/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkCompressedDataUtils.h" #include "include/core/SkBitmap.h" #include "include/core/SkColorPriv.h" #include "include/core/SkData.h" #include "include/private/SkColorData.h" #include "include/private/SkTPin.h" #include "src/core/SkMathPriv.h" #include "src/core/SkMipmap.h" struct ETC1Block { uint32_t fHigh; uint32_t fLow; }; constexpr uint32_t kFlipBit = 0x1; // set -> T/B sub-blocks; not-set -> L/R sub-blocks constexpr uint32_t kDiffBit = 0x2; // set -> differential; not-set -> individual static inline int extend_4To8bits(int b) { int c = b & 0xf; return (c << 4) | c; } static inline int extend_5To8bits(int b) { int c = b & 0x1f; return (c << 3) | (c >> 2); } static inline int extend_5plus3To8Bits(int base, int diff) { static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 }; return extend_5To8bits((0x1f & base) + kLookup[0x7 & diff]); } static const int kNumETC1ModifierTables = 8; static const int kNumETC1PixelIndices = 4; // The index of each row in this table is the ETC1 table codeword // The index of each column in this table is the ETC1 pixel index value static const int kETC1ModifierTables[kNumETC1ModifierTables][kNumETC1PixelIndices] = { /* 0 */ { 2, 8, -2, -8 }, /* 1 */ { 5, 17, -5, -17 }, /* 2 */ { 9, 29, -9, -29 }, /* 3 */ { 13, 42, -13, -42 }, /* 4 */ { 18, 60, -18, -60 }, /* 5 */ { 24, 80, -24, -80 }, /* 6 */ { 33, 106, -33, -106 }, /* 7 */ { 47, 183, -47, -183 } }; static int num_4x4_blocks(int size) { return ((size + 3) & ~3) >> 2; } // Return which sub-block a given x,y location in the overall 4x4 block belongs to static int xy_to_subblock_index(int x, int y, bool flip) { SkASSERT(x >= 0 && x < 4); SkASSERT(y >= 0 && y < 4); if (flip) { return y < 2 ? 0 : 1; // sub-block 1 is on top of sub-block 2 } else { return x < 2 ? 0 : 1; // sub-block 1 is to the left of sub-block 2 } } struct IColor { int fR, fG, fB; }; static SkPMColor add_delta_and_clamp(const IColor& col, int delta) { int r8 = SkTPin(col.fR + delta, 0, 255); int g8 = SkTPin(col.fG + delta, 0, 255); int b8 = SkTPin(col.fB + delta, 0, 255); return SkPackARGB32(0xFF, r8, g8, b8); } static bool decompress_etc1(SkISize dimensions, const uint8_t* srcData, SkBitmap* dst) { const ETC1Block* srcBlocks = reinterpret_cast(srcData); int numXBlocks = num_4x4_blocks(dimensions.width()); int numYBlocks = num_4x4_blocks(dimensions.height()); for (int y = 0; y < numYBlocks; ++y) { for (int x = 0; x < numXBlocks; ++x) { const ETC1Block* curBlock1 = &srcBlocks[y * numXBlocks + x]; uint32_t high = SkBSwap32(curBlock1->fHigh); uint32_t low = SkBSwap32(curBlock1->fLow); bool flipped = SkToBool(high & kFlipBit); bool differential = SkToBool(high & kDiffBit); IColor colors[2]; if (differential) { colors[0].fR = extend_5To8bits(high >> 27); colors[1].fR = extend_5plus3To8Bits(high >> 27, high >> 24); colors[0].fG = extend_5To8bits(high >> 19); colors[1].fG = extend_5plus3To8Bits(high >> 19, high >> 16); colors[0].fB = extend_5To8bits(high >> 11); colors[1].fB = extend_5plus3To8Bits(high >> 11, high >> 8); } else { colors[0].fR = extend_4To8bits(high >> 28); colors[1].fR = extend_4To8bits(high >> 24); colors[0].fG = extend_4To8bits(high >> 20); colors[1].fG = extend_4To8bits(high >> 16); colors[0].fB = extend_4To8bits(high >> 12); colors[1].fB = extend_4To8bits(high >> 8); } int tableIndex0 = (high >> 5) & 0x7; int tableIndex1 = (high >> 2) & 0x7; const int* tables[2] = { kETC1ModifierTables[tableIndex0], kETC1ModifierTables[tableIndex1] }; int baseShift = 0; int offsetX = 4 * x, offsetY = 4 * y; for (int i = 0; i < 4; ++i, ++baseShift) { for (int j = 0; j < 4; ++j) { if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) { // This can happen for the topmost levels of a mipmap and for // non-multiple of 4 textures continue; } int subBlockIndex = xy_to_subblock_index(j, i, flipped); int pixelIndex = ((low >> (baseShift+(j*4))) & 0x1) | (low >> (baseShift+(j*4)+15) & 0x2); SkASSERT(subBlockIndex == 0 || subBlockIndex == 1); SkASSERT(pixelIndex >= 0 && pixelIndex < 4); int delta = tables[subBlockIndex][pixelIndex]; *dst->getAddr32(offsetX + j, offsetY + i) = add_delta_and_clamp(colors[subBlockIndex], delta); } } } } return true; } //------------------------------------------------------------------------------------------------ struct BC1Block { uint16_t fColor0; uint16_t fColor1; uint32_t fIndices; }; static SkPMColor from565(uint16_t rgb565) { uint8_t r8 = SkR16ToR32((rgb565 >> 11) & 0x1F); uint8_t g8 = SkG16ToG32((rgb565 >> 5) & 0x3F); uint8_t b8 = SkB16ToB32(rgb565 & 0x1F); return SkPackARGB32(0xFF, r8, g8, b8); } // return t*col0 + (1-t)*col1 static SkPMColor lerp(float t, SkPMColor col0, SkPMColor col1) { SkASSERT(SkGetPackedA32(col0) == 0xFF && SkGetPackedA32(col1) == 0xFF); // TODO: given 't' is only either 1/3 or 2/3 this could be done faster uint8_t r8 = SkScalarRoundToInt(t * SkGetPackedR32(col0) + (1.0f - t) * SkGetPackedR32(col1)); uint8_t g8 = SkScalarRoundToInt(t * SkGetPackedG32(col0) + (1.0f - t) * SkGetPackedG32(col1)); uint8_t b8 = SkScalarRoundToInt(t * SkGetPackedB32(col0) + (1.0f - t) * SkGetPackedB32(col1)); return SkPackARGB32(0xFF, r8, g8, b8); } static bool decompress_bc1(SkISize dimensions, const uint8_t* srcData, bool isOpaque, SkBitmap* dst) { const BC1Block* srcBlocks = reinterpret_cast(srcData); int numXBlocks = num_4x4_blocks(dimensions.width()); int numYBlocks = num_4x4_blocks(dimensions.height()); SkPMColor colors[4]; for (int y = 0; y < numYBlocks; ++y) { for (int x = 0; x < numXBlocks; ++x) { const BC1Block* curBlock = &srcBlocks[y * numXBlocks + x]; colors[0] = from565(curBlock->fColor0); colors[1] = from565(curBlock->fColor1); if (curBlock->fColor0 <= curBlock->fColor1) { // signal for a transparent block colors[2] = SkPackARGB32( 0xFF, (SkGetPackedR32(colors[0]) + SkGetPackedR32(colors[1])) >> 1, (SkGetPackedG32(colors[0]) + SkGetPackedG32(colors[1])) >> 1, (SkGetPackedB32(colors[0]) + SkGetPackedB32(colors[1])) >> 1); // The opacity of the overall texture trumps the per-block transparency colors[3] = SkPackARGB32(isOpaque ? 0xFF : 0, 0, 0, 0); } else { colors[2] = lerp(2.0f/3.0f, colors[0], colors[1]); colors[3] = lerp(1.0f/3.0f, colors[0], colors[1]); } int shift = 0; int offsetX = 4 * x, offsetY = 4 * y; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j, shift += 2) { if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) { // This can happen for the topmost levels of a mipmap and for // non-multiple of 4 textures continue; } int index = (curBlock->fIndices >> shift) & 0x3; *dst->getAddr32(offsetX + j, offsetY + i) = colors[index]; } } } } return true; } bool SkDecompress(sk_sp data, SkISize dimensions, SkImage::CompressionType compressionType, SkBitmap* dst) { using Type = SkImage::CompressionType; const uint8_t* bytes = data->bytes(); switch (compressionType) { case Type::kNone: return false; case Type::kETC2_RGB8_UNORM: return decompress_etc1(dimensions, bytes, dst); case Type::kBC1_RGB8_UNORM: return decompress_bc1(dimensions, bytes, true, dst); case Type::kBC1_RGBA8_UNORM: return decompress_bc1(dimensions, bytes, false, dst); case Type::kASTC_RGBA8_UNORM: return false; } SkUNREACHABLE; return false; } size_t SkCompressedDataSize(SkImage::CompressionType type, SkISize dimensions, SkTArray* individualMipOffsets, bool mipMapped) { SkASSERT(!individualMipOffsets || !individualMipOffsets->count()); int numMipLevels = 1; if (mipMapped) { numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1; } size_t totalSize = 0; switch (type) { case SkImage::CompressionType::kNone: break; case SkImage::CompressionType::kETC2_RGB8_UNORM: case SkImage::CompressionType::kBC1_RGB8_UNORM: case SkImage::CompressionType::kBC1_RGBA8_UNORM: { for (int i = 0; i < numMipLevels; ++i) { int numBlocks = num_4x4_blocks(dimensions.width()) * num_4x4_blocks(dimensions.height()); if (individualMipOffsets) { individualMipOffsets->push_back(totalSize); } static_assert(sizeof(ETC1Block) == sizeof(BC1Block)); totalSize += numBlocks * sizeof(ETC1Block); dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; } break; } case SkImage::CompressionType::kASTC_RGBA8_UNORM: { // The evil number 16 here is the size of each ASTC block, which is constant for the ASTC 4x4 format, // while the ASTC 4x4 format also explain the evil number 4.0f above totalSize = std::ceil(dimensions.width() / 4.0f) * std::ceil(dimensions.height() / 4.0f) * 16; break; } } return totalSize; } size_t SkCompressedBlockSize(SkImage::CompressionType type) { switch (type) { case SkImage::CompressionType::kNone: return 0; case SkImage::CompressionType::kETC2_RGB8_UNORM: return sizeof(ETC1Block); case SkImage::CompressionType::kBC1_RGB8_UNORM: case SkImage::CompressionType::kBC1_RGBA8_UNORM: return sizeof(BC1Block); case SkImage::CompressionType::kASTC_RGBA8_UNORM: // The evil number 16 here is the constant size of ASTC 4x4 format return 16; } SkUNREACHABLE; } size_t SkCompressedFormatDataSize(SkImage::CompressionType compressionType, SkISize dimensions, bool mipMapped) { return SkCompressedDataSize(compressionType, dimensions, nullptr, mipMapped); }