use std::error::Error as StdError; use std::fmt; use std::str; use std::time::{SystemTime, Duration, UNIX_EPOCH}; #[cfg(target_os="cloudabi")] mod max { pub const SECONDS: u64 = ::std::u64::MAX / 1_000_000_000; #[allow(unused)] pub const TIMESTAMP: &'static str = "2554-07-21T23:34:33Z"; } #[cfg(all( target_pointer_width="32", not(target_os="cloudabi"), not(target_os="windows"), not(all(target_arch="wasm32", not(target_os="emscripten"))) ))] mod max { pub const SECONDS: u64 = ::std::i32::MAX as u64; #[allow(unused)] pub const TIMESTAMP: &'static str = "2038-01-19T03:14:07Z"; } #[cfg(any( target_pointer_width="64", target_os="windows", all(target_arch="wasm32", not(target_os="emscripten")), ))] mod max { pub const SECONDS: u64 = 253_402_300_800-1; // last second of year 9999 #[allow(unused)] pub const TIMESTAMP: &str = "9999-12-31T23:59:59Z"; } /// Error parsing datetime (timestamp) #[derive(Debug, PartialEq, Clone, Copy)] pub enum Error { /// Numeric component is out of range OutOfRange, /// Bad character where digit is expected InvalidDigit, /// Other formatting errors InvalidFormat, } impl StdError for Error {} impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Error::OutOfRange => write!(f, "numeric component is out of range"), Error::InvalidDigit => write!(f, "bad character where digit is expected"), Error::InvalidFormat => write!(f, "timestamp format is invalid"), } } } #[derive(Debug, Clone, PartialEq, Eq)] enum Precision { Smart, Seconds, Millis, Micros, Nanos, } /// A wrapper type that allows you to Display a SystemTime #[derive(Debug, Clone)] pub struct Rfc3339Timestamp(SystemTime, Precision); #[inline] fn two_digits(b1: u8, b2: u8) -> Result { if b1 < b'0' || b2 < b'0' || b1 > b'9' || b2 > b'9' { return Err(Error::InvalidDigit); } Ok(((b1 - b'0')*10 + (b2 - b'0')) as u64) } /// Parse RFC3339 timestamp `2018-02-14T00:28:07Z` /// /// Supported feature: any precision of fractional /// digits `2018-02-14T00:28:07.133Z`. /// /// Unsupported feature: localized timestamps. Only UTC is supported. pub fn parse_rfc3339(s: &str) -> Result { if s.len() < "2018-02-14T00:28:07Z".len() { return Err(Error::InvalidFormat); } let b = s.as_bytes(); if b[10] != b'T' || b[b.len()-1] != b'Z' { return Err(Error::InvalidFormat); } parse_rfc3339_weak(s) } /// Parse RFC3339-like timestamp `2018-02-14 00:28:07` /// /// Supported features: /// /// 1. Any precision of fractional digits `2018-02-14 00:28:07.133`. /// 2. Supports timestamp with or without either of `T` or `Z` /// 3. Anything valid for `parse_3339` is valid for this function /// /// Unsupported feature: localized timestamps. Only UTC is supported, even if /// `Z` is not specified. /// /// This function is intended to use for parsing human input. Whereas /// `parse_rfc3339` is for strings generated programmatically. pub fn parse_rfc3339_weak(s: &str) -> Result { if s.len() < "2018-02-14T00:28:07".len() { return Err(Error::InvalidFormat); } let b = s.as_bytes(); // for careless slicing if b[4] != b'-' || b[7] != b'-' || (b[10] != b'T' && b[10] != b' ') || b[13] != b':' || b[16] != b':' { return Err(Error::InvalidFormat); } let year = two_digits(b[0], b[1])? * 100 + two_digits(b[2], b[3])?; let month = two_digits(b[5], b[6])?; let day = two_digits(b[8], b[9])?; let hour = two_digits(b[11], b[12])?; let minute = two_digits(b[14], b[15])?; let mut second = two_digits(b[17], b[18])?; if