/* * Copyright 2010 Jerome Glisse * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "driver_ddebug/dd_util.h" #include "radeon_uvd.h" #include "si_compute.h" #include "si_public.h" #include "si_shader_internal.h" #include "sid.h" #include "ac_shadowed_regs.h" #include "compiler/nir/nir.h" #include "util/disk_cache.h" #include "util/u_cpu_detect.h" #include "util/u_log.h" #include "util/u_memory.h" #include "util/u_suballoc.h" #include "util/u_tests.h" #include "util/u_upload_mgr.h" #include "util/xmlconfig.h" #include "vl/vl_decoder.h" #include static struct pipe_context *si_create_context(struct pipe_screen *screen, unsigned flags); static const struct debug_named_value radeonsi_debug_options[] = { /* Shader logging options: */ {"vs", DBG(VS), "Print vertex shaders"}, {"ps", DBG(PS), "Print pixel shaders"}, {"gs", DBG(GS), "Print geometry shaders"}, {"tcs", DBG(TCS), "Print tessellation control shaders"}, {"tes", DBG(TES), "Print tessellation evaluation shaders"}, {"cs", DBG(CS), "Print compute shaders"}, {"noir", DBG(NO_IR), "Don't print the LLVM IR"}, {"nonir", DBG(NO_NIR), "Don't print NIR when printing shaders"}, {"noasm", DBG(NO_ASM), "Don't print disassembled shaders"}, {"preoptir", DBG(PREOPT_IR), "Print the LLVM IR before initial optimizations"}, /* Shader compiler options the shader cache should be aware of: */ {"w32ge", DBG(W32_GE), "Use Wave32 for vertex, tessellation, and geometry shaders."}, {"w32ps", DBG(W32_PS), "Use Wave32 for pixel shaders."}, {"w32psdiscard", DBG(W32_PS_DISCARD), "Use Wave32 for pixel shaders even if they contain discard and LLVM is buggy."}, {"w32cs", DBG(W32_CS), "Use Wave32 for computes shaders."}, {"w64ge", DBG(W64_GE), "Use Wave64 for vertex, tessellation, and geometry shaders."}, {"w64ps", DBG(W64_PS), "Use Wave64 for pixel shaders."}, {"w64cs", DBG(W64_CS), "Use Wave64 for computes shaders."}, /* Shader compiler options (with no effect on the shader cache): */ {"checkir", DBG(CHECK_IR), "Enable additional sanity checks on shader IR"}, {"mono", DBG(MONOLITHIC_SHADERS), "Use old-style monolithic shaders compiled on demand"}, {"nooptvariant", DBG(NO_OPT_VARIANT), "Disable compiling optimized shader variants."}, /* Information logging options: */ {"info", DBG(INFO), "Print driver information"}, {"tex", DBG(TEX), "Print texture info"}, {"compute", DBG(COMPUTE), "Print compute info"}, {"vm", DBG(VM), "Print virtual addresses when creating resources"}, {"cache_stats", DBG(CACHE_STATS), "Print shader cache statistics."}, {"ib", DBG(IB), "Print command buffers."}, /* Driver options: */ {"nowc", DBG(NO_WC), "Disable GTT write combining"}, {"check_vm", DBG(CHECK_VM), "Check VM faults and dump debug info."}, {"reserve_vmid", DBG(RESERVE_VMID), "Force VMID reservation per context."}, {"shadowregs", DBG(SHADOW_REGS), "Enable CP register shadowing."}, {"nofastdlist", DBG(NO_FAST_DISPLAY_LIST), "Disable fast display lists"}, /* Multimedia options: */ { "noefc", DBG(NO_EFC), "Disable hardware based encoder colour format conversion."}, /* 3D engine options: */ {"nogfx", DBG(NO_GFX), "Disable graphics. Only multimedia compute paths can be used."}, {"nongg", DBG(NO_NGG), "Disable NGG and use the legacy pipeline."}, {"nggc", DBG(ALWAYS_NGG_CULLING_ALL), "Always use NGG culling even when it can hurt."}, {"nonggc", DBG(NO_NGG_CULLING), "Disable NGG culling."}, {"switch_on_eop", DBG(SWITCH_ON_EOP), "Program WD/IA to switch on end-of-packet."}, {"nooutoforder", DBG(NO_OUT_OF_ORDER), "Disable out-of-order rasterization"}, {"nodpbb", DBG(NO_DPBB), "Disable DPBB."}, {"dpbb", DBG(DPBB), "Enable DPBB."}, {"nohyperz", DBG(NO_HYPERZ), "Disable Hyper-Z"}, {"no2d", DBG(NO_2D_TILING), "Disable 2D tiling"}, {"notiling", DBG(NO_TILING), "Disable tiling"}, {"nodisplaytiling", DBG(NO_DISPLAY_TILING), "Disable display tiling"}, {"nodisplaydcc", DBG(NO_DISPLAY_DCC), "Disable display DCC"}, {"noexporteddcc", DBG(NO_EXPORTED_DCC), "Disable DCC for all exported buffers (via DMABUF, etc.)"}, {"nodcc", DBG(NO_DCC), "Disable DCC."}, {"nodccclear", DBG(NO_DCC_CLEAR), "Disable DCC fast clear."}, {"nodccstore", DBG(NO_DCC_STORE), "Disable DCC stores"}, {"dccstore", DBG(DCC_STORE), "Enable DCC stores"}, {"nodccmsaa", DBG(NO_DCC_MSAA), "Disable DCC for MSAA"}, {"nofmask", DBG(NO_FMASK), "Disable MSAA compression"}, {"nodma", DBG(NO_DMA), "Disable SDMA-copy for DRI_PRIME"}, {"tmz", DBG(TMZ), "Force allocation of scanout/depth/stencil buffer as encrypted"}, {"sqtt", DBG(SQTT), "Enable SQTT"}, DEBUG_NAMED_VALUE_END /* must be last */ }; static const struct debug_named_value test_options[] = { /* Tests: */ {"imagecopy", DBG(TEST_IMAGE_COPY), "Invoke resource_copy_region tests with images and exit."}, {"cbresolve", DBG(TEST_CB_RESOLVE), "Invoke MSAA resolve tests and exit."}, {"computeblit", DBG(TEST_COMPUTE_BLIT), "Invoke blits tests and exit."}, {"testvmfaultcp", DBG(TEST_VMFAULT_CP), "Invoke a CP VM fault test and exit."}, {"testvmfaultshader", DBG(TEST_VMFAULT_SHADER), "Invoke a shader VM fault test and exit."}, {"testdmaperf", DBG(TEST_DMA_PERF), "Test DMA performance"}, {"testgds", DBG(TEST_GDS), "Test GDS."}, {"testgdsmm", DBG(TEST_GDS_MM), "Test GDS memory management."}, {"testgdsoamm", DBG(TEST_GDS_OA_MM), "Test GDS OA memory management."}, DEBUG_NAMED_VALUE_END /* must be last */ }; bool si_init_compiler(struct si_screen *sscreen, struct ac_llvm_compiler *compiler) { /* Only create the less-optimizing version of the compiler on APUs * predating Ryzen (Raven). */ bool create_low_opt_compiler = !sscreen->info.has_dedicated_vram && sscreen->info.gfx_level <= GFX8; enum ac_target_machine_options tm_options = (sscreen->debug_flags & DBG(CHECK_IR) ? AC_TM_CHECK_IR : 0) | (create_low_opt_compiler ? AC_TM_CREATE_LOW_OPT : 0); ac_init_llvm_once(); if (!ac_init_llvm_compiler(compiler, sscreen->info.family, tm_options)) return false; compiler->passes = ac_create_llvm_passes(compiler->tm); if (compiler->low_opt_tm) compiler->low_opt_passes = ac_create_llvm_passes(compiler->low_opt_tm); return true; } void si_init_aux_async_compute_ctx(struct si_screen *sscreen) { assert(!sscreen->async_compute_context); sscreen->async_compute_context = si_create_context( &sscreen->b, SI_CONTEXT_FLAG_AUX | (sscreen->options.aux_debug ? PIPE_CONTEXT_DEBUG : 0) | PIPE_CONTEXT_COMPUTE_ONLY); /* Limit the numbers of waves allocated for this context. */ if (sscreen->async_compute_context) ((struct si_context*)sscreen->async_compute_context)->cs_max_waves_per_sh = 2; } static void si_destroy_compiler(struct ac_llvm_compiler *compiler) { ac_destroy_llvm_compiler(compiler); } static void decref_implicit_resource(struct hash_entry *entry) { pipe_resource_reference((struct pipe_resource**)&entry->data, NULL); } /* * pipe_context */ static void si_destroy_context(struct pipe_context *context) { struct si_context *sctx = (struct si_context *)context; int i; /* Unreference the framebuffer normally to disable related logic * properly. */ struct pipe_framebuffer_state fb = {}; if (context->set_framebuffer_state) context->set_framebuffer_state(context, &fb); si_release_all_descriptors(sctx); if (sctx->gfx_level >= GFX10 && sctx->has_graphics) gfx10_destroy_query(sctx); if (sctx->thread_trace) si_destroy_thread_trace(sctx); pipe_resource_reference(&sctx->esgs_ring, NULL); pipe_resource_reference(&sctx->gsvs_ring, NULL); pipe_resource_reference(&sctx->tess_rings, NULL); pipe_resource_reference(&sctx->tess_rings_tmz, NULL); pipe_resource_reference(&sctx->null_const_buf.buffer, NULL); pipe_resource_reference(&sctx->sample_pos_buffer, NULL); si_resource_reference(&sctx->border_color_buffer, NULL); free(sctx->border_color_table); si_resource_reference(&sctx->scratch_buffer, NULL); si_resource_reference(&sctx->compute_scratch_buffer, NULL); si_resource_reference(&sctx->wait_mem_scratch, NULL); si_resource_reference(&sctx->wait_mem_scratch_tmz, NULL); si_resource_reference(&sctx->small_prim_cull_info_buf, NULL); si_resource_reference(&sctx->pipeline_stats_query_buf, NULL); if (sctx->cs_preamble_state) si_pm4_free_state(sctx, sctx->cs_preamble_state, ~0); if (sctx->cs_preamble_state_tmz) si_pm4_free_state(sctx, sctx->cs_preamble_state_tmz, ~0); for (i = 0; i < ARRAY_SIZE(sctx->vgt_shader_config); i++) si_pm4_free_state(sctx, sctx->vgt_shader_config[i], SI_STATE_IDX(vgt_shader_config)); if (sctx->fixed_func_tcs_shader_cache) { hash_table_foreach(sctx->fixed_func_tcs_shader_cache, entry) { sctx->b.delete_tcs_state(&sctx->b, entry->data); } _mesa_hash_table_destroy(sctx->fixed_func_tcs_shader_cache, NULL); } if (sctx->custom_dsa_flush) sctx->b.delete_depth_stencil_alpha_state(&sctx->b, sctx->custom_dsa_flush); if (sctx->custom_blend_resolve) sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_resolve); if (sctx->custom_blend_fmask_decompress) sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_fmask_decompress); if (sctx->custom_blend_eliminate_fastclear) sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_eliminate_fastclear); if (sctx->custom_blend_dcc_decompress) sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_dcc_decompress); if (sctx->vs_blit_pos) sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_pos); if (sctx->vs_blit_pos_layered) sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_pos_layered); if (sctx->vs_blit_color) sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_color); if (sctx->vs_blit_color_layered) sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_color_layered); if (sctx->vs_blit_texcoord) sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_texcoord); if (sctx->cs_clear_buffer) sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_buffer); if (sctx->cs_clear_buffer_rmw) sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_buffer_rmw); if (sctx->cs_copy_buffer) sctx->b.delete_compute_state(&sctx->b, sctx->cs_copy_buffer); for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_copy_image); i++) { for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_copy_image[i]); j++) { if (sctx->cs_copy_image[i][j]) sctx->b.delete_compute_state(&sctx->b, sctx->cs_copy_image[i][j]); } } if (sctx->cs_clear_render_target) sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_render_target); if (sctx->cs_clear_render_target_1d_array) sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_render_target_1d_array); if (sctx->cs_clear_12bytes_buffer) sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_12bytes_buffer); for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_dcc_retile); i++) { if (sctx->cs_dcc_retile[i]) sctx->b.delete_compute_state(&sctx->b, sctx->cs_dcc_retile[i]); } if (sctx->no_velems_state) sctx->b.delete_vertex_elements_state(&sctx->b, sctx->no_velems_state); for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_fmask_expand); i++) { for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_fmask_expand[i]); j++) { if (sctx->cs_fmask_expand[i][j]) { sctx->b.delete_compute_state(&sctx->b, sctx->cs_fmask_expand[i][j]); } } } for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_clear_dcc_msaa); i++) { for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i]); j++) { for (unsigned k = 0; k < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i][j]); k++) { for (unsigned l = 0; l < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i][j][k]); l++) { for (unsigned m = 0; m < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i][j][k][l]); m++) { if (sctx->cs_clear_dcc_msaa[i][j][k][l][m]) sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_dcc_msaa[i][j][k][l][m]); } } } } } if (sctx->blitter) util_blitter_destroy(sctx->blitter); if (sctx->query_result_shader) sctx->b.delete_compute_state(&sctx->b, sctx->query_result_shader); if (sctx->sh_query_result_shader) sctx->b.delete_compute_state(&sctx->b, sctx->sh_query_result_shader); sctx->ws->cs_destroy(&sctx->gfx_cs); if (sctx->ctx) sctx->ws->ctx_destroy(sctx->ctx); if (sctx->sdma_cs) { sctx->ws->cs_destroy(sctx->sdma_cs); free(sctx->sdma_cs); } if (sctx->dirty_implicit_resources) _mesa_hash_table_destroy(sctx->dirty_implicit_resources, decref_implicit_resource); if (sctx->b.stream_uploader) u_upload_destroy(sctx->b.stream_uploader); if (sctx->b.const_uploader && sctx->b.const_uploader != sctx->b.stream_uploader) u_upload_destroy(sctx->b.const_uploader); if (sctx->cached_gtt_allocator) u_upload_destroy(sctx->cached_gtt_allocator); slab_destroy_child(&sctx->pool_transfers); slab_destroy_child(&sctx->pool_transfers_unsync); u_suballocator_destroy(&sctx->allocator_zeroed_memory); sctx->ws->fence_reference(&sctx->last_gfx_fence, NULL); si_resource_reference(&sctx->eop_bug_scratch, NULL); si_resource_reference(&sctx->eop_bug_scratch_tmz, NULL); si_resource_reference(&sctx->shadowed_regs, NULL); si_destroy_compiler(&sctx->compiler); si_saved_cs_reference(&sctx->current_saved_cs, NULL); _mesa_hash_table_destroy(sctx->tex_handles, NULL); _mesa_hash_table_destroy(sctx->img_handles, NULL); util_dynarray_fini(&sctx->resident_tex_handles); util_dynarray_fini(&sctx->resident_img_handles); util_dynarray_fini(&sctx->resident_tex_needs_color_decompress); util_dynarray_fini(&sctx->resident_img_needs_color_decompress); util_dynarray_fini(&sctx->resident_tex_needs_depth_decompress); if (!