/* * Copyright © Microsoft Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "dzn_private.h" #include "vk_alloc.h" #include "vk_common_entrypoints.h" #include "vk_cmd_enqueue_entrypoints.h" #include "vk_debug_report.h" #include "vk_format.h" #include "vk_sync_dummy.h" #include "vk_util.h" #include "git_sha1.h" #include "util/debug.h" #include "util/disk_cache.h" #include "util/macros.h" #include "util/mesa-sha1.h" #include "glsl_types.h" #include "dxil_validator.h" #include "git_sha1.h" #include #include #include #ifdef _WIN32 #include #include #include "dzn_dxgi.h" #endif #include #if defined(VK_USE_PLATFORM_WIN32_KHR) || \ defined(VK_USE_PLATFORM_WAYLAND_KHR) || \ defined(VK_USE_PLATFORM_XCB_KHR) || \ defined(VK_USE_PLATFORM_XLIB_KHR) #define DZN_USE_WSI_PLATFORM #endif #define DZN_API_VERSION VK_MAKE_VERSION(1, 0, VK_HEADER_VERSION) #define MAX_TIER2_MEMORY_TYPES 3 static const struct vk_instance_extension_table instance_extensions = { .KHR_get_physical_device_properties2 = true, #ifdef DZN_USE_WSI_PLATFORM .KHR_surface = true, #endif #ifdef VK_USE_PLATFORM_WIN32_KHR .KHR_win32_surface = true, #endif #ifdef VK_USE_PLATFORM_XCB_KHR .KHR_xcb_surface = true, #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR .KHR_wayland_surface = true, #endif #ifdef VK_USE_PLATFORM_XLIB_KHR .KHR_xlib_surface = true, #endif .EXT_debug_report = true, .EXT_debug_utils = true, }; static void dzn_physical_device_get_extensions(struct dzn_physical_device *pdev) { pdev->vk.supported_extensions = (struct vk_device_extension_table) { .KHR_create_renderpass2 = true, .KHR_depth_stencil_resolve = true, .KHR_descriptor_update_template = true, .KHR_draw_indirect_count = true, .KHR_driver_properties = true, .KHR_dynamic_rendering = true, .KHR_shader_draw_parameters = true, #ifdef DZN_USE_WSI_PLATFORM .KHR_swapchain = true, #endif .EXT_vertex_attribute_divisor = true, }; } VKAPI_ATTR VkResult VKAPI_CALL dzn_EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { /* We don't support any layers */ if (pLayerName) return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); return vk_enumerate_instance_extension_properties( &instance_extensions, pPropertyCount, pProperties); } static const struct debug_control dzn_debug_options[] = { { "sync", DZN_DEBUG_SYNC }, { "nir", DZN_DEBUG_NIR }, { "dxil", DZN_DEBUG_DXIL }, { "warp", DZN_DEBUG_WARP }, { "internal", DZN_DEBUG_INTERNAL }, { "signature", DZN_DEBUG_SIG }, { "gbv", DZN_DEBUG_GBV }, { "d3d12", DZN_DEBUG_D3D12 }, { "debugger", DZN_DEBUG_DEBUGGER }, { "redirects", DZN_DEBUG_REDIRECTS }, { NULL, 0 } }; static void dzn_physical_device_destroy(struct dzn_physical_device *pdev) { struct dzn_instance *instance = container_of(pdev->vk.instance, struct dzn_instance, vk); list_del(&pdev->link); if (pdev->dev) ID3D12Device1_Release(pdev->dev); if (pdev->adapter) IUnknown_Release(pdev->adapter); dzn_wsi_finish(pdev); vk_physical_device_finish(&pdev->vk); vk_free(&instance->vk.alloc, pdev); } static void dzn_instance_destroy(struct dzn_instance *instance, const VkAllocationCallbacks *alloc) { if (!instance) return; #ifdef _WIN32 if (instance->dxil_validator) dxil_destroy_validator(instance->dxil_validator); #endif list_for_each_entry_safe(struct dzn_physical_device, pdev, &instance->physical_devices, link) { dzn_physical_device_destroy(pdev); } vk_instance_finish(&instance->vk); vk_free2(vk_default_allocator(), alloc, instance); } static VkResult dzn_instance_create(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *out) { struct dzn_instance *instance = vk_zalloc2(vk_default_allocator(), pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!instance) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); struct vk_instance_dispatch_table dispatch_table; vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &dzn_instance_entrypoints, true); VkResult result = vk_instance_init(&instance->vk, &instance_extensions, &dispatch_table, pCreateInfo, pAllocator ? pAllocator : vk_default_allocator()); if (result != VK_SUCCESS) { vk_free2(vk_default_allocator(), pAllocator, instance); return result; } list_inithead(&instance->physical_devices); instance->physical_devices_enumerated = false; instance->debug_flags = parse_debug_string(getenv("DZN_DEBUG"), dzn_debug_options); #ifdef _WIN32 if (instance->debug_flags & DZN_DEBUG_DEBUGGER) { /* wait for debugger to attach... */ while (!IsDebuggerPresent()) { Sleep(100); } } if (instance->debug_flags & DZN_DEBUG_REDIRECTS) { char home[MAX_PATH], path[MAX_PATH]; if (SUCCEEDED(SHGetFolderPathA(NULL, CSIDL_PROFILE, NULL, 0, home))) { snprintf(path, sizeof(path), "%s\\stderr.txt", home); freopen(path, "w", stderr); snprintf(path, sizeof(path), "%s\\stdout.txt", home); freopen(path, "w", stdout); } } #endif bool missing_validator = false; #ifdef _WIN32 instance->dxil_validator = dxil_create_validator(NULL); missing_validator = !instance->dxil_validator; #endif instance->d3d12.serialize_root_sig = d3d12_get_serialize_root_sig(); if (missing_validator || !instance->d3d12.serialize_root_sig) { dzn_instance_destroy(instance, pAllocator); return vk_error(NULL, VK_ERROR_INITIALIZATION_FAILED); } if (instance->debug_flags & DZN_DEBUG_D3D12) d3d12_enable_debug_layer(); if (instance->debug_flags & DZN_DEBUG_GBV) d3d12_enable_gpu_validation(); instance->sync_binary_type = vk_sync_binary_get_type(&dzn_sync_type); *out = dzn_instance_to_handle(instance); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) { return dzn_instance_create(pCreateInfo, pAllocator, pInstance); } VKAPI_ATTR void VKAPI_CALL dzn_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) { dzn_instance_destroy(dzn_instance_from_handle(instance), pAllocator); } static void dzn_physical_device_init_uuids(struct dzn_physical_device *pdev) { const char *mesa_version = "Mesa " PACKAGE_VERSION MESA_GIT_SHA1; struct mesa_sha1 sha1_ctx; uint8_t sha1[SHA1_DIGEST_LENGTH]; STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1)); /* The pipeline cache UUID is used for determining when a pipeline cache is * invalid. Our cache is device-agnostic, but it does depend on the features * provided by the D3D12 driver, so let's hash the build ID plus some * caps that might impact our NIR lowering passes. */ _mesa_sha1_init(&sha1_ctx); _mesa_sha1_update(&sha1_ctx, mesa_version, strlen(mesa_version)); disk_cache_get_function_identifier(dzn_physical_device_init_uuids, &sha1_ctx); _mesa_sha1_update(&sha1_ctx, &pdev->options, sizeof(pdev->options)); _mesa_sha1_update(&sha1_ctx, &pdev->options2, sizeof(pdev->options2)); _mesa_sha1_final(&sha1_ctx, sha1); memcpy(pdev->pipeline_cache_uuid, sha1, VK_UUID_SIZE); /* The driver UUID is used for determining sharability of images and memory * between two Vulkan instances in separate processes. People who want to * share memory need to also check the device UUID (below) so all this * needs to be is the build-id. */ _mesa_sha1_compute(mesa_version, strlen(mesa_version), sha1); memcpy(pdev->driver_uuid, sha1, VK_UUID_SIZE); /* The device UUID uniquely identifies the given device within the machine. */ _mesa_sha1_init(&sha1_ctx); _mesa_sha1_update(&sha1_ctx, &pdev->desc.vendor_id, sizeof(pdev->desc.vendor_id)); _mesa_sha1_update(&sha1_ctx, &pdev->desc.device_id, sizeof(pdev->desc.device_id)); _mesa_sha1_update(&sha1_ctx, &pdev->desc.subsys_id, sizeof(pdev->desc.subsys_id)); _mesa_sha1_update(&sha1_ctx, &pdev->desc.revision, sizeof(pdev->desc.revision)); _mesa_sha1_final(&sha1_ctx, sha1); memcpy(pdev->device_uuid, sha1, VK_UUID_SIZE); } const struct vk_pipeline_cache_object_ops *const dzn_pipeline_cache_import_ops[] = { &dzn_cached_blob_ops, NULL, }; static VkResult dzn_physical_device_create(struct dzn_instance *instance, IUnknown *adapter, const struct dzn_physical_device_desc *desc) { struct dzn_physical_device *pdev = vk_zalloc(&instance->vk.alloc, sizeof(*pdev), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!pdev) return vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY); struct vk_physical_device_dispatch_table dispatch_table; vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table, &dzn_physical_device_entrypoints, true); vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table, &wsi_physical_device_entrypoints, false); VkResult result = vk_physical_device_init(&pdev->vk, &instance->vk, NULL, /* We set up extensions later */ &dispatch_table); if (result != VK_SUCCESS) { vk_free(&instance->vk.alloc, pdev); return result; } mtx_init(&pdev->dev_lock, mtx_plain); pdev->desc = *desc; pdev->adapter = adapter; IUnknown_AddRef(adapter); list_addtail(&pdev->link, &instance->physical_devices); vk_warn_non_conformant_implementation("dzn"); uint32_t num_sync_types = 0; pdev->sync_types[num_sync_types++] = &dzn_sync_type; pdev->sync_types[num_sync_types++] = &instance->sync_binary_type.sync; pdev->sync_types[num_sync_types++] = &vk_sync_dummy_type; pdev->sync_types[num_sync_types] = NULL; assert(num_sync_types <= MAX_SYNC_TYPES); pdev->vk.supported_sync_types = pdev->sync_types; pdev->vk.pipeline_cache_import_ops = dzn_pipeline_cache_import_ops; /* TODO: something something queue families */ result = dzn_wsi_init(pdev); if (result != VK_SUCCESS) { dzn_physical_device_destroy(pdev); return result; } dzn_physical_device_get_extensions(pdev); return VK_SUCCESS; } static void dzn_physical_device_cache_caps(struct dzn_physical_device *pdev) { D3D_FEATURE_LEVEL checklist[] = { D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_12_0, D3D_FEATURE_LEVEL_12_1, D3D_FEATURE_LEVEL_12_2, }; D3D12_FEATURE_DATA_FEATURE_LEVELS levels = { .NumFeatureLevels = ARRAY_SIZE(checklist), .pFeatureLevelsRequested = checklist, }; ID3D12Device1_CheckFeatureSupport(pdev->dev, D3D12_FEATURE_FEATURE_LEVELS, &levels, sizeof(levels)); pdev->feature_level = levels.MaxSupportedFeatureLevel; ID3D12Device1_CheckFeatureSupport(pdev->dev, D3D12_FEATURE_ARCHITECTURE1, &pdev->architecture, sizeof(pdev->architecture)); ID3D12Device1_CheckFeatureSupport(pdev->dev, D3D12_FEATURE_D3D12_OPTIONS, &pdev->options, sizeof(pdev->options)); ID3D12Device1_CheckFeatureSupport(pdev->dev, D3D12_FEATURE_D3D12_OPTIONS2, &pdev->options2, sizeof(pdev->options2)); ID3D12Device1_CheckFeatureSupport(pdev->dev, D3D12_FEATURE_D3D12_OPTIONS3, &pdev->options3, sizeof(pdev->options3)); pdev->queue_families[pdev->queue_family_count++] = (struct dzn_queue_family) { .props = { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = 1, .timestampValidBits = 64, .minImageTransferGranularity = { 0, 0, 0 }, }, .desc = { .Type = D3D12_COMMAND_LIST_TYPE_DIRECT, }, }; pdev->queue_families[pdev->queue_family_count++] = (struct dzn_queue_family) { .props = { .queueFlags = VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = 8, .timestampValidBits = 64, .minImageTransferGranularity = { 0, 0, 0 }, }, .desc = { .Type = D3D12_COMMAND_LIST_TYPE_COMPUTE, }, }; pdev->queue_families[pdev->queue_family_count++] = (struct dzn_queue_family) { .props = { .queueFlags = VK_QUEUE_TRANSFER_BIT, .queueCount = 1, .timestampValidBits = 0, .minImageTransferGranularity = { 0, 0, 0 }, }, .desc = { .Type = D3D12_COMMAND_LIST_TYPE_COPY, }, }; assert(pdev->queue_family_count <= ARRAY_SIZE(pdev->queue_families)); D3D12_COMMAND_QUEUE_DESC queue_desc = { .Type = D3D12_COMMAND_LIST_TYPE_DIRECT, .Priority = D3D12_COMMAND_QUEUE_PRIORITY_NORMAL, .Flags = D3D12_COMMAND_QUEUE_FLAG_NONE, .NodeMask = 0, }; ID3D12CommandQueue *cmdqueue; ID3D12Device1_CreateCommandQueue(pdev->dev, &queue_desc, &IID_ID3D12CommandQueue, (void **)&cmdqueue); uint64_t ts_freq; ID3D12CommandQueue_GetTimestampFrequency(cmdqueue, &ts_freq); pdev->timestamp_period = 1000000000.0f / ts_freq; ID3D12CommandQueue_Release(cmdqueue); } static void dzn_physical_device_init_memory(struct dzn_physical_device *pdev) { VkPhysicalDeviceMemoryProperties *mem = &pdev->memory; mem->memoryHeapCount = 1; mem->memoryHeaps[0] = (VkMemoryHeap) { .size = pdev->desc.shared_system_memory, .flags = 0, }; mem->memoryTypes[mem->memoryTypeCount++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = 0, }; mem->memoryTypes[mem->memoryTypeCount++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = 0, }; if (!pdev->architecture.UMA) { mem->memoryHeaps[mem->memoryHeapCount++] = (VkMemoryHeap) { .size = pdev->desc.dedicated_video_memory, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; mem->memoryTypes[mem->memoryTypeCount++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, .heapIndex = mem->memoryHeapCount - 1, }; } else { mem->memoryHeaps[0].flags |= VK_MEMORY_HEAP_DEVICE_LOCAL_BIT; mem->memoryTypes[0].propertyFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; mem->memoryTypes[1].propertyFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } assert(mem->memoryTypeCount <= MAX_TIER2_MEMORY_TYPES); if (pdev->options.ResourceHeapTier == D3D12_RESOURCE_HEAP_TIER_1) { unsigned oldMemoryTypeCount = mem->memoryTypeCount; VkMemoryType oldMemoryTypes[MAX_TIER2_MEMORY_TYPES]; memcpy(oldMemoryTypes, mem->memoryTypes, oldMemoryTypeCount * sizeof(VkMemoryType)); mem->memoryTypeCount = 0; for (unsigned oldMemoryTypeIdx = 0; oldMemoryTypeIdx < oldMemoryTypeCount; ++oldMemoryTypeIdx) { D3D12_HEAP_FLAGS flags[] = { D3D12_HEAP_FLAG_ALLOW_ONLY_BUFFERS, D3D12_HEAP_FLAG_ALLOW_ONLY_RT_DS_TEXTURES, /* Note: Vulkan requires *all* images to come from the same memory type as long as * the tiling property (and a few other misc properties) are the same. So, this * non-RT/DS texture flag will only be used for TILING_LINEAR textures, which * can't be render targets. */ D3D12_HEAP_FLAG_ALLOW_ONLY_NON_RT_DS_TEXTURES }; for (int i = 0; i < ARRAY_SIZE(flags); ++i) { D3D12_HEAP_FLAGS flag = flags[i]; pdev->heap_flags_for_mem_type[mem->memoryTypeCount] = flag; mem->memoryTypes[mem->memoryTypeCount] = oldMemoryTypes[oldMemoryTypeIdx]; mem->memoryTypeCount++; } } } } static D3D12_HEAP_FLAGS dzn_physical_device_get_heap_flags_for_mem_type(const struct dzn_physical_device *pdev, uint32_t mem_type) { return pdev->heap_flags_for_mem_type[mem_type]; } uint32_t dzn_physical_device_get_mem_type_mask_for_resource(const struct dzn_physical_device *pdev, const D3D12_RESOURCE_DESC *desc) { if (pdev->options.ResourceHeapTier > D3D12_RESOURCE_HEAP_TIER_1) return (1u << pdev->memory.memoryTypeCount) - 1; D3D12_HEAP_FLAGS deny_flag; if (desc->Dimension == D3D12_RESOURCE_DIMENSION_BUFFER) deny_flag = D3D12_HEAP_FLAG_DENY_BUFFERS; else if (desc->Flags & (D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET | D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL)) deny_flag = D3D12_HEAP_FLAG_DENY_RT_DS_TEXTURES; else deny_flag = D3D12_HEAP_FLAG_DENY_NON_RT_DS_TEXTURES; uint32_t mask = 0; for (unsigned i = 0; i < pdev->memory.memoryTypeCount; ++i) { if ((pdev->heap_flags_for_mem_type[i] & deny_flag) == D3D12_HEAP_FLAG_NONE) mask |= (1 << i); } return mask; } static uint32_t dzn_physical_device_get_max_mip_level(bool is_3d) { return is_3d ? 11 : 14; } static uint32_t dzn_physical_device_get_max_extent(bool is_3d) { uint32_t max_mip = dzn_physical_device_get_max_mip_level(is_3d); return 1 << max_mip; } static uint32_t dzn_physical_device_get_max_array_layers() { return dzn_physical_device_get_max_extent(false); } static ID3D12Device2 * dzn_physical_device_get_d3d12_dev(struct dzn_physical_device *pdev) { struct dzn_instance *instance = container_of(pdev->vk.instance, struct dzn_instance, vk); mtx_lock(&pdev->dev_lock); if (!pdev->dev) { pdev->dev = d3d12_create_device(pdev->adapter, !instance->dxil_validator); dzn_physical_device_cache_caps(pdev); dzn_physical_device_init_memory(pdev); dzn_physical_device_init_uuids(pdev); } mtx_unlock(&pdev->dev_lock); return pdev->dev; } D3D12_FEATURE_DATA_FORMAT_SUPPORT dzn_physical_device_get_format_support(struct dzn_physical_device *pdev, VkFormat format) { VkImageUsageFlags usage = vk_format_is_depth_or_stencil(format) ? VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT : 0; VkImageAspectFlags aspects = 0; VkFormat patched_format = dzn_graphics_pipeline_patch_vi_format(format); if (patched_format != format) { D3D12_FEATURE_DATA_FORMAT_SUPPORT dfmt_info = { .Format = dzn_buffer_get_dxgi_format(patched_format), .Support1 = D3D12_FORMAT_SUPPORT1_IA_VERTEX_BUFFER, }; return dfmt_info; } if (vk_format_has_depth(format)) aspects = VK_IMAGE_ASPECT_DEPTH_BIT; if (vk_format_has_stencil(format)) aspects = VK_IMAGE_ASPECT_STENCIL_BIT; D3D12_FEATURE_DATA_FORMAT_SUPPORT dfmt_info = { .Format = dzn_image_get_dxgi_format(format, usage, aspects), }; ID3D12Device2 *dev = dzn_physical_device_get_d3d12_dev(pdev); ASSERTED HRESULT hres = ID3D12Device1_CheckFeatureSupport(dev, D3D12_FEATURE_FORMAT_SUPPORT, &dfmt_info, sizeof(dfmt_info)); assert(!FAILED(hres)); if (usage != VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) return dfmt_info; /* Depth/stencil resources have different format when they're accessed * as textures, query the capabilities for this format too. */ dzn_foreach_aspect(aspect, aspects) { D3D12_FEATURE_DATA_FORMAT_SUPPORT dfmt_info2 = { .Format = dzn_image_get_dxgi_format(format, 0, aspect), }; hres = ID3D12Device1_CheckFeatureSupport(dev, D3D12_FEATURE_FORMAT_SUPPORT, &dfmt_info2, sizeof(dfmt_info2)); assert(!FAILED(hres)); #define DS_SRV_FORMAT_SUPPORT1_MASK \ (D3D12_FORMAT_SUPPORT1_SHADER_LOAD | \ D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE | \ D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE_COMPARISON | \ D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE_MONO_TEXT | \ D3D12_FORMAT_SUPPORT1_MULTISAMPLE_RESOLVE | \ D3D12_FORMAT_SUPPORT1_MULTISAMPLE_LOAD | \ D3D12_FORMAT_SUPPORT1_SHADER_GATHER | \ D3D12_FORMAT_SUPPORT1_TYPED_UNORDERED_ACCESS_VIEW | \ D3D12_FORMAT_SUPPORT1_SHADER_GATHER_COMPARISON) dfmt_info.Support1 |= dfmt_info2.Support1 & DS_SRV_FORMAT_SUPPORT1_MASK; dfmt_info.Support2 |= dfmt_info2.Support2; } return dfmt_info; } static void dzn_physical_device_get_format_properties(struct dzn_physical_device *pdev, VkFormat format, VkFormatProperties2 *properties) { D3D12_FEATURE_DATA_FORMAT_SUPPORT dfmt_info = dzn_physical_device_get_format_support(pdev, format); VkFormatProperties *base_props = &properties->formatProperties; vk_foreach_struct(ext, properties->pNext) { dzn_debug_ignored_stype(ext->sType); } if (dfmt_info.Format == DXGI_FORMAT_UNKNOWN) { *base_props = (VkFormatProperties) { 0 }; return; } *base_props = (VkFormatProperties) { .linearTilingFeatures = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT, .optimalTilingFeatures = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT, .bufferFeatures = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT, }; if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_IA_VERTEX_BUFFER) base_props->bufferFeatures |= VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT; #define TEX_FLAGS (D3D12_FORMAT_SUPPORT1_TEXTURE1D | \ D3D12_FORMAT_SUPPORT1_TEXTURE2D | \ D3D12_FORMAT_SUPPORT1_TEXTURE3D | \ D3D12_FORMAT_SUPPORT1_TEXTURECUBE) if (dfmt_info.Support1 & TEX_FLAGS) { base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT; } if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE) { base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT; } if ((dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_LOAD) && (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_TYPED_UNORDERED_ACCESS_VIEW)) { base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT; base_props->bufferFeatures |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT; } #define ATOMIC_FLAGS (D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_ADD | \ D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_BITWISE_OPS | \ D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_COMPARE_STORE_OR_COMPARE_EXCHANGE | \ D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_EXCHANGE | \ D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_SIGNED_MIN_OR_MAX | \ D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_UNSIGNED_MIN_OR_MAX) if ((dfmt_info.Support2 & ATOMIC_FLAGS) == ATOMIC_FLAGS) { base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT; base_props->bufferFeatures |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT; } if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_LOAD) base_props->bufferFeatures |= VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT; /* Color/depth/stencil attachment cap implies input attachement cap, and input * attachment loads are lowered to texture loads in dozen, hence the requirement * to have shader-load support. */ if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_LOAD) { if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_RENDER_TARGET) { base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT; } if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_BLENDABLE) base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT; if (dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_DEPTH_STENCIL) { base_props->optimalTilingFeatures |= VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT; } } /* B4G4R4A4 support is required, but d3d12 doesn't support it. We map this * format to R4G4B4A4 and adjust the SRV component-mapping to fake * B4G4R4A4, but that forces us to limit the usage to sampling, which, * luckily, is exactly what we need to support the required features. */ if (format == VK_FORMAT_B4G4R4A4_UNORM_PACK16) { VkFormatFeatureFlags bgra4_req_features = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT; base_props->optimalTilingFeatures &= bgra4_req_features; base_props->bufferFeatures = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT; } /* depth/stencil format shouldn't advertise buffer features */ if (vk_format_is_depth_or_stencil(format)) base_props->bufferFeatures = 0; } static VkResult dzn_physical_device_get_image_format_properties(struct dzn_physical_device *pdev, const VkPhysicalDeviceImageFormatInfo2 *info, VkImageFormatProperties2 *properties) { const VkPhysicalDeviceExternalImageFormatInfo *external_info = NULL; VkExternalImageFormatProperties *external_props = NULL; *properties = (VkImageFormatProperties2) { .