/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkStream.h" #include "include/core/SkString.h" #include "include/private/SkHalf.h" #include "include/private/SkTFitsIn.h" #include "include/private/SkThreadID.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkColorSpaceXformSteps.h" #include "src/core/SkCpu.h" #include "src/core/SkEnumerate.h" #include "src/core/SkOpts.h" #include "src/core/SkVM.h" #include #include #include #if defined(SKVM_LLVM) #include #include #include #include #include #include #include // Platform-specific intrinsics got their own files in LLVM 10. #if __has_include() #include #endif #endif // #define SKVM_LLVM_WAIT_FOR_COMPILATION bool gSkVMAllowJIT{false}; bool gSkVMJITViaDylib{false}; #if defined(SKVM_JIT) #if defined(SK_BUILD_FOR_WIN) #include "src/core/SkLeanWindows.h" #include static void* alloc_jit_buffer(size_t* len) { return VirtualAlloc(NULL, *len, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); } static void remap_as_executable(void* ptr, size_t len) { DWORD old; VirtualProtect(ptr, len, PAGE_EXECUTE_READ, &old); SkASSERT(old == PAGE_READWRITE); } #if !defined(SKVM_LLVM) static void unmap_jit_buffer(void* ptr, size_t len) { VirtualFree(ptr, 0, MEM_RELEASE); } static void close_dylib(void* dylib) { SkASSERT(false); // TODO? For now just assert we never make one. } #endif #else #include #include static void* alloc_jit_buffer(size_t* len) { // While mprotect and VirtualAlloc both work at page granularity, // mprotect doesn't round up for you, and instead requires *len is at page granularity. const size_t page = sysconf(_SC_PAGESIZE); *len = ((*len + page - 1) / page) * page; return mmap(nullptr,*len, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1,0); } static void remap_as_executable(void* ptr, size_t len) { mprotect(ptr, len, PROT_READ|PROT_EXEC); __builtin___clear_cache((char*)ptr, (char*)ptr + len); } #if !defined(SKVM_LLVM) static void unmap_jit_buffer(void* ptr, size_t len) { munmap(ptr, len); } static void close_dylib(void* dylib) { dlclose(dylib); } #endif #endif #if defined(SKVM_JIT_VTUNE) #include static void notify_vtune(const char* name, void* addr, size_t len) { if (iJIT_IsProfilingActive() == iJIT_SAMPLING_ON) { iJIT_Method_Load event; memset(&event, 0, sizeof(event)); event.method_id = iJIT_GetNewMethodID(); event.method_name = const_cast(name); event.method_load_address = addr; event.method_size = len; iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED, &event); } } #else static void notify_vtune(const char* name, void* addr, size_t len) {} #endif #endif // JIT code isn't MSAN-instrumented, so we won't see when it uses // uninitialized memory, and we'll not see the writes it makes as properly // initializing memory. Instead force the interpreter, which should let // MSAN see everything our programs do properly. // // Similarly, we can't get ASAN's checks unless we let it instrument our interpreter. #if defined(__has_feature) #if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer) #define SKVM_JIT_BUT_IGNORE_IT #endif #endif #if defined(SKSL_STANDALONE) // skslc needs to link against this module (for the VM code generator). This module pulls in // color-space code, but attempting to add those transitive dependencies to skslc gets out of // hand. So we terminate the chain here with stub functions. Note that skslc's usage of SkVM // never cares about color management. skvm::F32 sk_program_transfer_fn( skvm::F32 v, TFKind tf_kind, skvm::F32 G, skvm::F32 A, skvm::F32 B, skvm::F32 C, skvm::F32 D, skvm::F32 E, skvm::F32 F) { return v; } const skcms_TransferFunction* skcms_sRGB_TransferFunction() { return nullptr; } const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() { return nullptr; } #endif namespace skvm { static Features detect_features() { static const bool fma = #if defined(SK_CPU_X86) SkCpu::Supports(SkCpu::HSW); #elif defined(SK_CPU_ARM64) true; #else false; #endif static const bool fp16 = false; // TODO return { fma, fp16 }; } Builder::Builder() : fFeatures(detect_features()) {} Builder::Builder(Features features) : fFeatures(features ) {} struct Program::Impl { std::vector instructions; int regs = 0; int loop = 0; std::vector strides; std::atomic jit_entry{nullptr}; // TODO: minimal std::memory_orders size_t jit_size = 0; void* dylib = nullptr; #if defined(SKVM_LLVM) std::unique_ptr llvm_ctx; std::unique_ptr llvm_ee; std::future llvm_compiling; #endif }; // Debugging tools, mostly for printing various data structures out to a stream. namespace { class SkDebugfStream final : public SkWStream { size_t fBytesWritten = 0; bool write(const void* buffer, size_t size) override { SkDebugf("%.*s", (int)size, (const char*)buffer); fBytesWritten += size; return true; } size_t bytesWritten() const override { return fBytesWritten; } }; struct V { Val id; }; struct R { Reg id; }; struct Shift { int bits; }; struct Splat { int bits; }; struct Hex { int bits; }; // For op `trace_line` or `trace_call` struct Line { int bits; }; // For op `trace_var` struct VarSlot { int bits; }; struct VarType { int bits; }; static constexpr VarType kVarTypeInt{0}; static constexpr VarType kVarTypeFloat{1}; static constexpr VarType kVarTypeBool{2}; // For op `trace_call` struct CallType { int bits; }; static constexpr CallType kCallTypeEnter{1}; static constexpr CallType kCallTypeExit{0}; static void write(SkWStream* o, const char* s) { o->writeText(s); } static const char* name(Op op) { switch (op) { #define M(x) case Op::x: return #x; SKVM_OPS(M) #undef M } return "unknown op"; } static void write(SkWStream* o, Op op) { o->writeText(name(op)); } static void write(SkWStream* o, Ptr p) { write(o, "ptr"); o->writeDecAsText(p.ix); } static void write(SkWStream* o, V v) { write(o, "v"); o->writeDecAsText(v.id); } static void write(SkWStream* o, R r) { write(o, "r"); o->writeDecAsText(r.id); } static void write(SkWStream* o, Shift s) { o->writeDecAsText(s.bits); } static void write(SkWStream* o, Splat s) { float f; memcpy(&f, &s.bits, 4); o->writeHexAsText(s.bits); write(o, " ("); o->writeScalarAsText(f); write(o, ")"); } static void write(SkWStream* o, Hex h) { o->writeHexAsText(h.bits); } static void write(SkWStream* o, Line d) { write(o, "L"); o->writeDecAsText(d.bits); } static void write(SkWStream* o, VarSlot s) { write(o, "$"); o->writeDecAsText(s.bits); } static void write(SkWStream* o, VarType n) { if (n.bits == kVarTypeFloat.bits) { write(o, "(F32)"); } else if (n.bits == kVarTypeInt.bits) { write(o, "(I32)"); } else if (n.bits == kVarTypeBool.bits) { write(o, "(bool)"); } else { write(o, "???"); } } static void write(SkWStream* o, CallType n) { if (n.bits == kCallTypeEnter.bits) { write(o, "(enter)"); } else if (n.bits == kCallTypeExit.bits) { write(o, "(exit)"); } else { write(o, "???"); } } template static void write(SkWStream* o, T first, Ts... rest) { write(o, first); write(o, " "); write(o, rest...); } } // namespace static void write_one_instruction(Val id, const OptimizedInstruction& inst, SkWStream* o) { Op op = inst.op; Val x = inst.x, y = inst.y, z = inst.z, w = inst.w; int immA = inst.immA, immB = inst.immB, immC = inst.immC; switch (op) { case Op::assert_true: write(o, op, V{x}, V{y}); break; case Op::trace_line: write(o, op, V{x}, Line{immA}); break; case Op::trace_var: write(o, op, V{x}, VarSlot{immA}, "=", V{y}, VarType{immB}); break; case Op::trace_call: write(o, op, V{x}, Line{immA}, CallType{immB}); break; case Op::store8: write(o, op, Ptr{immA}, V{x} ); break; case Op::store16: write(o, op, Ptr{immA}, V{x} ); break; case Op::store32: write(o, op, Ptr{immA}, V{x} ); break; case Op::store64: write(o, op, Ptr{immA}, V{x},V{y} ); break; case Op::store128: write(o, op, Ptr{immA}, V{x},V{y},V{z},V{w}); break; case Op::index: write(o, V{id}, "=", op); break; case Op::load8: write(o, V{id}, "=", op, Ptr{immA}); break; case Op::load16: write(o, V{id}, "=", op, Ptr{immA}); break; case Op::load32: write(o, V{id}, "=", op, Ptr{immA}); break; case Op::load64: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; case Op::load128: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; case Op::gather8: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; case Op::gather16: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; case Op::gather32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; case Op::uniform32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; case Op::array32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, Hex{immC}); break; case Op::splat: write(o, V{id}, "=", op, Splat{immA}); break; case Op:: add_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; case Op:: sub_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; case Op:: mul_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; case Op:: div_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; case Op:: min_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; case Op:: max_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; case Op:: fma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; case Op:: fms_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; case Op::fnma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; case Op::sqrt_f32: write(o, V{id}, "=", op, V{x}); break; case Op:: eq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::neq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op:: gt_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::gte_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::add_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::sub_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::mul_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::shl_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; case Op::shr_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; case Op::sra_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; case Op::eq_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::gt_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::bit_and : write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::bit_or : write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::bit_xor : write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::bit_clear: write(o, V{id}, "=", op, V{x}, V{y}); break; case Op::select: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; case Op::ceil: write(o, V{id}, "=", op, V{x}); break; case Op::floor: write(o, V{id}, "=", op, V{x}); break; case Op::to_f32: write(o, V{id}, "=", op, V{x}); break; case Op::to_fp16: write(o, V{id}, "=", op, V{x}); break; case Op::from_fp16: write(o, V{id}, "=", op, V{x}); break; case Op::trunc: write(o, V{id}, "=", op, V{x}); break; case Op::round: write(o, V{id}, "=", op, V{x}); break; } write(o, "\n"); } void Builder::dump(SkWStream* o) const { SkDebugfStream debug; if (!o) { o = &debug; } std::vector optimized = this->optimize(); o->writeDecAsText(optimized.size()); o->writeText(" values (originally "); o->writeDecAsText(fProgram.size()); o->writeText("):\n"); for (Val id = 0; id < (Val)optimized.size(); id++) { const OptimizedInstruction& inst = optimized[id]; write(o, inst.can_hoist ? "↑ " : " "); write_one_instruction(id, inst, o); } } void Program::dump(SkWStream* o) const { SkDebugfStream debug; if (!o) { o = &debug; } o->writeDecAsText(fImpl->regs); o->writeText(" registers, "); o->writeDecAsText(fImpl->instructions.size()); o->writeText(" instructions:\n"); for (Val i = 0; i < (Val)fImpl->instructions.size(); i++) { if (i == fImpl->loop) { write(o, "loop:\n"); } o->writeDecAsText(i); o->writeText("\t"); if (i >= fImpl->loop) { write(o, " "); } const InterpreterInstruction& inst = fImpl->instructions[i]; Op op = inst.op; Reg d = inst.d, x = inst.x, y = inst.y, z = inst.z, w = inst.w; int immA = inst.immA, immB = inst.immB, immC = inst.immC; switch (op) { case Op::assert_true: write(o, op, R{x}, R{y}); break; case Op::trace_line: write(o, op, R{x}, Line{immA}); break; case Op::trace_var: write(o, op, R{x}, VarSlot{immA}, "=", R{y}, VarType{immB}); break; case Op::trace_call: write(o, op, R{x}, Line{immA}, CallType{immB}); break; case Op::store8: write(o, op, Ptr{immA}, R{x} ); break; case Op::store16: write(o, op, Ptr{immA}, R{x} ); break; case Op::store32: write(o, op, Ptr{immA}, R{x} ); break; case Op::store64: write(o, op, Ptr{immA}, R{x}, R{y} ); break; case Op::store128: write(o, op, Ptr{immA}, R{x}, R{y}, R{z}, R{w}); break; case Op::index: write(o, R{d}, "=", op); break; case Op::load8: write(o, R{d}, "=", op, Ptr{immA}); break; case Op::load16: write(o, R{d}, "=", op, Ptr{immA}); break; case Op::load32: write(o, R{d}, "=", op, Ptr{immA}); break; case Op::load64: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; case Op::load128: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; case Op::gather8: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; case Op::gather16: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; case Op::gather32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; case Op::uniform32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; case Op::array32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, Hex{immC}); break; case Op::splat: write(o, R{d}, "=", op, Splat{immA}); break; case Op::add_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; case Op::sub_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; case Op::mul_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; case Op::div_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; case Op::min_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; case Op::max_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; case Op::fma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; case Op::fms_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; case Op::fnma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; case Op::sqrt_f32: write(o, R{d}, "=", op, R{x}); break; case Op:: eq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::neq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op:: gt_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::gte_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::add_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::sub_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::mul_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::shl_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; case Op::shr_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; case Op::sra_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; case Op::eq_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::gt_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::bit_and : write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::bit_or : write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::bit_xor : write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::bit_clear: write(o, R{d}, "=", op, R{x}, R{y}); break; case Op::select: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; case Op::ceil: write(o, R{d}, "=", op, R{x}); break; case Op::floor: write(o, R{d}, "=", op, R{x}); break; case Op::to_f32: write(o, R{d}, "=", op, R{x}); break; case Op::to_fp16: write(o, R{d}, "=", op, R{x}); break; case Op::from_fp16: write(o, R{d}, "=", op, R{x}); break; case Op::trunc: write(o, R{d}, "=", op, R{x}); break; case Op::round: write(o, R{d}, "=", op, R{x}); break; } write(o, "\n"); } } std::vector eliminate_dead_code(std::vector program) { // Determine which Instructions are live by working back from side effects. std::vector live(program.size(), false); for (Val id = program.size(); id--;) { if (live[id] || has_side_effect(program[id].op)) { live[id] = true; const Instruction& inst = program[id]; for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { if (arg != NA) { live[arg] = true; } } } } // After removing non-live instructions, we can be left with redundant back-to-back // trace_line instructions. (e.g. one line could have multiple statements on it.) // Eliminate any duplicate ops. int lastId = -1; for (Val id = 0; id < (Val)program.size(); id++) { if (!live[id]) { continue; } const Instruction& inst = program[id]; if (inst.op != Op::trace_line) { lastId = -1; continue; } if (lastId >= 0) { const Instruction& last = program[lastId]; if (inst.immA == last.immA && inst.x == last.x) { // Found two matching trace_lines in a row. Mark the first one as dead. live[lastId] = false; } } lastId = id; } // Rewrite the program with only live Instructions: // - remap IDs in live Instructions to what they'll be once dead Instructions are removed; // - then actually remove the dead Instructions. std::vector new_id(program.size(), NA); for (Val id = 0, next = 0; id < (Val)program.size(); id++) { if (live[id]) { Instruction& inst = program[id]; for (Val* arg : {&inst.x, &inst.y, &inst.z, &inst.w}) { if (*arg != NA) { *arg = new_id[*arg]; SkASSERT(*arg != NA); } } new_id[id] = next++; } } // Eliminate any non-live ops. auto it = std::remove_if(program.begin(), program.end(), [&](const Instruction& inst) { Val id = (Val)(&inst - program.data()); return !live[id]; }); program.erase(it, program.end()); return program; } std::vector finalize(const std::vector program) { std::vector optimized(program.size()); for (Val id = 0; id < (Val)program.size(); id++) { Instruction inst = program[id]; optimized[id] = {inst.op, inst.x,inst.y,inst.z,inst.w, inst.immA,inst.immB,inst.immC, /*death=*/id, /*can_hoist=*/true}; } // Each Instruction's inputs need to live at least until that Instruction issues. for (Val id = 0; id < (Val)optimized.size(); id++) { OptimizedInstruction& inst = optimized[id]; for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { // (We're walking in order, so this is the same as max()ing with the existing Val.) if (arg != NA) { optimized[arg].death = id; } } } // Mark which values don't depend on the loop and can be hoisted. for (OptimizedInstruction& inst : optimized) { // Varying loads (and gathers) and stores cannot be hoisted out of the loop. if (is_always_varying(inst.op) || is_trace(inst.op)) { inst.can_hoist = false; } // If any of an instruction's inputs can't be hoisted, it can't be hoisted itself. if (inst.can_hoist) { for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { if (arg != NA) { inst.can_hoist &= optimized[arg].can_hoist; } } } } // Extend the lifetime of any hoisted value that's used in the loop to infinity. for (OptimizedInstruction& inst : optimized) { if (!inst.can_hoist /*i.e. we're in the loop, so the arguments are used-in-loop*/) { for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { if (arg != NA && optimized[arg].can_hoist) { optimized[arg].death = (Val)program.size(); } } } } return optimized; } std::vector Builder::optimize() const { std::vector program = this->program(); program = eliminate_dead_code(std::move(program)); return finalize (std::move(program)); } Program Builder::done(const char* debug_name, bool allow_jit) const { char buf[64] = "skvm-jit-"; if (!debug_name) { *SkStrAppendU32(buf+9, this->hash()) = '\0'; debug_name = buf; } return {this->optimize(), fStrides, debug_name, allow_jit}; } uint64_t Builder::hash() const { uint32_t lo = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 0), hi = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 1); return (uint64_t)lo | (uint64_t)hi << 32; } bool operator!