/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrDrawOpAtlas_DEFINED #define GrDrawOpAtlas_DEFINED #include #include #include "include/gpu/GrBackendSurface.h" #include "include/private/SkTArray.h" #include "src/core/SkIPoint16.h" #include "src/core/SkTInternalLList.h" #include "src/gpu/GrDeferredUpload.h" #include "src/gpu/GrRectanizerSkyline.h" #include "src/gpu/GrSurfaceProxyView.h" #include "src/gpu/geometry/GrRect.h" class GrOnFlushResourceProvider; class GrProxyProvider; class GrResourceProvider; class GrTextureProxy; /** * This class manages one or more atlas textures on behalf of GrDrawOps. The draw ops that use the * atlas perform texture uploads when preparing their draws during flush. The class provides * facilities for using GrDrawOpUploadToken to detect data hazards. Op's uploads are performed in * "ASAP" mode until it is impossible to add data without overwriting texels read by draws that * have not yet executed on the gpu. At that point, the atlas will attempt to allocate a new * atlas texture (or "page") of the same size, up to a maximum number of textures, and upload * to that texture. If that's not possible, the uploads are performed "inline" between draws. If a * single draw would use enough subimage space to overflow the atlas texture then the atlas will * fail to add a subimage. This gives the op the chance to end the draw and begin a new one. * Additional uploads will then succeed in inline mode. * * When the atlas has multiple pages, new uploads are prioritized to the lower index pages, i.e., * it will try to upload to page 0 before page 1 or 2. To keep the atlas from continually using * excess space, periodic garbage collection is needed to shift data from the higher index pages to * the lower ones, and then eventually remove any pages that are no longer in use. "In use" is * determined by using the GrDrawUploadToken system: After a flush each subarea of the page * is checked to see whether it was used in that flush; if it is not, a counter is incremented. * Once that counter reaches a threshold that subarea is considered to be no longer in use. * * Garbage collection is initiated by the GrDrawOpAtlas's client via the compact() method. One * solution is to make the client a subclass of GrOnFlushCallbackObject, register it with the * GrContext via addOnFlushCallbackObject(), and the client's postFlush() method calls compact() * and passes in the given GrDrawUploadToken. */ class GrDrawOpAtlas { public: /** Is the atlas allowed to use more than one texture? */ enum class AllowMultitexturing : bool { kNo, kYes }; // These are both restricted by the space they occupy in the PlotLocator. // maxPages is also limited by being crammed into the glyph uvs. // maxPlots is also limited by the fPlotAlreadyUpdated bitfield in BulkUseTokenUpdater #ifdef SK_ENABLE_SMALL_PAGE inline static constexpr auto kMaxMultitexturePages = 16; #else inline static constexpr auto kMaxMultitexturePages = 4; #endif inline static constexpr int kMaxPlots = 32; /** * A PlotLocator specifies the plot and is analogous to a directory path: * page/plot/plotGeneration * * In fact PlotLocator is a portion of a glyph image location in the atlas fully specified by: * format/atlasGeneration/page/plot/plotGeneration/rect * * TODO: Remove the small path renderer's use of the PlotLocator for eviction. */ class PlotLocator { public: PlotLocator(uint32_t pageIdx, uint32_t plotIdx, uint64_t generation) : fGenID(generation) , fPlotIndex(plotIdx) , fPageIndex(pageIdx) { SkASSERT(pageIdx < kMaxMultitexturePages); SkASSERT(plotIdx < kMaxPlots); SkASSERT(generation < ((uint64_t)1 << 48)); } PlotLocator() : fGenID(0), fPlotIndex(0), fPageIndex(0) {} bool isValid() const { return fGenID != 0 || fPlotIndex != 0 || fPageIndex != 0; } void makeInvalid() { fGenID = 0; fPlotIndex = 0; fPageIndex = 0; } bool operator==(const PlotLocator& other) const { return fGenID == other.fGenID && fPlotIndex == other.fPlotIndex && fPageIndex == other.fPageIndex; } uint32_t pageIndex() const { return fPageIndex; } uint32_t