year < 1970 || hour > 23 || minute > 59 || second > 60 { return Err(Error::OutOfRange); } // TODO(tailhook) should we check that leaps second is only on midnight ? if second == 60 { second = 59 }; let leap_years = ((year - 1) - 1968) / 4 - ((year - 1) - 1900) / 100 + ((year - 1) - 1600) / 400; let leap = is_leap_year(year); let (mut ydays, mdays) = match month { 1 => (0, 31), 2 if leap => (31, 29), 2 => (31, 28), 3 => (59, 31), 4 => (90, 30), 5 => (120, 31), 6 => (151, 30), 7 => (181, 31), 8 => (212, 31), 9 => (243, 30), 10 => (273, 31), 11 => (304, 30), 12 => (334, 31), _ => return Err(Error::OutOfRange), }; if day > mdays || day == 0 { return Err(Error::OutOfRange); } ydays += day - 1; if leap && month > 2 { ydays += 1; } let days = (year - 1970) * 365 + leap_years + ydays; let time = second + minute * 60 + hour * 3600; let mut nanos = 0; let mut mult = 100_000_000; if b.get(19) == Some(&b'.') { for idx in 20..b.len() { if b[idx] == b'Z' { if idx == b.len()-1 { break; } else { return Err(Error::InvalidDigit); } } if b[idx] < b'0' || b[idx] > b'9' { return Err(Error::InvalidDigit); } nanos += mult * (b[idx] - b'0') as u32; mult /= 10; } } else if b.len() != 19 && (b.len() > 20 || b[19] != b'Z') { return Err(Error::InvalidFormat); } let total_seconds = time + days * 86400; if total_seconds > max::SECONDS { return Err(Error::OutOfRange); } Ok(UNIX_EPOCH + Duration::new(total_seconds, nanos)) } fn is_leap_year(y: u64) -> bool { y % 4 == 0 && (y % 100 != 0 || y % 400 == 0) } /// Format an RFC3339 timestamp `2018-02-14T00:28:07Z` /// /// This function formats timestamp with smart precision: i.e. if it has no /// fractional seconds, they aren't written at all. And up to nine digits if /// they are. /// /// The value is always UTC and ignores system timezone. pub fn format_rfc3339(system_time: SystemTime) -> Rfc3339Timestamp { Rfc3339Timestamp(system_time, Precision::Smart) } /// Format an RFC3339 timestamp `2018-02-14T00:28:07Z` /// /// This format always shows timestamp without fractional seconds. /// /// The value is always UTC and ignores system timezone. pub fn format_rfc3339_seconds(system_time: SystemTime) -> Rfc3339Timestamp { Rfc3339Timestamp(system_time, Precision::Seconds) } /// Format an RFC3339 timestamp `2018-02-14T00:28:07.000Z` /// /// This format always shows milliseconds even if millisecond value is zero. /// /// The value is always UTC and ignores system timezone. pub fn format_rfc3339_millis(system_time: SystemTime) -> Rfc3339Timestamp { Rfc3339Timestamp(system_time, Precision::Millis) } /// Format an RFC3339 timestamp `2018-02-14T00:28:07.000000Z` /// /// This format always shows microseconds even if microsecond value is zero. /// /// The value is always UTC and ignores system timezone. pub fn format_rfc3339_micros(system_time: SystemTime) -> Rfc3339Timestamp { Rfc3339Timestamp(system_time, Precision::Micros) } /// Format an RFC3339 timestamp `2018-02-14T00:28:07.000000000Z` /// /// This format always shows nanoseconds even if nanosecond value is zero. /// /// The value is always UTC and ignores system timezone. pub fn format_rfc3339_nanos(system_time: SystemTime) -> Rfc3339Timestamp { Rfc3339Timestamp(system_time, Precision::Nanos) } impl Rfc3339Timestamp { /// Returns a reference to the [`SystemTime`][] that is being formatted. pub fn get_ref(&self) -> &SystemTime { &self.0 } } impl