=(Ptr a, Ptr b) { return a.ix != b.ix; } bool operator==(const Instruction& a, const Instruction& b) { return a.op == b.op && a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w && a.immA == b.immA && a.immB == b.immB && a.immC == b.immC; } uint32_t InstructionHash::operator()(const Instruction& inst, uint32_t seed) const { return SkOpts::hash(&inst, sizeof(inst), seed); } // Most instructions produce a value and return it by ID, // the value-producing instruction's own index in the program vector. Val Builder::push(Instruction inst) { // Basic common subexpression elimination: // if we've already seen this exact Instruction, use it instead of creating a new one. // // But we never dedup loads or stores: an intervening store could change that memory. // Uniforms and gathers touch only uniform memory, so they're fine to dedup, // and index is varying but doesn't touch memory, so it's fine to dedup too. if (!touches_varying_memory(inst.op) && !is_trace(inst.op)) { if (Val* id = fIndex.find(inst)) { return *id; } } Val id = static_cast(fProgram.size()); fProgram.push_back(inst); fIndex.set(inst, id); return id; } Ptr Builder::arg(int stride) { int ix = (int)fStrides.size(); fStrides.push_back(stride); return {ix}; } void Builder::assert_true(I32 cond, I32 debug) { #ifdef SK_DEBUG int imm; if (this->allImm(cond.id,&imm)) { SkASSERT(imm); return; } (void)push(Op::assert_true, cond.id, debug.id); #endif } void Builder::trace_line(I32 mask, int line) { if (this->isImm(mask.id, 0)) { return; } (void)push(Op::trace_line, mask.id,NA,NA,NA, line); } void Builder::trace_var(I32 mask, int slot, I32 val) { if (this->isImm(mask.id, 0)) { return; } (void)push(Op::trace_var, mask.id,val.id,NA,NA, slot, kVarTypeInt.bits); } void Builder::trace_var(I32 mask, int slot, F32 val) { if (this->isImm(mask.id, 0)) { return; } (void)push(Op::trace_var, mask.id,val.id,NA,NA, slot, kVarTypeFloat.bits); } void Builder::trace_var(I32 mask, int slot, bool b) { if (this->isImm(mask.id, 0)) { return; } I32 val = b ? this->splat(1) : this->splat(0); (void)push(Op::trace_var, mask.id,val.id,NA,NA, slot, kVarTypeBool.bits); } void Builder::trace_call_enter(I32 mask, int line) { if (this->isImm(mask.id, 0)) { return; } (void)push(Op::trace_call, mask.id,NA,NA,NA, line, kCallTypeEnter.bits); } void Builder::trace_call_exit(I32 mask, int line) { if (this->isImm(mask.id, 0)) { return; } (void)push(Op::trace_call, mask.id,NA,NA,NA, line, kCallTypeExit.bits); } void Builder::store8 (Ptr ptr, I32 val) { (void)push(Op::store8 , val.id,NA,NA,NA, ptr.ix); } void Builder::store16(Ptr ptr, I32 val) { (void)push(Op::store16, val.id,NA,NA,NA, ptr.ix); } void Builder::store32(Ptr ptr, I32 val) { (void)push(Op::store32, val.id,NA,NA,NA, ptr.ix); } void Builder::store64(Ptr ptr, I32 lo, I32 hi) { (void)push(Op::store64, lo.id,hi.id,NA,NA, ptr.ix); } void Builder::store128(Ptr ptr, I32 x, I32 y, I32 z, I32 w) { (void)push(Op::store128, x.id,y.id,z.id,w.id, ptr.ix); } I32 Builder::index() { return {this, push(Op::index)}; } I32 Builder::load8 (Ptr ptr) { return {this, push(Op::load8 , NA,NA,NA,NA, ptr.ix) }; } I32 Builder::load16(Ptr ptr) { return {this, push(Op::load16, NA,NA,NA,NA, ptr.ix) }; } I32 Builder::load32(Ptr ptr) { return {this, push(Op::load32, NA,NA,NA,NA, ptr.ix) }; } I32 Builder::load64(Ptr ptr, int lane) { return {this, push(Op::load64 , NA,NA,NA,NA, ptr.ix,lane) }; } I32 Builder::load128(Ptr ptr, int lane) { return {this, push(Op::load128, NA,NA,NA,NA, ptr.ix,lane) }; } I32 Builder::gather8 (UPtr ptr, int offset, I32 index) { return {this, push(Op::gather8 , index.id,NA,NA,NA, ptr.ix,offset)}; } I32 Builder::gather16(UPtr ptr, int offset, I32 index) { return {this, push(Op::gather16, index.id,NA,NA,NA, ptr.ix,offset)}; } I32 Builder::gather32(UPtr ptr, int offset, I32 index) { return {this, push(Op::gather32, index.id,NA,NA,NA, ptr.ix,offset)}; } I32 Builder::uniform32(UPtr ptr, int offset) { return {this, push(Op::uniform32, NA,NA,NA,NA, ptr.ix, offset)}; } // Note: this converts the array index into a byte offset for the op. I32 Builder::array32 (UPtr ptr, int offset, int index) { return {this, push(Op::array32, NA,NA,NA,NA, ptr.ix, offset, index * sizeof(int))}; } I32 Builder::splat(int n) { return {this, push(Op::splat, NA,NA,NA,NA, n) }; } // Be careful peepholing float math! Transformations you might expect to // be legal can fail in the face of NaN/Inf, e.g. 0*x is not always 0. // Float peepholes must pass this equivalence test for all ~4B floats: // // bool equiv(float x, float y) { return (x == y) || (isnanf(x) && isnanf(y)); } // // unsigned bits = 0; // do { // float f; // memcpy(&f, &bits, 4); // if (!equiv(f, ...)) { // abort(); // } // } while (++bits != 0); F32 Builder::add(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } if (this->isImm(y.id, 0.0f)) { return x; } // x+0 == x if (this->isImm(x.id, 0.0f)) { return y; } // 0+y == y if (fFeatures.fma) { if (fProgram[x.id].op == Op::mul_f32) { return {this, this->push(Op::fma_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; } if (fProgram[y.id].op == Op::mul_f32) { return {this, this->push(Op::fma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; } } return {this, this->push(Op::add_f32, x.id, y.id)}; } F32 Builder::sub(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } if (this->isImm(y.id, 0.0f)) { return x; } // x-0 == x if (fFeatures.fma) { if (fProgram[x.id].op == Op::mul_f32) { return {this, this->push(Op::fms_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; } if (fProgram[y.id].op == Op::mul_f32) { return {this, this->push(Op::fnma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; } } return {this, this->push(Op::sub_f32, x.id, y.id)}; } F32 Builder::mul(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } if (this->isImm(y.id, 1.0f)) { return x; } // x*1 == x if (this->isImm(x.id, 1.0f)) { return y; } // 1*y == y return {this, this->push(Op::mul_f32, x.id, y.id)}; } F32 Builder::fast_mul(F32 x, F32 y) { if (this->isImm(x.id, 0.0f) || this->isImm(y.id, 0.0f)) { return splat(0.0f); } return mul(x,y); } F32 Builder::div(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(sk_ieee_float_divide(X,Y)); } if (this->isImm(y.id, 1.0f)) { return x; } // x/1 == x return {this, this->push(Op::div_f32, x.id, y.id)}; } F32 Builder::sqrt(F32 x) { if (float X; this->allImm(x.id,&X)) { return splat(std::sqrt(X)); } return {this, this->push(Op::sqrt_f32, x.id)}; } // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html. F32 Builder::approx_log2(F32 x) { // e - 127 is a fair approximation of log2(x) in its own right... F32 e = mul(to_F32(pun_to_I32(x)), splat(1.0f / (1<<23))); // ... but using the mantissa to refine its error is _much_ better. F32 m = pun_to_F32(bit_or(bit_and(pun_to_I32(x), 0x007fffff), 0x3f000000)); F32 approx = sub(e, 124.225514990f); approx = sub(approx, mul(1.498030302f, m)); approx = sub(approx, div(1.725879990f, add(0.3520887068f, m))); return approx; } F32 Builder::approx_pow2(F32 x) { F32 f = fract(x); F32 approx = add(x, 121.274057500f); approx = sub(approx, mul( 1.490129070f, f)); approx = add(approx, div(27.728023300f, sub(4.84252568f, f))); return pun_to_F32(round(mul(1.0f * (1<<23), approx))); } F32 Builder::approx_powf(F32 x, F32 y) { // TODO: assert this instead? Sometimes x is very slightly negative. See skia:10210. x = max(0.0f, x); auto is_x = bit_or(eq(x, 0.0f), eq(x, 1.0f)); return select(is_x, x, approx_pow2(mul(approx_log2(x), y))); } // Bhaskara I's sine approximation // 16x(pi - x) / (5*pi^2 - 4x(pi - x) // ... divide by 4 // 4x(pi - x) / 5*pi^2/4 - x(pi - x) // // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get // radians into that range first. // F32 Builder::approx_sin(F32 radians) { constexpr float Pi = SK_ScalarPI; // x = radians mod 2pi F32 x = fract(radians * (0.5f/Pi)) * (2*Pi); I32 neg = x > Pi; // are we pi < x < 2pi --> need to negate result x = select(neg, x - Pi, x); F32 pair = x * (Pi - x); x = 4.0f * pair / ((5*Pi*Pi/4) - pair); x = select(neg, -x, x); return x; } /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 Some simplifications: 1. tan(x) is periodic, -PI/2 < x < PI/2 2. tan(x) is odd, so tan(-x) = -tan(x) 3. Our polynomial approximation is best near zero, so we use the following identity tan(x) + tan(y) tan(x + y) = ----------------- 1 - tan(x)*tan(y) tan(PI/4) = 1 So for x > PI/8, we do the following refactor: x' = x - PI/4 1 + tan(x') tan(x) = ------------ 1 - tan(x') */ F32 Builder::approx_tan(F32 x) { constexpr float Pi = SK_ScalarPI; // periodic between -pi/2 ... pi/2 // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); I32 neg = (x < 0.0f); x = select(neg, -x, x); // minimize total error by shifting if x > pi/8 I32 use_quotient = (x > (Pi/8)); x = select(use_quotient, x - (Pi/4), x); // 9th order poly = 4th order(x^2) * x x = poly(x*x, 62/2835.0f, 17/315.0f, 2/15.0f, 1/3.0f, 1.0f) * x; x = select(use_quotient, (1+x)/(1-x), x); x = select(neg, -x, x); return x; } // http://mathforum.org/library/drmath/view/54137.html // referencing Handbook of Mathematical Functions, // by Milton Abramowitz and Irene Stegun F32 Builder::approx_asin(F32 x) { I32 neg = (x < 0.0f); x = select(neg, -x, x); x = SK_ScalarPI/2 - sqrt(1-x) * poly(x, -0.0187293f, 0.0742610f, -0.2121144f, 1.5707288f); x = select(neg, -x, x); return x; } /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ * with 129 values of x,atan(x) for x:[0...1] * This only works for 0 <= x <= 1 */ static F32 approx_atan_unit(F32 x) { // for now we might be given NaN... let that through x->assert_true((x != x) | ((x >= 0) & (x <= 1))); return poly(x, 0.14130025741326729f, -0.34312835980675116f, -0.016172900528248768f, 1.0037696976200385f, -0.00014758242182738969f); } /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 */ F32 Builder::approx_atan(F32 x) { I32 neg = (x < 0.0f); x = select(neg, -x, x); I32 flip = (x > 1.0f); x = select(flip, 1/x, x); x = approx_atan_unit(x); x = select(flip, SK_ScalarPI/2 - x, x); x = select(neg, -x, x); return x; } /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 * By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() * which avoids a 2nd divide instruction if we had instead called atan(). */ F32 Builder::approx_atan2(F32 y0, F32 x0) { I32 flip = (abs(y0) > abs(x0)); F32 y = select(flip, x0, y0); F32 x = select(flip, y0, x0); F32 arg = y/x; I32 neg = (arg < 0.0f); arg = select(neg, -arg, arg); F32 r = approx_atan_unit(arg); r = select(flip, SK_ScalarPI/2 - r, r); r = select(neg, -r, r); // handle quadrant distinctions r = select((y0 >= 0) & (x0 < 0), r + SK_ScalarPI, r); r = select((y0 < 0) & (x0 <= 0), r - SK_ScalarPI, r); // Note: we don't try to handle 0,0 or infinities (yet) return r; } F32 Builder::min(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::min(X,Y)); } return {this, this->push(Op::min_f32, x.id, y.id)}; } F32 Builder::max(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::max(X,Y)); } return {this, this->push(Op::max_f32, x.id, y.id)}; } SK_ATTRIBUTE(no_sanitize("signed-integer-overflow")) I32 Builder::add(I32 x, I32 y) { if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } if (this->isImm(x.id, 0)) { return y; } if (this->isImm(y.id, 0)) { return x; } return {this, this->push(Op::add_i32, x.id, y.id)}; } SK_ATTRIBUTE(no_sanitize("signed-integer-overflow")) I32 Builder::sub(I32 x, I32 y) { if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } if (this->isImm(y.id, 0)) { return x; } return {this, this->push(Op::sub_i32, x.id, y.id)}; } SK_ATTRIBUTE(no_sanitize("signed-integer-overflow")) I32 Builder::mul(I32 x, I32 y) { if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } if (this->isImm(x.id, 0)) { return splat(0); } if (this->isImm(y.id, 0)) { return splat(0); } if (this->isImm(x.id, 1)) { return y; } if (this->isImm(y.id, 1)) { return x; } return {this, this->push(Op::mul_i32, x.id, y.id)}; } SK_ATTRIBUTE(no_sanitize("shift")) I32 Builder::shl(I32 x, int bits) { if (bits == 0) { return x; } if (int X; this->allImm(x.id,&X)) { return splat(X << bits); } return {this, this->push(Op::shl_i32, x.id,NA,NA,NA, bits)}; } I32 Builder::shr(I32 x, int bits) { if (bits == 0) { return x; } if (int X; this->allImm(x.id,&X)) { return splat(unsigned(X) >> bits); } return {this, this->push(Op::shr_i32, x.id,NA,NA,NA, bits)}; } I32 Builder::sra(I32 x, int bits) { if (bits == 0) { return x; } if (int X; this->allImm(x.id,&X)) { return splat(X >> bits); } return {this, this->push(Op::sra_i32, x.id,NA,NA,NA, bits)}; } I32 Builder:: eq(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } return {this, this->push(Op::eq_f32, x.id, y.id)}; } I32 Builder::neq(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } return {this, this->push(Op::neq_f32, x.id, y.id)}; } I32 Builder::lt(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y> X ? ~0 : 0); } return {this, this->push(Op::gt_f32, y.id, x.id)}; } I32 Builder::lte(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y>=X ? ~0 : 0); } return {this, this->push(Op::gte_f32, y.id, x.id)}; } I32 Builder::gt(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } return {this, this->push(Op::gt_f32, x.id, y.id)}; } I32 Builder::gte(F32 x, F32 y) { if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } return {this, this->push(Op::gte_f32, x.id, y.id)}; } I32 Builder:: eq(I32 x, I32 y) { if (x.id == y.id) { return splat(~0); } if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } return {this, this->push(Op:: eq_i32, x.id, y.id)}; } I32 Builder::neq(I32 x, I32 y) { if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } return ~(x == y); } I32 Builder:: gt(I32 x, I32 y) { if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } return {this, this->push(Op:: gt_i32, x.id, y.id)}; } I32 Builder::gte(I32 x, I32 y) { if (x.id == y.id) { return splat(~0); } if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } return ~(x < y); } I32 Builder:: lt(I32 x, I32 y) { return y>x; } I32 Builder::lte(I32 x, I32 y) { return y>=x; } I32 Builder::bit_and(I32 x, I32 y) { if (x.id == y.id) { return x; } if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&Y); } if (this->isImm(y.id, 0)) { return splat(0); } // (x & false) == false if (this->isImm(x.id, 0)) { return splat(0); } // (false & y) == false if (this->isImm(y.id,~0)) { return x; } // (x & true) == x if (this->isImm(x.id,~0)) { return y; } // (true & y) == y return {this, this->push(Op::bit_and, x.id, y.id)}; } I32 Builder::bit_or(I32 x, I32 y) { if (x.id == y.id) { return x; } if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|Y); } if (this->isImm(y.id, 0)) { return x; } // (x | false) == x if (this->isImm(x.id, 0)) { return y; } // (false | y) == y if (this->isImm(y.id,~0)) { return splat(~0); } // (x | true) == true if (this->isImm(x.id,~0)) { return splat(~0); } // (true | y) == true return {this, this->push(Op::bit_or, x.id, y.id)}; } I32 Builder::bit_xor(I32 x, I32 y) { if (x.id == y.id) { return splat(0); } if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X^Y); } if (this->isImm(y.id, 0)) { return x; } // (x ^ false) == x if (this->isImm(x.id, 0)) { return y; } // (false ^ y) == y return {this, this->push(Op::bit_xor, x.id, y.id)}; } I32 Builder::bit_clear(I32 x, I32 y) { if (x.id == y.id) { return splat(0); } if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&~Y); } if (this->isImm(y.id, 0)) { return x; } // (x & ~false) == x if (this->isImm(y.id,~0)) { return splat(0); } // (x & ~true) == false if (this->isImm(x.id, 0)) { return splat(0); } // (false & ~y) == false return {this, this->push(Op::bit_clear, x.id, y.id)}; } I32 Builder::select(I32 x, I32 y, I32 z) { if (y.id == z.id) { return y; } if (int X,Y,Z; this->allImm(x.id,&X, y.id,&Y, z.id,&Z)) { return splat(X?Y:Z); } if (this->isImm(x.id,~0)) { return y; } // true ? y : z == y if (this->isImm(x.id, 0)) { return z; } // false ? y : z == z if (this->isImm(y.id, 0)) { return bit_clear(z,x); } // x ? 