plotIndex() const { return fPlotIndex; } uint64_t genID() const { return fGenID; } private: uint64_t fGenID:48; uint64_t fPlotIndex:8; uint64_t fPageIndex:8; }; static const uint64_t kInvalidAtlasGeneration = 0; // AtlasLocator handles atlas position information. It keeps a left-top, right-bottom pair of // encoded UV coordinates. The bits 13 & 14 of the U coordinates hold the atlas page index. // This information is handed directly as is from fUVs. This encoding has the nice property // that width = fUVs[2] - fUVs[0]; the page encoding in the top bits subtracts to zero. class AtlasLocator { public: std::array getUVs() const { return fUVs; } void invalidatePlotLocator() { fPlotLocator.makeInvalid(); } // TODO: Remove the small path renderer's use of this for eviction PlotLocator plotLocator() const { return fPlotLocator; } uint32_t pageIndex() const { return fPlotLocator.pageIndex(); } uint32_t plotIndex() const { return fPlotLocator.plotIndex(); } uint64_t genID() const { return fPlotLocator.genID(); } SkIPoint topLeft() const { #ifdef SK_ENABLE_SMALL_PAGE return {fUVs[0] & 0x3FFF, fUVs[1] & 0x3FFF}; #else return {fUVs[0] & 0x1FFF, fUVs[1]}; #endif } uint16_t width() const { return fUVs[2] - fUVs[0]; } uint16_t height() const { return fUVs[3] - fUVs[1]; } void insetSrc(int padding) { SkASSERT(2 * padding <= this->width()); SkASSERT(2 * padding <= this->height()); fUVs[0] += padding; fUVs[1] += padding; fUVs[2] -= padding; fUVs[3] -= padding; } void updatePlotLocator(PlotLocator p) { fPlotLocator = p; #ifdef SK_ENABLE_SMALL_PAGE SkASSERT(fPlotLocator.pageIndex() <= 15); // package pageIndex(max value is 16, 4bit) // high 2bit save in x-axis(fUVs[0],fUVs[2]),low 2bit save in y-axis(fUVs[1],fUVs[3]) uint16_t page = fPlotLocator.pageIndex() << 12; fUVs[0] = (fUVs[0] & 0x3FFF) | (page & 0xC000); fUVs[1] = (fUVs[1] & 0x3FFF) | ((page << 2) & 0xC000); fUVs[2] = (fUVs[2] & 0x3FFF) | (page & 0xC000); fUVs[3] = (fUVs[3] & 0x3FFF) | ((page << 2) & 0xC000); #else SkASSERT(fPlotLocator.pageIndex() <= 3); uint16_t page = fPlotLocator.pageIndex() << 13; fUVs[0] = (fUVs[0] & 0x1FFF) | page; fUVs[2] = (fUVs[2] & 0x1FFF) | page; #endif } void updateRect(GrIRect16 rect) { #ifdef SK_ENABLE_SMALL_PAGE SkASSERT(rect.fLeft <= rect.fRight); SkASSERT(rect.fRight <= 0x3FFF); SkASSERT(rect.fTop <= rect.fBottom); SkASSERT(rect.fBottom <= 0x3FFF); fUVs[0] = (fUVs[0] & 0xC000) | rect.fLeft; fUVs[1] = (fUVs[1] & 0xC000) | rect.fTop; fUVs[2] = (fUVs[2] & 0xC000) | rect.fRight; fUVs[3] = (fUVs[3] & 0xC000) | rect.fBottom; #else SkASSERT(rect.fLeft <= rect.fRight); SkASSERT(rect.fRight <= 0x1FFF); fUVs[0] = (fUVs[0] & 0xE000) | rect.fLeft; fUVs[1] = rect.fTop; fUVs[2] = (fUVs[2] & 0xE000) | rect.fRight; fUVs[3] = rect.fBottom; #endif } private: PlotLocator fPlotLocator{0, 0, 0}; // The inset padded bounds in the atlas in the lower 13 bits, and page index in bits 13 & // 14 of the Us. std::array fUVs{0, 0, 0, 0}; }; /** * An interface for eviction callbacks. Whenever GrDrawOpAtlas evicts a * specific PlotLocator, it will call all of the registered listeners so they can process the * eviction. */ class EvictionCallback { public: virtual ~EvictionCallback() = default; virtual void evict(PlotLocator) = 0; }; /** * Keep track of generation number for Atlases and Plots. */ class GenerationCounter { public: inline static constexpr uint64_t kInvalidGeneration = 0; uint64_t next() { return fGeneration++; } private: uint64_t fGeneration{1}; }; /** * Returns a GrDrawOpAtlas. This function can be called anywhere, but the returned atlas * should only be used inside of GrMeshDrawOp::onPrepareDraws. * @param GrColorType The colorType which this atlas will store * @param width width in pixels of the atlas * @param height height in pixels of the atlas * @param numPlotsX The number of plots the atlas should be broken up into in the X * direction * @param numPlotsY The number of plots the atlas should be broken up into in the Y * direction * @param atlasGeneration a pointer to the context's generation