(sctx->context_flags & SI_CONTEXT_FLAG_AUX)) p_atomic_dec(&context->screen->num_contexts); FREE(sctx); } static enum pipe_reset_status si_get_reset_status(struct pipe_context *ctx) { struct si_context *sctx = (struct si_context *)ctx; if (sctx->context_flags & SI_CONTEXT_FLAG_AUX) return PIPE_NO_RESET; bool needs_reset; enum pipe_reset_status status = sctx->ws->ctx_query_reset_status(sctx->ctx, false, &needs_reset); if (status != PIPE_NO_RESET && needs_reset && !(sctx->context_flags & SI_CONTEXT_FLAG_AUX)) { /* Call the gallium frontend to set a no-op API dispatch. */ if (sctx->device_reset_callback.reset) { sctx->device_reset_callback.reset(sctx->device_reset_callback.data, status); } } return status; } static void si_set_device_reset_callback(struct pipe_context *ctx, const struct pipe_device_reset_callback *cb) { struct si_context *sctx = (struct si_context *)ctx; if (cb) sctx->device_reset_callback = *cb; else memset(&sctx->device_reset_callback, 0, sizeof(sctx->device_reset_callback)); } /* Apitrace profiling: * 1) qapitrace : Tools -> Profile: Measure CPU & GPU times * 2) In the middle panel, zoom in (mouse wheel) on some bad draw call * and remember its number. * 3) In Mesa, enable queries and performance counters around that draw * call and print the results. * 4) glretrace --benchmark --markers .. */ static void si_emit_string_marker(struct pipe_context *ctx, const char *string, int len) { struct si_context *sctx = (struct si_context *)ctx; dd_parse_apitrace_marker(string, len, &sctx->apitrace_call_number); if (sctx->thread_trace_enabled) si_write_user_event(sctx, &sctx->gfx_cs, UserEventTrigger, string, len); if (sctx->log) u_log_printf(sctx->log, "\nString marker: %*s\n", len, string); } static void si_set_debug_callback(struct pipe_context *ctx, const struct util_debug_callback *cb) { struct si_context *sctx = (struct si_context *)ctx; struct si_screen *screen = sctx->screen; util_queue_finish(&screen->shader_compiler_queue); util_queue_finish(&screen->shader_compiler_queue_low_priority); if (cb) sctx->debug = *cb; else memset(&sctx->debug, 0, sizeof(sctx->debug)); } static void si_set_log_context(struct pipe_context *ctx, struct u_log_context *log) { struct si_context *sctx = (struct si_context *)ctx; sctx->log = log; if (log) u_log_add_auto_logger(log, si_auto_log_cs, sctx); } static void si_set_context_param(struct pipe_context *ctx, enum pipe_context_param param, unsigned value) { struct radeon_winsys *ws = ((struct si_context *)ctx)->ws; switch (param) { case PIPE_CONTEXT_PARAM_PIN_THREADS_TO_L3_CACHE: ws->pin_threads_to_L3_cache(ws, value); break; default:; } } static void si_set_frontend_noop(struct pipe_context *ctx, bool enable) { struct si_context *sctx = (struct si_context *)ctx; ctx->flush(ctx, NULL, PIPE_FLUSH_ASYNC); sctx->is_noop = enable; } static struct pipe_context *si_create_context(struct pipe_screen *screen, unsigned flags) { struct si_screen *sscreen = (struct si_screen *)screen; STATIC_ASSERT(DBG_COUNT <= 64); /* Don't create a context if it's not compute-only and hw is compute-only. */ if (!sscreen->info.has_graphics && !(flags & PIPE_CONTEXT_COMPUTE_ONLY)) { fprintf(stderr, "radeonsi: can't create a graphics context on a compute chip\n"); return NULL; } struct si_context *sctx = CALLOC_STRUCT(si_context); struct radeon_winsys *ws = sscreen->ws; int shader, i; bool stop_exec_on_failure = (flags & PIPE_CONTEXT_LOSE_CONTEXT_ON_RESET) != 0; enum radeon_ctx_priority priority; if (!sctx) { fprintf(stderr, "radeonsi: can't allocate a context\n"); return NULL; } sctx->has_graphics = sscreen->info.gfx_level == GFX6 || !(flags & PIPE_CONTEXT_COMPUTE_ONLY); if (flags & PIPE_CONTEXT_DEBUG) sscreen->record_llvm_ir = true; /* racy but not critical */ sctx->b.screen = screen; /* this must be set first */ sctx->b.priv = NULL; sctx->b.destroy = si_destroy_context; sctx->screen = sscreen; /* Easy accessing of screen/winsys. */ sctx->is_debug = (flags & PIPE_CONTEXT_DEBUG) != 0; sctx->context_flags = flags; slab_create_child(&sctx->pool_transfers, &sscreen->pool_transfers); slab_create_child(&sctx->pool_transfers_unsync, &sscreen->pool_transfers); sctx->ws = sscreen->ws; sctx->family = sscreen->info.family; sctx->gfx_level = sscreen->info.gfx_level; if (sctx->gfx_level == GFX7 || sctx->gfx_level == GFX8 || sctx->gfx_level == GFX9) { sctx->eop_bug_scratch = si_aligned_buffer_create( &sscreen->b, PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, 16 * sscreen->info.max_render_backends, 256); if (!sctx->eop_bug_scratch) { fprintf(stderr, "radeonsi: can't create eop_bug_scratch\n"); goto fail; } } if (flags & PIPE_CONTEXT_HIGH_PRIORITY) { priority = RADEON_CTX_PRIORITY_HIGH; } else if (flags & PIPE_CONTEXT_LOW_PRIORITY) { priority = RADEON_CTX_PRIORITY_LOW; } else { priority = RADEON_CTX_PRIORITY_MEDIUM; } /* Initialize the context handle and the command stream. */ sctx->ctx = sctx->ws->ctx_create(sctx->ws, priority); if (!sctx->ctx && priority != RADEON_CTX_PRIORITY_MEDIUM) { /* Context priority should be treated as a hint. If context creation * fails with the requested priority, for example because the caller * lacks CAP_SYS_NICE capability or other system resource constraints, * fallback to normal priority. */ priority = RADEON_CTX_PRIORITY_MEDIUM; sctx->ctx = sctx->ws->ctx_create(sctx->ws, priority); } if (!sctx->ctx) { fprintf(stderr, "radeonsi: can't create radeon_winsys_ctx\n"); goto fail; } ws->cs_create(&sctx->gfx_cs, sctx->ctx, sctx->has_graphics ? AMD_IP_GFX : AMD_IP_COMPUTE, (void *)si_flush_gfx_cs, sctx, stop_exec_on_failure); /* Initialize private allocators. */ u_suballocator_init(&sctx->allocator_zeroed_memory, &sctx->b, 128 * 1024, 0, PIPE_USAGE_DEFAULT, SI_RESOURCE_FLAG_CLEAR | SI_RESOURCE_FLAG_32BIT, false); sctx->cached_gtt_allocator = u_upload_create(&sctx->b, 16 * 1024, 0, PIPE_USAGE_STAGING, 0); if (!sctx->cached_gtt_allocator) { fprintf(stderr, "radeonsi: can't create cached_gtt_allocator\n"); goto fail; } /* Initialize public allocators. */ /* Unify uploaders as follows: * - dGPUs with Smart Access Memory: there is only one uploader instance writing to VRAM. * - APUs: There is only one uploader instance writing to RAM. VRAM has the same perf on APUs. * - Other chips: The const uploader writes to VRAM and the stream uploader writes to RAM. */ bool smart_access_memory = sscreen->info.smart_access_memory; bool is_apu = !sscreen->info.has_dedicated_vram; sctx->b.stream_uploader = u_upload_create(&sctx->b, 1024 * 1024, 0, smart_access_memory && !is_apu ? PIPE_USAGE_DEFAULT : PIPE_USAGE_STREAM, SI_RESOURCE_FLAG_32BIT); /* same flags as const_uploader */ if (!sctx->b.stream_uploader) { fprintf(stderr, "radeonsi: can't create stream_uploader\n"); goto fail; } if (smart_access_memory || is_apu) { sctx->b.const_uploader = sctx->b.stream_uploader; } else { sctx->b.const_uploader = u_upload_create(&sctx->b, 256 * 1024, 0, PIPE_USAGE_DEFAULT, SI_RESOURCE_FLAG_32BIT); if (!sctx->b.const_uploader) { fprintf(stderr, "radeonsi: can't create const_uploader\n"); goto fail; } } /* Border colors. */ if (sscreen->info.has_3d_cube_border_color_mipmap) { sctx->border_color_table = malloc(SI_MAX_BORDER_COLORS * sizeof(*sctx->border_color_table)); if (!sctx->border_color_table) { fprintf(stderr, "radeonsi: can't create border_color_table\n"); goto fail; } sctx->border_color_buffer = si_resource(pipe_buffer_create( screen, 0, PIPE_USAGE_DEFAULT, SI_MAX_BORDER_COLORS * sizeof(*sctx->border_color_table))); if (!sctx->border_color_buffer) { fprintf(stderr, "radeonsi: can't create border_color_buffer\n"); goto fail; } sctx->border_color_map = ws->buffer_map(ws, sctx->border_color_buffer->buf, NULL, PIPE_MAP_WRITE); if (!sctx->border_color_map) { fprintf(stderr, "radeonsi: can't map border_color_buffer\n"); goto fail; } } sctx->ngg = sscreen->use_ngg; si_shader_change_notify(sctx); /* Initialize context functions used by graphics and compute. */ if (sctx->gfx_level >= GFX10) sctx->emit_cache_flush = gfx10_emit_cache_flush; else sctx->emit_cache_flush = si_emit_cache_flush; sctx->b.emit_string_marker = si_emit_string_marker; sctx->b.set_debug_callback = si_set_debug_callback; sctx->b.set_log_context = si_set_log_context; sctx->b.set_context_param = si_set_context_param; sctx->b.get_device_reset_status = si_get_reset_status; sctx->b.set_device_reset_callback = si_set_device_reset_callback; sctx->b.set_frontend_noop = si_set_frontend_noop; si_init_all_descriptors(sctx); si_init_buffer_functions(sctx); si_init_clear_functions(sctx); si_init_blit_functions(sctx); si_init_compute_functions(sctx); si_init_compute_blit_functions(sctx); si_init_debug_functions(sctx); si_init_fence_functions(sctx); si_init_query_functions(sctx); si_init_state_compute_functions(sctx); si_init_context_texture_functions(sctx); /* Initialize graphics-only context functions. */ if (sctx->has_graphics) { if (sctx->gfx_level >= GFX10) gfx10_init_query(sctx); si_init_msaa_functions(sctx); si_init_shader_functions(sctx); si_init_state_functions(sctx); si_init_streamout_functions(sctx); si_init_viewport_functions(sctx); si_init_spi_map_functions(sctx); sctx->blitter = util_blitter_create(&sctx->b); if (sctx->blitter == NULL) { fprintf(stderr, "radeonsi: can't create blitter\n"); goto fail; } sctx->blitter->skip_viewport_restore = true; /* Some states are expected to be always non-NULL. */ sctx->noop_blend = util_blitter_get_noop_blend_state(sctx->blitter); sctx->queued.named.blend = sctx->noop_blend; sctx->noop_dsa = util_blitter_get_noop_dsa_state(sctx->blitter); sctx->queued.named.dsa = sctx->noop_dsa; sctx->no_velems_state = sctx->b.create_vertex_elements_state(&sctx->b, 0, NULL); sctx->vertex_elements = sctx->no_velems_state; sctx->discard_rasterizer_state = util_blitter_get_discard_rasterizer_state(sctx->blitter); sctx->queued.named.rasterizer = sctx->discard_rasterizer_state; switch (sctx->gfx_level) { case GFX6: si_init_draw_functions_GFX6(sctx); break; case GFX7: si_init_draw_functions_GFX7(sctx); break; case GFX8: si_init_draw_functions_GFX8(sctx); break; case GFX9: si_init_draw_functions_GFX9(sctx); break; case GFX10: si_init_draw_functions_GFX10(sctx); break; case GFX10_3: si_init_draw_functions_GFX10_3(sctx); break; case GFX11: si_init_draw_functions_GFX11(sctx); break; default: unreachable("unhandled gfx level"); } } sctx->sample_mask = 0xffff; /* Initialize multimedia functions. */ if (sscreen->info.ip[AMD_IP_UVD].num_queues || sscreen->info.has_video_hw.vcn_decode || sscreen->info.ip[AMD_IP_VCN_JPEG].num_queues || sscreen->info.ip[AMD_IP_VCE].num_queues || sscreen->info.ip[AMD_IP_UVD_ENC].num_queues || sscreen->info.ip[AMD_IP_VCN_ENC].num_queues) { sctx->b.create_video_codec = si_uvd_create_decoder; sctx->b.create_video_buffer = si_video_buffer_create; if (screen->resource_create_with_modifiers) sctx->b.create_video_buffer_with_modifiers = si_video_buffer_create_with_modifiers; } else { sctx->b.create_video_codec = vl_create_decoder; sctx->b.create_video_buffer = vl_video_buffer_create; } /* GFX7 cannot unbind a constant buffer (S_BUFFER_LOAD doesn't skip loads * if NUM_RECORDS == 0). We need to use a dummy buffer instead. */ if (sctx->gfx_level == GFX7) { sctx->null_const_buf.buffer = pipe_aligned_buffer_create(screen, PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_32BIT | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, 16, sctx->screen->info.tcc_cache_line_size); if (!sctx->null_const_buf.buffer) { fprintf(stderr, "radeonsi: can't create null_const_buf\n"); goto fail; } sctx->null_const_buf.buffer_size = sctx->null_const_buf.buffer->width0; unsigned start_shader = sctx->has_graphics ? 