0 : z == ~x&z if (this->isImm(z.id, 0)) { return bit_and (y,x); } // x ? y : 0 == x&y return {this, this->push(Op::select, x.id, y.id, z.id)}; } I32 Builder::extract(I32 x, int bits, I32 z) { if (unsigned Z; this->allImm(z.id,&Z) && (~0u>>bits) == Z) { return shr(x, bits); } return bit_and(z, shr(x, bits)); } I32 Builder::pack(I32 x, I32 y, int bits) { return bit_or(x, shl(y, bits)); } F32 Builder::ceil(F32 x) { if (float X; this->allImm(x.id,&X)) { return splat(ceilf(X)); } return {this, this->push(Op::ceil, x.id)}; } F32 Builder::floor(F32 x) { if (float X; this->allImm(x.id,&X)) { return splat(floorf(X)); } return {this, this->push(Op::floor, x.id)}; } F32 Builder::to_F32(I32 x) { if (int X; this->allImm(x.id,&X)) { return splat((float)X); } return {this, this->push(Op::to_f32, x.id)}; } I32 Builder::trunc(F32 x) { if (float X; this->allImm(x.id,&X)) { return splat((int)X); } return {this, this->push(Op::trunc, x.id)}; } I32 Builder::round(F32 x) { if (float X; this->allImm(x.id,&X)) { return splat((int)lrintf(X)); } return {this, this->push(Op::round, x.id)}; } I32 Builder::to_fp16(F32 x) { if (float X; this->allImm(x.id,&X)) { return splat((int)SkFloatToHalf(X)); } return {this, this->push(Op::to_fp16, x.id)}; } F32 Builder::from_fp16(I32 x) { if (int X; this->allImm(x.id,&X)) { return splat(SkHalfToFloat(X)); } return {this, this->push(Op::from_fp16, x.id)}; } F32 Builder::from_unorm(int bits, I32 x) { F32 limit = splat(1 / ((1< F32 { const skcms_TransferFunction* tf = skcms_sRGB_TransferFunction(); F32 v = from_unorm(bits, channel); return sk_program_transfer_fn(v, sRGBish_TF, v->splat(tf->g), v->splat(tf->a), v->splat(tf->b), v->splat(tf->c), v->splat(tf->d), v->splat(tf->e), v->splat(tf->f)); }; auto unpack_rgb = [=](int bits, int shift) -> F32 { I32 channel = extract(x, shift, (1< F32 { I32 channel = extract(x, shift, (1<splat(0.0f), f.g_bits ? unpack_rgb (f.g_bits, f.g_shift) : x->splat(0.0f), f.b_bits ? unpack_rgb (f.b_bits, f.b_shift) : x->splat(0.0f), f.a_bits ? unpack_alpha(f.a_bits, f.a_shift) : x->splat(1.0f), }; } static void split_disjoint_8byte_format(PixelFormat f, PixelFormat* lo, PixelFormat* hi) { SkASSERT(byte_size(f) == 8); // We assume some of the channels are in the low 32 bits, some in the high 32 bits. // The assert on byte_size(lo) will trigger if this assumption is violated. *lo = f; if (f.r_shift >= 32) { lo->r_bits = 0; lo->r_shift = 32; } if (f.g_shift >= 32) { lo->g_bits = 0; lo->g_shift = 32; } if (f.b_shift >= 32) { lo->b_bits = 0; lo->b_shift = 32; } if (f.a_shift >= 32) { lo->a_bits = 0; lo->a_shift = 32; } SkASSERT(byte_size(*lo) == 4); *hi = f; if (f.r_shift < 32) { hi->r_bits = 0; hi->r_shift = 32; } else { hi->r_shift -= 32; } if (f.g_shift < 32) { hi->g_bits = 0; hi->g_shift = 32; } else { hi->g_shift -= 32; } if (f.b_shift < 32) { hi->b_bits = 0; hi->b_shift = 32; } else { hi->b_shift -= 32; } if (f.a_shift < 32) { hi->a_bits = 0; hi->a_shift = 32; } else { hi->a_shift -= 32; } SkASSERT(byte_size(*hi) == 4); } // The only 16-byte format we support today is RGBA F32, // though, TODO, we could generalize that to any swizzle, and to allow UNORM too. static void assert_16byte_is_rgba_f32(PixelFormat f) { #if defined(SK_DEBUG) SkASSERT(byte_size(f) == 16); PixelFormat rgba_f32 = SkColorType_to_PixelFormat(kRGBA_F32_SkColorType); SkASSERT(f.encoding == rgba_f32.encoding); SkASSERT(f.r_bits == rgba_f32.r_bits); SkASSERT(f.g_bits == rgba_f32.g_bits); SkASSERT(f.b_bits == rgba_f32.b_bits); SkASSERT(f.a_bits == rgba_f32.a_bits); SkASSERT(f.r_shift == rgba_f32.r_shift); SkASSERT(f.g_shift == rgba_f32.g_shift); SkASSERT(f.b_shift == rgba_f32.b_shift); SkASSERT(f.a_shift == rgba_f32.a_shift); #endif } Color Builder::load(PixelFormat f, Ptr ptr) { switch (byte_size(f)) { case 1: return unpack(f, load8 (ptr)); case 2: return unpack(f, load16(ptr)); case 4: return unpack(f, load32(ptr)); case 8: { PixelFormat lo,hi; split_disjoint_8byte_format(f, &lo,&hi); Color l = unpack(lo, load64(ptr, 0)), h = unpack(hi, load64(ptr, 1)); return { lo.r_bits ? l.r : h.r, lo.g_bits ? l.g : h.g, lo.b_bits ? l.b : h.b, lo.a_bits ? l.a : h.a, }; } case 16: { assert_16byte_is_rgba_f32(f); return { pun_to_F32(load128(ptr, 0)), pun_to_F32(load128(ptr, 1)), pun_to_F32(load128(ptr, 2)), pun_to_F32(load128(ptr, 3)), }; } default: SkUNREACHABLE; } return {}; } Color Builder::gather(PixelFormat f, UPtr ptr, int offset, I32 index) { switch (byte_size(f)) { case 1: return unpack(f, gather8 (ptr, offset, index)); case 2: return unpack(f, gather16(ptr, offset, index)); case 4: return unpack(f, gather32(ptr, offset, index)); case 8: { PixelFormat lo,hi; split_disjoint_8byte_format(f, &lo,&hi); Color l = unpack(lo, gather32(ptr, offset, (index<<1)+0)), h = unpack(hi, gather32(ptr, offset, (index<<1)+1)); return { lo.r_bits ? l.r : h.r, lo.g_bits ? l.g : h.g, lo.b_bits ? l.b : h.b, lo.a_bits ? l.a : h.a, }; } case 16: { assert_16byte_is_rgba_f32(f); return { gatherF(ptr, offset, (index<<2)+0), gatherF(ptr, offset, (index<<2)+1), gatherF(ptr, offset, (index<<2)+2), gatherF(ptr, offset, (index<<2)+3), }; } default: SkUNREACHABLE; } return {}; } static I32 pack32(PixelFormat f, Color c) { SkASSERT(byte_size(f) <= 4); auto to_srgb = [](int bits, F32 v) { const skcms_TransferFunction* tf = skcms_sRGB_Inverse_TransferFunction(); return to_unorm(bits, sk_program_transfer_fn(v, sRGBish_TF, v->splat(tf->g), v->splat(tf->a), v->splat(tf->b), v->splat(tf->c), v->splat(tf->d), v->splat(tf->e), v->splat(tf->f))); }; I32 packed = c->splat(0); auto pack_rgb = [&](F32 channel, int bits, int shift) { I32 encoded; switch (f.encoding) { case PixelFormat::UNORM: encoded = to_unorm(bits, channel); break; case PixelFormat:: SRGB: encoded = to_srgb (bits, channel); break; case PixelFormat::FLOAT: encoded = to_fp16 ( channel); break; } packed = pack(packed, encoded, shift); }; auto pack_alpha = [&](F32 channel, int bits, int shift) { I32 encoded; switch (f.encoding) { case PixelFormat::UNORM: case PixelFormat:: SRGB: encoded = to_unorm(bits, channel); break; case PixelFormat::FLOAT: encoded = to_fp16 ( channel); break; } packed = pack(packed, encoded, shift); }; if (f.r_bits) { pack_rgb (c.r, f.r_bits, f.r_shift); } if (f.g_bits) { pack_rgb (c.g, f.g_bits, f.g_shift); } if (f.b_bits) { pack_rgb (c.b, f.b_bits, f.b_shift); } if (f.a_bits) { pack_alpha(c.a, f.a_bits, f.a_shift); } return packed; } void Builder::store(PixelFormat f, Ptr ptr, Color c) { // Detect a grayscale PixelFormat: r,g,b bit counts and shifts all equal. if (f.r_bits == f.g_bits && f.g_bits == f.b_bits && f.r_shift == f.g_shift && f.g_shift == f.b_shift) { // TODO: pull these coefficients from an SkColorSpace? This is sRGB luma/luminance. c.r = c.r * 0.2126f + c.g * 0.7152f + c.b * 0.0722f; f.g_bits = f.b_bits = 0; } switch (byte_size(f)) { case 1: store8 (ptr, pack32(f,c)); break; case 2: store16(ptr, pack32(f,c)); break; case 4: store32(ptr, pack32(f,c)); break; case 8: { PixelFormat lo,hi; split_disjoint_8byte_format(f, &lo,&hi); store64(ptr, pack32(lo,c) , pack32(hi,c)); break; } case 16: { assert_16byte_is_rgba_f32(f); store128(ptr, pun_to_I32(c.r), pun_to_I32(c.g), pun_to_I32(c.b), pun_to_I32(c.a)); break; } default: SkUNREACHABLE; } } void Builder::unpremul(F32* r, F32* g, F32* b, F32 a) { skvm::F32 invA = 1.0f / a, inf = pun_to_F32(splat(0x7f800000)); // If a is 0, so are *r,*g,*b, so set invA to 0 to avoid 0*inf=NaN (instead 0*0 = 0). invA = select(invA < inf, invA , 0.0f); *r *= invA; *g *= invA; *b *= invA; } void Builder::premul(F32* r, F32* g, F32* b, F32 a) { *r *= a; *g *= a; *b *= a; } Color Builder::uniformColor(SkColor4f color, Uniforms* uniforms) { auto [r,g,b,a] = color; return { uniformF(uniforms->pushF(r)), uniformF(uniforms->pushF(g)), uniformF(uniforms->pushF(b)), uniformF(uniforms->pushF(a)), }; } F32 Builder::lerp(F32 lo, F32 hi, F32 t) { if (this->isImm(t.id, 0.0f)) { return lo; } if (this->isImm(t.id, 1.0f)) { return hi; } return mad(sub(hi, lo), t, lo); } Color Builder::lerp(Color lo, Color hi, F32 t) { return { lerp(lo.r, hi.r, t), lerp(lo.g, hi.g, t), lerp(lo.b, hi.b, t), lerp(lo.a, hi.a, t), }; } HSLA Builder::to_hsla(Color c) { F32 mx = max(max(c.r,c.g),c.b), mn = min(min(c.r,c.g),c.b), d = mx - mn, invd = 1.0f / d, g_lt_b = select(c.g < c.b, splat(6.0f) , splat(0.0f)); F32 h = (1/6.0f) * select(mx == mn, 0.0f, select(mx == c.r, invd * (c.g - c.b) + g_lt_b, select(mx == c.g, invd * (c.b - c.r) + 2.0f , invd * (c.r - c.g) + 4.0f))); F32 sum = mx + mn, l = sum * 0.5f, s = select(mx == mn, 0.0f , d / select(l > 0.5f, 2.0f - sum , sum)); return {h, s, l, c.a}; } Color Builder::to_rgba(HSLA c) { // See GrRGBToHSLFilterEffect.fp auto [h,s,l,a] = c; F32 x = s * (1.0f - abs(l + l - 1.0f)); auto hue_to_rgb = [&,l=l](auto hue) { auto q = abs(6.0f * fract(hue) - 3.0f) - 1.0f; return x * (clamp01(q) - 0.5f) + l; }; return { hue_to_rgb(h + 0/3.0f), hue_to_rgb(h + 2/3.0f), hue_to_rgb(h + 1/3.0f), c.a, }; } // We're basing our implementation of non-separable blend modes on // https://www.w3.org/TR/compositing-1/#blendingnonseparable. // and // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf // They're equivalent, but ES' math has been better simplified. // // Anything extra we add beyond that is to make the math work with premul inputs. static skvm::F32 saturation(skvm::F32 r, skvm::F32 g, skvm::F32 b) { return max(r, max(g, b)) - min(r, min(g, b)); } static skvm::F32 luminance(skvm::F32 r, skvm::F32 g, skvm::F32 b) { return r*0.30f + g*0.59f + b*0.11f; } static void set_sat(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 s) { F32 mn = min(*r, min(*g, *b)), mx = max(*r, max(*g, *b)), sat = mx - mn; // Map min channel to 0, max channel to s, and scale the middle proportionally. auto scale = [&](skvm::F32 c) { auto scaled = ((c - mn) * s) / sat; return select(is_finite(scaled), scaled, 0.0f); }; *r = scale(*r); *g = scale(*g); *b = scale(*b); } static void set_lum(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 lu) { auto diff = lu - luminance(*r, *g, *b); *r += diff; *g += diff; *b += diff; } static void clip_color(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 a) { F32 mn = min(*r, min(*g, *b)), mx = max(*r, max(*g, *b)), lu = luminance(*r, *g, *b); auto clip = [&](auto c) { c = select(mn >= 0, c , lu + ((c-lu)*( lu)) / (lu-mn)); c = select(mx > a, lu + ((c-lu)*(a-lu)) / (mx-lu) , c); return clamp01(c); // May be a little negative, or worse, NaN. }; *r = clip(*r); *g = clip(*g); *b = clip(*b); } Color Builder::blend(SkBlendMode mode, Color src, Color dst) { auto mma = [](skvm::F32 x, skvm::F32 y, skvm::F32 z, skvm::F32 w) { return x*y + z*w; }; auto two = [](skvm::F32 x) { return x+x; }; auto apply_rgba = [&](auto fn) { return Color { fn(src.r, dst.r), fn(src.g, dst.g), fn(src.b, dst.b), fn(src.a, dst.a), }; }; auto apply_rgb_srcover_a = [&](auto fn) { return Color { fn(src.r, dst.r), fn(src.g, dst.g), fn(src.b, dst.b), mad(dst.a, 1-src.a, src.a), // srcover for alpha }; }; auto non_sep = [&](auto R, auto G, auto B) { return Color{ R + mma(src.r, 1-dst.a, dst.r, 1-src.a), G + mma(src.g, 1-dst.a, dst.g, 1-src.a), B + mma(src.b, 1-dst.a, dst.b, 1-src.a), mad(dst.a, 1-src.a, src.a), // srcover for alpha }; }; switch (mode) { default: SkASSERT(false); [[fallthrough]]; /*but also, for safety, fallthrough*/ case SkBlendMode::kClear: return { splat(0.0f), splat(0.0f), splat(0.0f), splat(0.0f) }; case SkBlendMode::kSrc: return src; case SkBlendMode::kDst: return dst; case SkBlendMode::kDstOver: std::swap(src, dst); [[fallthrough]]; case SkBlendMode::kSrcOver: return apply_rgba([&](auto s, auto d) { return mad(d,1-src.a, s); }); case SkBlendMode::kDstIn: std::swap(src, dst); [[fallthrough]]; case SkBlendMode::kSrcIn: return apply_rgba([&](auto s, auto d) { return s * dst.a; }); case SkBlendMode::kDstOut: std::swap(src, dst); [[fallthrough]]; case SkBlendMode::kSrcOut: return apply_rgba([&](auto s, auto d) { return s * (1-dst.a); }); case SkBlendMode::kDstATop: std::swap(src, dst); [[fallthrough]]; case SkBlendMode::kSrcATop: return apply_rgba([&](auto s, auto d) { return mma(s, dst.a, d, 1-src.a); }); case SkBlendMode::kXor: return apply_rgba([&](auto s, auto d) { return mma(s, 1-dst.a, d, 1-src.a); }); case SkBlendMode::kPlus: return apply_rgba([&](auto s, auto d) { return min(s+d, 1.0f); }); case SkBlendMode::kModulate: return apply_rgba([&](auto s, auto d) { return s * d; }); case SkBlendMode::kScreen: // (s+d)-(s*d) gave us trouble with our "r,g,b <= after blending" asserts. // It's kind of plausible that s + (d - sd) keeps more precision? return apply_rgba([&](auto s, auto d) { return s + (d - s*d); }); case SkBlendMode::kDarken: return apply_rgb_srcover_a([&](auto s, auto d) { return s + (d - max(s * dst.a, d * src.a)); }); case SkBlendMode::kLighten: return apply_rgb_srcover_a([&](auto s, auto d) { return s + (d - min(s * dst.a, d * src.a)); }); case SkBlendMode::kDifference: return apply_rgb_srcover_a([&](auto s, auto d) { return s + (d - two(min(s * dst.a, d * src.a))); }); case SkBlendMode::kExclusion: return apply_rgb_srcover_a([&](auto s, auto d) { return s + (d - two(s * d)); }); case SkBlendMode::kColorBurn: return apply_rgb_srcover_a([&](auto s, auto d) { auto mn = min(dst.a, src.a * (dst.a - d) / s), burn = src.a * (dst.a - mn) + mma(s, 1-dst.a, d, 1-src.a); return select(d == dst.a , s * (1-dst.a) + d, select(is_finite(burn), burn , d * (1-src.a) + s)); }); case SkBlendMode::kColorDodge: return apply_rgb_srcover_a([&](auto s, auto d) { auto dodge = src.a * min(dst.a, d * src.a / (src.a - s)) + mma(s, 1-dst.a, d, 1-src.a); return select(d == 0.0f , s * (1-dst.a) + d, select(is_finite(dodge), dodge , d * (1-src.a) + s)); }); case SkBlendMode::kHardLight: return apply_rgb_srcover_a([&](auto s, auto d) { return mma(s, 1-dst.a, d, 1-src.a) + select(two(s) <= src.a, two(s * d), src.a * dst.a - two((dst.a - d) * (src.a - s))); }); case SkBlendMode::kOverlay: return apply_rgb_srcover_a([&](auto s, auto d) { return mma(s, 1-dst.a, d, 1-src.a) + select(two(d) <= dst.a, two(s * d), src.a * dst.a - two((dst.a - d) * (src.a - s))); }); case SkBlendMode::kMultiply: return apply_rgba([&](auto s, auto d) { return mma(s, 1-dst.a, d, 1-src.a) + s * d; }); case SkBlendMode::kSoftLight: return apply_rgb_srcover_a([&](auto s, auto d) { auto m = select(dst.a > 0.0f, d / dst.a , 0.0f), s2 = two(s), m4 = 4*m; // The logic forks three ways: // 1. dark src? // 2. light src, dark dst? // 3. light src, light dst? // Used in case 1 auto darkSrc = d * ((s2-src.a) * (1-m) + src.a), // Used in case 2 darkDst = (m4 * m4 + m4) * (m-1) + 7*m, // Used in case 3. liteDst = sqrt(m) - m, // Used in 2 or 3? liteSrc = dst.a * (s2 - src.a) * select(4*d <= dst.a, darkDst , liteDst) + d * src.a; return s * (1-dst.a) + d * (1-src.a) + select(s2 <= src.a, darkSrc , liteSrc); }); case SkBlendMode::kHue: { skvm::F32 R = src.r * src.a, G = src.g * src.a, B = src.b * src.a; set_sat (&R, &G, &B, src.a * saturation(dst.r, dst.g, dst.b)); set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); clip_color(&R, &G, &B, src.a * dst.a); return non_sep(R, G, B); } case SkBlendMode::kSaturation: { skvm::F32 R = dst.r * src.a, G = dst.g * src.a, B = dst.b * src.a; set_sat (&R, &G, &B, dst.a * saturation(src.r, src.g, src.b)); set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); clip_color(&R, &G, &B, src.a * dst.a); return non_sep(R, G, B); } case SkBlendMode::kColor: { skvm::F32 R = src.r * dst.a, G = src.g * dst.a, B = src.b * dst.a; set_lum (&R, &G, &B, src.a * luminance(dst.r, dst.g, dst.b)); clip_color(&R, &G, &B, src.a * dst.a); return non_sep(R, G, B); } case SkBlendMode::kLuminosity: { skvm::F32 R = dst.r * src.a, G = dst.g * src.a, B = dst.b * src.a; set_lum (&R, &G, &B, dst.a * luminance(src.r, src.g, src.b)); clip_color(&R, &G, &B, dst.a * src.a); return non_sep(R, G, B); } } } // ~~~~ Program::eval() and co. ~~~~ // // Handy references for x86-64 instruction encoding: // https://wiki.osdev.org/X86-64_Instruction_Encoding // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x86.htm // http://ref.x86asm.net/coder64.html // Used for ModRM / immediate instruction encoding. static uint8_t _233(int a, int b, int c) { return (a & 3) << 6 | (b & 7) << 3 | (c & 7) << 0; } // ModRM byte encodes the arguments of an opcode. enum class Mod { Indirect, OneByteImm, FourByteImm, Direct }; static uint8_t mod_rm(Mod mod, int reg, int rm) { return _233((int)mod, reg, rm); } static Mod mod(int imm) { if (imm == 0) { return Mod::Indirect; } if (SkTFitsIn(imm)) { return Mod::OneByteImm; } return Mod::FourByteImm; } static int imm_bytes(Mod mod) { switch (mod) { case Mod::Indirect: return 0; case Mod::OneByteImm: return 1; case Mod::FourByteImm: return 4; case Mod::Direct: SkUNREACHABLE; } SkUNREACHABLE; } // SIB byte encodes a memory address, base + (index * scale). static uint8_t sib(Assembler::Scale scale, int index, int base) { return _233((int)scale, index, base); } // The REX prefix is used to extend most old 32-bit instructions to 64-bit. static uint8_t rex(bool W, // If set, operation is 64-bit, otherwise default, usually 32-bit. bool R, // Extra top bit to select ModRM reg, registers 8-15. bool X, // Extra top bit for SIB index register. bool B) { // Extra top bit for SIB base or ModRM rm register. return 0b01000000 // Fixed 0100 for top four bits. | (W << 3) | (R << 2) | (X << 1) | (B << 0); } // The VEX prefix extends SSE operations to AVX. Used generally, even with XMM. struct VEX { int len; uint8_t bytes[3]; }; static VEX vex(bool WE, // Like REX W for int operations, or opcode extension for float? bool R, // Same as REX R. Pass high bit of dst register, dst>>3. bool X, // Same as REX X. bool B, // Same as REX B. Pass y>>3 for 3-arg ops, x>>3 for 2-arg. int map, // SSE opcode map selector: 0x0f, 0x380f, 0x3a0f. int vvvv, // 4-bit second operand register. Pass our x for 3-arg ops. bool L, // Set for 256-bit ymm operations, off for 128-bit xmm. int pp) { // SSE mandatory prefix: 0x66, 0xf3, 0xf2, else none. // Pack x86 opcode map selector to 5-bit VEX encoding. map = [map]{ switch (map) { case 0x0f: return 0b00001; case 0x380f: return 0b00010; case 0x3a0f: return 0b00011; // Several more cases only used by XOP / TBM. } SkUNREACHABLE; }(); // Pack mandatory SSE opcode prefix byte to 2-bit VEX encoding. pp = [pp]{ switch (pp) { case 0x66: return 0b01; case 0xf3: return 0b10; case 0xf2: return 0b11; } return 0b00; }(); VEX vex = {0, {0,0,0}}; if (X == 0 && B == 0 && WE == 0 && map == 0b00001) { // With these conditions met, we can optionally compress VEX to 2-byte. vex.len = 2; vex.bytes[0] = 0xc5; vex.bytes[1] = (pp & 3) << 0 | (L & 1) << 2 | (~vvvv & 15) << 3 | (~(int)R & 1) << 7; } else { // We could use this 3-byte VEX prefix all the time if we like. vex.len = 3; vex.bytes[0] = 0xc4; vex.bytes[1] = (map & 31) << 0 | (~(int)B & 1) << 5 | (~(int)X & 1) << 6 | (~(int)R & 1) << 7; vex.bytes[2] = (pp & 3) << 0 | (L & 1) << 2 | (~vvvv & 15) << 3 | (WE & 1) << 7; } return vex; } Assembler::Assembler(void* buf) : fCode((uint8_t*)buf), fSize(0) {} size_t Assembler::size() const { return fSize; } void Assembler::bytes(const void* p, int n) { if (fCode) { memcpy(fCode+fSize, p, n); } fSize += n; } void Assembler::byte(uint8_t b) { this->bytes(&b, 1); } void Assembler::word(uint32_t w) { this->bytes(&w, 4); } void Assembler::align(int mod) { while (this->size() % mod) { this->byte(0x00); } } void Assembler::int3() { this->byte(0xcc); } void Assembler::vzeroupper() { this->byte(0xc5); this->byte(0xf8); this->byte(0x77); } void Assembler::ret() { this->byte(0xc3); } void Assembler::op(int opcode, Operand dst, GP64 x) { if (dst.kind == Operand::REG) { this->byte(rex(W1,x>>3,0,dst.reg>>3)); this->bytes(&opcode, SkTFitsIn(opcode) ? 1 : 2); this->byte(mod_rm(Mod::Direct, x, dst.reg&7)); } else { SkASSERT(dst.kind == Operand::MEM); const Mem& m = dst.mem; const bool need_SIB = (m.base&7) == rsp || m.index != rsp; this->byte(rex(W1,x>>3,m.index>>3,m.base>>3)); this->bytes(&opcode, SkTFitsIn(opcode) ? 1 : 2); this->byte(mod_rm(mod(m.disp), x&7, (need_SIB ? rsp : m.base)&7)); if (need_SIB) { this->byte(sib(m.scale, m.index&7, m.base&7)); } this->bytes(&m.disp, imm_bytes(mod(m.disp))); } } void Assembler::op(int opcode, int opcode_ext, Operand dst, int imm) { opcode |= 0b1000'0000; // top bit set for instructions with any immediate int imm_bytes = 4; if (SkTFitsIn(imm)) { imm_bytes = 1; opcode |= 0b0000'0010; // second bit set for 8-bit immediate, else 32-bit. } this->op(opcode, dst, (GP64)opcode_ext); this->bytes(&imm, imm_bytes); } void Assembler::add(Operand dst, int imm) { this->op(0x01,0b000, dst,imm); } void Assembler::sub(Operand dst, int imm) { this->op(0x01,0b101, dst,imm); } void Assembler::cmp(Operand dst, int imm) { this->op(0x01,0b111, dst,imm); } // These don't work quite like the other instructions with immediates: // these immediates are always fixed size at 4 bytes or 1 byte. void Assembler::mov(Operand dst, int imm) { this->op(0xC7,dst,(GP64)0b000); this->word(imm); } void Assembler::movb(Operand dst, int imm) { this->op(0xC6,dst,(GP64)0b000); this->byte(imm); } void Assembler::add (Operand dst, GP64 x) { this->op(0x01, dst,x); } void Assembler::sub (Operand dst, GP64 x) { this->op(0x29, dst,x); } void Assembler::cmp (Operand dst, GP64 x) { this->op(0x39, dst,x); } void Assembler::mov (Operand dst, GP64 x) { this->op(0x89, dst,x); } void Assembler::movb(Operand dst, GP64 x) { this->op(0x88, dst,x); } void Assembler::add (GP64 dst, Operand x) { this->op(0x03, x,dst); } void Assembler::sub (GP64 dst, Operand x) { this->op(0x2B, x,dst); } void Assembler::cmp (GP64 dst, Operand x) { this->op(0x3B, x,dst); } void Assembler::mov (GP64 dst, Operand x) { this->op(0x8B, x,dst); } void Assembler::movb(GP64 dst, Operand x) { this->op(0x8A, x,dst); } void Assembler::movzbq(GP64 dst, Operand x) { this->op(0xB60F, x,dst); } void Assembler::movzwq(GP64 dst, Operand x) { this->op(0xB70F, x,dst); } void Assembler::vpaddd (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfe, dst,x,y); } void Assembler::vpsubd (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfa, dst,x,y); } void Assembler::vpmulld(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x40, dst,x,y); } void Assembler::vpaddw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfd, dst,x,y); } void Assembler::vpsubw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xf9, dst,x,y); } void Assembler::vpmullw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xd5, dst,x,y); } void Assembler::vpavgw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xe3, dst,x,y); } void Assembler::vpmulhrsw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x0b, dst,x,y); } void Assembler::vpminsw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xea, dst,x,y); } void Assembler::vpmaxsw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xee, dst,x,y); } void Assembler::vpminuw (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x3a, dst,x,y); } void Assembler::vpmaxuw (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x3e, dst,x,y); } void Assembler::vpabsw(Ymm dst, Operand x) { this->op(0x66,0x380f,0x1d, dst,x); } void Assembler::vpand (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xdb, dst,x,y); } void Assembler::vpor (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xeb, dst,x,y); } void Assembler::vpxor (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xef, dst,x,y); } void Assembler::vpandn(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xdf, dst,x,y); } void Assembler::vaddps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x58, dst,x,y); } void Assembler::vsubps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5c, dst,x,y); } void Assembler::vmulps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x59, dst,x,y); } void Assembler::vdivps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5e, dst,x,y); } void Assembler::vminps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5d, dst,x,y); } void Assembler::vmaxps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5f, dst,x,y); } void Assembler::vfmadd132ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x98, dst,x,y); } void Assembler::vfmadd213ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xa8, dst,x,y); } void Assembler::vfmadd231ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xb8, dst,x,y); } void Assembler::vfmsub132ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x9a, dst,x,y); } void Assembler::vfmsub213ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xaa, dst,x,y); } void Assembler::vfmsub231ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xba, dst,x,y); } void Assembler::vfnmadd132ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x9c, dst,x,y); } void Assembler::vfnmadd213ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xac, dst,x,y); } void Assembler::vfnmadd231ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xbc, dst,x,y); } void Assembler::vpackusdw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x2b, dst,x,y); } void Assembler::vpackuswb(Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0x67, dst,x,y); } void Assembler::vpunpckldq(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x62, dst,x,y); } void Assembler::vpunpckhdq(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x6a, dst,x,y); } void Assembler::vpcmpeqd(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x76, dst,x,y); } void Assembler::vpcmpeqw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x75, dst,x,y); } void Assembler::vpcmpgtd(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x66, dst,x,y); } void Assembler::vpcmpgtw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x65, dst,x,y); } void Assembler::imm_byte_after_operand(const Operand& operand, int imm) { // When we've embedded a label displacement in the middle of an instruction, // we need to tweak it a little so that the resolved displacement starts // from the end of the instruction and not the end of the displacement. if (operand.kind == Operand::LABEL && fCode) { int disp; memcpy(&disp, fCode+fSize-4, 4); disp--; memcpy(fCode+fSize-4, &disp, 4); } this->byte(imm); } void Assembler::vcmpps(Ymm dst, Ymm x, Operand y, int imm) { this->op(0,0x0f,0xc2, dst,x,y); this->imm_byte_after_operand(y, imm); } void Assembler::vpblendvb(Ymm dst, Ymm x, Operand y, Ymm z) { this->op(0x66,0x3a0f,0x4c, dst,x,y); this->imm_byte_after_operand(y, z << 4); } // Shift instructions encode their opcode extension as "dst", dst as x, and x as y. void Assembler::vpslld(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,(Ymm)6, dst,x); this->byte(imm); } void Assembler::vpsrld(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,(Ymm)2, dst,x); this->byte(imm); } void Assembler::vpsrad(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,(Ymm)4, dst,x); this->byte(imm); } void Assembler::vpsllw(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x71,(Ymm)6, dst,x); this->byte(imm); } void Assembler::vpsrlw(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x71,(Ymm)2, dst,x); this->byte(imm); } void Assembler::vpsraw(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x71,(Ymm)4, dst,x); this->byte(imm); } void Assembler::vpermq(Ymm dst, Operand x, int imm) { // A bit unusual among the instructions we use, this is 64-bit operation, so we set W. this->op(0x66,0x3a0f,0x00, dst,x,W1); this->imm_byte_after_operand(x, imm); } void Assembler::vperm2f128(Ymm dst, Ymm x, Operand y, int imm) { this->op(0x66,0x3a0f,0x06, dst,x,y); this->imm_byte_after_operand(y, imm); } void Assembler::vpermps(Ymm dst, Ymm ix, Operand src) { this->op(0x66,0x380f,0x16, dst,ix,src); } void Assembler::vroundps(Ymm dst, Operand x, Rounding imm) { this->op(0x66,0x3a0f,0x08, dst,x); this->imm_byte_after_operand(x, imm); } void Assembler::vmovdqa(Ymm dst, Operand src) { this->op(0x66,0x0f,0x6f, dst,src); } void Assembler::vmovups(Ymm dst, Operand src) { this->op( 0,0x0f,0x10, dst,src); } void Assembler::vmovups(Xmm dst, Operand src) { this->op( 0,0x0f,0x10, dst,src); } void Assembler::vmovups(Operand dst, Ymm src) { this->op( 0,0x0f,0x11, src,dst); } void Assembler::vmovups(Operand dst, Xmm src) { this->op( 0,0x0f,0x11, src,dst); } void Assembler::vcvtdq2ps (Ymm dst, Operand x) { this->op( 0,0x0f,0x5b, dst,x); } void Assembler::vcvttps2dq(Ymm dst, Operand x) { this->op(0xf3,0x0f,0x5b, dst,x); } void Assembler::vcvtps2dq (Ymm dst, Operand x) { this->op(0x66,0x0f,0x5b, dst,x); } void Assembler::vsqrtps (Ymm dst, Operand x) { this->op( 0,0x0f,0x51, dst,x); } void Assembler::vcvtps2ph(Operand dst, Ymm x, Rounding imm) { this->op(0x66,0x3a0f,0x1d, x,dst); this->imm_byte_after_operand(dst, imm); } void Assembler::vcvtph2ps(Ymm dst, Operand x) { this->op(0x66,0x380f,0x13, dst,x); } int Assembler::disp19(Label* l) { SkASSERT(l->kind == Label::NotYetSet || l->kind == Label::ARMDisp19); int here = (int)this->size(); l->kind = Label::ARMDisp19; l->references.push_back(here); // ARM 19-bit instruction count, from the beginning of this instruction. return (l->offset - here) / 4; } int Assembler::disp32(Label* l) { SkASSERT(l->kind == Label::NotYetSet || l->kind == Label::X86Disp32); int here = (int)this->size(); l->kind = Label::X86Disp32; l->references.push_back(here); // x86 32-bit byte count, from the end of this instruction. return l->offset - (here + 4); } void Assembler::op(int prefix, int map, int opcode, int dst, int x, Operand y, W w, L l) { switch (y.kind) { case Operand::REG: { VEX v = vex(w, dst>>3, 0, y.reg>>3, map, x, l, prefix); this->bytes(v.bytes, v.len); this->byte(opcode); this->byte(mod_rm(Mod::Direct, dst&7, y.reg&7)); } return; case Operand::MEM: { // Passing rsp as the rm argument to mod_rm() signals an SIB byte follows; // without an SIB byte, that's where the base register would usually go. // This means we have to use an SIB byte if we want to use rsp as a base register. const Mem& m = y.mem; const bool need_SIB = m.base == rsp || m.index != rsp; VEX v = vex(w, dst>>3, m.index>>3, m.base>>3, map, x, l, prefix); this->bytes(v.bytes, v.len); this->byte(opcode); this->byte(mod_rm(mod(m.disp), dst&7, (need_SIB ? rsp : m.base)&7)); if (need_SIB) { this->byte(sib(m.scale, m.index&7, m.base&7)); } this->bytes(&m.disp, imm_bytes(mod(m.disp))); } return; case Operand::LABEL: { // IP-relative addressing uses Mod::Indirect with the R/M encoded as-if rbp or r13. const int rip = rbp; VEX v = vex(w, dst>>3, 0, rip>>3, map, x, l, prefix); this->bytes(v.bytes, v.len); this->byte(opcode); this->byte(mod_rm(Mod::Indirect, dst&7, rip&7)); this->word(this->disp32(y.label)); } return; } } void Assembler::vpshufb(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x00, dst,x,y); } void Assembler::vptest(Ymm x, Operand y) { this->op(0x66, 0x380f, 0x17, x,y); } void Assembler::vbroadcastss(Ymm dst, Operand y) { this->op(0x66,0x380f,0x18, dst,y); } void Assembler::jump(uint8_t condition, Label* l) { // These conditional jumps can be either 2 bytes (short) or 6 bytes (near): // 7? one-byte-disp // 0F 8? four-byte-disp // We always use the near displacement to make updating labels simpler (no resizing). this->byte(0x0f); this->byte(condition); this->word(this->disp32(l)); } void Assembler::je (Label* l) { this->jump(0x84, l); } void Assembler::jne(Label* l) { this->jump(0x85, l); } void Assembler::jl (Label* l) { this->jump(0x8c, l); } void Assembler::jc (Label* l) { this->jump(0x82, l); } void Assembler::jmp(Label* l) { // Like above in jump(), we could use 8-bit displacement here, but always use 32-bit. this->byte(0xe9); this->word(this->disp32(l)); } void Assembler::vpmovzxwd(Ymm dst, Operand src) { this->op(0x66,0x380f,0x33, dst,src); } void Assembler::vpmovzxbd(Ymm dst, Operand src) { this->op(0x66,0x380f,0x31, dst,src); } void Assembler::vmovq(Operand dst, Xmm src) { this->op(0x66,0x0f,0xd6, src,dst); } void Assembler::vmovd(Operand dst, Xmm src) { this->op(0x66,0x0f,0x7e, src,dst); } void Assembler::vmovd(Xmm dst, Operand src) { this->op(0x66,0x0f,0x6e, dst,src); } void Assembler::vpinsrd(Xmm dst, Xmm src, Operand y, int imm) { this->op(0x66,0x3a0f,0x22, dst,src,y); this->imm_byte_after_operand(y, imm); } void Assembler::vpinsrw(Xmm dst, Xmm src, Operand y, int imm) { this->op(0x66,0x0f,0xc4, dst,src,y); this->imm_byte_after_operand(y, imm); } void Assembler::vpinsrb(Xmm dst, Xmm src, Operand y, int imm) { this->op(0x66,0x3a0f,0x20, dst,src,y); this->imm_byte_after_operand(y, imm); } void Assembler::vextracti128(Operand dst, Ymm src, int imm) { this->op(0x66,0x3a0f,0x39, src,dst); SkASSERT(dst.kind != Operand::LABEL); this->byte(imm); } void Assembler::vpextrd(Operand dst, Xmm src, int imm) { this->op(0x66,0x3a0f,0x16, src,dst); SkASSERT(dst.kind != Operand::LABEL); this->byte(imm); } void Assembler::vpextrw(Operand dst, Xmm src, int imm) { this->op(0x66,0x3a0f,0x15, src,dst); SkASSERT(dst.kind != Operand::LABEL); this->byte(imm); } void Assembler::vpextrb(Operand dst, Xmm src, int imm) { this->op(0x66,0x3a0f,0x14, src,dst); SkASSERT(dst.kind != Operand::LABEL); this->byte(imm); } void Assembler::vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask) { // Unlike most instructions, no aliasing is permitted here. SkASSERT(dst != ix); SkASSERT(dst != mask); SkASSERT(mask != ix); int prefix = 0x66, map = 0x380f, opcode = 0x92; VEX v = vex(0, dst>>3, ix>>3, base>>3, map, mask, /*ymm?