/* * Mesa 3-D graphics library * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * eval.c was written by * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). * * My original implementation of evaluators was simplistic and didn't * compute surface normal vectors properly. Bernd and Volker applied * used more sophisticated methods to get better results. * * Thanks guys! */ #include "glheader.h" #include "context.h" #include "eval.h" #include "macros.h" #include "mtypes.h" #include "main/dispatch.h" #include "api_exec_decl.h" /* * Return the number of components per control point for any type of * evaluator. Return 0 if bad target. * See table 5.1 in the OpenGL 1.2 spec. */ GLuint _mesa_evaluator_components( GLenum target ) { switch (target) { case GL_MAP1_VERTEX_3: return 3; case GL_MAP1_VERTEX_4: return 4; case GL_MAP1_INDEX: return 1; case GL_MAP1_COLOR_4: return 4; case GL_MAP1_NORMAL: return 3; case GL_MAP1_TEXTURE_COORD_1: return 1; case GL_MAP1_TEXTURE_COORD_2: return 2; case GL_MAP1_TEXTURE_COORD_3: return 3; case GL_MAP1_TEXTURE_COORD_4: return 4; case GL_MAP2_VERTEX_3: return 3; case GL_MAP2_VERTEX_4: return 4; case GL_MAP2_INDEX: return 1; case GL_MAP2_COLOR_4: return 4; case GL_MAP2_NORMAL: return 3; case GL_MAP2_TEXTURE_COORD_1: return 1; case GL_MAP2_TEXTURE_COORD_2: return 2; case GL_MAP2_TEXTURE_COORD_3: return 3; case GL_MAP2_TEXTURE_COORD_4: return 4; default: break; } return 0; } /* * Return pointer to the gl_1d_map struct for the named target. */ static struct gl_1d_map * get_1d_map( struct gl_context *ctx, GLenum target ) { switch (target) { case GL_MAP1_VERTEX_3: return &ctx->EvalMap.Map1Vertex3; case GL_MAP1_VERTEX_4: return &ctx->EvalMap.Map1Vertex4; case GL_MAP1_INDEX: return &ctx->EvalMap.Map1Index; case GL_MAP1_COLOR_4: return &ctx->EvalMap.Map1Color4; case GL_MAP1_NORMAL: return &ctx->EvalMap.Map1Normal; case GL_MAP1_TEXTURE_COORD_1: return &ctx->EvalMap.Map1Texture1; case GL_MAP1_TEXTURE_COORD_2: return &ctx->EvalMap.Map1Texture2; case GL_MAP1_TEXTURE_COORD_3: return &ctx->EvalMap.Map1Texture3; case GL_MAP1_TEXTURE_COORD_4: return &ctx->EvalMap.Map1Texture4; default: return NULL; } } /* * Return pointer to the gl_2d_map struct for the named target. */ static struct gl_2d_map * get_2d_map( struct gl_context *ctx, GLenum target ) { switch (target) { case GL_MAP2_VERTEX_3: return &ctx->EvalMap.Map2Vertex3; case GL_MAP2_VERTEX_4: return &ctx->EvalMap.Map2Vertex4; case GL_MAP2_INDEX: return &ctx->EvalMap.Map2Index; case GL_MAP2_COLOR_4: return &ctx->EvalMap.Map2Color4; case GL_MAP2_NORMAL: return &ctx->EvalMap.Map2Normal; case GL_MAP2_TEXTURE_COORD_1: return &ctx->EvalMap.Map2Texture1; case GL_MAP2_TEXTURE_COORD_2: return &ctx->EvalMap.Map2Texture2; case GL_MAP2_TEXTURE_COORD_3: return &ctx->EvalMap.Map2Texture3; case GL_MAP2_TEXTURE_COORD_4: return &ctx->EvalMap.Map2Texture4; default: return NULL; } } /**********************************************************************/ /*** Copy and deallocate control points ***/ /**********************************************************************/ /* * Copy 1-parametric evaluator control points from user-specified * memory space to a buffer of contiguous control points. * \param see glMap1f for details * \return pointer to buffer of contiguous control points or NULL if out * of memory. */ GLfloat *_mesa_copy_map_points1f( GLenum target, GLint ustride, GLint uorder, const GLfloat *points ) { GLfloat *buffer, *p; GLint i, k, size = _mesa_evaluator_components(target); if (!points || !size) return NULL; buffer = malloc(uorder * size * sizeof(GLfloat)); if (buffer) for (i = 0, p = buffer; i < uorder; i++, points += ustride) for (k = 0; k < size; k++) *p++ = points[k]; return buffer; } /* * Same as above but convert doubles to floats. */ GLfloat *_mesa_copy_map_points1d( GLenum target, GLint ustride, GLint uorder, const GLdouble *points ) { GLfloat *buffer, *p; GLint i, k, size = _mesa_evaluator_components(target); if (!points || !size) return NULL; buffer = malloc(uorder * size * sizeof(GLfloat)); if (buffer) for (i = 0, p = buffer; i < uorder; i++, points += ustride) for (k = 0; k < size; k++) *p++ = (GLfloat) points[k]; return buffer; } /* * Copy 2-parametric evaluator control points from user-specified * memory space to a buffer of contiguous control points. * Additional memory is allocated to be used by the horner and * de Casteljau evaluation schemes. * * \param see glMap2f for details * \return pointer to buffer of contiguous control points or NULL if out * of memory. */ GLfloat *_mesa_copy_map_points2f( GLenum target, GLint ustride, GLint uorder, GLint vstride, GLint vorder, const GLfloat *points ) { GLfloat *buffer, *p; GLint i, j, k, size, dsize, hsize; GLint uinc; size = _mesa_evaluator_components(target); if (!points || size==0) { return NULL; } /* max(uorder, vorder) additional points are used in */ /* horner evaluation and uorder*vorder additional */ /* values are needed for de Casteljau */ dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder; hsize = (uorder > vorder ? uorder : vorder)*size; if(hsize>dsize) buffer = malloc((uorder*vorder*size+hsize)*sizeof(GLfloat)); else buffer = malloc((uorder*vorder*size+dsize)*sizeof(GLfloat)); /* compute the increment value for the u-loop */ uinc = ustride - vorder*vstride; if (buffer) for (i=0, p=buffer; i vorder ? uorder : vorder)*size; if(hsize>dsize) buffer = malloc((uorder*vorder*size+hsize)*sizeof(GLfloat)); else buffer = malloc((uorder*vorder*size+dsize)*sizeof(GLfloat)); /* compute the increment value for the u-loop */ uinc = ustride - vorder*vstride; if (buffer) for (i=0, p=buffer; i MAX_EVAL_ORDER) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap1(order)" ); return; } if (!points) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap1(points)" ); return; } k = _mesa_evaluator_components( target ); if (k == 0) { _mesa_error( ctx, GL_INVALID_ENUM, "glMap1(target)" ); return; } if (ustride < k) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" ); return; } if (ctx->Texture.CurrentUnit != 0) { /* See OpenGL 1.2.1 spec, section F.2.13 */ _mesa_error( ctx, GL_INVALID_OPERATION, "glMap2(ACTIVE_TEXTURE != 0)" ); return; } map = get_1d_map(ctx, target); if (!map) { _mesa_error( ctx, GL_INVALID_ENUM, "glMap1(target)" ); return; } /* make copy of the control points */ if (type == GL_FLOAT) pnts = _mesa_copy_map_points1f(target, ustride, uorder, (GLfloat*) points); else pnts = _mesa_copy_map_points1d(target, ustride, uorder, (GLdouble*) points); FLUSH_VERTICES(ctx, 0, GL_EVAL_BIT); vbo_exec_update_eval_maps(ctx); map->Order = uorder; map->u1 = u1; map->u2 = u2; map->du = 1.0F / (u2 - u1); free(map->Points); map->Points = pnts; } void GLAPIENTRY _mesa_Map1f( GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat *points ) { map1(target, u1, u2, stride, order, points, GL_FLOAT); } void GLAPIENTRY _mesa_Map1d( GLenum target, GLdouble u1, GLdouble u2, GLint stride, GLint order, const GLdouble *points ) { map1(target, (GLfloat) u1, (GLfloat) u2, stride, order, points, GL_DOUBLE); } static void map2( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLvoid *points, GLenum type ) { GET_CURRENT_CONTEXT(ctx); GLint k; GLfloat *pnts; struct gl_2d_map *map = NULL; assert(type == GL_FLOAT || type == GL_DOUBLE); if (u1==u2) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" ); return; } if (v1==v2) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" ); return; } if (uorder<1 || uorder>MAX_EVAL_ORDER) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" ); return; } if (vorder<1 || vorder>MAX_EVAL_ORDER) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" ); return; } k = _mesa_evaluator_components( target ); if (k==0) { _mesa_error( ctx, GL_INVALID_ENUM, "glMap2(target)" ); return; } if (ustride < k) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" ); return; } if (vstride < k) { _mesa_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" ); return; } if (ctx->Texture.CurrentUnit != 0) { /* See OpenGL 1.2.1 spec, section F.2.13 */ _mesa_error( ctx, GL_INVALID_OPERATION, "glMap2(ACTIVE_TEXTURE != 0)" ); return; } map = get_2d_map(ctx, target); if (!map) { _mesa_error( ctx, GL_INVALID_ENUM, "glMap2(target)" ); return; } /* make copy of the control points */ if (type == GL_FLOAT) pnts = _mesa_copy_map_points2f(target, ustride, uorder, vstride, vorder, (GLfloat*) points); else pnts = _mesa_copy_map_points2d(target, ustride, uorder, vstride, vorder, (GLdouble*) points); FLUSH_VERTICES(ctx, 0, GL_EVAL_BIT); vbo_exec_update_eval_maps(ctx); map->Uorder = uorder; map->u1 = u1; map->u2 = u2; map->du = 1.0F / (u2 - u1); map->Vorder = vorder; map->v1 = v1; map->v2 = v2; map->dv = 1.0F / (v2 - v1); free(map->Points); map->Points = pnts; } void GLAPIENTRY _mesa_Map2f( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat *points) { map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points, GL_FLOAT); } void GLAPIENTRY _mesa_Map2d( GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder, GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble *points ) { map2(target, (GLfloat) u1, (GLfloat) u2, ustride, uorder, (GLfloat) v1, (GLfloat) v2, vstride, vorder, points, GL_DOUBLE); } void GLAPIENTRY _mesa_GetnMapdvARB( GLenum target, GLenum query, GLsizei bufSize, GLdouble *v ) { GET_CURRENT_CONTEXT(ctx); struct gl_1d_map *map1d; struct gl_2d_map *map2d; GLint i, n; GLfloat *data; GLuint comps; GLsizei numBytes; comps = _mesa_evaluator_components(target); if (!comps) { _mesa_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" ); return; } map1d = get_1d_map(ctx, target); map2d = get_2d_map(ctx, target); assert(map1d || map2d); switch (query) { case GL_COEFF: if (map1d) { data = map1d->Points; n = map1d->Order * comps; } else { data = map2d->Points; n = map2d->Uorder * map2d->Vorder * comps; } if (data) { numBytes = n * sizeof *v; if (bufSize < numBytes) goto overflow; for (i=0;iOrder; } else { numBytes = 2 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = (GLdouble) map2d->Uorder; v[1] = (GLdouble) map2d->Vorder; } break; case GL_DOMAIN: if (map1d) { numBytes = 2 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = (GLdouble) map1d->u1; v[1] = (GLdouble) map1d->u2; } else { numBytes = 4 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = (GLdouble) map2d->u1; v[1] = (GLdouble) map2d->u2; v[2] = (GLdouble) map2d->v1; v[3] = (GLdouble) map2d->v2; } break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" ); } return; overflow: _mesa_error( ctx, GL_INVALID_OPERATION, "glGetnMapdvARB(out of bounds: bufSize is %d," " but %d bytes are required)", bufSize, numBytes ); } void GLAPIENTRY _mesa_GetMapdv( GLenum target, GLenum query, GLdouble *v ) { _mesa_GetnMapdvARB(target, query, INT_MAX, v); } void GLAPIENTRY _mesa_GetnMapfvARB( GLenum target, GLenum query, GLsizei bufSize, GLfloat *v ) { GET_CURRENT_CONTEXT(ctx); struct gl_1d_map *map1d; struct gl_2d_map *map2d; GLint i, n; GLfloat *data; GLuint comps; GLsizei numBytes; comps = _mesa_evaluator_components(target); if (!comps) { _mesa_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" ); return; } map1d = get_1d_map(ctx, target); map2d = get_2d_map(ctx, target); assert(map1d || map2d); switch (query) { case GL_COEFF: if (map1d) { data = map1d->Points; n = map1d->Order * comps; } else { data = map2d->Points; n = map2d->Uorder * map2d->Vorder * comps; } if (data) { numBytes = n * sizeof *v; if (bufSize < numBytes) goto overflow; for (i=0;iOrder; } else { numBytes = 2 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = (GLfloat) map2d->Uorder; v[1] = (GLfloat) map2d->Vorder; } break; case GL_DOMAIN: if (map1d) { numBytes = 2 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = map1d->u1; v[1] = map1d->u2; } else { numBytes = 4 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = map2d->u1; v[1] = map2d->u2; v[2] = map2d->v1; v[3] = map2d->v2; } break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" ); } return; overflow: _mesa_error( ctx, GL_INVALID_OPERATION, "glGetnMapfvARB(out of bounds: bufSize is %d," " but %d bytes are required)", bufSize, numBytes ); } void GLAPIENTRY _mesa_GetMapfv( GLenum target, GLenum query, GLfloat *v ) { _mesa_GetnMapfvARB(target, query, INT_MAX, v); } void GLAPIENTRY _mesa_GetnMapivARB( GLenum target, GLenum query, GLsizei bufSize, GLint *v ) { GET_CURRENT_CONTEXT(ctx); struct gl_1d_map *map1d; struct gl_2d_map *map2d; GLuint i, n; GLfloat *data; GLuint comps; GLsizei numBytes; comps = _mesa_evaluator_components(target); if (!comps) { _mesa_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" ); return; } map1d = get_1d_map(ctx, target); map2d = get_2d_map(ctx, target); assert(map1d || map2d); switch (query) { case GL_COEFF: if (map1d) { data = map1d->Points; n = map1d->Order * comps; } else { data = map2d->Points; n = map2d->Uorder * map2d->Vorder * comps; } if (data) { numBytes = n * sizeof *v; if (bufSize < numBytes) goto overflow; for (i=0;iOrder; } else { numBytes = 2 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = map2d->Uorder; v[1] = map2d->Vorder; } break; case GL_DOMAIN: if (map1d) { numBytes = 2 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = lroundf(map1d->u1); v[1] = lroundf(map1d->u2); } else { numBytes = 4 * sizeof *v; if (bufSize < numBytes) goto overflow; v[0] = lroundf(map2d->u1); v[1] = lroundf(map2d->u2); v[2] = lroundf(map2d->v1); v[3] = lroundf(map2d->v2); } break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" ); } return; overflow: _mesa_error( ctx, GL_INVALID_OPERATION, "glGetnMapivARB(out of bounds: bufSize is %d," " but %d bytes are required)", bufSize, numBytes ); } void GLAPIENTRY _mesa_GetMapiv( GLenum target, GLenum query, GLint *v ) { _mesa_GetnMapivARB(target, query, INT_MAX, v); } void GLAPIENTRY _mesa_MapGrid1f( GLint un, GLfloat u1, GLfloat u2 ) { GET_CURRENT_CONTEXT(ctx); if (un<1) { _mesa_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" ); return; } FLUSH_VERTICES(ctx, 0, GL_EVAL_BIT); vbo_exec_update_eval_maps(ctx); ctx->Eval.MapGrid1un = un; ctx->Eval.MapGrid1u1 = u1; ctx->Eval.MapGrid1u2 = u2; ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un; } void GLAPIENTRY _mesa_MapGrid1d( GLint un, GLdouble u1, GLdouble u2 ) { _mesa_MapGrid1f( un, (GLfloat) u1, (GLfloat) u2 ); } void GLAPIENTRY _mesa_MapGrid2f( GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2 ) { GET_CURRENT_CONTEXT(ctx); if (un<1) { _mesa_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" ); return; } if (vn<1) { _mesa_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" ); return; } FLUSH_VERTICES(ctx, 0, GL_EVAL_BIT); vbo_exec_update_eval_maps(ctx); ctx->Eval.MapGrid2un = un; ctx->Eval.MapGrid2u1 = u1; ctx->Eval.MapGrid2u2 = u2; ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un; ctx->Eval.MapGrid2vn = vn; ctx->Eval.MapGrid2v1 = v1; ctx->Eval.MapGrid2v2 = v2; ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn; } void GLAPIENTRY _mesa_MapGrid2d( GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1, GLdouble v2 ) { _mesa_MapGrid2f( un, (GLfloat) u1, (GLfloat) u2, vn, (GLfloat) v1, (GLfloat) v2 ); } /**********************************************************************/ /***** Initialization *****/ /**********************************************************************/ /** * Initialize a 1-D evaluator map. */ static void init_1d_map( struct gl_1d_map *map, int n, const float *initial ) { map->Order = 1; map->u1 = 0.0; map->u2 = 1.0; map->Points = malloc(n * sizeof(GLfloat)); if (map->Points) { GLint i; for (i=0;iPoints[i] = initial[i]; } } /** * Initialize a 2-D evaluator map */ static void init_2d_map( struct gl_2d_map *map, int n, const float *initial ) { map->Uorder = 1; map->Vorder = 1; map->u1 = 0.0; map->u2 = 1.0; map->v1 = 0.0; map->v2 = 1.0; map->Points = malloc(n * sizeof(GLfloat)); if (map->Points) { GLint i; for (i=0;iPoints[i] = initial[i]; } } void _mesa_init_eval( struct gl_context *ctx ) { /* Evaluators group */ ctx->Eval.Map1Color4 = GL_FALSE; ctx->Eval.Map1Index = GL_FALSE; ctx->Eval.Map1Normal = GL_FALSE; ctx->Eval.Map1TextureCoord1 = GL_FALSE; ctx->Eval.Map1TextureCoord2 = GL_FALSE; ctx->Eval.Map1TextureCoord3 = GL_FALSE; ctx->Eval.Map1TextureCoord4 = GL_FALSE; ctx->Eval.Map1Vertex3 = GL_FALSE; ctx->Eval.Map1Vertex4 = GL_FALSE; ctx->Eval.Map2Color4 = GL_FALSE; ctx->Eval.Map2Index = GL_FALSE; ctx->Eval.Map2Normal = GL_FALSE; ctx->Eval.Map2TextureCoord1 = GL_FALSE; ctx->Eval.Map2TextureCoord2 = GL_FALSE; ctx->Eval.Map2TextureCoord3 = GL_FALSE; ctx->Eval.Map2TextureCoord4 = GL_FALSE; ctx->Eval.Map2Vertex3 = GL_FALSE; ctx->Eval.Map2Vertex4 = GL_FALSE; ctx->Eval.AutoNormal = GL_FALSE; ctx->Eval.MapGrid1un = 1; ctx->Eval.MapGrid1u1 = 0.0; ctx->Eval.MapGrid1u2 = 1.0; ctx->Eval.MapGrid2un = 1; ctx->Eval.MapGrid2vn = 1; ctx->Eval.MapGrid2u1 = 0.0; ctx->Eval.MapGrid2u2 = 1.0; ctx->Eval.MapGrid2v1 = 0.0; ctx->Eval.MapGrid2v2 = 1.0; /* Evaluator data */ { static GLfloat vertex[4] = { 0.0, 0.0, 0.0, 1.0 }; static GLfloat normal[3] = { 0.0, 0.0, 1.0 }; static GLfloat index[1] = { 1.0 }; static GLfloat color[4] = { 1.0, 1.0, 1.0, 1.0 }; static GLfloat texcoord[4] = { 0.0, 0.0, 0.0, 1.0 }; init_1d_map( &ctx->EvalMap.Map1Vertex3, 3, vertex ); init_1d_map( &ctx->EvalMap.Map1Vertex4, 4, vertex ); init_1d_map( &ctx->EvalMap.Map1Index, 1, index ); init_1d_map( &ctx->EvalMap.Map1Color4, 4, color ); init_1d_map( &ctx->EvalMap.Map1Normal, 3, normal ); init_1d_map( &ctx->EvalMap.Map1Texture1, 1, texcoord ); init_1d_map( &ctx->EvalMap.Map1Texture2, 2, texcoord ); init_1d_map( &ctx->EvalMap.Map1Texture3, 3, texcoord ); init_1d_map( &ctx->EvalMap.Map1Texture4, 4, texcoord ); init_2d_map( &ctx->EvalMap.Map2Vertex3, 3, vertex ); init_2d_map( &ctx->EvalMap.Map2Vertex4, 4, vertex ); init_2d_map( &ctx->EvalMap.Map2Index, 1, index ); init_2d_map( &ctx->EvalMap.Map2Color4, 4, color ); init_2d_map( &ctx->EvalMap.Map2Normal, 3, normal ); init_2d_map( &ctx->EvalMap.Map2Texture1, 1, texcoord ); init_2d_map( &ctx->EvalMap.Map2Texture2, 2, texcoord ); init_2d_map( &ctx->EvalMap.Map2Texture3, 3, texcoord ); init_2d_map( &ctx->EvalMap.Map2Texture4, 4, texcoord ); } } void _mesa_free_eval_data( struct gl_context *ctx ) { /* Free evaluator data */ free(ctx->EvalMap.Map1Vertex3.Points); free(ctx->EvalMap.Map1Vertex4.Points); free(ctx->EvalMap.Map1Index.Points); free(ctx->EvalMap.Map1Color4.Points); free(ctx->EvalMap.Map1Normal.Points); free(ctx->EvalMap.Map1Texture1.Points); free(ctx->EvalMap.Map1Texture2.Points); free(ctx->EvalMap.Map1Texture3.Points); free(ctx->EvalMap.Map1Texture4.Points); free(ctx->EvalMap.Map2Vertex3.Points); free(ctx->EvalMap.Map2Vertex4.Points); free(ctx->EvalMap.Map2Index.Points); free(ctx->EvalMap.Map2Color4.Points); free(ctx->EvalMap.Map2Normal.Points); free(ctx->EvalMap.Map2Texture1.Points); free(ctx->EvalMap.Map2Texture2.Points); free(ctx->EvalMap.Map2Texture3.Points); free(ctx->EvalMap.Map2Texture4.Points); }