fmt::Display for Rfc3339Timestamp { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::Precision::*; let dur = self.0.duration_since(UNIX_EPOCH) .expect("all times should be after the epoch"); let secs_since_epoch = dur.as_secs(); let nanos = dur.subsec_nanos(); if secs_since_epoch >= 253_402_300_800 { // year 9999 return Err(fmt::Error); } /* 2000-03-01 (mod 400 year, immediately after feb29 */ const LEAPOCH: i64 = 11017; const DAYS_PER_400Y: i64 = 365*400 + 97; const DAYS_PER_100Y: i64 = 365*100 + 24; const DAYS_PER_4Y: i64 = 365*4 + 1; let days = (secs_since_epoch / 86400) as i64 - LEAPOCH; let secs_of_day = secs_since_epoch % 86400; let mut qc_cycles = days / DAYS_PER_400Y; let mut remdays = days % DAYS_PER_400Y; if remdays < 0 { remdays += DAYS_PER_400Y; qc_cycles -= 1; } let mut c_cycles = remdays / DAYS_PER_100Y; if c_cycles == 4 { c_cycles -= 1; } remdays -= c_cycles * DAYS_PER_100Y; let mut q_cycles = remdays / DAYS_PER_4Y; if q_cycles == 25 { q_cycles -= 1; } remdays -= q_cycles * DAYS_PER_4Y; let mut remyears = remdays / 365; if remyears == 4 { remyears -= 1; } remdays -= remyears * 365; let mut year = 2000 + remyears + 4*q_cycles + 100*c_cycles + 400*qc_cycles; let months = [31,30,31,30,31,31,30,31,30,31,31,29]; let mut mon = 0; for mon_len in months.iter() { mon += 1; if remdays < *mon_len { break; } remdays -= *mon_len; } let mday = remdays+1; let mon = if mon + 2 > 12 { year += 1; mon - 10 } else { mon + 2 }; let mut buf: [u8; 30] = [ // Too long to write as: b"0000-00-00T00:00:00.000000000Z" b'0', b'0', b'0', b'0', b'-', b'0', b'0', b'-', b'0', b'0', b'T', b'0', b'0', b':', b'0', b'0', b':', b'0', b'0', b'.', b'0', b'0', b'0', b'0', b'0', b'0', b'0', b'0', b'0', b'Z', ]; buf[0] = b'0' + (year / 1000) as u8; buf[1] = b'0' + (year / 100 % 10) as u8; buf[2] = b'0' + (year / 10 % 10) as u8; buf[3] = b'0' + (year % 10) as u8; buf[5] = b'0' + (mon / 10) as u8; buf[6] = b'0' + (mon % 10) as u8; buf[8] = b'0' + (mday / 10) as u8; buf[9] = b'0' + (mday % 10) as u8; buf[11] = b'0' + (secs_of_day / 3600 / 10) as u8; buf[12] = b'0' + (secs_of_day / 3600 % 10) as u8; buf[14] = b'0' + (secs_of_day / 60 / 10 % 6) as u8; buf[15] = b'0' + (secs_of_day / 60 % 10) as u8; buf[17] = b'0' + (secs_of_day / 10 % 6) as u8; buf[18] = b'0' + (secs_of_day % 10) as u8; let offset = if self.1 == Seconds || nanos == 0 && self.1 == Smart { buf[19] = b'Z'; 19 } else if self.1 == Millis { buf[20] = b'0' + (nanos / 100_000_000) as u8; buf[21] = b'0' + (nanos / 10_000_000 % 10) as u8; buf[22] = b'0' + (nanos / 1_000_000 % 10) as u8; buf[23] = b'Z'; 23 } else if self.1 == Micros { buf[20] = b'0' + (nanos / 100_000_000) as u8; buf[21] = b'0' + (nanos / 10_000_000 % 10) as u8; buf[22] = b'0' + (nanos / 1_000_000 % 10) as u8; buf[23] = b'0' + (nanos / 100_000 % 10) as u8; buf[24] = b'0' + (nanos / 10_000 % 10) as u8; buf[25] = b'0' + (nanos / 1_000 % 10) as u8; buf[26] = b'Z'; 26 } else { buf[20] = b'0' + (nanos / 100_000_000) as u8; buf[21] = b'0' + (nanos / 10_000_000 % 10) as u8; buf[22] = b'0' + (nanos / 1_000_000 % 10) as u8; buf[23] = b'0' + (nanos / 100_000 % 10) as u8; buf[24] = b'0' + (nanos / 10_000 % 10) as u8; buf[25] = b'0' + (nanos / 1_000 % 10) as u8; buf[26] = b'0' + (nanos / 100 % 10) as u8; buf[27] = b'0' + (nanos / 10 % 10) as u8; buf[28] = b'0' + (nanos / 1 % 10) as u8; // 29th is 'Z' 29 }; // we know our chars are all ascii f.write_str(str::from_utf8(&buf[..