counter. * @param allowMultitexturing Can the atlas use more than one texture. * @param evictor A pointer to an eviction callback class. * * @return An initialized GrDrawOpAtlas, or nullptr if creation fails */ static std::unique_ptr Make(GrProxyProvider*, const GrBackendFormat& format, GrColorType, int width, int height, int plotWidth, int plotHeight, GenerationCounter* generationCounter, AllowMultitexturing allowMultitexturing, #ifdef SK_ENABLE_SMALL_PAGE int atlasPageNum, #endif EvictionCallback* evictor); /** * Adds a width x height subimage to the atlas. Upon success it returns 'kSucceeded' and returns * the ID and the subimage's coordinates in the backing texture. 'kTryAgain' is returned if * the subimage cannot fit in the atlas without overwriting texels that will be read in the * current draw. This indicates that the op should end its current draw and begin another * before adding more data. Upon success, an upload of the provided image data will have * been added to the GrDrawOp::Target, in "asap" mode if possible, otherwise in "inline" mode. * Successive uploads in either mode may be consolidated. * 'kError' will be returned when some unrecoverable error was encountered while trying to * add the subimage. In this case the op being created should be discarded. * * NOTE: When the GrDrawOp prepares a draw that reads from the atlas, it must immediately call * 'setUseToken' with the currentToken from the GrDrawOp::Target, otherwise the next call to * addToAtlas might cause the previous data to be overwritten before it has been read. */ enum class ErrorCode { kError, kSucceeded, kTryAgain }; ErrorCode addToAtlas(GrResourceProvider*, GrDeferredUploadTarget*, int width, int height, const void* image, AtlasLocator*); const GrSurfaceProxyView* getViews() const { return fViews; } uint64_t atlasGeneration() const { return fAtlasGeneration; } bool hasID(const PlotLocator& plotLocator) { if (!plotLocator.isValid()) { return false; } uint32_t plot = plotLocator.plotIndex(); uint32_t page = plotLocator.pageIndex(); uint64_t plotGeneration = fPages[page].fPlotArray[plot]->genID(); uint64_t locatorGeneration = plotLocator.genID(); return plot < fNumPlots && page < fNumActivePages && plotGeneration == locatorGeneration; } /** To ensure the atlas does not evict a given entry, the client must set the last use token. */ void setLastUseToken(const AtlasLocator& atlasLocator, GrDeferredUploadToken token) { SkASSERT(this->hasID(atlasLocator.plotLocator())); uint32_t plotIdx = atlasLocator.plotIndex(); SkASSERT(plotIdx < fNumPlots); uint32_t pageIdx = atlasLocator.pageIndex(); SkASSERT(pageIdx < fNumActivePages); Plot* plot = fPages[pageIdx].fPlotArray[plotIdx].get(); this->makeMRU(plot, pageIdx); plot->setLastUseToken(token); } uint32_t numActivePages() { return fNumActivePages; } /** * A class which can be handed back to GrDrawOpAtlas for updating last use tokens in bulk. The * current max number of plots per page the GrDrawOpAtlas can handle is 32. If in the future * this is insufficient then we can move to a 64 bit int. */ class BulkUseTokenUpdater { public: BulkUseTokenUpdater() { memset(fPlotAlreadyUpdated, 0, sizeof(fPlotAlreadyUpdated)); } BulkUseTokenUpdater(const BulkUseTokenUpdater& that) : fPlotsToUpdate(that.fPlotsToUpdate) { memcpy(fPlotAlreadyUpdated, that.fPlotAlreadyUpdated, sizeof(fPlotAlreadyUpdated)); } bool add(const AtlasLocator& atlasLocator) { int plotIdx = atlasLocator.plotIndex(); int pageIdx = atlasLocator.pageIndex(); if (this->find(pageIdx, plotIdx)) { return false; } this->set(pageIdx, plotIdx); return true; } void reset() { fPlotsToUpdate.reset(); memset(fPlotAlreadyUpdated, 0, sizeof(fPlotAlreadyUpdated)); } struct PlotData { PlotData(int pageIdx, int plotIdx) : fPageIndex(pageIdx), fPlotIndex(plotIdx) {} uint32_t fPageIndex; uint32_t fPlotIndex; }; private: bool find(int pageIdx, int index) const { SkASSERT(index < kMaxPlots); return (fPlotAlreadyUpdated[pageIdx] >> index) & 1; } void set(int pageIdx, int index) { SkASSERT(!this->find(pageIdx, index)); fPlotAlreadyUpdated[pageIdx] |= (1 << index); fPlotsToUpdate.push_back(PlotData(pageIdx, index)); } inline static constexpr int kMinItems = 4; SkSTArray fPlotsToUpdate; uint32_t fPlotAlreadyUpdated[kMaxMultitexturePages]; // TODO: increase this to uint64_t // to allow more plots per page friend class GrDrawOpAtlas; }; void setLastUseTokenBulk(const BulkUseTokenUpdater& updater, GrDeferredUploadToken token) { int count = updater.fPlotsToUpdate.count(); for (int i = 0; i < count; i++) { const BulkUseTokenUpdater::PlotData& pd = updater.fPlotsToUpdate[i]; // it's possible we've added a plot to the updater and subsequently the plot's page // was deleted -- so we check to prevent a crash if (pd.fPageIndex < fNumActivePages) { Plot* plot = fPages[pd.fPageIndex].fPlotArray[pd.fPlotIndex].get(); this->makeMRU(plot, pd.fPageIndex); plot->setLastUseToken(token); } } } #ifdef SK_ENABLE_SMALL_PAGE void setRadicalsCompactFlag(bool isRadicals) { fUseRadicalsCompact = isRadicals; } #endif void compact(GrDeferredUploadToken startTokenForNextFlush); void instantiate(GrOnFlushResourceProvider*); uint32_t maxPages() const { return fMaxPages; } int numAllocated_TestingOnly() const; void setMaxPages_TestingOnly(uint32_t maxPages); private: GrDrawOpAtlas(GrProxyProvider*, const GrBackendFormat& format, GrColorType, int width, int height, int plotWidth, int plotHeight, GenerationCounter* generationCounter, #ifdef SK_ENABLE_SMALL_PAGE AllowMultitexturing allowMultitexturing, int atlasPageNum); #else AllowMultitexturing allowMultitexturing); #endif /** * The backing GrTexture for a GrDrawOpAtlas is broken into a spatial grid of Plots. The Plots * keep track of subimage placement via their GrRectanizer. A Plot manages the lifetime of its * data using two tokens, a last use token and a last upload token. Once a Plot is "full" (i.e. * there is no room for the new subimage according to the GrRectanizer), it can no longer be * used unless the last use of the Plot has already been flushed through to the gpu. */ class Plot : public SkRefCnt { SK_DECLARE_INTERNAL_LLIST_INTERFACE(Plot); public: uint32_t pageIndex() const { return fPageIndex; } /** plotIndex() is a unique id for the plot relative to the owning GrAtlas and page. */ uint32_t plotIndex() const { return fPlotIndex; } /** * genID() is incremented when the plot is evicted due to a atlas spill. It is used to know * if a particular subimage is still present in the atlas. */ uint64_t genID() const { return fGenID; } PlotLocator plotLocator() const { SkASSERT(fPlotLocator.isValid()); return fPlotLocator; } SkDEBUGCODE(size_t bpp() const { return fBytesPerPixel; }) bool addSubImage(int width, int height, const void* image, AtlasLocator* atlasLocator); /** * To manage the lifetime of a plot, we use two tokens. We use the last upload token to * know when we can 'piggy back' uploads, i.e. if the last upload hasn't been flushed to * the gpu, we don't need to issue a new upload even if we update the cpu backing store. We * use lastUse to determine when we can evict a plot from the cache, i.e. if the last use * has already flushed through the gpu then we can reuse the plot. */ GrDeferredUploadToken lastUploadToken() const { return fLastUpload; } GrDeferredUploadToken lastUseToken() const { return fLastUse; } void setLastUploadToken(GrDeferredUploadToken token) { fLastUpload = token; } void setLastUseToken(GrDeferredUploadToken token) { fLastUse = token; } void uploadToTexture(GrDeferredTextureUploadWritePixelsFn&, GrTextureProxy*); void resetRects(); int flushesSinceLastUsed() { return fFlushesSinceLastUse; } void resetFlushesSinceLastUsed() { fFlushesSinceLastUse = 0; } void incFlushesSinceLastUsed() { fFlushesSinceLastUse++; } private: Plot(int pageIndex, int plotIndex, GenerationCounter* generationCounter, int offX, int offY, int width, int height, GrColorType colorType); ~Plot() override; /** * Create a clone of this plot. The cloned plot will take the place of the current plot in * the atlas */ Plot* clone() const { return new