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2, }; /* Extract input structs */ vk_foreach_struct_const(s, info->pNext) { switch (s->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO: external_info = (const VkPhysicalDeviceExternalImageFormatInfo *)s; break; default: dzn_debug_ignored_stype(s->sType); break; } } assert(info->tiling == VK_IMAGE_TILING_OPTIMAL || info->tiling == VK_IMAGE_TILING_LINEAR); /* Extract output structs */ vk_foreach_struct(s, properties->pNext) { switch (s->sType) { case VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES: external_props = (VkExternalImageFormatProperties *)s; external_props->externalMemoryProperties = (VkExternalMemoryProperties) { 0 }; break; default: dzn_debug_ignored_stype(s->sType); break; } } /* TODO: support image import */ if (external_info && external_info->handleType != 0) return VK_ERROR_FORMAT_NOT_SUPPORTED; if (info->tiling != VK_IMAGE_TILING_OPTIMAL && (info->usage & ~(VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT))) return VK_ERROR_FORMAT_NOT_SUPPORTED; if (info->tiling != VK_IMAGE_TILING_OPTIMAL && vk_format_is_depth_or_stencil(info->format)) return VK_ERROR_FORMAT_NOT_SUPPORTED; D3D12_FEATURE_DATA_FORMAT_SUPPORT dfmt_info = dzn_physical_device_get_format_support(pdev, info->format); if (dfmt_info.Format == DXGI_FORMAT_UNKNOWN) return VK_ERROR_FORMAT_NOT_SUPPORTED; bool is_bgra4 = info->format == VK_FORMAT_B4G4R4A4_UNORM_PACK16; ID3D12Device2 *dev = dzn_physical_device_get_d3d12_dev(pdev); if ((info->type == VK_IMAGE_TYPE_1D && !(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_TEXTURE1D)) || (info->type == VK_IMAGE_TYPE_2D && !(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_TEXTURE2D)) || (info->type == VK_IMAGE_TYPE_3D && !(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_TEXTURE3D)) || ((info->flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && !(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_TEXTURECUBE))) return VK_ERROR_FORMAT_NOT_SUPPORTED; if ((info->usage & VK_IMAGE_USAGE_SAMPLED_BIT) && !(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE)) return VK_ERROR_FORMAT_NOT_SUPPORTED; if ((info->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && (!(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_LOAD) || is_bgra4)) return VK_ERROR_FORMAT_NOT_SUPPORTED; if ((info->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && (!(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_RENDER_TARGET) || is_bgra4)) return VK_ERROR_FORMAT_NOT_SUPPORTED; if ((info->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && (!(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_DEPTH_STENCIL) || is_bgra4)) return VK_ERROR_FORMAT_NOT_SUPPORTED; if ((info->usage & VK_IMAGE_USAGE_STORAGE_BIT) && (!(dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_TYPED_UNORDERED_ACCESS_VIEW) || is_bgra4)) return VK_ERROR_FORMAT_NOT_SUPPORTED; if (info->type == VK_IMAGE_TYPE_3D && info->tiling != VK_IMAGE_TILING_OPTIMAL) return VK_ERROR_FORMAT_NOT_SUPPORTED; bool is_3d = info->type == VK_IMAGE_TYPE_3D; uint32_t max_extent = dzn_physical_device_get_max_extent(is_3d); if (info->tiling == VK_IMAGE_TILING_OPTIMAL && dfmt_info.Support1 & D3D12_FORMAT_SUPPORT1_MIP) properties->imageFormatProperties.maxMipLevels = dzn_physical_device_get_max_mip_level(is_3d) + 1; else properties->imageFormatProperties.maxMipLevels = 1; if (info->tiling == VK_IMAGE_TILING_OPTIMAL && info->type != VK_IMAGE_TYPE_3D) properties->imageFormatProperties.maxArrayLayers = dzn_physical_device_get_max_array_layers(); else properties->imageFormatProperties.maxArrayLayers = 1; switch (info->type) { case VK_IMAGE_TYPE_1D: properties->imageFormatProperties.maxExtent.width = max_extent; properties->imageFormatProperties.maxExtent.height = 1; properties->imageFormatProperties.maxExtent.depth = 1; break; case VK_IMAGE_TYPE_2D: properties->imageFormatProperties.maxExtent.width = max_extent; properties->imageFormatProperties.maxExtent.height = max_extent; properties->imageFormatProperties.maxExtent.depth = 1; break; case VK_IMAGE_TYPE_3D: properties->imageFormatProperties.maxExtent.width = max_extent; properties->imageFormatProperties.maxExtent.height = max_extent; properties->imageFormatProperties.maxExtent.depth = max_extent; break; default: unreachable("bad VkImageType"); } /* From the Vulkan 1.0 spec, section 34.1.1. Supported Sample Counts: * * sampleCounts will be set to VK_SAMPLE_COUNT_1_BIT if at least one of the * following conditions is true: * * - tiling is VK_IMAGE_TILING_LINEAR * - type is not VK_IMAGE_TYPE_2D * - flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT * - neither the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag nor the * VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in * VkFormatProperties::optimalTilingFeatures returned by * vkGetPhysicalDeviceFormatProperties is set. * * D3D12 has a few more constraints: * - no UAVs on multisample resources */ bool rt_or_ds_cap = dfmt_info.Support1 & (D3D12_FORMAT_SUPPORT1_RENDER_TARGET | D3D12_FORMAT_SUPPORT1_DEPTH_STENCIL); properties->imageFormatProperties.sampleCounts = VK_SAMPLE_COUNT_1_BIT; if (info->tiling != VK_IMAGE_TILING_LINEAR && info->type == VK_IMAGE_TYPE_2D && !(info->flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && rt_or_ds_cap && !is_bgra4 && !(info->usage & VK_IMAGE_USAGE_STORAGE_BIT)) { for (uint32_t s = VK_SAMPLE_COUNT_2_BIT; s < VK_SAMPLE_COUNT_64_BIT; s <<= 1) { D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS ms_info = { .Format = dfmt_info.Format, .SampleCount = s, }; HRESULT hres = ID3D12Device1_CheckFeatureSupport(dev, D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS, &ms_info, sizeof(ms_info)); if (!FAILED(hres) && ms_info.NumQualityLevels > 0) properties->imageFormatProperties.sampleCounts |= s; } } /* TODO: set correct value here */ properties->imageFormatProperties.maxResourceSize = UINT32_MAX; return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2 *pFormatProperties) { VK_FROM_HANDLE(dzn_physical_device, pdev, physicalDevice); dzn_physical_device_get_format_properties(pdev, format, pFormatProperties); } VKAPI_ATTR VkResult VKAPI_CALL dzn_GetPhysicalDeviceImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2 *info, VkImageFormatProperties2 *props) { VK_FROM_HANDLE(dzn_physical_device, pdev, physicalDevice); return dzn_physical_device_get_image_format_properties(pdev, info, props); } VKAPI_ATTR VkResult VKAPI_CALL dzn_GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags createFlags, VkImageFormatProperties *pImageFormatProperties) { const VkPhysicalDeviceImageFormatInfo2 info = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, .format = format, .type = type, .tiling = tiling, .usage = usage, .flags = createFlags, }; VkImageFormatProperties2 props = { 0 }; VkResult result = dzn_GetPhysicalDeviceImageFormatProperties2(physicalDevice, &info, &props); *pImageFormatProperties = props.imageFormatProperties; return result; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t *pPropertyCount, VkSparseImageFormatProperties *pProperties) { *pPropertyCount = 0; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceSparseImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2 *pFormatInfo, uint32_t *pPropertyCount, VkSparseImageFormatProperties2 *pProperties) { *pPropertyCount = 0; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceExternalBufferProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo *pExternalBufferInfo, VkExternalBufferProperties *pExternalBufferProperties) { pExternalBufferProperties->externalMemoryProperties = (VkExternalMemoryProperties) { .compatibleHandleTypes = (VkExternalMemoryHandleTypeFlags)pExternalBufferInfo->handleType, }; } VkResult dzn_instance_add_physical_device(struct dzn_instance *instance, IUnknown *adapter, const struct dzn_physical_device_desc *desc) { if ((instance->debug_flags & DZN_DEBUG_WARP) && !desc->is_warp) return VK_SUCCESS; return dzn_physical_device_create(instance, adapter, desc); } VKAPI_ATTR VkResult VKAPI_CALL dzn_EnumeratePhysicalDevices(VkInstance inst, uint32_t *pPhysicalDeviceCount, VkPhysicalDevice *pPhysicalDevices) { VK_FROM_HANDLE(dzn_instance, instance, inst); if (!instance->physical_devices_enumerated) { VkResult result = dzn_enumerate_physical_devices_dxcore(instance); #ifdef _WIN32 if (result != VK_SUCCESS) result = dzn_enumerate_physical_devices_dxgi(instance); #endif if (result != VK_SUCCESS) return result; } VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out, pPhysicalDevices, pPhysicalDeviceCount); list_for_each_entry(struct dzn_physical_device, pdev, &instance->physical_devices, link) { vk_outarray_append_typed(VkPhysicalDevice, &out, i) *i = dzn_physical_device_to_handle(pdev); } instance->physical_devices_enumerated = true; return vk_outarray_status(&out); } VKAPI_ATTR VkResult VKAPI_CALL dzn_EnumerateInstanceVersion(uint32_t *pApiVersion) { *pApiVersion = DZN_API_VERSION; return VK_SUCCESS; } static bool dzn_physical_device_supports_compressed_format(struct dzn_physical_device *pdev, const VkFormat *formats, uint32_t format_count) { #define REQUIRED_COMPRESSED_CAPS \ (VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | \ VK_FORMAT_FEATURE_BLIT_SRC_BIT | \ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT) for (uint32_t i = 0; i < format_count; i++) { VkFormatProperties2 props = { 0 }; dzn_physical_device_get_format_properties(pdev, formats[i], &props); if ((props.formatProperties.optimalTilingFeatures & REQUIRED_COMPRESSED_CAPS) != REQUIRED_COMPRESSED_CAPS) return false; } return true; } static bool dzn_physical_device_supports_bc(struct dzn_physical_device *pdev) { static const VkFormat formats[] = { VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_SNORM_BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_BC7_SRGB_BLOCK, }; return dzn_physical_device_supports_compressed_format(pdev, formats, ARRAY_SIZE(formats)); } static bool dzn_physical_device_supports_depth_bounds(struct dzn_physical_device *pdev) { dzn_physical_device_get_d3d12_dev(pdev); return pdev->options2.DepthBoundsTestSupported; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2 *pFeatures) { VK_FROM_HANDLE(dzn_physical_device, pdev, physicalDevice); pFeatures->features = (VkPhysicalDeviceFeatures) { .robustBufferAccess = true, /* This feature is mandatory */ .fullDrawIndexUint32 = false, .imageCubeArray = true, .independentBlend = false, .geometryShader = true, .tessellationShader = false, .sampleRateShading = true, .dualSrcBlend = false, .logicOp = false, .multiDrawIndirect = true, .drawIndirectFirstInstance = true, .depthClamp = true, .depthBiasClamp = true, .fillModeNonSolid = false, .depthBounds = dzn_physical_device_supports_depth_bounds(pdev), .wideLines = false, .largePoints = false, .alphaToOne = false, .multiViewport = false, .samplerAnisotropy = true, .textureCompressionETC2 = false, .textureCompressionASTC_LDR = false, .textureCompressionBC = dzn_physical_device_supports_bc(pdev), .occlusionQueryPrecise = true, .pipelineStatisticsQuery = true, .vertexPipelineStoresAndAtomics = true, .fragmentStoresAndAtomics = true, .shaderTessellationAndGeometryPointSize = false, .shaderImageGatherExtended = true, .shaderStorageImageExtendedFormats = false, .shaderStorageImageMultisample = false, .shaderStorageImageReadWithoutFormat = false, .shaderStorageImageWriteWithoutFormat = false, .shaderUniformBufferArrayDynamicIndexing = true, .shaderSampledImageArrayDynamicIndexing = true, .shaderStorageBufferArrayDynamicIndexing = true, .shaderStorageImageArrayDynamicIndexing = true, .shaderClipDistance = true, .shaderCullDistance = true, .shaderFloat64 = false, .shaderInt64 = false, .shaderInt16 = false, .shaderResourceResidency = false, .shaderResourceMinLod = false, .sparseBinding = false, .sparseResidencyBuffer = false, .sparseResidencyImage2D = false, .sparseResidencyImage3D = false, .sparseResidency2Samples = false, .sparseResidency4Samples = false, .sparseResidency8Samples = false, .sparseResidency16Samples = false, .sparseResidencyAliased = false, .variableMultisampleRate = false, .inheritedQueries = false, }; VkPhysicalDeviceVulkan11Features core_1_1 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES, .storageBuffer16BitAccess = false, .uniformAndStorageBuffer16BitAccess = false, .storagePushConstant16 = false, .storageInputOutput16 = false, .multiview = false, .multiviewGeometryShader = false, .multiviewTessellationShader = false, .variablePointersStorageBuffer = true, .variablePointers = true, .protectedMemory = false, .samplerYcbcrConversion = false, .shaderDrawParameters = true, }; const VkPhysicalDeviceVulkan12Features core_1_2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES, .samplerMirrorClampToEdge = false, .drawIndirectCount = false, .storageBuffer8BitAccess = false, .uniformAndStorageBuffer8BitAccess = false, .storagePushConstant8 = false, .shaderBufferInt64Atomics = false, .shaderSharedInt64Atomics = false, .shaderFloat16 = false, .shaderInt8 = false, .descriptorIndexing = false, .shaderInputAttachmentArrayDynamicIndexing = true, .shaderUniformTexelBufferArrayDynamicIndexing = true, .shaderStorageTexelBufferArrayDynamicIndexing = true, .shaderUniformBufferArrayNonUniformIndexing = false, .shaderSampledImageArrayNonUniformIndexing = false, .shaderStorageBufferArrayNonUniformIndexing = false, .shaderStorageImageArrayNonUniformIndexing = false, .shaderInputAttachmentArrayNonUniformIndexing = false, .shaderUniformTexelBufferArrayNonUniformIndexing = false, .shaderStorageTexelBufferArrayNonUniformIndexing = false, .descriptorBindingUniformBufferUpdateAfterBind = false, .descriptorBindingSampledImageUpdateAfterBind = false, .descriptorBindingStorageImageUpdateAfterBind = false, .descriptorBindingStorageBufferUpdateAfterBind = false, .descriptorBindingUniformTexelBufferUpdateAfterBind = false, .descriptorBindingStorageTexelBufferUpdateAfterBind = false, .descriptorBindingUpdateUnusedWhilePending = false, .descriptorBindingPartiallyBound = false, .descriptorBindingVariableDescriptorCount = false, .runtimeDescriptorArray = false, .samplerFilterMinmax = false, .scalarBlockLayout = false, .imagelessFramebuffer = false, .uniformBufferStandardLayout = false, .shaderSubgroupExtendedTypes = false, .separateDepthStencilLayouts = false, .hostQueryReset = false, .timelineSemaphore = false, .bufferDeviceAddress = false, .bufferDeviceAddressCaptureReplay = false, .bufferDeviceAddressMultiDevice = false, .vulkanMemoryModel = false, .vulkanMemoryModelDeviceScope = false, .vulkanMemoryModelAvailabilityVisibilityChains = false, .shaderOutputViewportIndex = false, .shaderOutputLayer = false, .subgroupBroadcastDynamicId = false, }; const VkPhysicalDeviceVulkan13Features core_1_3 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES, .robustImageAccess = false, .inlineUniformBlock = false, .descriptorBindingInlineUniformBlockUpdateAfterBind = false, .pipelineCreationCacheControl = false, .privateData = true, .shaderDemoteToHelperInvocation = false, .shaderTerminateInvocation = false, .subgroupSizeControl = false, .computeFullSubgroups = false, .synchronization2 = true, .textureCompressionASTC_HDR = false, .shaderZeroInitializeWorkgroupMemory = false, .dynamicRendering = false, .shaderIntegerDotProduct = false, .maintenance4 = false, }; vk_foreach_struct(ext, pFeatures->pNext) { if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1) || vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2) || vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3)) continue; switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: { VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features = (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext; features->vertexAttributeInstanceRateDivisor = true; features->vertexAttributeInstanceRateZeroDivisor = true; break; } default: dzn_debug_ignored_stype(ext->sType); break; } } } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL dzn_GetInstanceProcAddr(VkInstance _instance, const char *pName) { VK_FROM_HANDLE(dzn_instance, instance, _instance); return vk_instance_get_proc_addr(&instance->vk, &dzn_instance_entrypoints, pName); } /* Windows will use a dll definition file to avoid build errors. */ #ifdef _WIN32 #undef PUBLIC #define PUBLIC #endif /* With version 1+ of the loader interface the ICD should expose * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps. */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName) { return dzn_GetInstanceProcAddr(instance, pName); } /* With version 4+ of the loader interface the ICD should expose * vk_icdGetPhysicalDeviceProcAddr() */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance, const char *pName); VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance, const char *pName) { VK_FROM_HANDLE(dzn_instance, instance, _instance); return vk_instance_get_physical_device_proc_addr(&instance->vk, pName); } /* vk_icd.h does not declare this function, so we declare it here to * suppress Wmissing-prototypes. */ PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion); PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion) { /* For the full details on loader interface versioning, see * . * What follows is a condensed summary, to help you navigate the large and * confusing official doc. * * - Loader interface v0 is incompatible with later versions. We don't * support it. * * - In loader interface v1: * - The first ICD entrypoint called by the loader is * vk_icdGetInstanceProcAddr(). The ICD must statically expose this * entrypoint. * - The ICD must statically expose no other Vulkan symbol unless it is * linked with -Bsymbolic. * - Each dispatchable Vulkan handle created by the ICD must be * a pointer to a struct whose first member is VK_LOADER_DATA. The * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and * vkDestroySurfaceKHR(). The ICD must be capable of working with * such loader-managed surfaces. * * - Loader interface v2 differs from v1 in: * - The first ICD entrypoint called by the loader is * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must * statically expose this entrypoint. * * - Loader interface v3 differs from v2 in: * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, * because the loader no longer does so. * * - Loader interface v4 differs from v3 in: * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr(). * * - Loader interface v5 differs from v4 in: * - The ICD must support Vulkan API version 1.1 and must not return * VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a * Vulkan Loader with interface v4 or smaller is being used and the * application provides an API version that is greater than 1.0. */ *pSupportedVersion = MIN2(*pSupportedVersion, 5u); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2 *pProperties) { VK_FROM_HANDLE(dzn_physical_device, pdevice, physicalDevice); (void)dzn_physical_device_get_d3d12_dev(pdevice); /* minimum from the spec */ const VkSampleCountFlags supported_sample_counts = VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT | VK_SAMPLE_COUNT_16_BIT; /* FIXME: this is mostly bunk for now */ VkPhysicalDeviceLimits limits = { /* TODO: support older feature levels */ .maxImageDimension1D = (1 << 14), .maxImageDimension2D = (1 << 14), .maxImageDimension3D = (1 << 11), .maxImageDimensionCube = (1 << 14), .maxImageArrayLayers = (1 << 11), /* from here on, we simply use the minimum values from the spec for now */ .maxTexelBufferElements = 65536, .maxUniformBufferRange = 16384, .maxStorageBufferRange = (1ul << 27), .maxPushConstantsSize = 128, .maxMemoryAllocationCount = 4096, .maxSamplerAllocationCount = 4000, .bufferImageGranularity = 131072, .sparseAddressSpaceSize = 0, .maxBoundDescriptorSets = MAX_SETS, .maxPerStageDescriptorSamplers = pdevice->options.ResourceHeapTier == D3D12_RESOURCE_HEAP_TIER_1 ? 16u : MAX_DESCS_PER_SAMPLER_HEAP, .maxPerStageDescriptorUniformBuffers = pdevice->options.ResourceHeapTier <= D3D12_RESOURCE_HEAP_TIER_2 ? 14u : MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxPerStageDescriptorStorageBuffers = pdevice->options.ResourceHeapTier <= D3D12_RESOURCE_HEAP_TIER_2 ? 64u : MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxPerStageDescriptorSampledImages = pdevice->options.ResourceHeapTier == D3D12_RESOURCE_HEAP_TIER_1 ? 128u : MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxPerStageDescriptorStorageImages = pdevice->options.ResourceHeapTier <= D3D12_RESOURCE_HEAP_TIER_2 ? 64u : MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxPerStageDescriptorInputAttachments = pdevice->options.ResourceHeapTier == D3D12_RESOURCE_HEAP_TIER_1 ? 128u : MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxPerStageResources = MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxDescriptorSetSamplers = MAX_DESCS_PER_SAMPLER_HEAP, .maxDescriptorSetUniformBuffers = MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS, .maxDescriptorSetStorageBuffers = MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS, .maxDescriptorSetSampledImages = MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxDescriptorSetStorageImages = MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxDescriptorSetInputAttachments = MAX_DESCS_PER_CBV_SRV_UAV_HEAP, .maxVertexInputAttributes = MIN2(D3D12_STANDARD_VERTEX_ELEMENT_COUNT, MAX_VERTEX_GENERIC_ATTRIBS), .maxVertexInputBindings = MAX_VBS, .maxVertexInputAttributeOffset = 2047, .maxVertexInputBindingStride = 2048, .maxVertexOutputComponents = 64, .maxTessellationGenerationLevel = 0, .maxTessellationPatchSize = 0, .maxTessellationControlPerVertexInputComponents = 0, .maxTessellationControlPerVertexOutputComponents = 0, .maxTessellationControlPerPatchOutputComponents = 0, .maxTessellationControlTotalOutputComponents = 0, .maxTessellationEvaluationInputComponents = 0, .maxTessellationEvaluationOutputComponents = 0, .maxGeometryShaderInvocations = 0, .maxGeometryInputComponents = 0, .maxGeometryOutputComponents = 0, .maxGeometryOutputVertices = 0, .maxGeometryTotalOutputComponents = 0, .maxFragmentInputComponents = 64, .maxFragmentOutputAttachments = 4, .maxFragmentDualSrcAttachments = 0, .maxFragmentCombinedOutputResources = 4, .maxComputeSharedMemorySize = 16384, .