/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "modules/skottie/src/animator/VectorKeyframeAnimator.h" #include "include/core/SkTypes.h" #include "include/private/SkNx.h" #include "include/private/SkTPin.h" #include "modules/skottie/src/SkottieJson.h" #include "modules/skottie/src/SkottieValue.h" #include "modules/skottie/src/animator/Animator.h" #include "src/core/SkSafeMath.h" #include #include namespace skottie { // Parses an array of exact size. static bool parse_array(const skjson::ArrayValue* ja, float* a, size_t count) { if (!ja || ja->size() != count) { return false; } for (size_t i = 0; i < count; ++i) { if (!Parse((*ja)[i], a + i)) { return false; } } return true; } VectorValue::operator SkV3() const { // best effort to turn this into a 3D point return SkV3 { this->size() > 0 ? (*this)[0] : 0, this->size() > 1 ? (*this)[1] : 0, this->size() > 2 ? (*this)[2] : 0, }; } VectorValue::operator SkColor() const { return static_cast(*this).toSkColor(); } VectorValue::operator SkColor4f() const { // best effort to turn a vector into a color const auto r = this->size() > 0 ? SkTPin((*this)[0], 0.0f, 1.0f) : 0, g = this->size() > 1 ? SkTPin((*this)[1], 0.0f, 1.0f) : 0, b = this->size() > 2 ? SkTPin((*this)[2], 0.0f, 1.0f) : 0, a = this->size() > 3 ? SkTPin((*this)[3], 0.0f, 1.0f) : 1; return { r, g, b, a }; } namespace internal { namespace { // Vector specialization - stores float vector values (of same length) in consolidated/contiguous // storage. Keyframe records hold the storage offset for each value: // // fStorage: [ vec0 ][ vec1 ] ... [ vecN ] // <- vec_len -> <- vec_len -> <- vec_len -> // // ^ ^ ^ // fKFs[]: .idx .idx ... .idx // class VectorKeyframeAnimator final : public KeyframeAnimator { public: VectorKeyframeAnimator(std::vector kfs, std::vector cms, std::vector storage, size_t vec_len, std::vector* target_value) : INHERITED(std::move(kfs), std::move(cms)) , fStorage(std::move(storage)) , fVecLen(vec_len) , fTarget(target_value) { // Resize the target value appropriately. fTarget->resize(fVecLen); } private: StateChanged onSeek(float t) override { const auto& lerp_info = this->getLERPInfo(t); SkASSERT(lerp_info.vrec0.idx + fVecLen <= fStorage.size()); SkASSERT(lerp_info.vrec1.idx + fVecLen <= fStorage.size()); SkASSERT(fTarget->size() == fVecLen); const auto* v0 = fStorage.data() + lerp_info.vrec0.idx; const auto* v1 = fStorage.data() + lerp_info.vrec1.idx; auto* dst = fTarget->data(); const auto is_constant = lerp_info.vrec0.equals(lerp_info.vrec1, Keyframe::Value::Type::kIndex); if (is_constant) { if (0 != std::memcmp(dst, v0, fVecLen * sizeof(float))) { std::copy(v0, v0 + fVecLen, dst); return true; } return false; } size_t count = fVecLen; bool changed = false; while (count >= 4) { const auto old_val = Sk4f::Load(dst), new_val = Lerp(Sk4f::Load(v0), Sk4f::Load(v1), lerp_info.weight); changed |= (new_val != old_val).anyTrue(); new_val.store(dst); v0 += 4; v1 += 4; dst += 4; count -= 4; } while (count-- > 0) { const auto new_val = Lerp(*v0++, *v1++, lerp_info.weight); changed |= (new_val != *dst); *dst++ = new_val; } return changed; } const std::vector fStorage; const size_t fVecLen; std::vector* fTarget; using INHERITED = KeyframeAnimator; }; class VectorExpressionAnimator final : public Animator { public: VectorExpressionAnimator(sk_sp>> expression_evaluator, std::vector* target_value) : fExpressionEvaluator(std::move(expression_evaluator)) , fTarget(target_value) {} private: StateChanged onSeek(float t) override { std::vector result = fExpressionEvaluator->evaluate(t); bool changed = false; for (size_t i = 0; i < fTarget->size(); i++) { // Use 0 as a default if the result is too small. float val = i >= result.size() ? 