0 : PIPE_SHADER_COMPUTE; for (shader = start_shader; shader < SI_NUM_SHADERS; shader++) { for (i = 0; i < SI_NUM_CONST_BUFFERS; i++) { sctx->b.set_constant_buffer(&sctx->b, shader, i, false, &sctx->null_const_buf); } } si_set_internal_const_buffer(sctx, SI_HS_CONST_DEFAULT_TESS_LEVELS, &sctx->null_const_buf); si_set_internal_const_buffer(sctx, SI_VS_CONST_INSTANCE_DIVISORS, &sctx->null_const_buf); si_set_internal_const_buffer(sctx, SI_VS_CONST_CLIP_PLANES, &sctx->null_const_buf); si_set_internal_const_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &sctx->null_const_buf); si_set_internal_const_buffer(sctx, SI_PS_CONST_SAMPLE_POSITIONS, &sctx->null_const_buf); } /* Bindless handles. */ sctx->tex_handles = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); sctx->img_handles = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); util_dynarray_init(&sctx->resident_tex_handles, NULL); util_dynarray_init(&sctx->resident_img_handles, NULL); util_dynarray_init(&sctx->resident_tex_needs_color_decompress, NULL); util_dynarray_init(&sctx->resident_img_needs_color_decompress, NULL); util_dynarray_init(&sctx->resident_tex_needs_depth_decompress, NULL); sctx->dirty_implicit_resources = _mesa_pointer_hash_table_create(NULL); if (!sctx->dirty_implicit_resources) { fprintf(stderr, "radeonsi: can't create dirty_implicit_resources\n"); goto fail; } /* The remainder of this function initializes the gfx CS and must be last. */ assert(sctx->gfx_cs.current.cdw == 0); if (sctx->has_graphics) { si_init_cp_reg_shadowing(sctx); } /* Set immutable fields of shader keys. */ if (sctx->gfx_level >= GFX9) { /* The LS output / HS input layout can be communicated * directly instead of via user SGPRs for merged LS-HS. * This also enables jumping over the VS prolog for HS-only waves. * * When the LS VGPR fix is needed, monolithic shaders can: * - avoid initializing EXEC in both the LS prolog * and the LS main part when !vs_needs_prolog * - remove the fixup for unused input VGPRs */ sctx->shader.tcs.key.ge.opt.prefer_mono = 1; /* This enables jumping over the VS prolog for GS-only waves. */ sctx->shader.gs.key.ge.opt.prefer_mono = 1; } si_begin_new_gfx_cs(sctx, true); assert(sctx->gfx_cs.current.cdw == sctx->initial_gfx_cs_size); if (sctx->gfx_level >= GFX9 && sctx->gfx_level < GFX11) { sctx->wait_mem_scratch = si_aligned_buffer_create(screen, PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT, 4, sscreen->info.tcc_cache_line_size); if (!sctx->wait_mem_scratch) { fprintf(stderr, "radeonsi: can't create wait_mem_scratch\n"); goto fail; } si_cp_write_data(sctx, sctx->wait_mem_scratch, 0, 4, V_370_MEM, V_370_ME, &sctx->wait_mem_number); } if (sctx->gfx_level == GFX7) { /* Clear the NULL constant buffer, because loads should return zeros. * Note that this forces CP DMA to be used, because clover deadlocks * for some reason when the compute codepath is used. */ uint32_t clear_value = 0; si_clear_buffer(sctx, sctx->null_const_buf.buffer, 0, sctx->null_const_buf.buffer->width0, &clear_value, 4, SI_OP_SYNC_AFTER, SI_COHERENCY_SHADER, SI_CP_DMA_CLEAR_METHOD); } if (!(flags & SI_CONTEXT_FLAG_AUX)) { p_atomic_inc(&screen->num_contexts); /* Check if the aux_context needs to be recreated */ struct si_context *saux = si_get_aux_context(sscreen); enum pipe_reset_status status = sctx->ws->ctx_query_reset_status( saux->ctx, true, NULL); if (status != PIPE_NO_RESET) { /* We lost the aux_context, create a new one */ struct u_log_context *aux_log = (saux)->log; saux->b.set_log_context(&saux->b, NULL); saux->b.destroy(&saux->b); saux = (struct si_context *)si_create_context( &sscreen->b, SI_CONTEXT_FLAG_AUX | (sscreen->options.aux_debug ? PIPE_CONTEXT_DEBUG : 0) | (sscreen->info.has_graphics ? 0 : PIPE_CONTEXT_COMPUTE_ONLY)); saux->b.set_log_context(&saux->b, aux_log); sscreen->aux_context = saux; } si_put_aux_context_flush(sscreen); simple_mtx_lock(&sscreen->async_compute_context_lock); if (status != PIPE_NO_RESET && sscreen->async_compute_context) { sscreen->async_compute_context->destroy(sscreen->async_compute_context); sscreen->async_compute_context = NULL; } simple_mtx_unlock(&sscreen->async_compute_context_lock); } sctx->initial_gfx_cs_size = sctx->gfx_cs.current.cdw; return &sctx->b; fail: fprintf(stderr, "radeonsi: Failed to create a context.\n"); si_destroy_context(&sctx->b); return NULL; } static bool si_is_resource_busy(struct pipe_screen *screen, struct pipe_resource *resource, unsigned usage) { struct radeon_winsys *ws = ((struct si_screen *)screen)->ws; return !ws->buffer_wait(ws, si_resource(resource)->buf, 0, /* If mapping for write, we need to wait for all reads and writes. * If mapping for read, we only need to wait for writes. */ usage & PIPE_MAP_WRITE ? RADEON_USAGE_READWRITE : RADEON_USAGE_WRITE); } static struct pipe_context *si_pipe_create_context(struct pipe_screen *screen, void *priv, unsigned flags) { struct si_screen *sscreen = (struct si_screen *)screen; struct pipe_context *ctx; if (sscreen->debug_flags & DBG(CHECK_VM)) flags |= PIPE_CONTEXT_DEBUG; ctx = si_create_context(screen, flags); if (ctx && sscreen->info.gfx_level >= GFX9 && sscreen->debug_flags & DBG(SQTT)) { if (ac_check_profile_state(&sscreen->info)) { fprintf(stderr, "radeonsi: Canceling RGP trace request as a hang condition has been " "detected. Force the GPU into a profiling mode with e.g. " "\"echo profile_peak > " "/sys/class/drm/card0/device/power_dpm_force_performance_level\"\n"); } else if (!si_init_thread_trace((struct si_context *)ctx)) { FREE(ctx); return NULL; } } if (!