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, .maxComputeWorkGroupInvocations = 128, .maxComputeWorkGroupSize = { 128, 128, 64 }, .subPixelPrecisionBits = 4, .subTexelPrecisionBits = 4, .mipmapPrecisionBits = 4, .maxDrawIndexedIndexValue = 0x00ffffff, .maxDrawIndirectCount = UINT32_MAX, .maxSamplerLodBias = 2.0f, .maxSamplerAnisotropy = 1.0f, .maxViewports = 1, .maxViewportDimensions = { 4096, 4096 }, .viewportBoundsRange = { -8192, 8191 }, .viewportSubPixelBits = 0, .minMemoryMapAlignment = 64, .minTexelBufferOffsetAlignment = 256, .minUniformBufferOffsetAlignment = 256, .minStorageBufferOffsetAlignment = 256, .minTexelOffset = -8, .maxTexelOffset = 7, .minTexelGatherOffset = 0, .maxTexelGatherOffset = 0, .minInterpolationOffset = -0.5f, .maxInterpolationOffset = 0.5f, .subPixelInterpolationOffsetBits = 4, .maxFramebufferWidth = 4096, .maxFramebufferHeight = 4096, .maxFramebufferLayers = 256, .framebufferColorSampleCounts = supported_sample_counts, .framebufferDepthSampleCounts = supported_sample_counts, .framebufferStencilSampleCounts = supported_sample_counts, .framebufferNoAttachmentsSampleCounts = supported_sample_counts, .maxColorAttachments = MAX_RTS, .sampledImageColorSampleCounts = supported_sample_counts, .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT, .sampledImageDepthSampleCounts = supported_sample_counts, .sampledImageStencilSampleCounts = supported_sample_counts, .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT, .maxSampleMaskWords = 1, .timestampComputeAndGraphics = true, .timestampPeriod = pdevice->timestamp_period, .maxClipDistances = 8, .maxCullDistances = 8, .maxCombinedClipAndCullDistances = 8, .discreteQueuePriorities = 2, .pointSizeRange = { 1.0f, 1.0f }, .lineWidthRange = { 1.0f, 1.0f }, .pointSizeGranularity = 0.0f, .lineWidthGranularity = 0.0f, .strictLines = 0, .standardSampleLocations = false, .optimalBufferCopyOffsetAlignment = D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT, .optimalBufferCopyRowPitchAlignment = D3D12_TEXTURE_DATA_PITCH_ALIGNMENT, .nonCoherentAtomSize = 256, }; VkPhysicalDeviceType devtype = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; if (pdevice->desc.is_warp) devtype = VK_PHYSICAL_DEVICE_TYPE_CPU; else if (false) { // TODO: detect discreete GPUs /* This is a tad tricky to get right, because we need to have the * actual ID3D12Device before we can query the * D3D12_FEATURE_DATA_ARCHITECTURE structure... So for now, let's * just pretend everything is integrated, because... well, that's * what I have at hand right now ;) */ devtype = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU; } pProperties->properties = (VkPhysicalDeviceProperties) { .apiVersion = DZN_API_VERSION, .driverVersion = vk_get_driver_version(), .vendorID = pdevice->desc.vendor_id, .deviceID = pdevice->desc.device_id, .deviceType = devtype, .limits = limits, .sparseProperties = { 0 }, }; snprintf(pProperties->properties.deviceName, sizeof(pProperties->properties.deviceName), "Microsoft Direct3D12 (%s)", pdevice->desc.description); memcpy(pProperties->properties.pipelineCacheUUID, pdevice->pipeline_cache_uuid, VK_UUID_SIZE); VkPhysicalDeviceVulkan11Properties core_1_1 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES, .deviceLUIDValid = true, .pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES, .maxMultiviewViewCount = 0, .maxMultiviewInstanceIndex = 0, .protectedNoFault = false, /* Vulkan 1.1 wants this value to be at least 1024. Let's stick to this * minimum requirement for now, and hope the total number of samplers * across all descriptor sets doesn't exceed 2048, otherwise we'd exceed * the maximum number of samplers per heap. For any descriptor set * containing more than 1024 descriptors, * vkGetDescriptorSetLayoutSupport() can be called to determine if the * layout is within D3D12 descriptor heap bounds. */ .maxPerSetDescriptors = 1024, /* According to the spec, the maximum D3D12 resource size is * min(max(128MB, 0.25f * (amount of dedicated VRAM)), 2GB), * but the limit actually depends on the max(system_ram, VRAM) not * just the VRAM. */ .maxMemoryAllocationSize = CLAMP(MAX2(pdevice->desc.dedicated_video_memory, pdevice->desc.dedicated_system_memory + pdevice->desc.shared_system_memory) / 4, 128ull * 1024 * 1024, 2ull * 1024 * 1024 * 1024), }; memcpy(core_1_1.driverUUID, pdevice->driver_uuid, VK_UUID_SIZE); memcpy(core_1_1.deviceUUID, pdevice->device_uuid, VK_UUID_SIZE); memcpy(core_1_1.deviceLUID, &pdevice->desc.adapter_luid, VK_LUID_SIZE); STATIC_ASSERT(sizeof(pdevice->desc.adapter_luid) == sizeof(core_1_1.deviceLUID)); VkPhysicalDeviceVulkan12Properties core_1_2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES, .driverID = VK_DRIVER_ID_MESA_DOZEN, .conformanceVersion = (VkConformanceVersion){ .major = 0, .minor = 0, .subminor = 0, .patch = 0, }, .denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL, .roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL, .shaderSignedZeroInfNanPreserveFloat16 = false, .shaderSignedZeroInfNanPreserveFloat32 = false, .shaderSignedZeroInfNanPreserveFloat64 = false, .shaderDenormPreserveFloat16 = true, .shaderDenormPreserveFloat32 = false, .shaderDenormPreserveFloat64 = true, .shaderDenormFlushToZeroFloat16 = false, .shaderDenormFlushToZeroFloat32 = true, .shaderDenormFlushToZeroFloat64 = false, .shaderRoundingModeRTEFloat16 = true, .shaderRoundingModeRTEFloat32 = true, .shaderRoundingModeRTEFloat64 = true, .shaderRoundingModeRTZFloat16 = false, .shaderRoundingModeRTZFloat32 = false, .shaderRoundingModeRTZFloat64 = false, .shaderUniformBufferArrayNonUniformIndexingNative = true, .shaderSampledImageArrayNonUniformIndexingNative = true, .shaderStorageBufferArrayNonUniformIndexingNative = true, .shaderStorageImageArrayNonUniformIndexingNative = true, .shaderInputAttachmentArrayNonUniformIndexingNative = true, .robustBufferAccessUpdateAfterBind = true, .quadDivergentImplicitLod = false, .maxPerStageDescriptorUpdateAfterBindSamplers = 0, .maxPerStageDescriptorUpdateAfterBindUniformBuffers = 0, .maxPerStageDescriptorUpdateAfterBindStorageBuffers = 0, .maxPerStageDescriptorUpdateAfterBindSampledImages = 0, .maxPerStageDescriptorUpdateAfterBindStorageImages = 0, .maxPerStageDescriptorUpdateAfterBindInputAttachments = 0, .maxPerStageUpdateAfterBindResources = 0, .maxDescriptorSetUpdateAfterBindSamplers = 0, .maxDescriptorSetUpdateAfterBindUniformBuffers = 0, .maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = 0, .maxDescriptorSetUpdateAfterBindStorageBuffers = 0, .maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = 0, .maxDescriptorSetUpdateAfterBindSampledImages = 0, .maxDescriptorSetUpdateAfterBindStorageImages = 0, .maxDescriptorSetUpdateAfterBindInputAttachments = 0, /* FIXME: add support for VK_RESOLVE_MODE_SAMPLE_ZERO_BIT, * which is required by the VK 1.2 spec. */ .supportedDepthResolveModes = VK_RESOLVE_MODE_AVERAGE_BIT, .supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT, .independentResolveNone = false, .independentResolve = false, .filterMinmaxSingleComponentFormats = false, .filterMinmaxImageComponentMapping = false, .maxTimelineSemaphoreValueDifference = UINT64_MAX, .framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT, }; snprintf(core_1_2.driverName, VK_MAX_DRIVER_NAME_SIZE, "Dozen"); snprintf(core_1_2.driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1); const VkPhysicalDeviceVulkan13Properties core_1_3 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES, }; vk_foreach_struct(ext, pProperties->pNext) { if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1) || vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2) || vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3)) continue; switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: { VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *attr_div = (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext; attr_div->maxVertexAttribDivisor = UINT32_MAX; break; } default: dzn_debug_ignored_stype(ext->sType); break; } } } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties2 *pQueueFamilyProperties) { VK_FROM_HANDLE(dzn_physical_device, pdev, physicalDevice); VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties2, out, pQueueFamilyProperties, pQueueFamilyPropertyCount); (void)dzn_physical_device_get_d3d12_dev(pdev); for (uint32_t i = 0; i < pdev->queue_family_count; i++) { vk_outarray_append_typed(VkQueueFamilyProperties2, &out, p) { p->queueFamilyProperties = pdev->queue_families[i].props; vk_foreach_struct(ext, pQueueFamilyProperties->pNext) { dzn_debug_ignored_stype(ext->sType); } } } } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pMemoryProperties) { VK_FROM_HANDLE(dzn_physical_device, pdev, physicalDevice); // Ensure memory caps are up-to-date (void)dzn_physical_device_get_d3d12_dev(pdev); *pMemoryProperties = pdev->memory; } VKAPI_ATTR void VKAPI_CALL dzn_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2 *pMemoryProperties) { dzn_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties); vk_foreach_struct(ext, pMemoryProperties->pNext) { dzn_debug_ignored_stype(ext->sType); } } VKAPI_ATTR VkResult VKAPI_CALL dzn_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); } static VkResult dzn_queue_sync_wait(struct dzn_queue *queue, const struct vk_sync_wait *wait) { if (wait->sync->type == &vk_sync_dummy_type) return VK_SUCCESS; struct dzn_device *device = container_of(queue->vk.base.device, struct dzn_device, vk); assert(wait->sync->type == &dzn_sync_type); struct dzn_sync *sync = container_of(wait->sync, struct dzn_sync, vk); uint64_t value = (sync->vk.flags & VK_SYNC_IS_TIMELINE) ? wait->wait_value : 1; assert(sync->fence != NULL); if (value > 0 && FAILED(ID3D12CommandQueue_Wait(queue->cmdqueue, sync->fence, value))) return vk_error(device, VK_ERROR_UNKNOWN); return VK_SUCCESS; } static VkResult dzn_queue_sync_signal(struct dzn_queue *queue, const struct vk_sync_signal *signal) { if (signal->sync->type == &vk_sync_dummy_type) return VK_SUCCESS; struct dzn_device *device = container_of(queue->vk.base.device, struct dzn_device, vk); assert(signal->sync->type == &dzn_sync_type); struct dzn_sync *sync = container_of(signal->sync, struct dzn_sync, vk); uint64_t value = (sync->vk.flags & VK_SYNC_IS_TIMELINE) ? signal->signal_value : 1; assert(value > 0); assert(sync->fence != NULL); if (FAILED(ID3D12CommandQueue_Signal(queue->cmdqueue, sync->fence, value))) return vk_error(device, VK_ERROR_UNKNOWN); return VK_SUCCESS; } static VkResult dzn_queue_submit(struct vk_queue *q, struct vk_queue_submit *info) { struct dzn_queue *queue = container_of(q, struct dzn_queue, vk); struct dzn_device *device = container_of(q->base.device, struct dzn_device, vk); VkResult result = VK_SUCCESS; for (uint32_t i = 0; i < info->wait_count; i++) { result = dzn_queue_sync_wait(queue, &info->waits[i]); if (result != VK_SUCCESS) return result; } for (uint32_t i = 0; i < info->command_buffer_count; i++) { struct dzn_cmd_buffer *cmd_buffer = container_of(info->command_buffers[i], struct dzn_cmd_buffer, vk); ID3D12CommandList *cmdlists[] = { (ID3D12CommandList *)cmd_buffer->cmdlist }; util_dynarray_foreach(&cmd_buffer->events.wait, struct dzn_event *, evt) { if (FAILED(ID3D12CommandQueue_Wait(queue->cmdqueue, (*evt)->fence, 1))) return vk_error(device, VK_ERROR_UNKNOWN); } util_dynarray_foreach(&cmd_buffer->queries.wait, struct dzn_cmd_buffer_query_range, range) { mtx_lock(&range->qpool->queries_lock); for (uint32_t q = range->start; q < range->start + range->count; q++) { struct dzn_query *query = &range->qpool->queries[q]; if (query->fence && FAILED(ID3D12CommandQueue_Wait(queue->cmdqueue, query->fence, query->fence_value))) return vk_error(device, VK_ERROR_UNKNOWN); } mtx_unlock(&range->qpool->queries_lock); } util_dynarray_foreach(&cmd_buffer->queries.reset, struct dzn_cmd_buffer_query_range, range) { mtx_lock(&range->qpool->queries_lock); for (uint32_t q = range->start; q < range->start + range->count; q++) { struct dzn_query *query = &range->qpool->queries[q]; if (query->fence) { ID3D12Fence_Release(query->fence); query->fence = NULL; } query->fence_value = 0; } mtx_unlock(&range->qpool->queries_lock); } ID3D12CommandQueue_ExecuteCommandLists(queue->cmdqueue, 1, cmdlists); util_dynarray_foreach(&cmd_buffer->events.signal, struct dzn_cmd_event_signal, evt) { if (FAILED(ID3D12CommandQueue_Signal(queue->cmdqueue, evt->event->fence, evt->value ? 