=offset]).expect("Conversion to utf8 failed")) } } #[cfg(test)] mod test { use std::str::from_utf8; use std::time::{UNIX_EPOCH, SystemTime, Duration}; use rand::Rng; use super::{parse_rfc3339, parse_rfc3339_weak, format_rfc3339}; use super::{format_rfc3339_millis, format_rfc3339_micros}; use super::{format_rfc3339_nanos}; use super::max; fn from_sec(sec: u64) -> (String, SystemTime) { let s = time::at_utc(time::Timespec { sec: sec as i64, nsec: 0 }) .rfc3339().to_string(); let time = UNIX_EPOCH + Duration::new(sec, 0); (s, time) } #[test] #[cfg(all(target_pointer_width="32", target_os="linux"))] fn year_after_2038_fails_gracefully() { // next second assert_eq!(parse_rfc3339("2038-01-19T03:14:08Z").unwrap_err(), super::Error::OutOfRange); assert_eq!(parse_rfc3339("9999-12-31T23:59:59Z").unwrap_err(), super::Error::OutOfRange); } #[test] fn smoke_tests_parse() { assert_eq!(parse_rfc3339("1970-01-01T00:00:00Z").unwrap(), UNIX_EPOCH + Duration::new(0, 0)); assert_eq!(parse_rfc3339("1970-01-01T00:00:01Z").unwrap(), UNIX_EPOCH + Duration::new(1, 0)); assert_eq!(parse_rfc3339("2018-02-13T23:08:32Z").unwrap(), UNIX_EPOCH + Duration::new(1_518_563_312, 0)); assert_eq!(parse_rfc3339("2012-01-01T00:00:00Z").unwrap(), UNIX_EPOCH + Duration::new(1_325_376_000, 0)); } #[test] fn smoke_tests_format() { assert_eq!( format_rfc3339(UNIX_EPOCH + Duration::new(0, 0)).to_string(), "1970-01-01T00:00:00Z"); assert_eq!( format_rfc3339(UNIX_EPOCH + Duration::new(1, 0)).to_string(), "1970-01-01T00:00:01Z"); assert_eq!( format_rfc3339(UNIX_EPOCH + Duration::new(1_518_563_312, 0)).to_string(), "2018-02-13T23:08:32Z"); assert_eq!( format_rfc3339(UNIX_EPOCH + Duration::new(1_325_376_000, 0)).to_string(), "2012-01-01T00:00:00Z"); } #[test] fn smoke_tests_format_millis() { assert_eq!( format_rfc3339_millis(UNIX_EPOCH + Duration::new(0, 0)).to_string(), "1970-01-01T00:00:00.000Z"); assert_eq!( format_rfc3339_millis(UNIX_EPOCH + Duration::new(1_518_563_312, 123_000_000)).to_string(), "2018-02-13T23:08:32.123Z"); } #[test] fn smoke_tests_format_micros() { assert_eq!( format_rfc3339_micros(UNIX_EPOCH + Duration::new(0, 0)).to_string(), "1970-01-01T00:00:00.000000Z"); assert_eq!( format_rfc3339_micros(UNIX_EPOCH + Duration::new(1_518_563_312, 123_000_000)).to_string(), "2018-02-13T23:08:32.123000Z"); assert_eq!( format_rfc3339_micros(UNIX_EPOCH + Duration::new(1_518_563_312, 456_123_000)).to_string(), "2018-02-13T23:08:32.456123Z"); } #[test] fn smoke_tests_format_nanos() { assert_eq!( format_rfc3339_nanos(UNIX_EPOCH + Duration::new(0, 0)).to_string(), "1970-01-01T00:00:00.000000000Z"); assert_eq!( format_rfc3339_nanos(UNIX_EPOCH + Duration::new(1_518_563_312, 123_000_000)).to_string(), "2018-02-13T23:08:32.123000000Z"); assert_eq!( format_rfc3339_nanos(UNIX_EPOCH + Duration::new(1_518_563_312, 789_456_123)).to_string(), "2018-02-13T23:08:32.789456123Z"); } #[test] fn upper_bound() { let max = UNIX_EPOCH + Duration::new(max::SECONDS, 0); assert_eq!(parse_rfc3339(&max::TIMESTAMP).unwrap(), max); assert_eq!(format_rfc3339(max).to_string(), max::TIMESTAMP); } #[test] fn leap_second() { assert_eq!(parse_rfc3339("2016-12-31T23:59:60Z").unwrap(), UNIX_EPOCH + Duration::new(1_483_228_799, 0)); } #[test] fn first_731_days() { let year_start = 0; // 1970 for day in 0..= 365 * 2 { // scan leap year and non-leap year let (s, time) = from_sec(year_start + day * 86400); assert_eq!