(flags & PIPE_CONTEXT_PREFER_THREADED)) return ctx; /* Clover (compute-only) is unsupported. */ if (flags & PIPE_CONTEXT_COMPUTE_ONLY) return ctx; /* When shaders are logged to stderr, asynchronous compilation is * disabled too. */ if (sscreen->debug_flags & DBG_ALL_SHADERS) return ctx; /* Use asynchronous flushes only on amdgpu, since the radeon * implementation for fence_server_sync is incomplete. */ struct pipe_context *tc = threaded_context_create(ctx, &sscreen->pool_transfers, si_replace_buffer_storage, &(struct threaded_context_options){ .create_fence = sscreen->info.is_amdgpu ? si_create_fence : NULL, .is_resource_busy = si_is_resource_busy, .driver_calls_flush_notify = true, }, &((struct si_context *)ctx)->tc); if (tc && tc != ctx) threaded_context_init_bytes_mapped_limit((struct threaded_context *)tc, 4); return tc; } /* * pipe_screen */ static void si_destroy_screen(struct pipe_screen *pscreen) { struct si_screen *sscreen = (struct si_screen *)pscreen; struct si_shader_part *parts[] = {sscreen->vs_prologs, sscreen->tcs_epilogs, sscreen->ps_prologs, sscreen->ps_epilogs}; unsigned i; if (!sscreen->ws->unref(sscreen->ws)) return; if (sscreen->debug_flags & DBG(CACHE_STATS)) { printf("live shader cache: hits = %u, misses = %u\n", sscreen->live_shader_cache.hits, sscreen->live_shader_cache.misses); printf("memory shader cache: hits = %u, misses = %u\n", sscreen->num_memory_shader_cache_hits, sscreen->num_memory_shader_cache_misses); printf("disk shader cache: hits = %u, misses = %u\n", sscreen->num_disk_shader_cache_hits, sscreen->num_disk_shader_cache_misses); } si_resource_reference(&sscreen->attribute_ring, NULL); if (sscreen->aux_context) { struct si_context *saux = si_get_aux_context(sscreen); struct u_log_context *aux_log = saux->log; if (aux_log) { saux->b.set_log_context(&saux->b, NULL); u_log_context_destroy(aux_log); FREE(aux_log); } saux->b.destroy(&saux->b); mtx_unlock(&sscreen->aux_context_lock); } mtx_destroy(&sscreen->aux_context_lock); simple_mtx_destroy(&sscreen->async_compute_context_lock); if (sscreen->async_compute_context) { sscreen->async_compute_context->destroy(sscreen->async_compute_context); } util_queue_destroy(&sscreen->shader_compiler_queue); util_queue_destroy(&sscreen->shader_compiler_queue_low_priority); /* Release the reference on glsl types of the compiler threads. */ glsl_type_singleton_decref(); for (i = 0; i < ARRAY_SIZE(sscreen->compiler); i++) si_destroy_compiler(&sscreen->compiler[i]); for (i = 0; i < ARRAY_SIZE(sscreen->compiler_lowp); i++) si_destroy_compiler(&sscreen->compiler_lowp[i]); /* Free shader parts. */ for (i = 0; i < ARRAY_SIZE(parts); i++) { while (parts[i]) { struct si_shader_part *part = parts[i]; parts[i] = part->next; si_shader_binary_clean(&part->binary); FREE(part); } } simple_mtx_destroy(&sscreen->shader_parts_mutex); si_destroy_shader_cache(sscreen); si_destroy_perfcounters(sscreen); si_gpu_load_kill_thread(sscreen); simple_mtx_destroy(&sscreen->gpu_load_mutex); simple_mtx_destroy(&sscreen->gds_mutex); radeon_bo_reference(sscreen->ws, &sscreen->gds, NULL); radeon_bo_reference(sscreen->ws, &sscreen->gds_oa, NULL); slab_destroy_parent(&sscreen->pool_transfers); disk_cache_destroy(sscreen->disk_shader_cache); util_live_shader_cache_deinit(&sscreen->live_shader_cache); util_idalloc_mt_fini(&sscreen->buffer_ids); util_vertex_state_cache_deinit(&sscreen->vertex_state_cache); sscreen->ws->destroy(sscreen->ws); FREE(sscreen); } static void si_init_gs_info(struct si_screen *sscreen) { sscreen->gs_table_depth = ac_get_gs_table_depth(sscreen->info.gfx_level, sscreen->info.family); } static void si_test_vmfault(struct si_screen *sscreen, uint64_t test_flags) { struct pipe_context *ctx = sscreen->aux_context; struct si_context *sctx = (struct si_context *)ctx; struct pipe_resource *buf = pipe_buffer_create_const0(&sscreen->b, 0, PIPE_USAGE_DEFAULT, 64); if (!buf) { puts("Buffer allocation failed."); exit(1); } si_resource(buf)->gpu_address = 0; /* cause a VM fault */ if (test_flags & DBG(TEST_VMFAULT_CP)) { si_cp_dma_copy_buffer(sctx, buf, buf, 0, 4, 4, SI_OP_SYNC_BEFORE_AFTER, SI_COHERENCY_NONE, L2_BYPASS); ctx->flush(ctx, NULL, 0); puts("VM fault test: CP - done."); } if (test_flags & DBG(TEST_VMFAULT_SHADER)) { util_test_constant_buffer(ctx, buf); puts("VM fault test: Shader - done."); } exit(0); } static void si_test_gds_memory_management(struct si_context *sctx, unsigned alloc_size, unsigned alignment, enum radeon_bo_domain domain) { struct radeon_winsys *ws = sctx->ws; struct radeon_cmdbuf cs[8]; struct pb_buffer *gds_bo[ARRAY_SIZE(cs)]; for (unsigned i = 0; i < ARRAY_SIZE(cs); i++) { ws->cs_create(&cs[i], sctx->ctx, AMD_IP_COMPUTE, NULL, NULL, false); gds_bo[i] = ws->buffer_create(ws, alloc_size, alignment, domain, 0); assert(gds_bo[i]); } for (unsigned iterations = 0; iterations < 20000; iterations++) { for (unsigned i = 0; i < ARRAY_SIZE(cs); i++) { /* This clears GDS with CP DMA. * * We don't care if GDS is present. Just add some packet * to make the GPU busy for a moment. */ si_cp_dma_clear_buffer( sctx, &cs[i], NULL, 0, alloc_size, 0, SI_OP_CPDMA_SKIP_CHECK_CS_SPACE, 0, 0); ws->cs_add_buffer(&cs[i], gds_bo[i], RADEON_USAGE_READWRITE, domain); ws->cs_flush(&cs[i], PIPE_FLUSH_ASYNC, NULL); } } exit(0); } static void si_disk_cache_create(struct si_screen *sscreen) { /* Don't use the cache if shader dumping is enabled. */ if (sscreen->debug_flags & DBG_ALL_SHADERS) return; struct mesa_sha1 ctx; unsigned char sha1[20]; char cache_id[20 * 2 + 1]; _mesa_sha1_init(&ctx); if (!disk_cache_get_function_identifier(si_disk_cache_create, &ctx) || !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx)) return; _mesa_sha1_final(&ctx, sha1); disk_cache_format_hex_id(cache_id, sha1, 20 * 2); sscreen->disk_shader_cache = disk_cache_create(sscreen->info.name, cache_id, sscreen->info.address32_hi); } static void si_set_max_shader_compiler_threads(struct pipe_screen *screen, unsigned max_threads) { struct si_screen *sscreen = (struct si_screen *)screen; /* This function doesn't allow a greater number of threads than * the queue had at its creation. */ util_queue_adjust_num_threads(&sscreen->shader_compiler_queue, max_threads); /* Don't change the number of threads on the low priority queue. */ } static bool si_is_parallel_shader_compilation_finished(struct pipe_screen *screen, void *shader, enum pipe_shader_type shader_type) { struct si_shader_selector *sel = (struct si_shader_selector *)shader; return util_queue_fence_is_signalled(&sel->ready); } static struct pipe_screen *radeonsi_screen_create_impl(struct radeon_winsys *ws, const struct pipe_screen_config *config) { struct si_screen *sscreen = CALLOC_STRUCT(si_screen); unsigned hw_threads, num_comp_hi_threads, num_comp_lo_threads; uint64_t test_flags; if (!sscreen) { return NULL; } { #define OPT_BOOL(name, dflt, description) \ sscreen->options.name = driQueryOptionb(config->options, "radeonsi_" #name); #define OPT_INT(name, dflt, description) \ sscreen->options.name = driQueryOptioni(config->options, "radeonsi_" #name); #include "si_debug_options.h" } sscreen->ws = ws; ws->query_info(ws, &sscreen->info, sscreen->options.enable_sam, sscreen->options.disable_sam); if (sscreen->info.gfx_level >= GFX9) { sscreen->se_tile_repeat = 32 * sscreen->info.max_se; } else { ac_get_raster_config(&sscreen->info, &sscreen->pa_sc_raster_config, &sscreen->pa_sc_raster_config_1, &sscreen->se_tile_repeat); } sscreen->debug_flags = debug_get_flags_option("R600_DEBUG", radeonsi_debug_options, 0); sscreen->debug_flags |= debug_get_flags_option("AMD_DEBUG", radeonsi_debug_options, 0); test_flags = debug_get_flags_option("AMD_TEST", test_options, 0); if (sscreen->debug_flags & DBG(NO_GFX)) sscreen->info.has_graphics = false; if ((sscreen->debug_flags & DBG(TMZ)) && !sscreen->info.has_tmz_support) { fprintf(stderr, "radeonsi: requesting TMZ features but TMZ is not supported\n"); FREE(sscreen); return NULL; } /* Initialize just one compiler instance to check for errors. The other compiler instances are * initialized on demand. */ if (!si_init_compiler(sscreen, &sscreen->compiler[0])) { /* The callee prints the error message. */ FREE(sscreen); return NULL; } util_idalloc_mt_init_tc(&sscreen->buffer_ids); /* Set functions first. */ sscreen->b.context_create = si_pipe_create_context; sscreen->b.destroy = si_destroy_screen; sscreen->b.set_max_shader_compiler_threads = si_set_max_shader_compiler_threads; sscreen->b.is_parallel_shader_compilation_finished = si_is_parallel_shader_compilation_finished; sscreen->b.finalize_nir = si_finalize_nir; si_init_screen_get_functions(sscreen); si_init_screen_buffer_functions(sscreen); si_init_screen_fence_functions(sscreen); si_init_screen_state_functions(sscreen); si_init_screen_texture_functions(sscreen); si_init_screen_query_functions(sscreen); si_init_screen_live_shader_cache(sscreen); sscreen->max_texel_buffer_elements = sscreen->b.get_param( &sscreen->b, PIPE_CAP_MAX_TEXEL_BUFFER_ELEMENTS_UINT); /* Set these flags in debug_flags early, so that the shader cache takes * them into account. * * Enable FS_CORRECT_DERIVS_AFTER_KILL by default if LLVM is >= 13. This makes * nir_opt_move_discards_to_top more effective. */ if (driQueryOptionb(config->options, "glsl_correct_derivatives_after_discard") || LLVM_VERSION_MAJOR >= 13) sscreen->debug_flags |= DBG(FS_CORRECT_DERIVS_AFTER_KILL); if (sscreen->debug_flags & DBG(INFO)) ac_print_gpu_info(&sscreen->info, stdout); slab_create_parent(&sscreen->pool_transfers, sizeof(struct si_transfer), 64); sscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1)); if (sscreen->force_aniso == -1) { sscreen->force_aniso = MIN2(16, debug_get_num_option("AMD_TEX_ANISO", -1)); } if (sscreen->force_aniso >= 0) { printf("radeonsi: Forcing anisotropy filter to %ix\n", /* round down to a power of two */ 1 << util_logbase2(sscreen->force_aniso)); } (void)mtx_init(&sscreen->aux_context_lock, mtx_recursive); (void)simple_mtx_init(&sscreen->async_compute_context_lock, mtx_plain); (void)simple_mtx_init(&sscreen->gpu_load_mutex, mtx_plain); (void)simple_mtx_init(&sscreen->gds_mutex, mtx_plain); si_init_gs_info(sscreen); if (!si_init_shader_cache(sscreen)) { FREE(sscreen); return NULL; } if (sscreen->info.gfx_level < GFX10_3) sscreen->options.vrs2x2 = false; si_disk_cache_create(sscreen); /* Determine the number of shader compiler threads. */ const struct util_cpu_caps_t *caps = util_get_cpu_caps(); hw_threads = caps->nr_cpus; if (hw_threads >= 12) { num_comp_hi_threads = hw_threads * 3 / 4; num_comp_lo_threads = hw_threads / 3; } else if (hw_threads >= 6) { num_comp_hi_threads = hw_threads - 2; num_comp_lo_threads = hw_threads / 2; } else if (hw_threads >= 2) { num_comp_hi_threads = hw_threads - 1; num_comp_lo_threads = hw_threads / 2; } else { num_comp_hi_threads = 1; num_comp_lo_threads = 1; } #ifndef NDEBUG nir_process_debug_variable(); /* Use a single compilation thread if NIR printing is enabled to avoid * multiple shaders being printed at the same time. */ if (NIR_DEBUG(PRINT)) { num_comp_hi_threads = 1; num_comp_lo_threads = 1; } #endif num_comp_hi_threads = MIN2(num_comp_hi_threads, ARRAY_SIZE(sscreen->compiler)); num_comp_lo_threads = MIN2(num_comp_lo_threads, ARRAY_SIZE(sscreen->compiler_lowp)); /* Take a reference on the glsl types for the compiler threads. */ glsl_type_singleton_init_or_ref(); /* Start with a single thread and a single slot. * Each time we'll hit the "all slots are in use" case, the number of threads and * slots will be increased. */ int num_slots = num_comp_hi_threads == 1 ? 64 : 1; if (!util_queue_init(&sscreen->shader_compiler_queue, "sh", num_slots, num_comp_hi_threads, UTIL_QUEUE_INIT_RESIZE_IF_FULL | UTIL_QUEUE_INIT_SCALE_THREADS | UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY, NULL)) { si_destroy_shader_cache(sscreen); FREE(sscreen); glsl_type_singleton_decref(); return NULL; } if (!util_queue_init(&sscreen->shader_compiler_queue_low_priority, "shlo", num_slots, num_comp_lo_threads, UTIL_QUEUE_INIT_RESIZE_IF_FULL | UTIL_QUEUE_INIT_SCALE_THREADS | UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY | UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY, NULL)) { si_destroy_shader_cache(sscreen); FREE(sscreen); glsl_type_singleton_decref(); return NULL; } if (!debug_get_bool_option("RADEON_DISABLE_PERFCOUNTERS", false)) si_init_perfcounters(sscreen); sscreen->max_memory_usage_kb = sscreen->info.vram_size_kb + sscreen->info.gart_size_kb / 4 * 3; ac_get_hs_info(&sscreen->info, &sscreen->hs); sscreen->has_draw_indirect_multi = (sscreen->info.family >= CHIP_POLARIS10) || (sscreen->info.gfx_level == GFX8 && sscreen->info.pfp_fw_version >= 121 && sscreen->info.me_fw_version >= 87) || (sscreen->info.gfx_level == GFX7 && sscreen->info.pfp_fw_version >= 211 && sscreen->info.me_fw_version >= 173) || (sscreen->info.gfx_level == GFX6 && sscreen->info.pfp_fw_version >= 79 && sscreen->info.me_fw_version >= 142); sscreen->has_out_of_order_rast = sscreen->info.has_out_of_order_rast && !(sscreen->debug_flags & DBG(NO_OUT_OF_ORDER)); if (sscreen->info.gfx_level >= GFX11) { sscreen->use_ngg = true; sscreen->use_ngg_streamout = true; /* TODO: Disable for now. Investigate if it helps. */ sscreen->use_ngg_culling = (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL)) && !