Plot( fPageIndex, fPlotIndex, fGenerationCounter, fX, fY, fWidth, fHeight, fColorType); } GrDeferredUploadToken fLastUpload; GrDeferredUploadToken fLastUse; // the number of flushes since this plot has been last used int fFlushesSinceLastUse; struct { const uint32_t fPageIndex : 16; const uint32_t fPlotIndex : 16; }; GenerationCounter* const fGenerationCounter; uint64_t fGenID; PlotLocator fPlotLocator; unsigned char* fData; const int fWidth; const int fHeight; const int fX; const int fY; GrRectanizerSkyline fRectanizer; const SkIPoint16 fOffset; // the offset of the plot in the backing texture const GrColorType fColorType; const size_t fBytesPerPixel; SkIRect fDirtyRect; SkDEBUGCODE(bool fDirty); friend class GrDrawOpAtlas; using INHERITED = SkRefCnt; }; typedef SkTInternalLList PlotList; inline bool updatePlot(GrDeferredUploadTarget*, AtlasLocator*, Plot*); inline void makeMRU(Plot* plot, int pageIdx) { if (fPages[pageIdx].fPlotList.head() == plot) { return; } fPages[pageIdx].fPlotList.remove(plot); fPages[pageIdx].fPlotList.addToHead(plot); // No MRU update for pages -- since we will always try to add from // the front and remove from the back there is no need for MRU. } bool uploadToPage(unsigned int pageIdx, GrDeferredUploadTarget*, int width, int height, const void* image, AtlasLocator*); bool createPages(GrProxyProvider*, GenerationCounter*); bool activateNewPage(GrResourceProvider*); void deactivateLastPage(); #ifdef SK_ENABLE_SMALL_PAGE void compactRadicals(GrDeferredUploadToken startTokenForNextFlush); #endif void processEviction(PlotLocator); inline void processEvictionAndResetRects(Plot* plot) { this->processEviction(plot->plotLocator()); plot->resetRects(); } GrBackendFormat fFormat; GrColorType fColorType; int fTextureWidth; int fTextureHeight; int fPlotWidth; int fPlotHeight; unsigned int fNumPlots; GenerationCounter* const fGenerationCounter; uint64_t fAtlasGeneration; // nextTokenToFlush() value at the end of the previous flush GrDeferredUploadToken fPrevFlushToken; // the number of flushes since this atlas has been last used int fFlushesSinceLastUse; std::vector fEvictionCallbacks; struct Page { // allocated array of Plots std::unique_ptr[]> fPlotArray; // LRU list of Plots (MRU at head - LRU at tail) PlotList fPlotList; }; // proxies kept separate to make it easier to pass them up to client GrSurfaceProxyView fViews[kMaxMultitexturePages]; Page fPages[kMaxMultitexturePages]; uint32_t fMaxPages; uint32_t fNumActivePages; #ifdef SK_ENABLE_SMALL_PAGE bool fUseRadicalsCompact = false; #endif SkDEBUGCODE(void validate(const AtlasLocator& atlasLocator) const;) }; // There are three atlases (A8, 565, ARGB) that are kept in relation with one another. In // general, the A8 dimensions are 2x the 565 and ARGB dimensions with the constraint that an atlas // size will always contain at least one plot. Since the ARGB atlas takes the most space, its // dimensions are used to size the other two atlases. class GrDrawOpAtlasConfig { public: // The capabilities of the GPU define maxTextureSize. The client provides maxBytes, and this // represents the largest they want a single atlas texture to be. Due to multitexturing, we // may expand temporarily to use more space as needed. GrDrawOpAtlasConfig(int maxTextureSize, size_t maxBytes); // For testing only - make minimum sized atlases -- a single plot for ARGB, four for A8 GrDrawOpAtlasConfig() : GrDrawOpAtlasConfig(kMaxAtlasDim, 0) {} SkISize atlasDimensions(GrMaskFormat type) const; SkISize plotDimensions(GrMaskFormat type) const; #ifdef SK_ENABLE_SMALL_PAGE SkISize getARGBDimensions(){ return fARGBDimensions; } int resetAsSmallPage(); #endif private: // On some systems texture coordinates are represented using half-precision floating point, // which limits the largest atlas dimensions to 2048x2048. // For simplicity we'll use this constraint for all of our atlas textures. // This can be revisited later if we need larger atlases. inline static constexpr int kMaxAtlasDim = 2048; SkISize fARGBDimensions; int fMaxTextureSize; }; #endif