/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkMatrix.h" #include "include/core/SkString.h" #include "include/private/SkMalloc.h" #include "src/core/SkBuffer.h" #include "src/core/SkRRectPriv.h" #include "src/core/SkRectPriv.h" #include "src/core/SkScaleToSides.h" #include #include /////////////////////////////////////////////////////////////////////////////// void SkRRect::setOval(const SkRect& oval) { if (!this->initializeRect(oval)) { return; } SkScalar xRad = SkRectPriv::HalfWidth(fRect); SkScalar yRad = SkRectPriv::HalfHeight(fRect); if (xRad == 0.0f || yRad == 0.0f) { // All the corners will be square memset(fRadii, 0, sizeof(fRadii)); fType = kRect_Type; } else { for (int i = 0; i < 4; ++i) { fRadii[i].set(xRad, yRad); } fType = kOval_Type; } SkASSERT(this->isValid()); } void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { if (!this->initializeRect(rect)) { return; } if (!SkScalarsAreFinite(xRad, yRad)) { xRad = yRad = 0; // devolve into a simple rect } if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { // At most one of these two divides will be by zero, and neither numerator is zero. SkScalar scale = std::min(sk_ieee_float_divide(fRect. width(), xRad + xRad), sk_ieee_float_divide(fRect.height(), yRad + yRad)); SkASSERT(scale < SK_Scalar1); xRad *= scale; yRad *= scale; } if (xRad <= 0 || yRad <= 0) { // all corners are square in this case this->setRect(rect); return; } for (int i = 0; i < 4; ++i) { fRadii[i].set(xRad, yRad); } fType = kSimple_Type; if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { fType = kOval_Type; // TODO: assert that all the x&y radii are already W/2 & H/2 } SkASSERT(this->isValid()); } void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, SkScalar rightRad, SkScalar bottomRad) { if (!this->initializeRect(rect)) { return; } const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; if (!SkScalarsAreFinite(array, 4)) { this->setRect(rect); // devolve into a simple rect return; } leftRad = std::max(leftRad, 0.0f); topRad = std::max(topRad, 0.0f); rightRad = std::max(rightRad, 0.0f); bottomRad = std::max(bottomRad, 0.0f); SkScalar scale = SK_Scalar1; if (leftRad + rightRad > fRect.width()) { scale = fRect.width() / (leftRad + rightRad); } if (topRad + bottomRad > fRect.height()) { scale = std::min(scale, fRect.height() / (topRad + bottomRad)); } if (scale < SK_Scalar1) { leftRad *= scale; topRad *= scale; rightRad *= scale; bottomRad *= scale; } if (leftRad == rightRad && topRad == bottomRad) { if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { fType = kOval_Type; } else if (0 == leftRad || 0 == topRad) { // If the left and (by equality check above) right radii are zero then it is a rect. // Same goes for top/bottom. fType = kRect_Type; leftRad = 0; topRad = 0; rightRad = 0; bottomRad = 0; } else { fType = kSimple_Type; } } else { fType = kNinePatch_Type; } fRadii[kUpperLeft_Corner].set(leftRad, topRad); fRadii[kUpperRight_Corner].set(rightRad, topRad); fRadii[kLowerRight_Corner].set(rightRad, bottomRad); fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); SkASSERT(this->isValid()); } // These parameters intentionally double. Apropos crbug.com/463920, if one of the // radii is huge while the other is small, single precision math can completely // miss the fact that a scale is required. static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { if ((rad1 + rad2) > limit) { return std::min(curMin, limit / (rad1 + rad2)); } return curMin; } static bool clamp_to_zero(SkVector radii[4]) { bool allCornersSquare = true; // Clamp negative radii to zero for (int i = 0; i < 4; ++i) { if (radii[i].fX <= 0 || radii[i].fY <= 0) { // In this case we are being a little fast & loose. Since one of // the radii is 0 the corner is square. However, the other radii // could still be non-zero and play in the global scale factor // computation. radii[i].fX = 0; radii[i].fY = 0; } else { allCornersSquare = false; } } return allCornersSquare; } void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { if (!this->initializeRect(rect)) { return; } if (!SkScalarsAreFinite(&radii[0].fX, 8)) { this->setRect(rect); // devolve into a simple rect return; } memcpy(fRadii, radii, sizeof(fRadii)); if (clamp_to_zero(fRadii)) { this->setRect(rect); return; } this->scaleRadii(); if (!this->isValid()) { this->setRect(rect); return; } } bool SkRRect::initializeRect(const SkRect& rect) { // Check this before sorting because sorting can hide nans. if (!rect.isFinite()) { *this = SkRRect(); return false; } fRect = rect.makeSorted(); if (fRect.isEmpty()) { memset(fRadii, 0, sizeof(fRadii)); fType = kEmpty_Type; return false; } return true; } // If we can't distinguish one of the radii relative to the other, force it to zero so it // doesn't confuse us later. See crbug.com/850350 // static void flush_to_zero(SkScalar& a, SkScalar& b) { SkASSERT(a >= 0); SkASSERT(b >= 0); if (a + b == a) { b = 0; } else if (a + b == b) { a = 0; } } bool SkRRect::scaleRadii() { // Proportionally scale down all radii to fit. Find the minimum ratio // of a side and the radii on that side (for all four sides) and use // that to scale down _all_ the radii. This algorithm is from the // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping // Curves: // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, // Si is the sum of the two corresponding radii of the corners on side i, // and Ltop = Lbottom = the width of the box, // and Lleft = Lright = the height of the box. // If f < 1, then all corner radii are reduced by multiplying them by f." double scale = 1.0; // The sides of the rectangle may be larger than a float. double width = (double)fRect.fRight - (double)fRect.fLeft; double height = (double)fRect.fBottom - (double)fRect.fTop; scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); flush_to_zero(fRadii[0].fX, fRadii[1].fX); flush_to_zero(fRadii[1].fY, fRadii[2].fY); flush_to_zero(fRadii[2].fX, fRadii[3].fX); flush_to_zero(fRadii[3].fY, fRadii[0].fY); if (scale < 1.0) { SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); } // adjust radii may set x or y to zero; set companion to zero as well clamp_to_zero(fRadii); // May be simple, oval, or complex, or become a rect/empty if the radii adjustment made them 0 this->computeType(); // TODO: Why can't we assert this here? //SkASSERT(this->isValid()); return scale < 1.0; } // This method determines if a point known to be inside the RRect's bounds is // inside all the corners. bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { SkPoint canonicalPt; // (x,y) translated to one of the quadrants int index; if (kOval_Type == this->type()) { canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); index = kUpperLeft_Corner; // any corner will do in this case } else { if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { // UL corner index = kUpperLeft_Corner; canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { // LL corner index = kLowerLeft_Corner; canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { // UR corner index = kUpperRight_Corner; canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { // LR corner index = kLowerRight_Corner; canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); } else { // not in any of the corners return true; } } // A point is in an ellipse (in standard position) if: // x^2 y^2 // ----- + ----- <= 1 // a^2 b^2 // or : // b^2*x^2 + a^2*y^2 <= (ab)^2 SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); } bool SkRRectPriv::IsNearlySimpleCircular(const SkRRect& rr, SkScalar tolerance) { SkScalar simpleRadius = rr.fRadii[0].fX; return SkScalarNearlyEqual(simpleRadius, rr.fRadii[0].fY, tolerance) && SkScalarNearlyEqual(simpleRadius, rr.fRadii[1].fX, tolerance) && SkScalarNearlyEqual(simpleRadius, rr.fRadii[1].fY, tolerance) && SkScalarNearlyEqual(simpleRadius, rr.fRadii[2].fX, tolerance) && SkScalarNearlyEqual(simpleRadius, rr.fRadii[2].fY, tolerance) && SkScalarNearlyEqual(simpleRadius, rr.fRadii[3].fX, tolerance) && SkScalarNearlyEqual(simpleRadius, rr.fRadii[3].fY, tolerance); } bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); } bool SkRRect::contains(const SkRect& rect) const { if (!this->getBounds().contains(rect)) { // If 'rect' isn't contained by the RR's bounds then the // RR definitely doesn't contain it return false; } if (this->isRect()) { // the prior test was sufficient return true; } // At this point we know all four corners of 'rect' are inside the // bounds of of this RR. Check to make sure all the corners are inside // all the curves return this->checkCornerContainment(rect.fLeft, rect.fTop) && this->checkCornerContainment(rect.fRight, rect.fTop) && this->checkCornerContainment(rect.fRight, rect.fBottom) && this->checkCornerContainment(rect.fLeft, rect.fBottom); } static bool radii_are_nine_patch(const SkVector radii[4]) { return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; } // There is a simplified version of this method in setRectXY void SkRRect::computeType() { if (fRect.isEmpty()) { SkASSERT(fRect.isSorted()); for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { SkASSERT((fRadii[i] == SkVector{0, 0})); } fType = kEmpty_Type; SkASSERT(this->isValid()); return; } bool allRadiiEqual = true; // are all x radii equal and all y radii? bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY; for (int i = 1; i < 4; ++i) { if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { // if either radius is zero the corner is square so both have to // be non-zero to have a rounded corner allCornersSquare = false; } if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { allRadiiEqual = false; } } if (allCornersSquare) { fType = kRect_Type; SkASSERT(this->isValid()); return; } if (allRadiiEqual) { if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && fRadii[0].fY >= SkScalarHalf(fRect.height())) { fType = kOval_Type; } else { fType = kSimple_Type; } SkASSERT(this->isValid()); return; } if (radii_are_nine_patch(fRadii)) { fType = kNinePatch_Type; } else { fType = kComplex_Type; } if (!this->isValid()) { this->setRect(this->rect()); SkASSERT(this->isValid()); } } bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { if (nullptr == dst) { return false; } // Assert that the caller is not trying to do this in place, which // would violate const-ness. Do not return false though, so that // if they know what they're doing and want to violate it they can. SkASSERT(dst != this); if (matrix.isIdentity()) { *dst = *this; return true; } if (!matrix.preservesAxisAlignment()) { return false; } SkRect newRect; if (!matrix.mapRect(&newRect, fRect)) { return false; } // The matrix may have scaled us to zero (or due to float madness, we now have collapsed // some dimension of the rect, so we need to check for that. Note that matrix must be // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates // loss of precision. if (!newRect.isFinite() || newRect.isEmpty()) { return false; } // At this point, this is guaranteed to succeed, so we can modify dst. dst->fRect = newRect; // Since the only transforms that were allowed are axis aligned, the type // remains unchanged. dst->fType = fType; if (kRect_Type == fType) { SkASSERT(dst->isValid()); return true; } if (kOval_Type == fType) { for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX = SkScalarHalf(newRect.width()); dst->fRadii[i].fY = SkScalarHalf(newRect.height()); } SkASSERT(dst->isValid()); return true; } // Now scale each corner SkScalar xScale = matrix.getScaleX(); SkScalar yScale = matrix.getScaleY(); // There is a rotation of 90 (Clockwise 90) or 270 (Counter clockwise 90). // 180 degrees rotations are simply flipX with a flipY and would come under // a scale transform. if (!matrix.isScaleTranslate()) { const bool isClockwise = matrix.getSkewX() < 0; // The matrix location for scale changes if there is a rotation. xScale = matrix.getSkewY() * (isClockwise ? 1 : -1); yScale = matrix.getSkewX() * (isClockwise ? -1 : 1); const int dir = isClockwise ? 3 : 1; for (int i = 0; i < 4; ++i) { const int src = (i + dir) >= 4 ? (i + dir) % 4 : (i + dir); // Swap X and Y axis for the radii. dst->fRadii[i].fX = fRadii[src].fY; dst->fRadii[i].fY = fRadii[src].fX; } } else { for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX = fRadii[i].fX; dst->fRadii[i].fY = fRadii[i].fY; } } const bool flipX = xScale < 0; if (flipX) { xScale = -xScale; } const bool flipY = yScale < 0; if (flipY) { yScale = -yScale; } // Scale the radii without respecting the flip. for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX *= xScale; dst->fRadii[i].fY *= yScale; } // Now swap as necessary. using std::swap; if (flipX) { if (flipY) { // Swap with opposite corners swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); } else { // Only swap in x swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); } } else if (flipY) { // Only swap in y swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); } if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { return false; } dst->scaleRadii(); dst->isValid(); // TODO: is this meant to be SkASSERT(dst->isValid())? return true; } /////////////////////////////////////////////////////////////////////////////// void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { SkRect r = fRect.makeInset(dx, dy); bool degenerate = false; if (r.fRight <= r.fLeft) { degenerate = true; r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); } if (r.fBottom <= r.fTop) { degenerate = true; r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); } if (degenerate) { dst->fRect = r; memset(dst->fRadii, 0, sizeof(dst->fRadii)); dst->fType = kEmpty_Type; return; } if (!r.isFinite()) { *dst = SkRRect(); return; } SkVector radii[4]; memcpy(radii, fRadii, sizeof(radii)); for (int i = 0; i < 4; ++i) { if (radii[i].fX) { radii[i].fX -= dx; } if (radii[i].fY) { radii[i].fY -= dy; } } dst->setRectRadii(r, radii); } /////////////////////////////////////////////////////////////////////////////// size_t SkRRect::writeToMemory(void* buffer) const { // Serialize only the rect and corners, but not the derived type tag. memcpy(buffer, this, kSizeInMemory); return kSizeInMemory; } void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { // Serialize only the rect and corners, but not the derived type tag. buffer->write(&rr, SkRRect::kSizeInMemory); } size_t SkRRect::readFromMemory(const void* buffer, size_t length) { if (length < kSizeInMemory) { return 0; } // The extra (void*) tells GCC not to worry that kSizeInMemory < sizeof(SkRRect). SkRRect raw; memcpy((void*)&raw, buffer, kSizeInMemory); this->setRectRadii(raw.fRect, raw.fRadii); return kSizeInMemory; } bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { if (buffer->available() < SkRRect::kSizeInMemory) { return false; } SkRRect storage; return buffer->read(&storage, SkRRect::kSizeInMemory) && (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); } #include "include/core/SkString.h" #include "src/core/SkStringUtils.h" SkString SkRRect::dumpToString(bool asHex) const { SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; fRect.dump(asHex); SkString line("const SkPoint corners[] = {\n"); for (int i = 0; i < 4; ++i) { SkString strX, strY; SkAppendScalar(&strX, fRadii[i].x(), asType); SkAppendScalar(&strY, fRadii[i].y(), asType); line.appendf(" { %s, %s },", strX.c_str(), strY.c_str()); if (asHex) { line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y()); } line.append("\n"); } line.append("};"); return line; } void SkRRect::dump(bool asHex) const { SkDebugf("%s\n", this->dumpToString(asHex).c_str()); } void SkRRect::dump(std::string& desc, int depth) const { std::string split(depth, '\t'); desc += split + "\n SkRRect:{ \n"; fRect.dump(desc, depth + 1); desc += split + "\t const SkPoint corners[] = {\n"; for (int i = 0; i < 4; ++i) { fRadii[i].dump(desc, depth + 1); } desc += split + "\t}\n"; desc += split + "\t fType:" + std::to_string(fType) + "\n"; desc += split + "}\n"; } /////////////////////////////////////////////////////////////////////////////// /** * We need all combinations of predicates to be true to have a "safe" radius value. */ static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && rad >= 0; } bool SkRRect::isValid() const { if (!AreRectAndRadiiValid(fRect, fRadii)) { return false; } bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY); bool allRadiiSame = true; for (int i = 1; i < 4; ++i) { if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { allRadiiZero = false; } if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { allRadiiSame = false; } if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { allCornersSquare = false; } } bool patchesOfNine = radii_are_nine_patch(fRadii); if (fType < 0 || fType > kLastType) { return false; } switch (fType) { case kEmpty_Type: if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { return false; } break; case kRect_Type: if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { return false; } break; case kOval_Type: if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { return false; } for (int i = 0; i < 4; ++i) { if (!SkScalarNearlyEqual(fRadii[i].fX, SkRectPriv::HalfWidth(fRect)) || !SkScalarNearlyEqual(fRadii[i].fY, SkRectPriv::HalfHeight(fRect))) { return false; } } break; case kSimple_Type: if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { return false; } break; case kNinePatch_Type: if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || !patchesOfNine) { return false; } break; case kComplex_Type: if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || patchesOfNine) { return false; } break; } return true; } bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { if (!rect.isFinite() || !rect.isSorted()) { return false; } for (int i = 0; i < 4; ++i) { if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { return false; } } return true; } /////////////////////////////////////////////////////////////////////////////// SkRect SkRRectPriv::InnerBounds(const SkRRect& rr) { if (rr.isEmpty() || rr.isRect()) { return rr.rect(); } // We start with the outer bounds of the round rect and consider three subsets and take the // one with maximum area. The first two are the horizontal and vertical rects inset from the // corners, the third is the rect inscribed at the corner curves' maximal point. This forms // the exact solution when all corners have the same radii (the radii do not have to be // circular). SkRect innerBounds = rr.getBounds(); SkVector tl = rr.radii(SkRRect::kUpperLeft_Corner); SkVector tr = rr.radii(SkRRect::kUpperRight_Corner); SkVector bl = rr.radii(SkRRect::kLowerLeft_Corner); SkVector br = rr.radii(SkRRect::kLowerRight_Corner); // Select maximum inset per edge, which may move an adjacent corner of the inscribed // rectangle off of the rounded-rect path, but that is acceptable given that the general // equation for inscribed area is non-trivial to evaluate. SkScalar leftShift = std::max(tl.fX, bl.fX); SkScalar topShift = std::max(tl.fY, tr.fY); SkScalar rightShift = std::max(tr.fX, br.fX); SkScalar bottomShift = std::max(bl.fY, br.fY); SkScalar dw = leftShift + rightShift; SkScalar dh = topShift + bottomShift; // Area removed by shifting left/right SkScalar horizArea = (innerBounds.width() - dw) * innerBounds.height(); // And by shifting top/bottom SkScalar vertArea = (innerBounds.height() - dh) * innerBounds.width(); // And by shifting all edges: just considering a corner ellipse, the maximum inscribed rect has // a corner at sqrt(2)/2 * (rX, rY), so scale all corner shifts by (1 - sqrt(2)/2) to get the // safe shift per edge (since the shifts already are the max radius for that edge). // - We actually scale by a value slightly increased to make it so that the shifted corners are // safely inside the curves, otherwise numerical stability can cause it to fail contains(). static constexpr SkScalar kScale = (1.f - SK_ScalarRoot2Over2) + 1e-5f; SkScalar innerArea = (innerBounds.width() - kScale * dw) * (innerBounds.height() - kScale * dh); if (horizArea > vertArea && horizArea > innerArea) { // Cut off corners by insetting left and right innerBounds.fLeft += leftShift; innerBounds.fRight -= rightShift; } else if (vertArea > innerArea) { // Cut off corners by insetting top and bottom innerBounds.fTop += topShift; innerBounds.fBottom -= bottomShift; } else if (innerArea > 0.f) { // Inset on all sides, scaled to touch innerBounds.fLeft += kScale * leftShift; innerBounds.fRight -= kScale * rightShift; innerBounds.fTop += kScale * topShift; innerBounds.fBottom -= kScale * bottomShift; } else { // Inner region would collapse to empty return SkRect::MakeEmpty(); } SkASSERT(innerBounds.isSorted() && !innerBounds.isEmpty()); return innerBounds; } SkRRect SkRRectPriv::ConservativeIntersect(const SkRRect& a, const SkRRect& b) { // Returns the coordinate of the rect matching the corner enum. auto getCorner = [](const SkRect& r, SkRRect::Corner corner) -> SkPoint { switch(corner) { case SkRRect::kUpperLeft_Corner: return {r.fLeft, r.fTop}; case SkRRect::kUpperRight_Corner: return {r.fRight, r.fTop}; case SkRRect::kLowerLeft_Corner: return {r.fLeft, r.fBottom}; case SkRRect::kLowerRight_Corner: return {r.fRight, r.fBottom}; default: SkUNREACHABLE; } }; // Returns true if shape A's extreme point is contained within shape B's extreme point, relative // to the 'corner' location. If the two shapes' corners have the same ellipse radii, this // is sufficient for A's ellipse arc to be contained by B's ellipse arc. auto insideCorner = [](SkRRect::Corner corner, const SkPoint& a, const SkPoint& b) { switch(corner) { case SkRRect::kUpperLeft_Corner: return a.fX >= b.fX && a.fY >= b.fY; case SkRRect::kUpperRight_Corner: return a.fX <= b.fX && a.fY >= b.fY; case SkRRect::kLowerRight_Corner: return a.fX <= b.fX && a.fY <= b.fY; case SkRRect::kLowerLeft_Corner: return a.fX >= b.fX && a.fY <= b.fY; default: SkUNREACHABLE; } }; auto getIntersectionRadii = [&](const SkRect& r, SkRRect::Corner corner, SkVector* radii) { SkPoint test = getCorner(r, corner); SkPoint aCorner = getCorner(a.rect(), corner); SkPoint bCorner = getCorner(b.rect(), corner); if (test == aCorner && test == bCorner) { // The round rects share a corner anchor, so pick A or B such that its X and Y radii // are both larger than the other rrect's, or return false if neither A or B has the max // corner radii (this is more permissive than the single corner tests below). SkVector aRadii = a.radii(corner); SkVector bRadii = b.radii(corner); if (aRadii.fX >= bRadii.fX && aRadii.fY >= bRadii.fY) { *radii = aRadii; return true; } else if (bRadii.fX >= aRadii.fX && bRadii.fY >= aRadii.fY) { *radii = bRadii; return true; } else { return false; } } else if (test == aCorner) { // Test that A's ellipse is contained by B. This is a non-trivial function to evaluate // so we resrict it to when the corners have the same radii. If not, we use the more // conservative test that the extreme point of A's bounding box is contained in B. *radii = a.radii(corner); if (*radii == b.radii(corner)) { return insideCorner(corner, aCorner, bCorner); // A inside B } else { return b.checkCornerContainment(aCorner.fX, aCorner.fY); } } else if (test == bCorner) { // Mirror of the above *radii = b.radii(corner); if (*radii == a.radii(corner)) { return insideCorner(corner, bCorner, aCorner); // B inside A } else { return a.checkCornerContainment(bCorner.fX, bCorner.fY); } } else { // This is a corner formed by two straight edges of A and B, so confirm that it is // contained in both (if not, then the intersection can't be a round rect). *radii = {0.f, 0.f}; return a.checkCornerContainment(test.fX, test.fY) && b.checkCornerContainment(test.fX, test.fY); } }; // We fill in the SkRRect directly. Since the rect and radii are either 0s or determined by // valid existing SkRRects, we know we are finite. SkRRect intersection; if (!intersection.fRect.intersect(a.rect(), b.rect())) { // Definitely no intersection return SkRRect::MakeEmpty(); } const SkRRect::Corner corners[] = { SkRRect::kUpperLeft_Corner, SkRRect::kUpperRight_Corner, SkRRect::kLowerRight_Corner, SkRRect::kLowerLeft_Corner }; // By definition, edges is contained in the bounds of 'a' and 'b', but now we need to consider // the corners. If the bound's corner point is in both rrects, the corner radii will be 0s. // If the bound's corner point matches a's edges and is inside 'b', we use a's radii. // Same for b's radii. If any corner fails these conditions, we reject the intersection as an // rrect. If after determining radii for all 4 corners, they would overlap, we also reject the // intersection shape. for (auto c : corners) { if (!getIntersectionRadii(intersection.fRect, c, &intersection.fRadii[c])) { return SkRRect::MakeEmpty(); // Resulting intersection is not a rrect } } // Check for radius overlap along the four edges, since the earlier evaluation was only a // one-sided corner check. If they aren't valid, a corner's radii doesn't fit within the rect. // If the radii are scaled, the combination of radii from two adjacent corners doesn't fit. // Normally for a regularly constructed SkRRect, we want this scaling, but in this case it means // the intersection shape is definitively not a round rect. if (!SkRRect::AreRectAndRadiiValid(intersection.fRect, intersection.fRadii) || intersection.scaleRadii()) { return SkRRect::MakeEmpty(); } // The intersection is an rrect of the given radii. Potentially all 4 corners could have // been simplified to (0,0) radii, making the intersection a rectangle. intersection.computeType(); return intersection; }