0 : result[i]; if (!SkScalarNearlyEqual(val, (*fTarget)[i])) { changed = true; } (*fTarget)[i] = val; } return changed; } sk_sp>> fExpressionEvaluator; std::vector* fTarget; }; } // namespace VectorAnimatorBuilder::VectorAnimatorBuilder(std::vector* target, VectorLenParser parse_len, VectorDataParser parse_data) : INHERITED(Keyframe::Value::Type::kIndex) , fParseLen(parse_len) , fParseData(parse_data) , fTarget(target) {} sk_sp VectorAnimatorBuilder::makeFromKeyframes(const AnimationBuilder& abuilder, const skjson::ArrayValue& jkfs) { SkASSERT(jkfs.size() > 0); // peek at the first keyframe value to find our vector length const skjson::ObjectValue* jkf0 = jkfs[0]; if (!jkf0 || !fParseLen((*jkf0)["s"], &fVecLen)) { return nullptr; } SkSafeMath safe; // total elements: vector length x number vectors const auto total_size = safe.mul(fVecLen, jkfs.size()); // we must be able to store all offsets in Keyframe::Value::idx (uint32_t) if (!safe || !SkTFitsIn(total_size)) { return nullptr; } fStorage.resize(total_size); if (!this->parseKeyframes(abuilder, jkfs)) { return nullptr; } // parseKFValue() might have stored fewer vectors thanks to tail-deduping. SkASSERT(fCurrentVec <= jkfs.size()); fStorage.resize(fCurrentVec * fVecLen); fStorage.shrink_to_fit(); return sk_sp( new VectorKeyframeAnimator(std::move(fKFs), std::move(fCMs), std::move(fStorage), fVecLen, fTarget)); } sk_sp VectorAnimatorBuilder::makeFromExpression(ExpressionManager& em, const char* expr) { sk_sp>> expression_evaluator = em.createArrayExpressionEvaluator(expr); return sk_make_sp(expression_evaluator, fTarget); } bool VectorAnimatorBuilder::parseValue(const AnimationBuilder&, const skjson::Value& jv) const { size_t vec_len; if (!this->fParseLen(jv, &vec_len)) { return false; } fTarget->resize(vec_len); return fParseData(jv, vec_len, fTarget->data()); } bool VectorAnimatorBuilder::parseKFValue(const AnimationBuilder&, const skjson::ObjectValue&, const skjson::Value& jv, Keyframe::Value* kfv) { auto offset = fCurrentVec * fVecLen; SkASSERT(offset + fVecLen <= fStorage.size()); if (!fParseData(jv, fVecLen, fStorage.data() + offset)) { return false; } SkASSERT(!fCurrentVec || offset >= fVecLen); // compare with previous vector value if (fCurrentVec > 0 && !memcmp(fStorage.data() + offset, fStorage.data() + offset - fVecLen, fVecLen * sizeof(float))) { // repeating value -> use prev offset (dedupe) offset -= fVecLen; } else { // new value -> advance the current index fCurrentVec += 1; } // Keyframes record the storage-offset for a given vector value. kfv->idx = SkToU32(offset); return true; } template <> bool AnimatablePropertyContainer::bind(const AnimationBuilder& abuilder, const skjson::ObjectValue* jprop, VectorValue* v) { if (!jprop) { return false; } if (!ParseDefault((*jprop)["s"], false)) { // Regular (static or keyframed) vector value. VectorAnimatorBuilder builder( v, // Len parser. [](const skjson::Value& jv, size_t* len) -> bool { if (const skjson::ArrayValue* ja = jv) { *len = ja->size(); return true; } return false; }, // Data parser. [](const skjson::Value& jv, size_t len, float* data) { return parse_array(jv, data, len); }); return this->bindImpl(abuilder, jprop, builder); } // Separate-dimensions vector value: each component is animated independently. *v = { 0, 0, 0 }; bool boundX = this->bind(abuilder, (*jprop)["x"], v->data() + 0); bool boundY = this->bind(abuilder, (*jprop)["y"], v->data() + 1); bool boundZ = this->bind(abuilder, (*jprop)["z"], v->data() + 2); return boundX || boundY || boundZ; } } // namespace internal } // namespace skottie