*/1, prefix); this->bytes(v.bytes, v.len); this->byte(opcode); this->byte(mod_rm(Mod::Indirect, dst&7, rsp/*use SIB*/)); this->byte(sib(scale, ix&7, base&7)); } // https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf static int operator"" _mask(unsigned long long bits) { return (1<<(int)bits)-1; } void Assembler::op(uint32_t hi, V m, uint32_t lo, V n, V d) { this->word( (hi & 11_mask) << 21 | (m & 5_mask) << 16 | (lo & 6_mask) << 10 | (n & 5_mask) << 5 | (d & 5_mask) << 0); } void Assembler::op(uint32_t op22, V n, V d, int imm) { this->word( (op22 & 22_mask) << 10 | imm // size and location depends on the instruction | (n & 5_mask) << 5 | (d & 5_mask) << 0); } void Assembler::and16b(V d, V n, V m) { this->op(0b0'1'0'01110'00'1, m, 0b00011'1, n, d); } void Assembler::orr16b(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b00011'1, n, d); } void Assembler::eor16b(V d, V n, V m) { this->op(0b0'1'1'01110'00'1, m, 0b00011'1, n, d); } void Assembler::bic16b(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b00011'1, n, d); } void Assembler::bsl16b(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b00011'1, n, d); } void Assembler::not16b(V d, V n) { this->op(0b0'1'1'01110'00'10000'00101'10, n, d); } void Assembler::add4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10000'1, n, d); } void Assembler::sub4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10000'1, n, d); } void Assembler::mul4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10011'1, n, d); } void Assembler::cmeq4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10001'1, n, d); } void Assembler::cmgt4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b0011'0'1, n, d); } void Assembler::sub8h(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b10000'1, n, d); } void Assembler::mul8h(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b10011'1, n, d); } void Assembler::fadd4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11010'1, n, d); } void Assembler::fsub4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11010'1, n, d); } void Assembler::fmul4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11011'1, n, d); } void Assembler::fdiv4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11111'1, n, d); } void Assembler::fmin4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11110'1, n, d); } void Assembler::fmax4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11110'1, n, d); } void Assembler::fneg4s (V d, V n) { this->op(0b0'1'1'01110'1'0'10000'01111'10, n,d); } void Assembler::fsqrt4s(V d, V n) { this->op(0b0'1'1'01110'1'0'10000'11111'10, n,d); } void Assembler::fcmeq4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b1110'0'1, n, d); } void Assembler::fcmgt4s(V d, V n, V m) { this->op(0b0'1'1'01110'1'0'1, m, 0b1110'0'1, n, d); } void Assembler::fcmge4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b1110'0'1, n, d); } void Assembler::fmla4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11001'1, n, d); } void Assembler::fmls4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11001'1, n, d); } void Assembler::tbl(V d, V n, V m) { this->op(0b0'1'001110'00'0, m, 0b0'00'0'00, n, d); } void Assembler::uzp14s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'0'01'10, n, d); } void Assembler::uzp24s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'1'01'10, n, d); } void Assembler::zip14s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'0'11'10, n, d); } void Assembler::zip24s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'1'11'10, n, d); } void Assembler::sli4s(V d, V n, int imm5) { this->op(0b0'1'1'011110'0100'000'01010'1, n, d, ( imm5 & 5_mask)<<16); } void Assembler::shl4s(V d, V n, int imm5) { this->op(0b0'1'0'011110'0100'000'01010'1, n, d, ( imm5 & 5_mask)<<16); } void Assembler::sshr4s(V d, V n, int imm5) { this->op(0b0'1'0'011110'0100'000'00'0'0'0'1, n, d, (-imm5 & 5_mask)<<16); } void Assembler::ushr4s(V d, V n, int imm5) { this->op(0b0'1'1'011110'0100'000'00'0'0'0'1, n, d, (-imm5 & 5_mask)<<16); } void Assembler::ushr8h(V d, V n, int imm4) { this->op(0b0'1'1'011110'0010'000'00'0'0'0'1, n, d, (-imm4 & 4_mask)<<16); } void Assembler::scvtf4s (V d, V n) { this->op(0b0'1'0'01110'0'0'10000'11101'10, n,d); } void Assembler::fcvtzs4s(V d, V n) { this->op(0b0'1'0'01110'1'0'10000'1101'1'10, n,d); } void Assembler::fcvtns4s(V d, V n) { this->op(0b0'1'0'01110'0'0'10000'1101'0'10, n,d); } void Assembler::frintp4s(V d, V n) { this->op(0b0'1'0'01110'1'0'10000'1100'0'10, n,d); } void Assembler::frintm4s(V d, V n) { this->op(0b0'1'0'01110'0'0'10000'1100'1'10, n,d); } void Assembler::fcvtn(V d, V n) { this->op(0b0'0'0'01110'0'0'10000'10110'10, n,d); } void Assembler::fcvtl(V d, V n) { this->op(0b0'0'0'01110'0'0'10000'10111'10, n,d); } void Assembler::xtns2h(V d, V n) { this->op(0b0'0'0'01110'01'10000'10010'10, n,d); } void Assembler::xtnh2b(V d, V n) { this->op(0b0'0'0'01110'00'10000'10010'10, n,d); } void Assembler::uxtlb2h(V d, V n) { this->op(0b0'0'1'011110'0001'000'10100'1, n,d); } void Assembler::uxtlh2s(V d, V n) { this->op(0b0'0'1'011110'0010'000'10100'1, n,d); } void Assembler::uminv4s(V d, V n) { this->op(0b0'1'1'01110'10'11000'1'1010'10, n,d); } void Assembler::brk(int imm16) { this->op(0b11010100'001'00000000000, (imm16 & 16_mask) << 5); } void Assembler::ret(X n) { this->op(0b1101011'0'0'10'11111'0000'0'0, n, (X)0); } void Assembler::add(X d, X n, int imm12) { this->op(0b1'0'0'10001'00'000000000000, n,d, (imm12 & 12_mask) << 10); } void Assembler::sub(X d, X n, int imm12) { this->op(0b1'1'0'10001'00'000000000000, n,d, (imm12 & 12_mask) << 10); } void Assembler::subs(X d, X n, int imm12) { this->op(0b1'1'1'10001'00'000000000000, n,d, (imm12 & 12_mask) << 10); } void Assembler::add(X d, X n, X m, Shift shift, int imm6) { SkASSERT(shift != ROR); int imm = (imm6 & 6_mask) << 0 | (m & 5_mask) << 6 | (0 & 1_mask) << 11 | (shift & 2_mask) << 12; this->op(0b1'0'0'01011'00'0'00000'000000, n,d, imm << 10); } void Assembler::b(Condition cond, Label* l) { const int imm19 = this->disp19(l); this->op(0b0101010'0'00000000000000, (X)0, (V)cond, (imm19 & 19_mask) << 5); } void Assembler::cbz(X t, Label* l) { const int imm19 = this->disp19(l); this->op(0b1'011010'0'00000000000000, (X)0, t, (imm19 & 19_mask) << 5); } void Assembler::cbnz(X t, Label* l) { const int imm19 = this->disp19(l); this->op(0b1'011010'1'00000000000000, (X)0, t, (imm19 & 19_mask) << 5); } void Assembler::ldrd(X dst, X src, int imm12) { this->op(0b11'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrs(X dst, X src, int imm12) { this->op(0b10'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrh(X dst, X src, int imm12) { this->op(0b01'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrb(X dst, X src, int imm12) { this->op(0b00'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrq(V dst, X src, int imm12) { this->op(0b00'111'1'01'11'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrd(V dst, X src, int imm12) { this->op(0b11'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrs(V dst, X src, int imm12) { this->op(0b10'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrh(V dst, X src, int imm12) { this->op(0b01'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::ldrb(V dst, X src, int imm12) { this->op(0b00'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); } void Assembler::strs(X src, X dst, int imm12) { this->op(0b10'111'0'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); } void Assembler::strq(V src, X dst, int imm12) { this->op(0b00'111'1'01'10'000000000000, dst, src, (imm12 & 12_mask) << 10); } void Assembler::strd(V src, X dst, int imm12) { this->op(0b11'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); } void Assembler::strs(V src, X dst, int imm12) { this->op(0b10'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); } void Assembler::strh(V src, X dst, int imm12) { this->op(0b01'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); } void Assembler::strb(V src, X dst, int imm12) { this->op(0b00'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); } void Assembler::movs(X dst, V src, int lane) { int imm5 = (lane << 3) | 0b100; this->op(0b0'0'0'01110000'00000'0'01'1'1'1, src, dst, (imm5 & 5_mask) << 16); } void Assembler::inss(V dst, X src, int lane) { int imm5 = (lane << 3) | 0b100; this->op(0b0'1'0'01110000'00000'0'0011'1, src, dst, (imm5 & 5_mask) << 16); } void Assembler::ldrq(V dst, Label* l) { const int imm19 = this->disp19(l); this->op(0b10'011'1'00'00000000000000, (V)0, dst, (imm19 & 19_mask) << 5); } void Assembler::dup4s(V dst, X src) { this->op(0b0'1'0'01110000'00100'0'0001'1, src, dst); } void Assembler::ld1r4s(V dst, X src) { this->op(0b0'1'0011010'1'0'00000'110'0'10, src, dst); } void Assembler::ld1r8h(V dst, X src) { this->op(0b0'1'0011010'1'0'00000'110'0'01, src, dst); } void Assembler::ld1r16b(V dst, X src) { this->op(0b0'1'0011010'1'0'00000'110'0'00, src, dst); } void Assembler::ld24s(V dst, X src) { this->op(0b0'1'0011000'1'000000'1000'10, src, dst); } void Assembler::ld44s(V dst, X src) { this->op(0b0'1'0011000'1'000000'0000'10, src, dst); } void Assembler::st24s(V src, X dst) { this->op(0b0'1'0011000'0'000000'1000'10, dst, src); } void Assembler::st44s(V src, X dst) { this->op(0b0'1'0011000'0'000000'0000'10, dst, src); } void Assembler::ld24s(V dst, X src, int lane) { int Q = (lane & 2)>>1, S = (lane & 1); /* Q S */ this->op(0b0'0'0011010'1'1'00000'100'0'00, src, dst, (Q<<30)|(S<<12)); } void Assembler::ld44s(V dst, X src, int lane) { int Q = (lane & 2)>>1, S = (lane & 1); this->op(0b0'0'0011010'1'1'00000'101'0'00, src, dst, (Q<<30)|(S<<12)); } void Assembler::label(Label* l) { if (fCode) { // The instructions all currently point to l->offset. // We'll want to add a delta to point them to here. int here = (int)this->size(); int delta = here - l->offset; l->offset = here; if (l->kind == Label::ARMDisp19) { for (int ref : l->references) { // ref points to a 32-bit instruction with 19-bit displacement in instructions. uint32_t inst; memcpy(&inst, fCode + ref, 4); // [ 8 bits to preserve] [ 19 bit signed displacement ] [ 5 bits to preserve ] int disp = (int)(inst << 8) >> 13; disp += delta/4; // delta is in bytes, we want instructions. // Put it all back together, preserving the high 8 bits and low 5. inst = ((disp << 5) & (19_mask << 5)) | ((inst ) & ~(19_mask << 5)); memcpy(fCode + ref, &inst, 4); } } if (l->kind == Label::X86Disp32) { for (int ref : l->references) { // ref points to a 32-bit displacement in bytes. int disp; memcpy(&disp, fCode + ref, 4); disp += delta; memcpy(fCode + ref, &disp, 4); } } } } void Program::eval(int n, void* args[]) const { #define SKVM_JIT_STATS 0 #if SKVM_JIT_STATS static std::atomic calls{0}, jits{0}, pixels{0}, fast{0}; pixels += n; if (0 == calls++) { atexit([]{ int64_t num = jits .load(), den = calls.load(); SkDebugf("%.3g%% of %lld eval() calls went through JIT.\n", (100.0 * num)/den, den); num = fast .load(); den = pixels.load(); SkDebugf("%.3g%% of %lld pixels went through JIT.\n", (100.0 * num)/den, den); }); } #endif #if !defined(SKVM_JIT_BUT_IGNORE_IT) const void* jit_entry = fImpl->jit_entry.load(); // jit_entry may be null either simply because we can't JIT, or when using LLVM // if the work represented by fImpl->llvm_compiling hasn't finished yet. // // Ordinarily we'd never find ourselves with non-null jit_entry and !gSkVMAllowJIT, but it // can happen during interactive programs like Viewer that toggle gSkVMAllowJIT on and off, // due to timing or program caching. if (jit_entry != nullptr && gSkVMAllowJIT) { #if SKVM_JIT_STATS jits++; fast += n; #endif void** a = args; switch (fImpl->strides.size()) { case 0: return ((void(*)(int ))jit_entry)(n ); case 1: return ((void(*)(int,void* ))jit_entry)(n,a[0] ); case 2: return ((void(*)(int,void*,void* ))jit_entry)(n,a[0],a[1] ); case 3: return ((void(*)(int,void*,void*,void* ))jit_entry)(n,a[0],a[1],a[2]); case 4: return ((void(*)(int,void*,void*,void*,void*))jit_entry) (n,a[0],a[1],a[2],a[3]); case 5: return ((void(*)(int,void*,void*,void*,void*,void*))jit_entry) (n,a[0],a[1],a[2],a[3],a[4]); case 6: return ((void(*)(int,void*,void*,void*,void*,void*,void*))jit_entry) (n,a[0],a[1],a[2],a[3],a[4],a[5]); case 7: return ((void(*)(int,void*,void*,void*,void*,void*,void*,void*))jit_entry) (n,a[0],a[1],a[2],a[3],a[4],a[5],a[6]); default: break; //SkASSERT(fImpl->strides.size() <= 7); } } #endif // So we'll sometimes use the interpreter here even if later calls will use the JIT. SkOpts::interpret_skvm(fImpl->instructions.data(), (int)fImpl->instructions.size(), this->nregs(), this->loop(), fImpl->strides.data(), this->nargs(), n, args); } #if defined(SKVM_LLVM) // -- SKVM_LLVM -------------------------------------------------------------------------------- void Program::setupLLVM(const std::vector& instructions, const char* debug_name) { auto ctx = std::make_unique(); auto mod = std::make_unique("", *ctx); // All the scary bare pointers from here on are owned by ctx or mod, I think. // Everything I've tested runs faster at K=8 (using ymm) than K=16 (zmm) on SKX machines. const int K = (true && SkCpu::Supports(SkCpu::HSW)) ? 8 : 4; llvm::Type *ptr = llvm::Type::getInt8Ty(*ctx)->getPointerTo(), *i32 = llvm::Type::getInt32Ty(*ctx); std::vector arg_types = { i32 }; for (size_t i = 0; i < fImpl->strides.size(); i++) { arg_types.push_back(ptr); } llvm::FunctionType* fn_type = llvm::FunctionType::get(llvm::Type::getVoidTy(*ctx), arg_types, /*vararg?