sync, SURFACE_SYNC_BUSY); UPDATE_COUNTER(cp_dma, DMA_BUSY); UPDATE_COUNTER(scratch_ram, SCRATCH_RAM_BUSY); } value = gui_busy || sdma_busy; UPDATE_COUNTER(gpu, IDENTITY); } #undef UPDATE_COUNTER static int si_gpu_load_thread(void *param) { struct si_screen *sscreen = (struct si_screen *)param; const int period_us = 1000000 / SAMPLES_PER_SEC; int sleep_us = period_us; int64_t cur_time, last_time = os_time_get(); while (!p_atomic_read(&sscreen->gpu_load_stop_thread)) { if (sleep_us) os_time_sleep(sleep_us); /* Make sure we sleep the ideal amount of time to match * the expected frequency. */ cur_time = os_time_get(); if (os_time_timeout(last_time, last_time + period_us, cur_time)) sleep_us = MAX2(sleep_us - 1, 1); else sleep_us += 1; /*printf("Hz: %.1f\n", 1000000.0 / (cur_time - last_time));*/ last_time = cur_time; /* Update the counters. */ si_update_mmio_counters(sscreen, &sscreen->mmio_counters); } p_atomic_dec(&sscreen->gpu_load_stop_thread); return 0; } void si_gpu_load_kill_thread(struct si_screen *sscreen) { if (!sscreen->gpu_load_thread_created) return; p_atomic_inc(&sscreen->gpu_load_stop_thread); thrd_join(sscreen->gpu_load_thread, NULL); sscreen->gpu_load_thread_created = false; } static uint64_t si_read_mmio_counter(struct si_screen *sscreen, unsigned busy_index) { /* Start the thread if needed. */ if (!sscreen->gpu_load_thread_created) { simple_mtx_lock(&sscreen->gpu_load_mutex); /* Check again inside the mutex. */ if (!sscreen->gpu_load_thread_created) { if (thrd_success == u_thread_create(&sscreen->gpu_load_thread, si_gpu_load_thread, sscreen)) { sscreen->gpu_load_thread_created = true; } } simple_mtx_unlock(&sscreen->gpu_load_mutex); } unsigned busy = p_atomic_read(&sscreen->mmio_counters.array[busy_index]); unsigned idle = p_atomic_read(&sscreen->mmio_counters.array[busy_index + 1]); return busy | ((uint64_t)idle << 32); } static unsigned si_end_mmio_counter(struct si_screen *sscreen, uint64_t begin, unsigned busy_index) { uint64_t end = si_read_mmio_counter(sscreen, busy_index); unsigned busy = (end & 0xffffffff) - (begin & 0xffffffff); unsigned idle = (end >> 32) - (begin >> 32); /* Calculate the % of time the busy counter was being incremented. * * If no counters were incremented, return the current counter status. * It's for the case when the load is queried faster than * the counters are updated. */ if (idle || busy) { return busy * 100 / (busy + idle); } else { union si_mmio_counters counters; memset(&counters, 0, sizeof(counters)); si_update_mmio_counters(sscreen, &counters); return counters.array[busy_index] ? 100 : 0; } } #define BUSY_INDEX(sscreen, field) \ (&sscreen->mmio_counters.named.field.busy - sscreen->mmio_counters.array) static unsigned busy_index_from_type(struct si_screen *sscreen, unsigned type) { switch (type) { case SI_QUERY_GPU_LOAD: return BUSY_INDEX(sscreen, gpu); case SI_QUERY_GPU_SHADERS_BUSY: return BUSY_INDEX(sscreen, spi); case SI_QUERY_GPU_TA_BUSY: return BUSY_INDEX(sscreen, ta); case SI_QUERY_GPU_GDS_BUSY: return BUSY_INDEX(sscreen, gds); case SI_QUERY_GPU_VGT_BUSY: return BUSY_INDEX(sscreen, vgt); case SI_QUERY_GPU_IA_BUSY: return BUSY_INDEX(sscreen, ia); case SI_QUERY_GPU_SX_BUSY: return BUSY_INDEX(sscreen, sx); case SI_QUERY_GPU_WD_BUSY: return BUSY_INDEX(sscreen, wd); case SI_QUERY_GPU_BCI_BUSY: return BUSY_INDEX(sscreen, bci); case SI_QUERY_GPU_SC_BUSY: return BUSY_INDEX(sscreen, sc); case SI_QUERY_GPU_PA_BUSY: return BUSY_INDEX(sscreen, pa); case SI_QUERY_GPU_DB_BUSY: return BUSY_INDEX(sscreen, db); case SI_QUERY_GPU_CP_BUSY: return BUSY_INDEX(sscreen, cp); case SI_QUERY_GPU_CB_BUSY: return BUSY_INDEX(sscreen, cb); case SI_QUERY_GPU_SDMA_BUSY: return BUSY_INDEX(sscreen, sdma); case SI_QUERY_GPU_PFP_BUSY: return BUSY_INDEX(sscreen, pfp); case SI_QUERY_GPU_MEQ_BUSY: return BUSY_INDEX(sscreen, meq); case SI_QUERY_GPU_ME_BUSY: return BUSY_INDEX(sscreen, me); case SI_QUERY_GPU_SURF_SYNC_BUSY: return BUSY_INDEX(sscreen, surf_sync); case SI_QUERY_GPU_CP_DMA_BUSY: return BUSY_INDEX(sscreen, cp_dma); case SI_QUERY_GPU_SCRATCH_RAM_BUSY: return BUSY_INDEX(sscreen, scratch_ram); default: unreachable("invalid query type"); } } uint64_t si_begin_counter(struct si_screen *sscreen, unsigned type) { unsigned busy_index = busy_index_from_type(sscreen, type); return si_read_mmio_counter(sscreen, busy_index); } unsigned si_end_counter(struct si_screen *sscreen, unsigned type, uint64_t begin) { unsigned busy_index = busy_index_from_type(sscreen, type); return si_end_mmio_counter(sscreen, begin, busy_index); }