(parse_rfc3339(&s).unwrap(), time); assert_eq!(format_rfc3339(time).to_string(), s); } } #[test] fn the_731_consecutive_days() { let year_start = 1_325_376_000; // 2012 for day in 0..= 365 * 2 { // scan leap year and non-leap year let (s, time) = from_sec(year_start + day * 86400); assert_eq!(parse_rfc3339(&s).unwrap(), time); assert_eq!(format_rfc3339(time).to_string(), s); } } #[test] fn all_86400_seconds() { let day_start = 1_325_376_000; for second in 0..86400 { // scan leap year and non-leap year let (s, time) = from_sec(day_start + second); assert_eq!(parse_rfc3339(&s).unwrap(), time); assert_eq!(format_rfc3339(time).to_string(), s); } } #[test] fn random_past() { let upper = SystemTime::now().duration_since(UNIX_EPOCH).unwrap() .as_secs(); for _ in 0..10000 { let sec = rand::thread_rng().gen_range(0, upper); let (s, time) = from_sec(sec); assert_eq!(parse_rfc3339(&s).unwrap(), time); assert_eq!(format_rfc3339(time).to_string(), s); } } #[test] fn random_wide_range() { for _ in 0..100_000 { let sec = rand::thread_rng().gen_range(0, max::SECONDS); let (s, time) = from_sec(sec); assert_eq!(parse_rfc3339(&s).unwrap(), time); assert_eq!(format_rfc3339(time).to_string(), s); } } #[test] fn milliseconds() { assert_eq!(parse_rfc3339("1970-01-01T00:00:00.123Z").unwrap(), UNIX_EPOCH + Duration::new(0, 123_000_000)); assert_eq!(format_rfc3339(UNIX_EPOCH + Duration::new(0, 123_000_000)) .to_string(), "1970-01-01T00:00:00.123000000Z"); } #[test] #[should_panic(expected="OutOfRange")] fn zero_month() { parse_rfc3339("1970-00-01T00:00:00Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn big_month() { parse_rfc3339("1970-32-01T00:00:00Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn zero_day() { parse_rfc3339("1970-01-00T00:00:00Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn big_day() { parse_rfc3339("1970-12-35T00:00:00Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn big_day2() { parse_rfc3339("1970-02-30T00:00:00Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn big_second() { parse_rfc3339("1970-12-30T00:00:78Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn big_minute() { parse_rfc3339("1970-12-30T00:78:00Z").unwrap(); } #[test] #[should_panic(expected="OutOfRange")] fn big_hour() { parse_rfc3339("1970-12-30T24:00:00Z").unwrap(); } #[test] fn break_data() { for pos in 0.."2016-12-31T23:59:60Z".len() { let mut s = b"2016-12-31T23:59:60Z".to_vec(); s[pos] = b'x'; parse_rfc3339(from_utf8(&s).unwrap()).unwrap_err(); } } #[test] fn weak_smoke_tests() { assert_eq!(parse_rfc3339_weak("1970-01-01 00:00:00").unwrap(), UNIX_EPOCH + Duration::new(0, 0)); parse_rfc3339("1970-01-01 00:00:00").unwrap_err(); assert_eq!(parse_rfc3339_weak("1970-01-01 00:00:00.000123").unwrap(), UNIX_EPOCH + Duration::new(0, 123_000)); parse_rfc3339("1970-01-01 00:00:00.000123").unwrap_err(); assert_eq!(parse_rfc3339_weak("1970-01-01T00:00:00.000123").unwrap(), UNIX_EPOCH + Duration::new(0, 123_000)); parse_rfc3339("1970-01-01T00:00:00.000123").unwrap_err(); assert_eq!(parse_rfc3339_weak("1970-01-01 00:00:00.000123Z").unwrap(), UNIX_EPOCH + Duration::new(0, 123_000)); parse_rfc3339("1970-01-01 00:00:00.000123Z").unwrap_err(); assert_eq!(parse_rfc3339_weak("1970-01-01 00:00:00Z").unwrap(), UNIX_EPOCH + Duration::new(0, 0)); parse_rfc3339("1970-01-01 00:00:00Z").unwrap_err(); } }