=*/false); llvm::Function* fn = llvm::Function::Create(fn_type, llvm::GlobalValue::ExternalLinkage, debug_name, *mod); for (size_t i = 0; i < fImpl->strides.size(); i++) { fn->addParamAttr(i+1, llvm::Attribute::NoAlias); } llvm::BasicBlock *enter = llvm::BasicBlock::Create(*ctx, "enter" , fn), *hoistK = llvm::BasicBlock::Create(*ctx, "hoistK", fn), *testK = llvm::BasicBlock::Create(*ctx, "testK" , fn), *loopK = llvm::BasicBlock::Create(*ctx, "loopK" , fn), *hoist1 = llvm::BasicBlock::Create(*ctx, "hoist1", fn), *test1 = llvm::BasicBlock::Create(*ctx, "test1" , fn), *loop1 = llvm::BasicBlock::Create(*ctx, "loop1" , fn), *leave = llvm::BasicBlock::Create(*ctx, "leave" , fn); using IRBuilder = llvm::IRBuilder<>; llvm::PHINode* n; std::vector args; std::vector vals(instructions.size()); auto emit = [&](size_t i, bool scalar, IRBuilder* b) { auto [op, x,y,z,w, immA,immB,immC, death,can_hoist] = instructions[i]; llvm::Type *i1 = llvm::Type::getInt1Ty (*ctx), *i8 = llvm::Type::getInt8Ty (*ctx), *i16 = llvm::Type::getInt16Ty(*ctx), *f32 = llvm::Type::getFloatTy(*ctx), *I1 = scalar ? i1 : llvm::VectorType::get(i1 , K, false ), *I8 = scalar ? i8 : llvm::VectorType::get(i8 , K, false ), *I16 = scalar ? i16 : llvm::VectorType::get(i16, K, false ), *I32 = scalar ? i32 : llvm::VectorType::get(i32, K, false ), *F32 = scalar ? f32 : llvm::VectorType::get(f32, K, false ); auto I = [&](llvm::Value* v) { return b->CreateBitCast(v, I32 ); }; auto F = [&](llvm::Value* v) { return b->CreateBitCast(v, F32 ); }; auto S = [&](llvm::Type* dst, llvm::Value* v) { return b->CreateSExt(v, dst); }; llvm::Type* vt = nullptr; switch (llvm::Type* t = nullptr; op) { default: SkDebugf("can't llvm %s (%d)\n", name(op), op); return false; case Op::assert_true: /*TODO*/ break; case Op::trace_line: case Op::trace_var: case Op::trace_call: /* Only supported in the interpreter. */ break; case Op::index: if (I32->isVectorTy()) { std::vector iota(K); for (int j = 0; j < K; j++) { iota[j] = b->getInt32(j); } vals[i] = b->CreateSub(b->CreateVectorSplat(K, n), llvm::ConstantVector::get(iota)); } else { vals[i] = n; } break; case Op::load8: t = I8 ; goto load; case Op::load16: t = I16; goto load; case Op::load32: t = I32; goto load; load: { llvm::Value* ptr = b->CreateBitCast(args[immA], t->getPointerTo()); vals[i] = b->CreateZExt( b->CreateAlignedLoad(t, ptr, llvm::MaybeAlign{1}), I32); } break; case Op::splat: vals[i] = llvm::ConstantInt::get(I32, immA); break; case Op::uniform32: { llvm::Value* ptr = b->CreateBitCast( b->CreateConstInBoundsGEP1_32(i8, args[immA], immB), i32->getPointerTo()); llvm::Value* val = b->CreateZExt( b->CreateAlignedLoad(i32, ptr, llvm::MaybeAlign{1}), i32); vals[i] = I32->isVectorTy() ? b->CreateVectorSplat(K, val) : val; } break; case Op::gather8: t = i8 ; vt = I8; goto gather; case Op::gather16: t = i16; vt = I16; goto gather; case Op::gather32: t = i32; vt = I32; goto gather; gather: { // Our gather base pointer is immB bytes off of uniform immA. llvm::Value* base = b->CreateLoad(b->CreateBitCast( b->CreateConstInBoundsGEP1_32(i8, args[immA],immB), t->getPointerTo()->getPointerTo())); llvm::Value* ptr = b->CreateInBoundsGEP(t, base, vals[x]); llvm::Value* gathered; if (ptr->getType()->isVectorTy()) { gathered = b->CreateMaskedGather( vt, ptr, llvm::Align{1}); } else { gathered = b->CreateAlignedLoad(vt, ptr, llvm::MaybeAlign{1}); } vals[i] = b->CreateZExt(gathered, I32); } break; case Op::store8: t = I8 ; goto store; case Op::store16: t = I16; goto store; case Op::store32: t = I32; goto store; store: { llvm::Value* val = b->CreateTrunc(vals[x], t); llvm::Value* ptr = b->CreateBitCast(args[immA], val->getType()->getPointerTo()); vals[i] = b->CreateAlignedStore(val, ptr, llvm::MaybeAlign{1}); } break; case Op::bit_and: vals[i] = b->CreateAnd(vals[x], vals[y]); break; case Op::bit_or : vals[i] = b->CreateOr (vals[x], vals[y]); break; case Op::bit_xor: vals[i] = b->CreateXor(vals[x], vals[y]); break; case Op::bit_clear: vals[i] = b->CreateAnd(vals[x], b->CreateNot(vals[y])); break; case Op::select: vals[i] = b->CreateSelect(b->CreateTrunc(vals[x], I1), vals[y], vals[z]); break; case Op::add_i32: vals[i] = b->CreateAdd(vals[x], vals[y]); break; case Op::sub_i32: vals[i] = b->CreateSub(vals[x], vals[y]); break; case Op::mul_i32: vals[i] = b->CreateMul(vals[x], vals[y]); break; case Op::shl_i32: vals[i] = b->CreateShl (vals[x], immA); break; case Op::sra_i32: vals[i] = b->CreateAShr(vals[x], immA); break; case Op::shr_i32: vals[i] = b->CreateLShr(vals[x], immA); break; case Op:: eq_i32: vals[i] = S(I32, b->CreateICmpEQ (vals[x], vals[y])); break; case Op:: gt_i32: vals[i] = S(I32, b->CreateICmpSGT(vals[x], vals[y])); break; case Op::add_f32: vals[i] = I(b->CreateFAdd(F(vals[x]), F(vals[y]))); break; case Op::sub_f32: vals[i] = I(b->CreateFSub(F(vals[x]), F(vals[y]))); break; case Op::mul_f32: vals[i] = I(b->CreateFMul(F(vals[x]), F(vals[y]))); break; case Op::div_f32: vals[i] = I(b->CreateFDiv(F(vals[x]), F(vals[y]))); break; case Op:: eq_f32: vals[i] = S(I32, b->CreateFCmpOEQ(F(vals[x]), F(vals[y]))); break; case Op::neq_f32: vals[i] = S(I32, b->CreateFCmpUNE(F(vals[x]), F(vals[y]))); break; case Op:: gt_f32: vals[i] = S(I32, b->CreateFCmpOGT(F(vals[x]), F(vals[y]))); break; case Op::gte_f32: vals[i] = S(I32, b->CreateFCmpOGE(F(vals[x]), F(vals[y]))); break; case Op::fma_f32: vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, {F(vals[x]), F(vals[y]), F(vals[z])})); break; case Op::fms_f32: vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, {F(vals[x]), F(vals[y]), b->CreateFNeg(F(vals[z]))})); break; case Op::fnma_f32: vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, {b->CreateFNeg(F(vals[x])), F(vals[y]), F(vals[z])})); break; case Op::ceil: vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::ceil, F(vals[x]))); break; case Op::floor: vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::floor, F(vals[x]))); break; case Op::max_f32: vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[x]), F(vals[y])), F(vals[y]), F(vals[x]))); break; case Op::min_f32: vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[y]), F(vals[x])), F(vals[y]), F(vals[x]))); break; case Op::sqrt_f32: vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, F(vals[x]))); break; case Op::to_f32: vals[i] = I(b->CreateSIToFP( vals[x] , F32)); break; case Op::trunc : vals[i] = b->CreateFPToSI(F(vals[x]), I32) ; break; case Op::round : { // Basic impl when we can't use cvtps2dq and co. auto round = b->CreateUnaryIntrinsic(llvm::Intrinsic::rint, F(vals[x])); vals[i] = b->CreateFPToSI(round, I32); #if 1 && defined(SK_CPU_X86) // Using b->CreateIntrinsic(..., {}, {...}) to avoid name mangling. if (scalar) { // cvtss2si is float x4 -> int, ignoring input lanes 1,2,3. ¯\_(ツ)_/¯ llvm::Value* v = llvm::UndefValue::get( llvm::VectorType::get(f32, 4, false)); v = b->CreateInsertElement(v, F(vals[x]), (uint64_t)0); vals[i] = b->CreateIntrinsic(llvm::Intrinsic::x86_sse_cvtss2si, {}, {v}); } else { SkASSERT(K == 4 || K == 8); auto intr = K == 4 ? llvm::Intrinsic::x86_sse2_cvtps2dq : /* K == 8 ?*/ llvm::Intrinsic::x86_avx_cvt_ps2dq_256; vals[i] = b->CreateIntrinsic(intr, {}, {F(vals[x])}); } #endif } break; } return true; }; { IRBuilder b(enter); b.CreateBr(hoistK); } // hoistK: emit each hoistable vector instruction; goto testK; // LLVM can do this sort of thing itself, but we've got the information cheap, // and pointer aliasing makes it easier to manually hoist than teach LLVM it's safe. { IRBuilder b(hoistK); // Hoisted instructions will need args (think, uniforms), so set that up now. // These phi nodes are degenerate... they'll always be the passed-in args from enter. // Later on when we start looping the phi nodes will start looking useful. llvm::Argument* arg = fn->arg_begin(); (void)arg++; // Leave n as nullptr... it'd be a bug to use n in a hoisted instruction. for (size_t i = 0; i < fImpl->strides.size(); i++) { args.push_back(b.CreatePHI(arg->getType(), 1)); args.back()->addIncoming(arg++, enter); } for (size_t i = 0; i < instructions.size(); i++) { if (instructions[i].can_hoist && !emit(i, false, &b)) { return; } } b.CreateBr(testK); } // testK: if (N >= K) goto loopK; else goto hoist1; { IRBuilder b(testK); // New phi nodes for `n` and each pointer argument from hoistK; later we'll add loopK. // These also start as the initial function arguments; hoistK can't have changed them. llvm::Argument* arg = fn->arg_begin(); n = b.CreatePHI(arg->getType(), 2); n->addIncoming(arg++, hoistK); for (size_t i = 0; i < fImpl->strides.size(); i++) { args[i] = b.CreatePHI(arg->getType(), 2); args[i]->addIncoming(arg++, hoistK); } b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(K)), loopK, hoist1); } // loopK: ... insts on K x T vectors; N -= K, args += K*stride; goto testK; { IRBuilder b(loopK); for (size_t i = 0; i < instructions.size(); i++) { if (!instructions[i].can_hoist && !emit(i, false, &b)) { return; } } // n -= K llvm::Value* n_next = b.CreateSub(n, b.getInt32(K)); n->addIncoming(n_next, loopK); // Each arg ptr += K for (size_t i = 0; i < fImpl->strides.size(); i++) { llvm::Value* arg_next = b.CreateConstInBoundsGEP1_32( llvm::Type::getInt8Ty (*ctx), args[i], K*fImpl->strides[i]); args[i]->addIncoming(arg_next, loopK); } b.CreateBr(testK); } // hoist1: emit each hoistable scalar instruction; goto test1; { IRBuilder b(hoist1); for (size_t i = 0; i < instructions.size(); i++) { if (instructions[i].can_hoist && !emit(i, true, &b)) { return; } } b.CreateBr(test1); } // test1: if (N >= 1) goto loop1; else goto leave; { IRBuilder b(test1); // Set up new phi nodes for `n` and each pointer argument, now from hoist1 and loop1. llvm::PHINode* n_new = b.CreatePHI(n->getType(), 2); n_new->addIncoming(n, hoist1); n = n_new; for (size_t i = 0; i < fImpl->strides.size(); i++) { llvm::PHINode* arg_new = b.CreatePHI(args[i]->getType(), 2); arg_new->addIncoming(args[i], hoist1); args[i] = arg_new; } b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(1)), loop1, leave); } // loop1: ... insts on scalars; N -= 1, args += stride; goto test1; { IRBuilder b(loop1); for (size_t i = 0; i < instructions.size(); i++) { if (!instructions[i].can_hoist && !emit(i, true, &b)) { return; } } // n -= 1 llvm::Value* n_next = b.CreateSub(n, b.getInt32(1)); n->addIncoming(n_next, loop1); // Each arg ptr += 1 for (size_t i = 0; i < fImpl->strides.size(); i++) { llvm::Value* arg_next = b.CreateConstInBoundsGEP1_32( llvm::Type::getInt8Ty (*ctx), args[i], fImpl->strides[i]); args[i]->addIncoming(arg_next, loop1); } b.CreateBr(test1); } // leave: ret { IRBuilder b(leave); b.CreateRetVoid(); } SkASSERT(false == llvm::verifyModule(*mod, &llvm::outs())); if (true) { SkString path = SkStringPrintf("/tmp/%s.bc", debug_name); std::error_code err; llvm::raw_fd_ostream os(path.c_str(), err); if (err) { return; } llvm::WriteBitcodeToFile(*mod, os); } static SkOnce once; once([]{ SkAssertResult(false == llvm::InitializeNativeTarget()); SkAssertResult(false == llvm::InitializeNativeTargetAsmPrinter()); }); if (llvm::ExecutionEngine* ee = llvm::EngineBuilder(std::move(mod)) .setEngineKind(llvm::EngineKind::JIT) .setMCPU(llvm::sys::getHostCPUName()) .create()) { fImpl->llvm_ctx = std::move(ctx); fImpl->llvm_ee.reset(ee); #if defined(SKVM_LLVM_WAIT_FOR_COMPILATION) // Wait for llvm to compile void* function = (void*)ee->getFunctionAddress(debug_name); fImpl->jit_entry.store(function); // We have to be careful here about what we close over and how, in case fImpl moves. // fImpl itself may change, but its pointee fields won't, so close over them by value. // Also, debug_name will almost certainly leave scope, so copy it. #else fImpl->llvm_compiling = std::async(std::launch::async, [dst = &fImpl->jit_entry, ee = fImpl->llvm_ee.get(), name = std::string(debug_name)]{ // std::atomic* dst; // llvm::ExecutionEngine* ee; // std::string name; dst->store( (void*)ee->getFunctionAddress(name.c_str()) ); }); #endif } } #endif // SKVM_LLVM void Program::waitForLLVM() const { #if defined(SKVM_LLVM) && !defined(SKVM_LLVM_WAIT_FOR_COMPILATION) if (fImpl->llvm_compiling.valid()) { fImpl->llvm_compiling.wait(); } #endif } bool Program::hasJIT() const { // Program::hasJIT() is really just a debugging / test aid, // so we don't mind adding a sync point here to wait for compilation. this->waitForLLVM(); return fImpl->jit_entry.load() != nullptr; } void Program::dropJIT() { #if defined(SKVM_LLVM) this->waitForLLVM(); fImpl->llvm_ee .reset(nullptr); fImpl->llvm_ctx.reset(nullptr); #elif defined(SKVM_JIT) if (fImpl->dylib) { close_dylib(fImpl->dylib); } else if (auto jit_entry = fImpl->jit_entry.load()) { unmap_jit_buffer(jit_entry, fImpl->jit_size); } #else SkASSERT(!this->hasJIT()); #endif fImpl->jit_entry.store(nullptr); fImpl->jit_size = 0; fImpl->dylib = nullptr; } Program::Program() : fImpl(std::make_unique()) {} Program::~Program() { // Moved-from Programs may have fImpl == nullptr. if (fImpl) { this->dropJIT(); } } Program::Program(Program&& other) : fImpl(std::move(other.fImpl)) {} Program& Program::operator=(Program&& other) { fImpl = std::move(other.fImpl); return *this; } Program::Program(const std::vector& instructions, const std::vector& strides, const char* debug_name, bool allow_jit) : Program() { fImpl->strides = strides; if (gSkVMAllowJIT && allow_jit) { #if 1 && defined(SKVM_LLVM) this->setupLLVM(instructions, debug_name); #elif 1 && defined(SKVM_JIT) this->setupJIT(instructions, debug_name); #endif } // Might as well do this after setupLLVM() to get a little more time to compile. this->setupInterpreter(instructions); } std::vector Program::instructions() const { return fImpl->instructions; } int Program::nargs() const { return (int)fImpl->strides.size(); } int Program::nregs() const { return fImpl->regs; } int Program::loop () const { return fImpl->loop; } bool Program::empty() const { return fImpl->instructions.empty(); } // Translate OptimizedInstructions to InterpreterInstructions. void Program::setupInterpreter(const std::vector& instructions) { // Register each instruction is assigned to. std::vector reg(instructions.size()); // This next bit is a bit more complicated than strictly necessary; // we could just assign every instruction to its own register. // // But recycling registers is fairly cheap, and good practice for the // JITs where minimizing register pressure really is important. // // We have effectively infinite registers, so we hoist any value we can. // (The JIT may choose a more complex policy to reduce register pressure.) fImpl->regs = 0; std::vector avail; // Assign this value to a register, recycling them where we can. auto assign_register = [&](Val id) { const OptimizedInstruction& inst = instructions[id]; // If this is a real input and it's lifetime ends at this instruction, // we can recycle the register it's occupying. auto maybe_recycle_register = [&](Val input) { if (input != NA && instructions[input].death == id) { avail.push_back(reg[input]); } }; // Take care to not recycle the same register twice. const Val x = inst.x, y = inst.y, z = inst.z, w = inst.w; if (true ) { maybe_recycle_register(x); } if (y != x ) { maybe_recycle_register(y); } if (z != x && z != y ) { maybe_recycle_register(z); } if (w != x && w != y && w != z) { maybe_recycle_register(w); } // Instructions that die at themselves (stores) don't need a register. if (inst.death != id) { // Allocate a register if we have to, preferring to reuse anything available. if (avail.empty()) { reg[id] = fImpl->regs++; } else { reg[id] = avail.back(); avail.pop_back(); } } }; // Assign a register to each hoisted instruction, then each non-hoisted loop instruction. for (Val id = 0; id < (Val)instructions.size(); id++) { if ( instructions[id].can_hoist) { assign_register(id); } } for (Val id = 0; id < (Val)instructions.size(); id++) { if (!instructions[id].can_hoist) { assign_register(id); } } // Translate OptimizedInstructions to InterpreterIstructions by mapping values to // registers. This will be two passes, first hoisted instructions, then inside the loop. // The loop begins at the fImpl->loop'th Instruction. fImpl->loop = 0; fImpl->instructions.reserve(instructions.size()); // Add a mapping for the N/A sentinel Val to any arbitrary register // so lookups don't have to know which arguments are used by which Ops. auto lookup_register = [&](Val id) { return id == NA ? (Reg)0 : reg[id]; }; auto push_instruction = [&](Val id, const OptimizedInstruction& inst) { InterpreterInstruction pinst{ inst.op, lookup_register(id), lookup_register(inst.x), lookup_register(inst.y), lookup_register(inst.z), lookup_register(inst.w), inst.immA, inst.immB, inst.immC, }; fImpl->instructions.push_back(pinst); }; for (Val id = 0; id < (Val)instructions.size(); id++) { const OptimizedInstruction& inst = instructions[id]; if (inst.can_hoist) { push_instruction(id, inst); fImpl->loop++; } } for (Val id = 0; id < (Val)instructions.size(); id++) { const OptimizedInstruction& inst = instructions[id]; if (!inst.can_hoist) { push_instruction(id, inst); } } } #if defined(SKVM_JIT) namespace SkVMJitTypes { #if defined(__x86_64__) || defined(_M_X64) using Reg = Assembler::Ymm; #elif defined(__aarch64__) using Reg = Assembler::V; #endif } // namespace SkVMJitTypes bool Program::jit(const std::vector& instructions, int* stack_hint, uint32_t* registers_used, Assembler* a) const { using A = Assembler; using SkVMJitTypes::Reg; SkTHashMap constants; // Constants (mostly splats) share the same pool. A::Label iota; // Varies per lane, for Op::index. A::Label load64_index; // Used to load low or high half of 64-bit lanes. // The `regs` array tracks everything we know about each register's state: // - NA: empty // - RES: reserved by ABI // - TMP: holding a temporary // - id: holding Val id constexpr Val RES = NA-1, TMP = RES-1; // Map val -> stack slot. std::vector stack_slot(instructions.size(), NA); int next_stack_slot = 0; const int nstack_slots = *stack_hint >= 0 ? *stack_hint : stack_slot.size(); #if defined(__x86_64__) || defined(_M_X64) if (!SkCpu::Supports(SkCpu::HSW)) { return false; } const int K = 8; #if defined(_M_X64) // Important to check this first; clang-cl defines both. const A::GP64 N = A::rcx, GP0 = A::rax, GP1 = A::r11, arg[] = { A::rdx, A::r8, A::r9, A::r10, A::rdi, A::rsi }; // xmm6-15 need are callee-saved. std::array regs = { NA, NA, NA, NA, NA, NA,RES,RES, RES,RES,RES,RES, RES,RES,RES,RES, }; const uint32_t incoming_registers_used = *registers_used; auto enter = [&]{ // rcx,rdx,r8,r9 are all already holding their correct values. // Load caller-saved r10 from rsp+40 if there's a fourth arg. if (fImpl->strides.size() >= 4) { a->mov(A::r10, A::Mem{A::rsp, 40}); } // Load callee-saved rdi from rsp+48 if there's a fifth arg, // first saving it to ABI reserved shadow area rsp+8. if (fImpl->strides.size() >= 5) { a->mov(A::Mem{A::rsp, 8}, A::rdi); a->mov(A::rdi, A::Mem{A::rsp, 48}); } // Load callee-saved rsi from rsp+56 if there's a sixth arg, // first saving it to ABI reserved shadow area rsp+16. if (fImpl->strides.size() >= 6) { a->mov(A::Mem{A::rsp, 16}, A::rsi); a->mov(A::rsi, A::Mem{A::rsp, 56}); } // Allocate stack for our values and callee-saved xmm6-15. int stack_needed = nstack_slots*K*4; for (int r = 6; r < 16; r++) { if (incoming_registers_used & (1<sub(A::rsp, stack_needed); } int next_saved_xmm = nstack_slots*K*4; for (int r = 6; r < 16; r++) { if (incoming_registers_used & (1<vmovups(A::Mem{A::rsp, next_saved_xmm}, (A::Xmm)r); next_saved_xmm += 16; regs[r] = NA; } } }; auto exit = [&]{ // The second pass of jit() shouldn't use any register it didn't in the first pass. SkASSERT((*registers_used & incoming_registers_used) == *registers_used); // Restore callee-saved xmm6-15 and the stack pointer. int stack_used = nstack_slots*K*4; for (int r = 6; r < 16; r++) { if (incoming_registers_used & (1<vmovups((A::Xmm)r, A::Mem{A::rsp, stack_used}); stack_used += 16; } } if (stack_used) { a->add(A::rsp, stack_used); } // Restore callee-saved rdi/rsi if we used them. if (fImpl->strides.size() >= 5) { a->mov(A::rdi, A::Mem{A::rsp, 8}); } if (fImpl->strides.size() >= 6) { a->mov(A::rsi, A::Mem{A::rsp, 16}); } a->vzeroupper(); a->ret(); }; #elif defined(__x86_64__) const A::GP64 N = A::rdi, GP0 = A::rax, GP1 = A::r11, arg[] = { A::rsi, A::rdx, A::rcx, A::r8, A::r9, A::r10 }; // All 16 ymm registers are available to use. std::array regs = { NA,NA,NA,NA, NA,NA,NA,NA, NA,NA,NA,NA, NA,NA,NA,NA, }; auto enter = [&]{ // Load caller-saved r10 from rsp+8 if there's a sixth arg. if (fImpl->strides.size() >= 6) { a->mov(A::r10, A::Mem{A::rsp, 8}); } if (nstack_slots) { a->sub(A::rsp, nstack_slots*K*4); } }; auto exit = [&]{ if (nstack_slots) { a->add(A::rsp, nstack_slots*K*4); } a->vzeroupper(); a->ret(); }; #endif auto load_from_memory = [&](Reg r, Val v) { if (instructions[v].op == Op::splat) { if (instructions[v].immA == 0) { a->vpxor(r,r,r); } else { a->vmovups(r, constants.find(instructions[v].immA)); } } else { SkASSERT(stack_slot[v] != NA); a->vmovups(r, A::Mem{A::rsp, stack_slot[v]*K*4}); } }; auto store_to_stack = [&](Reg r, Val v) { SkASSERT(next_stack_slot < nstack_slots); stack_slot[v] = next_stack_slot++; a->vmovups(A::Mem{A::rsp, stack_slot[v]*K*4}, r); }; #elif defined(__aarch64__) const int K = 4; const A::X N = A::x0, GP0 = A::x8, GP1 = A::x9, arg[] = { A::x1, A::x2, A::x3, A::x4, A::x5, A::x6, A::x7 }; // We can use v0-v7 and v16-v31 freely; we'd need to preserve v8-v15 in enter/exit. std::array regs = { NA, NA, NA, NA, NA, NA, NA, NA, RES,RES,RES,RES, RES,RES,RES,RES, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, }; auto enter = [&]{ if (nstack_slots) { a->sub(A::sp, A::sp, nstack_slots*K*4); } }; auto exit = [&]{ if (nstack_slots) { a->add(A::sp, A::sp, nstack_slots*K*4); } a->ret(A::x30); }; auto load_from_memory = [&](Reg r, Val v) { if (instructions[v].op == Op::splat) { if (instructions[v].immA == 0) { a->eor16b(r,r,r); } else { a->ldrq(r, constants.find(instructions[v].immA)); } } else { SkASSERT(stack_slot[v] != NA); a->ldrq(r, A::sp, stack_slot[v]); } }; auto store_to_stack = [&](Reg r, Val v) { SkASSERT(next_stack_slot < nstack_slots); stack_slot[v] = next_stack_slot++; a->strq(r, A::sp, stack_slot[v]); }; #endif *registers_used = 0; // We'll update this as we go. if (SK_ARRAY_COUNT(arg) < fImpl->strides.size()) { return false; } auto emit = [&](Val id, bool scalar) { const int active_lanes = scalar ? 1 : K; const OptimizedInstruction& inst = instructions[id]; const Op op = inst.op; const Val x = inst.x, y = inst.y, z = inst.z, w = inst.w; const int immA = inst.immA, immB = inst.immB, immC = inst.immC; // alloc_tmp() returns the first of N adjacent temporary registers, // each freed manually with free_tmp() or noted as our result with mark_tmp_as_dst(). auto alloc_tmp = [&](int N=1) -> Reg { auto needs_spill = [&](Val v) -> bool { SkASSERT(v >= 0); // {NA,TMP,RES} need to be handled before calling this. return stack_slot[v] == NA // We haven't spilled it already? && instructions[v].op != Op::splat; // No need to spill constants. }; // We want to find a block of N adjacent registers requiring the fewest spills. int best_block = -1, min_spills = 0x7fff'ffff; for (int block = 0; block+N <= (int)regs.size(); block++) { int spills = 0; for (int r = block; r < block+N; r++) { Val v = regs[r]; // Registers holding NA (nothing) are ideal, nothing to spill. if (v == NA) { continue; } // We can't spill anything REServed or that we'll need this instruction. if (v == RES || v == TMP || v == id || v == x || v == y || v == z || v == w) { spills = 0x7fff'ffff; block = r; // (optimization) continue outer loop at next register. break; } // Usually here we've got a value v that we'd have to spill to the stack // before reusing its register, but sometimes even now we get a freebie. spills += needs_spill(v) ? 1 : 0; } // TODO: non-arbitrary tie-breaking? if (min_spills > spills) { min_spills = spills; best_block = block; } if (min_spills == 0) { break; // (optimization) stop early if we find an unbeatable block. } } // TODO: our search's success isn't obviously guaranteed... it depends on N // and the number and relative position in regs of any unspillable values. // I think we should be able to get away with N≤2 on x86-64 and N≤4 on arm64; // we'll need to revisit this logic should this assert fire. SkASSERT(min_spills <= N); // Spill what needs spilling, and mark the block all as TMP. for (int r = best_block; r < best_block+N; r++) { Val& v = regs[r]; *registers_used |= (1<= 0); if (v >= 0 && needs_spill(v)) { store_to_stack((Reg)r, v); SkASSERT(!needs_spill(v)); min_spills--; } v = TMP; } SkASSERT(min_spills == 0); return (Reg)best_block; }; auto free_tmp = [&](Reg r) { SkASSERT(regs[r] == TMP); regs[r] = NA; }; // Which register holds dst,x,y,z,w for this instruction? NA if none does yet. int rd = NA, rx = NA, ry = NA, rz = NA, rw = NA; auto update_regs = [&](Reg r, Val v) { if (v == id) { rd = r; } if (v == x) { rx = r; } if (v == y) { ry = r; } if (v == z) { rz = r; } if (v == w) { rw = r; } return r; }; auto find_existing_reg = [&](Val v) -> int { // Quick-check our working registers. if (v == id && rd != NA) { return rd; } if (v == x && rx != NA) { return rx; } if (v == y && ry != NA) { return ry; } if (v == z && rz != NA) { return rz; } if (v == w && rw != NA) { return rw; } // Search inter-instruction register map. for (auto [r,val] : SkMakeEnumerate(regs)) { if (val == v) { return update_regs((Reg)r, v); } } return NA; }; // Return a register for Val, holding that value if it already exists. // During this instruction all calls to r(v) will return the same register. auto r = [&](Val v) -> Reg { SkASSERT(v >= 0); if (int found = find_existing_reg(v); found != NA) { return (Reg)found; } Reg r = alloc_tmp(); SkASSERT(regs[r] == TMP); SkASSERT(v <= id); if (v < id) { // If v < id, we're loading one of this instruction's inputs. // If v == id we're just allocating its destination register. load_from_memory(r, v); } regs[r] = v; return update_regs(r, v); }; auto dies_here = [&](Val v) -> bool { SkASSERT(v >= 0); return instructions[v].death == id; }; // Alias dst() to r(v) if dies_here(v). auto try_alias = [&](Val v) -> bool { SkASSERT(v == x || v == y || v == z || v == w); if (dies_here(v)) { rd = r(v); // Vals v and id share a register for this instruction. regs[rd] = id; // Next instruction, Val id will be in the register, not Val v. return true; } return false; }; // Generally r(id), // but with a hint, try to alias dst() to r(v) if dies_here(v). auto dst = [&](Val hint1 = NA, Val hint2 = NA) -> Reg { if (hint1 != NA && try_alias(hint1)) { return r(id); } if (hint2 != NA && try_alias(hint2)) { return r(id); } return r(id); }; #if defined(__aarch64__) // Nothing sneaky, just unused on x86-64. auto mark_tmp_as_dst = [&](Reg tmp) { SkASSERT(regs[tmp] == TMP); rd = tmp; regs[rd] = id; SkASSERT(dst() == tmp); }; #endif #if defined(__x86_64__) || defined(_M_X64) // On x86 we can work with many values directly from the stack or program constant pool. auto any = [&](Val v) -> A::Operand { SkASSERT(v >= 0); SkASSERT(v < id); if (int found = find_existing_reg(v); found != NA) { return (Reg)found; } if (instructions[v].op == Op::splat) { return constants.find(instructions[v].immA); } return A::Mem{A::rsp, stack_slot[v]*K*4}; }; // This is never really worth asking except when any() might be used; // if we need this value in ARM, might as well just call r(v) to get it into a register. auto in_reg = [&](Val v) -> bool { return find_existing_reg(v) != NA; }; #endif switch (op) { // Make sure splat constants can be found by load_from_memory() or any(). case Op::splat: (void)constants[immA]; break; #if defined(__x86_64__) || defined(_M_X64) case Op::assert_true: { a->vptest (r(x), &constants[0xffffffff]); A::Label all_true; a->jc(&all_true); a->int3(); a->label(&all_true); } break; case Op::trace_line: case Op::trace_var: case Op::trace_call: /* Only supported in the interpreter. */ break; case Op::store8: if (scalar) { a->vpextrb(A::Mem{arg[immA]}, (A::Xmm)r(x), 0); } else { a->vpackusdw(dst(x), r(x), r(x)); a->vpermq (dst(), dst(), 0xd8); a->vpackuswb(dst(), dst(), dst()); a->vmovq (A::Mem{arg[immA]}, (A::Xmm)dst()); } break; case Op::store16: if (scalar) { a->vpextrw(A::Mem{arg[immA]}, (A::Xmm)r(x), 0); } else { a->vpackusdw(dst(x), r(x), r(x)); a->vpermq (dst(), dst(), 0xd8); a->vmovups (A::Mem{arg[immA]}, (A::Xmm)dst()); } break; case Op::store32: if (scalar) { a->vmovd (A::Mem{arg[immA]}, (A::Xmm)r(x)); } else { a->vmovups(A::Mem{arg[immA]}, r(x)); } break; case Op::store64: if (scalar) { a->vmovd(A::Mem{arg[immA],0}, (A::Xmm)r(x)); a->vmovd(A::Mem{arg[immA],4}, (A::Xmm)r(y)); } else { // r(x) = {a,b,c,d|e,f,g,h} // r(y) = {i,j,k,l|m,n,o,p} // We want to write a,i,b,j,c,k,d,l,e,m... A::Ymm L = alloc_tmp(), H = alloc_tmp(); a->vpunpckldq(L, r(x), any(y)); // L = {a,i,b,j|e,m,f,n} a->vpunpckhdq(H, r(x), any(y)); // H = {c,k,d,l|g,o,h,p} a->vperm2f128(dst(), L,H, 0x20); // = {a,i,b,j|c,k,d,l} a->vmovups(A::Mem{arg[immA], 0}, dst()); a->vperm2f128(dst(), L,H, 0x31); // = {e,m,f,n|g,o,h,p} a->vmovups(A::Mem{arg[immA],32}, dst()); free_tmp(L); free_tmp(H); } break; case Op::store128: { // TODO: >32-bit stores a->vmovd (A::Mem{arg[immA], 0*16 + 0}, (A::Xmm)r(x) ); a->vmovd (A::Mem{arg[immA], 0*16 + 4}, (A::Xmm)r(y) ); a->vmovd (A::Mem{arg[immA], 0*16 + 8}, (A::Xmm)r(z) ); a->vmovd (A::Mem{arg[immA], 0*16 + 12}, (A::Xmm)r(w) ); if (scalar) { break; } a->vpextrd(A::Mem{arg[immA], 1*16 + 0}, (A::Xmm)r(x), 1); a->vpextrd(A::Mem{arg[immA], 1*16 + 4}, (A::Xmm)r(y), 1); a->vpextrd(A::Mem{arg[immA], 1*16 + 8}, (A::Xmm)r(z), 1); a->vpextrd(A::Mem{arg[immA], 1*16 + 12}, (A::Xmm)r(w), 1); a->vpextrd(A::Mem{arg[immA], 2*16 + 0}, (A::Xmm)r(x), 2); a->vpextrd(A::Mem{arg[immA], 2*16 + 4}, (A::Xmm)r(y), 2); a->vpextrd(A::Mem{arg[immA], 2*16 + 8}, (A::Xmm)r(z), 2); a->vpextrd(A::Mem{arg[immA], 2*16 + 12}, (A::Xmm)r(w), 2); a->vpextrd(A::Mem{arg[immA], 3*16 + 0}, (A::Xmm)r(x), 3); a->vpextrd(A::Mem{arg[immA], 3*16 + 4}, (A::Xmm)r(y), 3); a->vpextrd(A::Mem{arg[immA], 3*16 + 8}, (A::Xmm)r(z), 3); a->vpextrd(A::Mem{arg[immA], 3*16 + 12}, (A::Xmm)r(w), 3); // Now we need to store the upper 128 bits of x,y,z,w. // Storing in this order rather than interlacing minimizes temporaries. a->vextracti128(dst(), r(x), 1); a->vmovd (A::Mem{arg[immA], 4*16 + 0}, (A::Xmm)dst() ); a->vpextrd(A::Mem{arg[immA], 5*16 + 0}, (A::Xmm)dst(), 1); a->vpextrd(A::Mem{arg[immA], 6*16 + 0}, (A::Xmm)dst(), 2); a->vpextrd(A::Mem{arg[immA], 7*16 + 0}, (A::Xmm)dst(), 3); a->vextracti128(dst(), r(y), 1); a->vmovd (A::Mem{arg[immA], 4*16 + 4}, (A::Xmm)dst() ); a->vpextrd(A::Mem{arg[immA], 5*16 + 4}, (A::Xmm)dst(), 1); a->vpextrd(A::Mem{arg[immA], 6*16 + 4}, (A::Xmm)dst(), 2); a->vpextrd(A::Mem{arg[immA], 7*16 + 4}, (A::Xmm)dst(), 3); a->vextracti128(dst(), r(z), 1); a->vmovd (A::Mem{arg[immA], 4*16 + 8}, (A::Xmm)dst() ); a->vpextrd(A::Mem{arg[immA], 5*16 + 8}, (A::Xmm)dst(), 1); a->vpextrd(A::Mem{arg[immA], 6*16 + 8}, (A::Xmm)dst(), 2); a->vpextrd(A::Mem{arg[immA], 7*16 + 8}, (A::Xmm)dst(), 3); a->vextracti128(dst(), r(w), 1); a->vmovd (A::Mem{arg[immA], 4*16 + 12}, (A::Xmm)dst() ); a->vpextrd(A::Mem{arg[immA], 5*16 + 12}, (A::Xmm)dst(), 1); a->vpextrd(A::Mem{arg[immA], 6*16 + 12}, (A::Xmm)dst(), 2); a->vpextrd(A::Mem{arg[immA], 7*16 + 12}, (A::Xmm)dst(), 3); } break; case Op::load8: if (scalar) { a->vpxor (dst(), dst(), dst()); a->vpinsrb((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{arg[immA]}, 0); } else { a->vpmovzxbd(dst(), A::Mem{arg[immA]}); } break; case Op::load16: if (scalar) { a->vpxor (dst(), dst(), dst()); a->vpinsrw((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{arg[immA]}, 0); } else { a->vpmovzxwd(dst(), A::Mem{arg[immA]}); } break; case Op::load32: if (scalar) { a->vmovd ((A::Xmm)dst(), A::Mem{arg[immA]}); } else { a->vmovups( dst(), A::Mem{arg[immA]}); } break; case Op::load64: if (scalar) { a->vmovd((A::Xmm)dst(), A::Mem{arg[immA], 4*immB}); } else { A::Ymm tmp = alloc_tmp(); a->vmovups(tmp, &load64_index); a->vpermps(dst(), tmp, A::Mem{arg[immA], 0}); a->vpermps( tmp, tmp, A::Mem{arg[immA], 32}); // Low 128 bits holds immB=0 lanes, high 128 bits holds immB=1. a->vperm2f128(dst(), dst(),tmp, immB ? 0x31 : 0x20); free_tmp(tmp); } break; case Op::load128: if (scalar) { a->vmovd((A::Xmm)dst(), A::Mem{arg[immA], 4*immB}); } else { // Load 4 low values into xmm tmp, A::Ymm tmp = alloc_tmp(); A::Xmm t = (A::Xmm)tmp; a->vmovd (t, A::Mem{arg[immA], 0*16 + 4*immB} ); a->vpinsrd(t,t, A::Mem{arg[immA], 1*16 + 4*immB}, 1); a->vpinsrd(t,t, A::Mem{arg[immA], 2*16 + 4*immB}, 2); a->vpinsrd(t,t, A::Mem{arg[immA], 3*16 + 4*immB}, 3); // Load 4 high values into xmm dst(), A::Xmm d = (A::Xmm)dst(); a->vmovd (d, A::Mem{arg[immA], 4*16 + 4*immB} ); a->vpinsrd(d,d, A::Mem{arg[immA], 5*16 + 4*immB}, 1); a->vpinsrd(d,d, A::Mem{arg[immA], 6*16 + 4*immB}, 2); a->vpinsrd(d,d, A::Mem{arg[immA], 7*16 + 4*immB}, 3); // Merge the two, ymm dst() = {xmm tmp|xmm dst()} a->vperm2f128(dst(), tmp,dst(), 0x20); free_tmp(tmp); } break; case Op::gather8: { // As usual, the gather base pointer is immB bytes off of uniform immA. a->mov(GP0, A::Mem{arg[immA], immB}); A::Ymm tmp = alloc_tmp(); a->vmovups(tmp, any(x)); for (int i = 0; i < active_lanes; i++) { if (i == 4) { // vpextrd can only pluck indices out from an Xmm register, // so we manually swap over to the top when we're halfway through. a->vextracti128((A::Xmm)tmp, tmp, 1); } a->vpextrd(GP1, (A::Xmm)tmp, i%4); a->vpinsrb((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{GP0,0,GP1,A::ONE}, i); } a->vpmovzxbd(dst(), dst()); free_tmp(tmp); } break; case Op::gather16: { // Just as gather8 except vpinsrb->vpinsrw, ONE->TWO, and vpmovzxbd->vpmovzxwd. a->mov(GP0, A::Mem{arg[immA], immB}); A::Ymm tmp = alloc_tmp(); a->vmovups(tmp, any(x)); for (int i = 0; i < active_lanes; i++) { if (i == 4) { a->vextracti128((A::Xmm)tmp, tmp, 1); } a->vpextrd(GP1, (A::Xmm)tmp, i%4); a->vpinsrw((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{GP0,0,GP1,A::TWO}, i); } a->vpmovzxwd(dst(), dst()); free_tmp(tmp); } break; case Op::gather32: if (scalar) { // Our gather base pointer is immB bytes off of uniform immA. a->mov(GP0, A::Mem{arg[immA], immB}); // Grab our index from lane 0 of the index argument. a->vmovd(GP1, (A::Xmm)r(x)); // dst = *(base + 4*index) a->vmovd((A::Xmm)dst(x), A::Mem{GP0, 0, GP1, A::FOUR}); } else { a->mov(GP0, A::Mem{arg[immA], immB}); A::Ymm mask = alloc_tmp(); a->vpcmpeqd(mask, mask, mask); // (All lanes enabled.) a->vgatherdps(dst(), A::FOUR, r(x), GP0, mask); free_tmp(mask); } break; case Op::uniform32: a->vbroadcastss(dst(), A::Mem{arg[immA], immB}); break; case Op::array32: a->mov(GP0, A::Mem{arg[immA], immB}); a->vbroadcastss(dst(), A::Mem{GP0, immC}); break; case Op::index: a->vmovd((A::Xmm)dst(), N); a->vbroadcastss(dst(), dst()); a->vpsubd(dst(), dst(), &iota); break; // We can swap the arguments of symmetric instructions to make better use of any(). case Op::add_f32: if (in_reg(x)) { a->vaddps(dst(x), r(x), any(y)); } else { a->vaddps(dst(y), r(y), any(x)); } break; case Op::mul_f32: if (in_reg(x)) { a->vmulps(dst(x), r(x), any(y)); } else { a->vmulps(dst(y), r(y), any(x)); } break; case Op::sub_f32: a->vsubps(dst(x), r(x), any(y)); break; case Op::div_f32: a->vdivps(dst(x), r(x), any(y)); break; case Op::min_f32: a->vminps(dst(y), r(y), any(x)); break; // Order matters, case Op::max_f32: a->vmaxps(dst(y), r(y), any(x)); break; // see test SkVM_min_max. case Op::fma_f32: if (try_alias(x)) { a->vfmadd132ps(dst(x), r(z), any(y)); } else if (try_alias(y)) { a->vfmadd213ps(dst(y), r(x), any(z)); } else if (try_alias(z)) { a->vfmadd231ps(dst(z), r(x), any(y)); } else { a->vmovups (dst(), any(x)); a->vfmadd132ps(dst(), r(z), any(y)); } break; case Op::fms_f32: if (try_alias(x)) { a->vfmsub132ps(dst(x), r(z), any(y)); } else if (try_alias(y)) { a->vfmsub213ps(dst(y), r(x), any(z)); } else if (try_alias(z)) { a->vfmsub231ps(dst(z), r(x), any(y)); } else { a->vmovups (dst(), any(x)); a->vfmsub132ps(dst(), r(z), any(y)); } break; case Op::fnma_f32: if (try_alias(x)) { a->vfnmadd132ps(dst(x), r(z), any(y)); } else if (try_alias(y)) { a->vfnmadd213ps(dst(y), r(x), any(z)); } else if (try_alias(z)) { a->vfnmadd231ps(dst(z), r(x), any(y)); } else { a->vmovups (dst(), any(x)); a->vfnmadd132ps(dst(), r(z), any(y)); } break; // In situations like this we want to try aliasing dst(x) when x is // already in a register, but not if we'd have to load it from the stack // just to alias it. That's done better directly into the new register. case Op::sqrt_f32: if (in_reg(x)) { a->vsqrtps(dst(x), r(x)); } else { a->vsqrtps(dst(), any(x)); } break; case Op::add_i32: if (in_reg(x)) { a->vpaddd(dst(x), r(x), any(y)); } else { a->vpaddd(dst(y), r(y), any(x)); } break; case Op::mul_i32: if (in_reg(x)) { a->vpmulld(dst(x), r(x), any(y)); } else { a->vpmulld(dst(y), r(y), any(x)); } break; case Op::sub_i32: a->vpsubd(dst(x), r(x), any(y)); break; case Op::bit_and: if (in_reg(x)) { a->vpand(dst(x), r(x), any(y)); } else { a->vpand(dst(y), r(y), any(x)); } break; case Op::bit_or: if (in_reg(x)) { a->vpor(dst(x), r(x), any(y)); } else { a->vpor(dst(y), r(y), any(x)); } break; case Op::bit_xor: if (in_reg(x)) { a->vpxor(dst(x), r(x), any(y)); } else { a->vpxor(dst(y), r(y), any(x)); } break; case Op::bit_clear: a->vpandn(dst(y), r(y), any(x)); break; // Notice, y then x. case Op::select: if (try_alias(z)) { a->vpblendvb(dst(z), r(z), any(y), r(x)); } else { a->vpblendvb(dst(x), r(z), any(y), r(x)); } break; case Op::shl_i32: a->vpslld(dst(x), r(x), immA); break; case Op::shr_i32: a->vpsrld(dst(x), r(x), immA); break; case Op::sra_i32: a->vpsrad(dst(x), r(x), immA); break; case Op::eq_i32: if (in_reg(x)) { a->vpcmpeqd(dst(x), r(x), any(y)); } else { a->vpcmpeqd(dst(y), r(y), any(x)); } break; case Op::gt_i32: a->vpcmpgtd(dst(), r(x), any(y)); break; case Op::eq_f32: if (in_reg(x)) { a->vcmpeqps(dst(x), r(x), any(y)); } else { a->vcmpeqps(dst(y), r(y), any(x)); } break; case Op::neq_f32: if (in_reg(x)) { a->vcmpneqps(dst(x), r(x), any(y)); } else { a->vcmpneqps(dst(y), r(y), any(x)); } break; case Op:: gt_f32: a->vcmpltps (dst(y), r(y), any(x)); break; case Op::gte_f32: a->vcmpleps (dst(y), r(y), any(x)); break; case Op::ceil: if (in_reg(x)) { a->vroundps(dst(x), r(x), Assembler::CEIL); } else { a->vroundps(dst(), any(x), Assembler::CEIL); } break; case Op::floor: if (in_reg(x)) { a->vroundps(dst(x), r(x), Assembler::FLOOR); } else { a->vroundps(dst(), any(x), Assembler::FLOOR); } break; case Op::to_f32: if (in_reg(x)) { a->vcvtdq2ps(dst(x), r(x)); } else { a->vcvtdq2ps(dst(), any(x)); } break; case Op::trunc: if (in_reg(x)) { a->vcvttps2dq(dst(x), r(x)); } else { a->vcvttps2dq(dst(), any(x)); } break; case Op::round: if (in_reg(x)) { a->vcvtps2dq(dst(x), r(x)); } else { a->vcvtps2dq(dst(), any(x)); } break; case Op::to_fp16: a->vcvtps2ph(dst(x), r(x), A::CURRENT); // f32 ymm -> f16 xmm a->vpmovzxwd(dst(), dst()); // f16 xmm -> f16 ymm break; case Op::from_fp16: a->vpackusdw(dst(x), r(x), r(x)); // f16 ymm -> f16 xmm a->vpermq (dst(), dst(), 0xd8); // swap middle two 64-bit lanes a->vcvtph2ps(dst(), dst()); // f16 xmm -> f32 ymm break; #elif defined(__aarch64__) case Op::assert_true: { a->uminv4s(dst(), r(x)); // uminv acts like an all() across the vector. a->movs(GP0, dst(), 0); A::Label all_true; a->cbnz(GP0, &all_true); a->brk(0); a->label(&all_true); } break; case Op::trace_line: case Op::trace_var: case Op::trace_call: /* Only supported in the interpreter. */ break; case Op::index: { A::V tmp = alloc_tmp(); a->ldrq (tmp, &iota); a->dup4s(dst(), N); a->sub4s(dst(), dst(), tmp); free_tmp(tmp); } break; case Op::store8: a->xtns2h(dst(x), r(x)); a->xtnh2b(dst(), dst()); if (scalar) { a->strb (dst(), arg[immA]); } else { a->strs (dst(), arg[immA]); } break; case Op::store16: a->xtns2h(dst(x), r(x)); if (scalar) { a->strh (dst(), arg[immA]); } else { a->strd (dst(), arg[immA]); } break; case Op::store32: if (scalar) { a->strs(r(x), arg[immA]); } else { a->strq(r(x), arg[immA]); } break; case Op::store64: if (scalar) { a->strs(r(x), arg[immA], 0); a->strs(r(y), arg[immA], 1); } else if (r(y) == r(x)+1) { a->st24s(r(x), arg[immA]); } else { Reg tmp0 = alloc_tmp(2), tmp1 = (Reg)(tmp0+1); a->orr16b(tmp0, r(x), r(x)); a->orr16b(tmp1, r(y), r(y)); a-> st24s(tmp0, arg[immA]); free_tmp(tmp0); free_tmp(tmp1); } break; case Op::store128: if (scalar) { a->strs(r(x), arg[immA], 0); a->strs(r(y), arg[immA], 1); a->strs(r(z), arg[immA], 2); a->strs(r(w), arg[immA], 3); } else if (r(y) == r(x)+1 && r(z) == r(x)+2 && r(w) == r(x)+3) { a->st44s(r(x), arg[immA]); } else { Reg tmp0 = alloc_tmp(4), tmp1 = (Reg)(tmp0+1), tmp2 = (Reg)(tmp0+2), tmp3 = (Reg)(tmp0+3); a->orr16b(tmp0, r(x), r(x)); a->orr16b(tmp1, r(y), r(y)); a->orr16b(tmp2, r(z), r(z)); a->orr16b(tmp3, r(w), r(w)); a-> st44s(tmp0, arg[immA]); free_tmp(tmp0); free_tmp(tmp1); free_tmp(tmp2); free_tmp(tmp3); } break; case Op::load8: if (scalar) { a->ldrb(dst(), arg[immA]); } else { a->ldrs(dst(), arg[immA]); } a->uxtlb2h(dst(), dst()); a->uxtlh2s(dst(), dst()); break; case Op::load16: if (scalar) { a->ldrh(dst(), arg[immA]); } else { a->ldrd(dst(), arg[immA]); } a->uxtlh2s(dst(), dst()); break; case Op::load32: if (scalar) { a->ldrs(dst(), arg[immA]); } else { a->ldrq(dst(), arg[immA]); } break; case Op::load64: if (scalar) { a->ldrs(dst(), arg[immA], immB); } else { Reg tmp0 = alloc_tmp(2), tmp1 = (Reg)(tmp0+1); a->ld24s(tmp0, arg[immA]); // TODO: return both switch (immB) { case 0: mark_tmp_as_dst(tmp0); free_tmp(tmp1); break; case 1: mark_tmp_as_dst(tmp1); free_tmp(tmp0); break; } } break; case Op::load128: if (scalar) { a->ldrs(dst(), arg[immA], immB); } else { Reg tmp0 = alloc_tmp(4), tmp1 = (Reg)(tmp0+1), tmp2 = (Reg)(tmp0+2), tmp3 = (Reg)(tmp0+3); a->ld44s(tmp0, arg[immA]); // TODO: return all four switch (immB) { case 0: mark_tmp_as_dst(tmp0); break; case 1: mark_tmp_as_dst(tmp1); break; case 2: mark_tmp_as_dst(tmp2); break; case 3: mark_tmp_as_dst(tmp3); break; } if (immB != 0) { free_tmp(tmp0); } if (immB != 1) { free_tmp(tmp1); } if (immB != 2) { free_tmp(tmp2); } if (immB != 3) { free_tmp(tmp3); } } break; case Op::uniform32: a->add(GP0, arg[immA], immB); a->ld1r4s(dst(), GP0); break; case Op::array32: a->add(GP0, arg[immA], immB); a->ldrd(GP0, GP0); a->add(GP0, GP0, immC); a->ld1r4s(dst(), GP0); break; case Op::gather8: { // As usual, the gather base pointer is immB bytes off of uniform immA. a->add (GP0, arg[immA], immB); // GP0 = &(gather base pointer) a->ldrd(GP0, GP0); // GP0 = gather base pointer for (int i = 0; i < active_lanes; i++) { a->movs(GP1, r(x), i); // Extract index lane i into GP1. a->add (GP1, GP0, GP1); // Add the gather base pointer. a->ldrb(GP1, GP1); // Load that byte. a->inss(dst(x), GP1, i); // Insert it into dst() lane i. } } break; // See gather8 for general idea; comments here only where gather16 differs. case Op::gather16: { a->add (GP0, arg[immA], immB); a->ldrd(GP0, GP0); for (int i = 0; i < active_lanes; i++) { a->movs(GP1, r(x), i); a->add (GP1, GP0, GP1, A::LSL, 1); // Scale index 2x into a byte offset. a->ldrh(GP1, GP1); // 2-byte load. a->inss(dst(x), GP1, i); } } break; // See gather8 for general idea; comments here only where gather32 differs. case Op::gather32: { a->add (GP0, arg[immA], immB); a->ldrd(GP0, GP0); for (int i = 0; i < active_lanes; i++) { a->movs(GP1, r(x), i); a->add (GP1, GP0, GP1, A::LSL, 2); // Scale index 4x into a byte offset. a->ldrs(GP1, GP1); // 4-byte load. a->inss(dst(x), GP1, i); } } break; case Op::add_f32: a->fadd4s(dst(x,y), r(x), r(y)); break; case Op::sub_f32: a->fsub4s(dst(x,y), r(x), r(y)); break; case Op::mul_f32: a->fmul4s(dst(x,y), r(x), r(y)); break; case Op::div_f32: a->fdiv4s(dst(x,y), r(x), r(y)); break; case Op::sqrt_f32: a->fsqrt4s(dst(x), r(x)); break; case Op::fma_f32: // fmla.4s is z += x*y if (try_alias(z)) { a->fmla4s( r(z), r(x), r(y)); } else { a->orr16b(dst(), r(z), r(z)); a->fmla4s(dst(), r(x), r(y)); } break; case Op::fnma_f32: // fmls.4s is z -= x*y if (try_alias(z)) { a->fmls4s( r(z), r(x), r(y)); } else { a->orr16b(dst(), r(z), r(z)); a->fmls4s(dst(), r(x), r(y)); } break; case Op::fms_f32: // calculate z - xy, then negate to xy - z if (try_alias(z)) { a->fmls4s( r(z), r(x), r(y)); } else { a->orr16b(dst(), r(z), r(z)); a->fmls4s(dst(), r(x), r(y)); } a->fneg4s(dst(), dst()); break; case Op:: gt_f32: a->fcmgt4s (dst(x,y), r(x), r(y)); break; case Op::gte_f32: a->fcmge4s (dst(x,y), r(x), r(y)); break; case Op:: eq_f32: a->fcmeq4s (dst(x,y), r(x), r(y)); break; case Op::neq_f32: a->fcmeq4s (dst(x,y), r(x), r(y)); a->not16b (dst(), dst()); break; case Op::add_i32: a->add4s(dst(x,y), r(x), r(y)); break; case Op::sub_i32: a->sub4s(dst(x,y), r(x), r(y)); break; case Op::mul_i32: a->mul4s(dst(x,y), r(x), r(y)); break; case Op::bit_and : a->and16b(dst(x,y), r(x), r(y)); break; case Op::bit_or : a->orr16b(dst(x,y), r(x), r(y)); break; case Op::bit_xor : a->eor16b(dst(x,y), r(x), r(y)); break; case Op::bit_clear: a->bic16b(dst(x,y), r(x), r(y)); break; case Op::select: // bsl16b is x = x ? y : z if (try_alias(x)) { a->bsl16b( r(x), r(y), r(z)); } else { a->orr16b(dst(), r(x), r(x)); a->bsl16b(dst(), r(y), r(z)); } break; // fmin4s and fmax4s don't work the way we want with NaN, // so we write them the long way: case Op::min_f32: // min(x,y) = yfcmgt4s(dst(), r(x), r(y)); a->bsl16b (dst(), r(y), r(x)); break; case Op::max_f32: // max(x,y) = xfcmgt4s(dst(), r(y), r(x)); a->bsl16b (dst(), r(y), r(x)); break; case Op::shl_i32: a-> shl4s(dst(x), r(x), immA); break; case Op::shr_i32: a->ushr4s(dst(x), r(x), immA); break; case Op::sra_i32: a->sshr4s(dst(x), r(x), immA); break; case Op::eq_i32: a->cmeq4s(dst(x,y), r(x), r(y)); break; case Op::gt_i32: a->cmgt4s(dst(x,y), r(x), r(y)); break; case Op::to_f32: a->scvtf4s (dst(x), r(x)); break; case Op::trunc: a->fcvtzs4s(dst(x), r(x)); break; case Op::round: a->fcvtns4s(dst(x), r(x)); break; case Op::ceil: a->frintp4s(dst(x), r(x)); break; case Op::floor: a->frintm4s(dst(x), r(x)); break; case Op::to_fp16: a->fcvtn (dst(x), r(x)); // 4x f32 -> 4x f16 in bottom four lanes a->uxtlh2s(dst(), dst()); // expand to 4x f16 in even 16-bit lanes break; case Op::from_fp16: a->xtns2h(dst(x), r(x)); // pack even 16-bit lanes into bottom four lanes a->fcvtl (dst(), dst()); // 4x f16 -> 4x f32 break; #endif } // Proactively free the registers holding any value that dies here. if (rd != NA && dies_here(regs[rd])) { regs[rd] = NA; } if (rx != NA && regs[rx] != NA && dies_here(regs[rx])) { regs[rx] = NA; } if (ry != NA && regs[ry] != NA && dies_here(regs[ry])) { regs[ry] = NA; } if (rz != NA && regs[rz] != NA && dies_here(regs[rz])) { regs[rz] = NA; } if (rw != NA && regs[rw] != NA && dies_here(regs[rw])) { regs[rw] = NA; } return true; }; #if defined(__x86_64__) || defined(_M_X64) auto jump_if_less = [&](A::Label* l) { a->jl (l); }; auto jump = [&](A::Label* l) { a->jmp(l); }; auto add = [&](A::GP64 gp, int imm) { a->add(gp, imm); }; auto sub = [&](A::GP64 gp, int imm) { a->sub(gp, imm); }; #elif defined(__aarch64__) auto jump_if_less = [&](A::Label* l) { a->blt(l); }; auto jump = [&](A::Label* l) { a->b (l); }; auto add = [&](A::X gp, int imm) { a->add(gp, gp, imm); }; auto sub = [&](A::X gp, int imm) { a->sub(gp, gp, imm); }; #endif A::Label body, tail, done; enter(); for (Val id = 0; id < (Val)instructions.size(); id++) { if (instructions[id].can_hoist && !emit(id, /*scalar=*/false)) { return false; } } // This point marks a kind of canonical fixed point for register contents: if loop // code is generated as if these registers are holding these values, the next time // the loop comes around we'd better find those same registers holding those same values. auto restore_incoming_regs = [&,incoming=regs,saved_stack_slot=stack_slot, saved_next_stack_slot=next_stack_slot]{ for (int r = 0; r < (int)regs.size(); r++) { if (regs[r] != incoming[r]) { regs[r] = incoming[r]; if (regs[r] >= 0) { load_from_memory((Reg)r, regs[r]); } } } *stack_hint = std::max(*stack_hint, next_stack_slot); stack_slot = saved_stack_slot; next_stack_slot = saved_next_stack_slot; }; a->label(&body); { a->cmp(N, K); jump_if_less(&tail); for (Val id = 0; id < (Val)instructions.size(); id++) { if (!instructions[id].can_hoist && !emit(id, /*scalar=*/false)) { return false; } } restore_incoming_regs(); for (int i = 0; i < (int)fImpl->strides.size(); i++) { if (fImpl->strides[i]) { add(arg[i], K*fImpl->strides[i]); } } sub(N, K); jump(&body); } a->label(&tail); { a->cmp(N, 1); jump_if_less(&done); for (Val id = 0; id < (Val)instructions.size(); id++) { if (!instructions[id].can_hoist && !emit(id, /*scalar=*/true)) { return false; } } restore_incoming_regs(); for (int i = 0; i < (int)fImpl->strides.size(); i++) { if (fImpl->strides[i]) { add(arg[i], 1*fImpl->strides[i]); } } sub(N, 1); jump(&tail); } a->label(&done); { exit(); } // Except for explicit aligned load and store instructions, AVX allows // memory operands to be unaligned. So even though we're creating 16 // byte patterns on ARM or 32-byte patterns on x86, we only need to // align to 4 bytes, the element size and alignment requirement. constants.foreach([&](int imm, A::Label* label) { a->align(4); a->label(label); for (int i = 0; i < K; i++) { a->word(imm); } }); if (!iota.references.empty()) { a->align(4); a->label(&iota); // 0,1,2,3,4,... for (int i = 0; i < K; i++) { a->word(i); } } if (!load64_index.references.empty()) { a->align(4); a->label(&load64_index); // {0,2,4,6|1,3,5,7} a->word(0); a->word(2); a->word(4); a->word(6); a->word(1); a->word(3); a->word(5); a->word(7); } return true; } void Program::setupJIT(const std::vector& instructions, const char* debug_name) { // Assemble with no buffer to determine a.size() (the number of bytes we'll assemble) // and stack_hint/registers_used to feed forward into the next jit() call. Assembler a{nullptr}; int stack_hint = -1; uint32_t registers_used = 0xffff'ffff; // Start conservatively with all. if (!this->jit(instructions, &stack_hint, ®isters_used, &a)) { return; } fImpl->jit_size = a.size(); void* jit_entry = alloc_jit_buffer(&fImpl->jit_size); fImpl->jit_entry.store(jit_entry); // Assemble the program for real with stack_hint/registers_used as feedback from first call. a = Assembler{jit_entry}; SkAssertResult(this->jit(instructions, &stack_hint, ®isters_used, &a)); SkASSERT(a.size() <= fImpl->jit_size); // Remap as executable, and flush caches on platforms that need that. remap_as_executable(jit_entry, fImpl->jit_size); notify_vtune(debug_name, jit_entry, fImpl->jit_size); #if !defined(SK_BUILD_FOR_WIN) // For profiling and debugging, it's helpful to have this code loaded // dynamically rather than just jumping info fImpl->jit_entry. if (gSkVMJITViaDylib) { // Dump the raw program binary. SkString path = SkStringPrintf("/tmp/%s.XXXXXX", debug_name); int fd = mkstemp(path.writable_str()); ::write(fd, jit_entry, a.size()); close(fd); this->dropJIT(); // (unmap and null out fImpl->jit_entry.) // Convert it in-place to a dynamic library with a single symbol "skvm_jit": SkString cmd = SkStringPrintf( "echo '.global _skvm_jit\n_skvm_jit: .incbin \"%s\"'" " | clang -x assembler -shared - -o %s", path.c_str(), path.c_str()); system(cmd.c_str()); // Load that dynamic library and look up skvm_jit(). fImpl->dylib = dlopen(path.c_str(), RTLD_NOW|RTLD_LOCAL); void* sym = nullptr; for (const char* name : {"skvm_jit", "_skvm_jit"} ) { if (!sym) { sym = dlsym(fImpl->dylib, name); } } fImpl->jit_entry.store(sym); } #endif } void Program::disassemble(SkWStream* o) const { #if !defined(SK_BUILD_FOR_WIN) SkDebugfStream debug; if (!o) { o = &debug; } const void* jit_entry = fImpl->jit_entry.load(); size_t jit_size = fImpl->jit_size; if (!jit_entry) { o->writeText("Program not JIT'd. Did you pass --jit?\n"); return; } char path[] = "/tmp/skvm-jit.XXXXXX"; int fd = mkstemp(path); ::write(fd, jit_entry, jit_size); close(fd); // Convert it in-place to a dynamic library with a single symbol "skvm_jit": SkString cmd = SkStringPrintf( "echo '.global _skvm_jit\n_skvm_jit: .incbin \"%s\"'" " | clang -x assembler -shared - -o %s", path, path); system(cmd.c_str()); // Now objdump to disassemble our function: // TODO: We could trim this down to just our code using '--disassemble=`, // but the symbol name varies with OS, and that option may be missing from objdump on some // machines? There also apears to be quite a bit of junk after the end of the JIT'd code. // Trimming that would let us pass '--visualize-jumps' and get the loop annotated. // With the junk, we tend to end up with a bunch of stray jumps that pollute the ASCII art. cmd = SkStringPrintf("objdump -D %s", path); #if defined(SK_BUILD_FOR_UNIX) cmd.append(" --section=.text"); #endif FILE* fp = popen(cmd.c_str(), "r"); if (!fp) { o->writeText("objdump failed\n"); return; } char line[1024]; while (fgets(line, sizeof(line), fp)) { o->writeText(line); } pclose(fp); #endif } #endif } // namespace skvm