1 : 0))) return vk_error(device, VK_ERROR_UNKNOWN); } util_dynarray_foreach(&cmd_buffer->queries.signal, struct dzn_cmd_buffer_query_range, range) { mtx_lock(&range->qpool->queries_lock); for (uint32_t q = range->start; q < range->start + range->count; q++) { struct dzn_query *query = &range->qpool->queries[q]; query->fence_value = queue->fence_point + 1; query->fence = queue->fence; ID3D12Fence_AddRef(query->fence); } mtx_unlock(&range->qpool->queries_lock); } } for (uint32_t i = 0; i < info->signal_count; i++) { result = dzn_queue_sync_signal(queue, &info->signals[i]); if (result != VK_SUCCESS) return vk_error(device, VK_ERROR_UNKNOWN); } if (FAILED(ID3D12CommandQueue_Signal(queue->cmdqueue, queue->fence, ++queue->fence_point))) return vk_error(device, VK_ERROR_UNKNOWN); return VK_SUCCESS; } static void dzn_queue_finish(struct dzn_queue *queue) { if (queue->cmdqueue) ID3D12CommandQueue_Release(queue->cmdqueue); if (queue->fence) ID3D12Fence_Release(queue->fence); vk_queue_finish(&queue->vk); } static VkResult dzn_queue_init(struct dzn_queue *queue, struct dzn_device *device, const VkDeviceQueueCreateInfo *pCreateInfo, uint32_t index_in_family) { struct dzn_physical_device *pdev = container_of(device->vk.physical, struct dzn_physical_device, vk); VkResult result = vk_queue_init(&queue->vk, &device->vk, pCreateInfo, index_in_family); if (result != VK_SUCCESS) return result; queue->vk.driver_submit = dzn_queue_submit; assert(pCreateInfo->queueFamilyIndex < pdev->queue_family_count); D3D12_COMMAND_QUEUE_DESC queue_desc = pdev->queue_families[pCreateInfo->queueFamilyIndex].desc; float priority_in = pCreateInfo->pQueuePriorities[index_in_family]; queue_desc.Priority = priority_in > 0.5f ? D3D12_COMMAND_QUEUE_PRIORITY_HIGH : D3D12_COMMAND_QUEUE_PRIORITY_NORMAL; queue_desc.NodeMask = 0; if (FAILED(ID3D12Device1_CreateCommandQueue(device->dev, &queue_desc, &IID_ID3D12CommandQueue, (void **)&queue->cmdqueue))) { dzn_queue_finish(queue); return vk_error(device->vk.physical->instance, VK_ERROR_INITIALIZATION_FAILED); } if (FAILED(ID3D12Device1_CreateFence(device->dev, 0, D3D12_FENCE_FLAG_NONE, &IID_ID3D12Fence, (void **)&queue->fence))) { dzn_queue_finish(queue); return vk_error(device->vk.physical->instance, VK_ERROR_INITIALIZATION_FAILED); } return VK_SUCCESS; } static VkResult check_physical_device_features(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceFeatures *features) { VK_FROM_HANDLE(dzn_physical_device, pdev, physicalDevice); VkPhysicalDeviceFeatures supported_features; pdev->vk.dispatch_table.GetPhysicalDeviceFeatures(physicalDevice, &supported_features); VkBool32 *supported_feature = (VkBool32 *)&supported_features; VkBool32 *enabled_feature = (VkBool32 *)features; unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32); for (uint32_t i = 0; i < num_features; i++) { if (enabled_feature[i] && !supported_feature[i]) return VK_ERROR_FEATURE_NOT_PRESENT; } return VK_SUCCESS; } static VkResult dzn_device_create_sync_for_memory(struct vk_device *device, VkDeviceMemory memory, bool signal_memory, struct vk_sync **sync_out) { return vk_sync_create(device, &vk_sync_dummy_type, 0, 1, sync_out); } static VkResult dzn_device_query_init(struct dzn_device *device) { /* FIXME: create the resource in the default heap */ D3D12_HEAP_PROPERTIES hprops = dzn_ID3D12Device2_GetCustomHeapProperties(device->dev, 0, D3D12_HEAP_TYPE_UPLOAD); D3D12_RESOURCE_DESC rdesc = { .Dimension = D3D12_RESOURCE_DIMENSION_BUFFER, .Alignment = D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT, .Width = DZN_QUERY_REFS_RES_SIZE, .Height = 1, .DepthOrArraySize = 1, .MipLevels = 1, .Format = DXGI_FORMAT_UNKNOWN, .SampleDesc = { .Count = 1, .Quality = 0 }, .Layout = D3D12_TEXTURE_LAYOUT_ROW_MAJOR, .Flags = D3D12_RESOURCE_FLAG_NONE, }; if (FAILED(ID3D12Device1_CreateCommittedResource(device->dev, &hprops, D3D12_HEAP_FLAG_NONE, &rdesc, D3D12_RESOURCE_STATE_GENERIC_READ, NULL, &IID_ID3D12Resource, (void **)&device->queries.refs))) return vk_error(device->vk.physical, VK_ERROR_OUT_OF_DEVICE_MEMORY); uint8_t *queries_ref; if (FAILED(ID3D12Resource_Map(device->queries.refs, 0, NULL, (void **)&queries_ref))) return vk_error(device->vk.physical, VK_ERROR_OUT_OF_HOST_MEMORY); memset(queries_ref + DZN_QUERY_REFS_ALL_ONES_OFFSET, 0xff, DZN_QUERY_REFS_SECTION_SIZE); memset(queries_ref + DZN_QUERY_REFS_ALL_ZEROS_OFFSET, 0x0, DZN_QUERY_REFS_SECTION_SIZE); ID3D12Resource_Unmap(device->queries.refs, 0, NULL); return VK_SUCCESS; } static void dzn_device_query_finish(struct dzn_device *device) { if (device->queries.refs) ID3D12Resource_Release(device->queries.refs); } static void dzn_device_destroy(struct dzn_device *device, const VkAllocationCallbacks *pAllocator) { if (!device) return; struct dzn_instance *instance = container_of(device->vk.physical->instance, struct dzn_instance, vk); vk_foreach_queue_safe(q, &device->vk) { struct dzn_queue *queue = container_of(q, struct dzn_queue, vk); dzn_queue_finish(queue); } dzn_device_query_finish(device); dzn_meta_finish(device); if (device->dev) ID3D12Device1_Release(device->dev); vk_device_finish(&device->vk); vk_free2(&instance->vk.alloc, pAllocator, device); } static VkResult dzn_device_check_status(struct vk_device *dev) { struct dzn_device *device = container_of(dev, struct dzn_device, vk); if (FAILED(ID3D12Device_GetDeviceRemovedReason(device->dev))) return vk_device_set_lost(&device->vk, "D3D12 device removed"); return VK_SUCCESS; } static VkResult dzn_device_create(struct dzn_physical_device *pdev, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *out) { struct dzn_instance *instance = container_of(pdev->vk.instance, struct dzn_instance, vk); uint32_t queue_count = 0; for (uint32_t qf = 0; qf < pCreateInfo->queueCreateInfoCount; qf++) { const VkDeviceQueueCreateInfo *qinfo = &pCreateInfo->pQueueCreateInfos[qf]; queue_count += qinfo->queueCount; } VK_MULTIALLOC(ma); VK_MULTIALLOC_DECL(&ma, struct dzn_device, device, 1); VK_MULTIALLOC_DECL(&ma, struct dzn_queue, queues, queue_count); if (!vk_multialloc_zalloc2(&ma, &instance->vk.alloc, pAllocator, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE)) return vk_error(pdev, VK_ERROR_OUT_OF_HOST_MEMORY); struct vk_device_dispatch_table dispatch_table; /* For secondary command buffer support, overwrite any command entrypoints * in the main device-level dispatch table with * vk_cmd_enqueue_unless_primary_Cmd*. */ vk_device_dispatch_table_from_entrypoints(&dispatch_table, &vk_cmd_enqueue_unless_primary_device_entrypoints, true); vk_device_dispatch_table_from_entrypoints(&dispatch_table, &dzn_device_entrypoints, false); vk_device_dispatch_table_from_entrypoints(&dispatch_table, &wsi_device_entrypoints, false); /* Populate our primary cmd_dispatch table. */ vk_device_dispatch_table_from_entrypoints(&device->cmd_dispatch, &dzn_device_entrypoints, true); vk_device_dispatch_table_from_entrypoints(&device->cmd_dispatch, &vk_common_device_entrypoints, false); VkResult result = vk_device_init(&device->vk, &pdev->vk, &dispatch_table, pCreateInfo, pAllocator); if (result != VK_SUCCESS) { vk_free2(&device->vk.alloc, pAllocator, device); return result; } /* Must be done after vk_device_init() because this function memset(0) the * whole struct. */ device->vk.command_dispatch_table = &device->cmd_dispatch; device->vk.create_sync_for_memory = dzn_device_create_sync_for_memory; device->vk.check_status = dzn_device_check_status; device->dev = dzn_physical_device_get_d3d12_dev(pdev); if (!device->dev) { dzn_device_destroy(device, pAllocator); return vk_error(pdev, VK_ERROR_INITIALIZATION_FAILED); } ID3D12Device1_AddRef(device->dev); ID3D12InfoQueue *info_queue; if (SUCCEEDED(ID3D12Device1_QueryInterface(device->dev, &IID_ID3D12InfoQueue, (void **)&info_queue))) { D3D12_MESSAGE_SEVERITY severities[] = { D3D12_MESSAGE_SEVERITY_INFO, D3D12_MESSAGE_SEVERITY_WARNING, }; D3D12_MESSAGE_ID msg_ids[] = { D3D12_MESSAGE_ID_CLEARRENDERTARGETVIEW_MISMATCHINGCLEARVALUE, }; D3D12_INFO_QUEUE_FILTER NewFilter = { 0 }; NewFilter.DenyList.NumSeverities = ARRAY_SIZE(severities); NewFilter.DenyList.pSeverityList = severities; NewFilter.DenyList.NumIDs = ARRAY_SIZE(msg_ids); NewFilter.DenyList.pIDList = msg_ids; ID3D12InfoQueue_PushStorageFilter(info_queue, &NewFilter); } result = dzn_meta_init(device); if (result != VK_SUCCESS) { dzn_device_destroy(device, pAllocator); return result; } result = dzn_device_query_init(device); if (result != VK_SUCCESS) { dzn_device_destroy(device, pAllocator); return result; } uint32_t qindex = 0; for (uint32_t qf = 0; qf < pCreateInfo->queueCreateInfoCount; qf++) { const VkDeviceQueueCreateInfo *qinfo = &pCreateInfo->pQueueCreateInfos[qf]; for (uint32_t q = 0; q < qinfo->queueCount; q++) { result = dzn_queue_init(&queues[qindex++], device, qinfo, q); if (result != VK_SUCCESS) { dzn_device_destroy(device, pAllocator); return result; } } } assert(queue_count == qindex); *out = dzn_device_to_handle(device); return VK_SUCCESS; } ID3D12RootSignature * dzn_device_create_root_sig(struct dzn_device *device, const D3D12_VERSIONED_ROOT_SIGNATURE_DESC *desc) { struct dzn_instance *instance = container_of(device->vk.physical->instance, struct dzn_instance, vk); ID3D12RootSignature *root_sig = NULL; ID3DBlob *sig = NULL, *error = NULL; if (FAILED(instance->d3d12.serialize_root_sig(desc, &sig, &error))) { if (instance->debug_flags & DZN_DEBUG_SIG) { const char *error_msg = (const char *)ID3D10Blob_GetBufferPointer(error); fprintf(stderr, "== SERIALIZE ROOT SIG ERROR =============================================\n" "%s\n" "== END ==========================================================\n", error_msg); } goto out; } ID3D12Device1_CreateRootSignature(device->dev, 0, ID3D10Blob_GetBufferPointer(sig), ID3D10Blob_GetBufferSize(sig), &IID_ID3D12RootSignature, (void **)&root_sig); out: if (error) ID3D10Blob_Release(error); if (sig) ID3D10Blob_Release(sig); return root_sig; } VKAPI_ATTR VkResult VKAPI_CALL dzn_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) { VK_FROM_HANDLE(dzn_physical_device, physical_device, physicalDevice); VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO); /* Check enabled features */ if (pCreateInfo->pEnabledFeatures) { result = check_physical_device_features(physicalDevice, pCreateInfo->pEnabledFeatures); if (result != VK_SUCCESS) return vk_error(physical_device, result); } /* Check requested queues and fail if we are requested to create any * queues with flags we don't support. */ assert(pCreateInfo->queueCreateInfoCount > 0); for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { if (pCreateInfo->pQueueCreateInfos[i].flags != 0) return vk_error(physical_device, VK_ERROR_INITIALIZATION_FAILED); } return dzn_device_create(physical_device, pCreateInfo, pAllocator, pDevice); } VKAPI_ATTR void VKAPI_CALL dzn_DestroyDevice(VkDevice dev, const VkAllocationCallbacks *pAllocator) { VK_FROM_HANDLE(dzn_device, device, dev); device->vk.dispatch_table.DeviceWaitIdle(dev); dzn_device_destroy(device, pAllocator); } static void dzn_device_memory_destroy(struct dzn_device_memory *mem, const VkAllocationCallbacks *pAllocator) { if (!mem) return; struct dzn_device *device = container_of(mem->base.device, struct dzn_device, vk); if (mem->map) ID3D12Resource_Unmap(mem->map_res, 0, NULL); if (mem->map_res) ID3D12Resource_Release(mem->map_res); if (mem->heap) ID3D12Heap_Release(mem->heap); vk_object_base_finish(&mem->base); vk_free2(&device->vk.alloc, pAllocator, mem); } static VkResult dzn_device_memory_create(struct dzn_device *device, const VkMemoryAllocateInfo *pAllocateInfo, const VkAllocationCallbacks *pAllocator, VkDeviceMemory *out) { struct dzn_physical_device *pdevice = container_of(device->vk.physical, struct dzn_physical_device, vk); struct dzn_device_memory *mem = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!mem) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY); /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */ assert(pAllocateInfo->allocationSize > 0); mem->size = pAllocateInfo->allocationSize; const struct dzn_buffer *buffer = NULL; const struct dzn_image *image = NULL; vk_foreach_struct_const(ext, pAllocateInfo->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO: { UNUSED const VkExportMemoryAllocateInfo *exp = (const VkExportMemoryAllocateInfo *)ext; // TODO: support export assert(exp->handleTypes == 0); break; } case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO: { const VkMemoryDedicatedAllocateInfo *dedicated = (const VkMemoryDedicatedAllocateInfo *)ext; buffer = dzn_buffer_from_handle(dedicated->buffer); image = dzn_image_from_handle(dedicated->image); assert(!buffer || !image); break; } default: dzn_debug_ignored_stype(ext->sType); break; } } const VkMemoryType *mem_type = &pdevice->memory.memoryTypes[pAllocateInfo->memoryTypeIndex]; D3D12_HEAP_DESC heap_desc = { 0 }; heap_desc.SizeInBytes = pAllocateInfo->allocationSize; if (buffer) { heap_desc.Alignment = D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; } else if (image) { heap_desc.Alignment = image->vk.samples > 1 ? D3D12_DEFAULT_MSAA_RESOURCE_PLACEMENT_ALIGNMENT : D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; } else { heap_desc.Alignment = heap_desc.SizeInBytes >= D3D12_DEFAULT_MSAA_RESOURCE_PLACEMENT_ALIGNMENT ? D3D12_DEFAULT_MSAA_RESOURCE_PLACEMENT_ALIGNMENT : D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; } heap_desc.Flags = dzn_physical_device_get_heap_flags_for_mem_type(pdevice, pAllocateInfo->memoryTypeIndex); /* TODO: Unsure about this logic??? */ mem->initial_state = D3D12_RESOURCE_STATE_COMMON; heap_desc.Properties.Type = D3D12_HEAP_TYPE_CUSTOM; heap_desc.Properties.MemoryPoolPreference = ((mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) && !pdevice->architecture.UMA) ? D3D12_MEMORY_POOL_L1 : D3D12_MEMORY_POOL_L0; if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) { heap_desc.Properties.CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_WRITE_BACK; } else if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { heap_desc.Properties.CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_WRITE_COMBINE; } else { heap_desc.Properties.CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_NOT_AVAILABLE; } if (FAILED(ID3D12Device1_CreateHeap(device->dev, &heap_desc, &IID_ID3D12Heap, (void **)&mem->heap))) { dzn_device_memory_destroy(mem, pAllocator); return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); } if ((mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) && !(heap_desc.Flags & D3D12_HEAP_FLAG_DENY_BUFFERS)){ D3D12_RESOURCE_DESC res_desc = { 0 }; res_desc.Dimension = D3D12_RESOURCE_DIMENSION_BUFFER; res_desc.Format = DXGI_FORMAT_UNKNOWN; res_desc.Alignment = D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; res_desc.Width = heap_desc.SizeInBytes; res_desc.Height = 1; res_desc.DepthOrArraySize = 1; res_desc.MipLevels = 1; res_desc.SampleDesc.Count = 1; res_desc.SampleDesc.Quality = 0; res_desc.Flags = D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE; res_desc.Layout = D3D12_TEXTURE_LAYOUT_ROW_MAJOR; HRESULT hr = ID3D12Device1_CreatePlacedResource(device->dev, mem->heap, 0, &res_desc, mem->initial_state, NULL, &IID_ID3D12Resource, (void **)&mem->map_res); if (FAILED(hr)) { dzn_device_memory_destroy(mem, pAllocator); return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); } } *out = dzn_device_memory_to_handle(mem); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_AllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo, const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem) { return dzn_device_memory_create(dzn_device_from_handle(device), pAllocateInfo, pAllocator, pMem); } VKAPI_ATTR void VKAPI_CALL dzn_FreeMemory(VkDevice device, VkDeviceMemory mem, const VkAllocationCallbacks *pAllocator) { dzn_device_memory_destroy(dzn_device_memory_from_handle(mem), pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL dzn_MapMemory(VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void **ppData) { VK_FROM_HANDLE(dzn_device, device, _device); VK_FROM_HANDLE(dzn_device_memory, mem, _memory); if (mem == NULL) { *ppData = NULL; return VK_SUCCESS; } if (size == VK_WHOLE_SIZE) size = mem->size - offset; /* From the Vulkan spec version 1.0.32 docs for MapMemory: * * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0 * assert(size != 0); * * If size is not equal to VK_WHOLE_SIZE, size must be less than or * equal to the size of the memory minus offset */ assert(size > 0); assert(offset + size <= mem->size); assert(mem->map_res); D3D12_RANGE range = { 0 }; range.Begin = offset; range.End = offset + size; void *map = NULL; if (FAILED(ID3D12Resource_Map(mem->map_res, 0, &range, &map))) return vk_error(device, VK_ERROR_MEMORY_MAP_FAILED); mem->map = map; mem->map_size = size; *ppData = ((uint8_t *) map) + offset; return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL dzn_UnmapMemory(VkDevice _device, VkDeviceMemory _memory) { VK_FROM_HANDLE(dzn_device_memory, mem, _memory); if (mem == NULL) return; assert(mem->map_res); ID3D12Resource_Unmap(mem->map_res, 0, NULL); mem->map = NULL; mem->map_size = 0; } VKAPI_ATTR VkResult VKAPI_CALL dzn_FlushMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges) { return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_InvalidateMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges) { return VK_SUCCESS; } static void dzn_buffer_destroy(struct dzn_buffer *buf, const VkAllocationCallbacks *pAllocator) { if (!buf) return; struct dzn_device *device = container_of(buf->base.device, struct dzn_device, vk); if (buf->res) ID3D12Resource_Release(buf->res); vk_object_base_finish(&buf->base); vk_free2(&device->vk.alloc, pAllocator, buf); } static VkResult dzn_buffer_create(struct dzn_device *device, const VkBufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBuffer *out) { struct dzn_buffer *buf = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*buf), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!buf) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &buf->base, VK_OBJECT_TYPE_BUFFER); buf->create_flags = pCreateInfo->flags; buf->size = pCreateInfo->size; buf->usage = pCreateInfo->usage; if (buf->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) buf->size = ALIGN_POT(buf->size, 256); buf->desc.Dimension = D3D12_RESOURCE_DIMENSION_BUFFER; buf->desc.Format = DXGI_FORMAT_UNKNOWN; buf->desc.Alignment = D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; buf->desc.Width = buf->size; buf->desc.Height = 1; buf->desc.DepthOrArraySize = 1; buf->desc.MipLevels = 1; buf->desc.SampleDesc.Count = 1; buf->desc.SampleDesc.Quality = 0; buf->desc.Flags = D3D12_RESOURCE_FLAG_NONE; buf->desc.Layout = D3D12_TEXTURE_LAYOUT_ROW_MAJOR; if (buf->usage & (VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT)) buf->desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS; *out = dzn_buffer_to_handle(buf); return VK_SUCCESS; } DXGI_FORMAT dzn_buffer_get_dxgi_format(VkFormat format) { enum pipe_format pfmt = vk_format_to_pipe_format(format); return dzn_pipe_to_dxgi_format(pfmt); } D3D12_TEXTURE_COPY_LOCATION dzn_buffer_get_copy_loc(const struct dzn_buffer *buf, VkFormat format, const VkBufferImageCopy2 *region, VkImageAspectFlagBits aspect, uint32_t layer) { const uint32_t buffer_row_length = region->bufferRowLength ? region->bufferRowLength : region->imageExtent.width; VkFormat plane_format = dzn_image_get_plane_format(format, aspect); enum pipe_format pfmt = vk_format_to_pipe_format(plane_format); uint32_t blksz = util_format_get_blocksize(pfmt); uint32_t blkw = util_format_get_blockwidth(pfmt); uint32_t blkh = util_format_get_blockheight(pfmt); D3D12_TEXTURE_COPY_LOCATION loc = { .pResource = buf->res, .Type = D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT, .PlacedFootprint = { .Footprint = { .Format = dzn_image_get_placed_footprint_format(format, aspect), .Width = region->imageExtent.width, .Height = region->imageExtent.height, .Depth = region->imageExtent.depth, .RowPitch = blksz * DIV_ROUND_UP(buffer_row_length, blkw), }, }, }; uint32_t buffer_layer_stride = loc.PlacedFootprint.Footprint.RowPitch * DIV_ROUND_UP(loc.PlacedFootprint.Footprint.Height, blkh); loc.PlacedFootprint.Offset = region->bufferOffset + (layer * buffer_layer_stride); return loc; } D3D12_TEXTURE_COPY_LOCATION dzn_buffer_get_line_copy_loc(const struct dzn_buffer *buf, VkFormat format, const VkBufferImageCopy2 *region, const D3D12_TEXTURE_COPY_LOCATION *loc, uint32_t y, uint32_t z, uint32_t *start_x) { uint32_t buffer_row_length = region->bufferRowLength ? region->bufferRowLength : region->imageExtent.width; uint32_t buffer_image_height = region->bufferImageHeight ? region->bufferImageHeight : region->imageExtent.height; format = dzn_image_get_plane_format(format, region->imageSubresource.aspectMask); enum pipe_format pfmt = vk_format_to_pipe_format(format); uint32_t blksz = util_format_get_blocksize(pfmt); uint32_t blkw = util_format_get_blockwidth(pfmt); uint32_t blkh = util_format_get_blockheight(pfmt); uint32_t blkd = util_format_get_blockdepth(pfmt); D3D12_TEXTURE_COPY_LOCATION new_loc = *loc; uint32_t buffer_row_stride = DIV_ROUND_UP(buffer_row_length, blkw) * blksz; uint32_t buffer_layer_stride = buffer_row_stride * DIV_ROUND_UP(buffer_image_height, blkh); uint64_t tex_offset = ((y / blkh) * buffer_row_stride) + ((z / blkd) * buffer_layer_stride); uint64_t offset = loc->PlacedFootprint.Offset + tex_offset; uint32_t offset_alignment = D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT; while (offset_alignment % blksz) offset_alignment += D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT; new_loc.PlacedFootprint.Footprint.Height = blkh; new_loc.PlacedFootprint.Footprint.Depth = 1; new_loc.PlacedFootprint.Offset = (offset / offset_alignment) * offset_alignment; *start_x = ((offset % offset_alignment) / blksz) * blkw; new_loc.PlacedFootprint.Footprint.Width = *start_x + region->imageExtent.width; new_loc.PlacedFootprint.Footprint.RowPitch = ALIGN_POT(DIV_ROUND_UP(new_loc.PlacedFootprint.Footprint.Width, blkw) * blksz, D3D12_TEXTURE_DATA_PITCH_ALIGNMENT); return new_loc; } bool dzn_buffer_supports_region_copy(const D3D12_TEXTURE_COPY_LOCATION *loc) { return !