(sscreen->debug_flags & DBG(NO_NGG_CULLING)); } else { sscreen->use_ngg = !(sscreen->debug_flags & DBG(NO_NGG)) && sscreen->info.gfx_level >= GFX10 && (sscreen->info.family != CHIP_NAVI14 || sscreen->info.is_pro_graphics); sscreen->use_ngg_streamout = false; sscreen->use_ngg_culling = sscreen->use_ngg && sscreen->info.max_render_backends >= 2 && !(sscreen->debug_flags & DBG(NO_NGG_CULLING)) && LLVM_VERSION_MAJOR >= 12; /* hangs on 11, see #4874 */ } /* Only set this for the cases that are known to work, which are: * - GFX9 if bpp >= 4 (in bytes) */ if (sscreen->info.gfx_level >= GFX10) { memset(sscreen->allow_dcc_msaa_clear_to_reg_for_bpp, true, sizeof(sscreen->allow_dcc_msaa_clear_to_reg_for_bpp)); } else if (sscreen->info.gfx_level == GFX9) { for (unsigned bpp_log2 = util_logbase2(1); bpp_log2 <= util_logbase2(16); bpp_log2++) sscreen->allow_dcc_msaa_clear_to_reg_for_bpp[bpp_log2] = true; } /* DCC stores have 50% performance of uncompressed stores and sometimes * even less than that. It's risky to enable on dGPUs. */ sscreen->always_allow_dcc_stores = !(sscreen->debug_flags & DBG(NO_DCC_STORE)) && (sscreen->debug_flags & DBG(DCC_STORE) || sscreen->info.gfx_level >= GFX11 || /* always enabled on gfx11 */ (sscreen->info.gfx_level >= GFX10_3 && !sscreen->info.has_dedicated_vram)); sscreen->dpbb_allowed = !(sscreen->debug_flags & DBG(NO_DPBB)) && (sscreen->info.gfx_level >= GFX10 || /* Only enable primitive binning on gfx9 APUs by default. */ (sscreen->info.gfx_level == GFX9 && !sscreen->info.has_dedicated_vram) || sscreen->debug_flags & DBG(DPBB)); if (sscreen->dpbb_allowed) { if (sscreen->info.has_dedicated_vram) { if (sscreen->info.max_render_backends > 4) { sscreen->pbb_context_states_per_bin = 1; sscreen->pbb_persistent_states_per_bin = 1; } else { sscreen->pbb_context_states_per_bin = 3; sscreen->pbb_persistent_states_per_bin = 8; } } else { /* This is a workaround for: * https://bugs.freedesktop.org/show_bug.cgi?id=110214 * (an alternative is to insert manual BATCH_BREAK event when * a context_roll is detected). */ sscreen->pbb_context_states_per_bin = sscreen->info.has_gfx9_scissor_bug ? 1 : 6; /* Using 32 here can cause GPU hangs on RAVEN1 */ sscreen->pbb_persistent_states_per_bin = 16; } assert(sscreen->pbb_context_states_per_bin >= 1 && sscreen->pbb_context_states_per_bin <= 6); assert(sscreen->pbb_persistent_states_per_bin >= 1 && sscreen->pbb_persistent_states_per_bin <= 32); } (void)simple_mtx_init(&sscreen->shader_parts_mutex, mtx_plain); sscreen->use_monolithic_shaders = (sscreen->debug_flags & DBG(MONOLITHIC_SHADERS)) != 0; sscreen->barrier_flags.cp_to_L2 = SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE; if (sscreen->info.gfx_level <= GFX8) { sscreen->barrier_flags.cp_to_L2 |= SI_CONTEXT_INV_L2; sscreen->barrier_flags.L2_to_cp |= SI_CONTEXT_WB_L2; } if (debug_get_bool_option("RADEON_DUMP_SHADERS", false)) sscreen->debug_flags |= DBG_ALL_SHADERS; /* Syntax: * EQAA=s,z,c * Example: * EQAA=8,4,2 * That means 8 coverage samples, 4 Z/S samples, and 2 color samples. * Constraints: * s >= z >= c (ignoring this only wastes memory) * s = [2..16] * z = [2..8] * c = [2..8] * * Only MSAA color and depth buffers are overriden. */ if (sscreen->info.has_eqaa_surface_allocator) { const char *eqaa = debug_get_option("EQAA", NULL); unsigned s, z, f; if (eqaa && sscanf(eqaa, "%u,%u,%u", &s, &z, &f) == 3 && s && z && f) { sscreen->eqaa_force_coverage_samples = s; sscreen->eqaa_force_z_samples = z; sscreen->eqaa_force_color_samples = f; } } sscreen->ngg_subgroup_size = 128; if (sscreen->info.gfx_level >= GFX11) { /* TODO: tweak this */ unsigned attr_ring_size_per_se = align(1400000, 64 * 1024); unsigned attr_ring_size = attr_ring_size_per_se * sscreen->info.max_se; assert(attr_ring_size <= 16 * 1024 * 1024); /* maximum size */ sscreen->attribute_ring = si_aligned_buffer_create(&sscreen->b, PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_32BIT | SI_RESOURCE_FLAG_DRIVER_INTERNAL | SI_RESOURCE_FLAG_DISCARDABLE, PIPE_USAGE_DEFAULT, attr_ring_size, 2 * 1024 * 1024); } /* Create the auxiliary context. This must be done last. */ sscreen->aux_context = si_create_context( &sscreen->b, SI_CONTEXT_FLAG_AUX | (sscreen->options.aux_debug ? PIPE_CONTEXT_DEBUG : 0) | (sscreen->info.has_graphics ? 0 : PIPE_CONTEXT_COMPUTE_ONLY)); if (sscreen->options.aux_debug) { struct u_log_context *log = CALLOC_STRUCT(u_log_context); u_log_context_init(log); si_get_aux_context(sscreen)->b.set_log_context(sscreen->aux_context, log); si_put_aux_context_flush(sscreen); } if (test_flags & DBG(TEST_IMAGE_COPY)) si_test_image_copy_region(sscreen); if (test_flags & (DBG(TEST_CB_RESOLVE) | DBG(TEST_COMPUTE_BLIT))) si_test_blit(sscreen, test_flags); if (test_flags & DBG(TEST_DMA_PERF)) { si_test_dma_perf(sscreen); } if (test_flags & (DBG(TEST_VMFAULT_CP) | DBG(TEST_VMFAULT_SHADER))) si_test_vmfault(sscreen, test_flags); if (test_flags & DBG(TEST_GDS)) si_test_gds((struct si_context *)sscreen->aux_context); if (test_flags & DBG(TEST_GDS_MM)) { si_test_gds_memory_management((struct si_context *)sscreen->aux_context, 32 * 1024, 4, RADEON_DOMAIN_GDS); } if (test_flags & DBG(TEST_GDS_OA_MM)) { si_test_gds_memory_management((struct si_context *)sscreen->aux_context, 4, 1, RADEON_DOMAIN_OA); } ac_print_shadowed_regs(&sscreen->info); STATIC_ASSERT(sizeof(union si_vgt_stages_key) == 1); return &sscreen->b; } struct pipe_screen *radeonsi_screen_create(int fd, const struct pipe_screen_config *config) { drmVersionPtr version = drmGetVersion(fd); struct radeon_winsys *rw = NULL; driParseConfigFiles(config->options, config->options_info, 0, "radeonsi", NULL, NULL, NULL, 0, NULL, 0); switch (version->version_major) { case 2: rw = radeon_drm_winsys_create(fd, config, radeonsi_screen_create_impl); break; case 3: rw = amdgpu_winsys_create(fd, config, radeonsi_screen_create_impl); break; } drmFreeVersion(version); return rw ? rw->screen : NULL; } struct si_context* si_get_aux_context(struct si_screen *sscreen) { mtx_lock(&sscreen->aux_context_lock); return (struct si_context*)sscreen->aux_context; } void si_put_aux_context_flush(struct si_screen *sscreen) { struct pipe_context *c = &((struct si_context*)sscreen->aux_context)->b; c->flush(c, NULL, 0); mtx_unlock(&sscreen->aux_context_lock); }