(loc->PlacedFootprint.Offset & (D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT - 1)) && !(loc->PlacedFootprint.Footprint.RowPitch & (D3D12_TEXTURE_DATA_PITCH_ALIGNMENT - 1)); } VKAPI_ATTR VkResult VKAPI_CALL dzn_CreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) { return dzn_buffer_create(dzn_device_from_handle(device), pCreateInfo, pAllocator, pBuffer); } VKAPI_ATTR void VKAPI_CALL dzn_DestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) { dzn_buffer_destroy(dzn_buffer_from_handle(buffer), pAllocator); } VKAPI_ATTR void VKAPI_CALL dzn_GetBufferMemoryRequirements2(VkDevice dev, const VkBufferMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { VK_FROM_HANDLE(dzn_device, device, dev); VK_FROM_HANDLE(dzn_buffer, buffer, pInfo->buffer); struct dzn_physical_device *pdev = container_of(device->vk.physical, struct dzn_physical_device, vk); /* uh, this is grossly over-estimating things */ uint32_t alignment = D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; VkDeviceSize size = buffer->size; if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) { alignment = MAX2(alignment, D3D12_CONSTANT_BUFFER_DATA_PLACEMENT_ALIGNMENT); size = ALIGN_POT(size, D3D12_CONSTANT_BUFFER_DATA_PLACEMENT_ALIGNMENT); } pMemoryRequirements->memoryRequirements.size = size; pMemoryRequirements->memoryRequirements.alignment = alignment; pMemoryRequirements->memoryRequirements.memoryTypeBits = dzn_physical_device_get_mem_type_mask_for_resource(pdev, &buffer->desc); vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *requirements = (VkMemoryDedicatedRequirements *)ext; /* TODO: figure out dedicated allocations */ requirements->prefersDedicatedAllocation = false; requirements->requiresDedicatedAllocation = false; break; } default: dzn_debug_ignored_stype(ext->sType); break; } } #if 0 D3D12_RESOURCE_ALLOCATION_INFO GetResourceAllocationInfo( UINT visibleMask, UINT numResourceDescs, const D3D12_RESOURCE_DESC *pResourceDescs); #endif } VKAPI_ATTR VkResult VKAPI_CALL dzn_BindBufferMemory2(VkDevice _device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) { VK_FROM_HANDLE(dzn_device, device, _device); for (uint32_t i = 0; i < bindInfoCount; i++) { assert(pBindInfos[i].sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO); VK_FROM_HANDLE(dzn_device_memory, mem, pBindInfos[i].memory); VK_FROM_HANDLE(dzn_buffer, buffer, pBindInfos[i].buffer); if (FAILED(ID3D12Device1_CreatePlacedResource(device->dev, mem->heap, pBindInfos[i].memoryOffset, &buffer->desc, mem->initial_state, NULL, &IID_ID3D12Resource, (void **)&buffer->res))) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } return VK_SUCCESS; } static void dzn_event_destroy(struct dzn_event *event, const VkAllocationCallbacks *pAllocator) { if (!event) return; struct dzn_device *device = container_of(event->base.device, struct dzn_device, vk); if (event->fence) ID3D12Fence_Release(event->fence); vk_object_base_finish(&event->base); vk_free2(&device->vk.alloc, pAllocator, event); } static VkResult dzn_event_create(struct dzn_device *device, const VkEventCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkEvent *out) { struct dzn_event *event = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!event) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT); if (FAILED(ID3D12Device1_CreateFence(device->dev, 0, D3D12_FENCE_FLAG_NONE, &IID_ID3D12Fence, (void **)&event->fence))) { dzn_event_destroy(event, pAllocator); return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } *out = dzn_event_to_handle(event); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_CreateEvent(VkDevice device, const VkEventCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkEvent *pEvent) { return dzn_event_create(dzn_device_from_handle(device), pCreateInfo, pAllocator, pEvent); } VKAPI_ATTR void VKAPI_CALL dzn_DestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks *pAllocator) { dzn_event_destroy(dzn_event_from_handle(event), pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL dzn_ResetEvent(VkDevice dev, VkEvent evt) { VK_FROM_HANDLE(dzn_device, device, dev); VK_FROM_HANDLE(dzn_event, event, evt); if (FAILED(ID3D12Fence_Signal(event->fence, 0))) return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_SetEvent(VkDevice dev, VkEvent evt) { VK_FROM_HANDLE(dzn_device, device, dev); VK_FROM_HANDLE(dzn_event, event, evt); if (FAILED(ID3D12Fence_Signal(event->fence, 1))) return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_GetEventStatus(VkDevice device, VkEvent evt) { VK_FROM_HANDLE(dzn_event, event, evt); return ID3D12Fence_GetCompletedValue(event->fence) == 0 ? VK_EVENT_RESET : VK_EVENT_SET; } VKAPI_ATTR void VKAPI_CALL dzn_GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory, VkDeviceSize *pCommittedMemoryInBytes) { VK_FROM_HANDLE(dzn_device_memory, mem, memory); // TODO: find if there's a way to query/track actual heap residency *pCommittedMemoryInBytes = mem->size; } VKAPI_ATTR VkResult VKAPI_CALL dzn_QueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo, VkFence fence) { // FIXME: add proper implem dzn_stub(); return VK_SUCCESS; } static D3D12_TEXTURE_ADDRESS_MODE dzn_sampler_translate_addr_mode(VkSamplerAddressMode in) { switch (in) { case VK_SAMPLER_ADDRESS_MODE_REPEAT: return D3D12_TEXTURE_ADDRESS_MODE_WRAP; case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return D3D12_TEXTURE_ADDRESS_MODE_MIRROR; case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return D3D12_TEXTURE_ADDRESS_MODE_CLAMP; case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return D3D12_TEXTURE_ADDRESS_MODE_BORDER; default: unreachable("Invalid address mode"); } } static void dzn_sampler_destroy(struct dzn_sampler *sampler, const VkAllocationCallbacks *pAllocator) { if (!sampler) return; struct dzn_device *device = container_of(sampler->base.device, struct dzn_device, vk); vk_object_base_finish(&sampler->base); vk_free2(&device->vk.alloc, pAllocator, sampler); } static VkResult dzn_sampler_create(struct dzn_device *device, const VkSamplerCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSampler *out) { struct dzn_sampler *sampler = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*sampler), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!sampler) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &sampler->base, VK_OBJECT_TYPE_SAMPLER); const VkSamplerCustomBorderColorCreateInfoEXT *pBorderColor = (const VkSamplerCustomBorderColorCreateInfoEXT *) vk_find_struct_const(pCreateInfo->pNext, SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT); /* TODO: have a sampler pool to allocate shader-invisible descs which we * can copy to the desc_set when UpdateDescriptorSets() is called. */ sampler->desc.Filter = dzn_translate_sampler_filter(pCreateInfo); sampler->desc.AddressU = dzn_sampler_translate_addr_mode(pCreateInfo->addressModeU); sampler->desc.AddressV = dzn_sampler_translate_addr_mode(pCreateInfo->addressModeV); sampler->desc.AddressW = dzn_sampler_translate_addr_mode(pCreateInfo->addressModeW); sampler->desc.MipLODBias = pCreateInfo->mipLodBias; sampler->desc.MaxAnisotropy = pCreateInfo->maxAnisotropy; sampler->desc.MinLOD = pCreateInfo->minLod; sampler->desc.MaxLOD = pCreateInfo->maxLod; if (pCreateInfo->compareEnable) sampler->desc.ComparisonFunc = dzn_translate_compare_op(pCreateInfo->compareOp); bool reads_border_color = pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER || pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER || pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; if (reads_border_color) { switch (pCreateInfo->borderColor) { case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: sampler->desc.BorderColor[0] = 0.0f; sampler->desc.BorderColor[1] = 0.0f; sampler->desc.BorderColor[2] = 0.0f; sampler->desc.BorderColor[3] = pCreateInfo->borderColor == VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK ? 0.0f : 1.0f; sampler->static_border_color = pCreateInfo->borderColor == VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK ? D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK : D3D12_STATIC_BORDER_COLOR_OPAQUE_BLACK; break; case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: sampler->desc.BorderColor[0] = sampler->desc.BorderColor[1] = 1.0f; sampler->desc.BorderColor[2] = sampler->desc.BorderColor[3] = 1.0f; sampler->static_border_color = D3D12_STATIC_BORDER_COLOR_OPAQUE_WHITE; break; case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT: sampler->static_border_color = (D3D12_STATIC_BORDER_COLOR)-1; for (unsigned i = 0; i < ARRAY_SIZE(sampler->desc.BorderColor); i++) sampler->desc.BorderColor[i] = pBorderColor->customBorderColor.float32[i]; break; case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: case VK_BORDER_COLOR_INT_OPAQUE_BLACK: case VK_BORDER_COLOR_INT_OPAQUE_WHITE: case VK_BORDER_COLOR_INT_CUSTOM_EXT: /* FIXME: sampling from integer textures is not supported yet. */ sampler->static_border_color = (D3D12_STATIC_BORDER_COLOR)-1; break; default: unreachable("Unsupported border color"); } } *out = dzn_sampler_to_handle(sampler); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL dzn_CreateSampler(VkDevice device, const VkSamplerCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSampler *pSampler) { return dzn_sampler_create(dzn_device_from_handle(device), pCreateInfo, pAllocator, pSampler); } VKAPI_ATTR void VKAPI_CALL dzn_DestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks *pAllocator) { dzn_sampler_destroy(dzn_sampler_from_handle(sampler), pAllocator); } VKAPI_ATTR void VKAPI_CALL dzn_GetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags *pPeerMemoryFeatures) { *pPeerMemoryFeatures = 0; } VKAPI_ATTR void VKAPI_CALL dzn_GetImageSparseMemoryRequirements2(VkDevice device, const VkImageSparseMemoryRequirementsInfo2* pInfo, uint32_t *pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements) { *pSparseMemoryRequirementCount = 0; } VKAPI_ATTR VkResult VKAPI_CALL dzn_CreateSamplerYcbcrConversion(VkDevice device, const VkSamplerYcbcrConversionCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSamplerYcbcrConversion *pYcbcrConversion) { unreachable("Ycbcr sampler conversion is not supported"); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL dzn_DestroySamplerYcbcrConversion(VkDevice device, VkSamplerYcbcrConversion YcbcrConversion, const VkAllocationCallbacks *pAllocator) { unreachable("Ycbcr sampler conversion is not supported"); }