/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef tessellate_MiddleOutPolygonTriangulator_DEFINED #define tessellate_MiddleOutPolygonTriangulator_DEFINED #include "include/core/SkPath.h" #include "include/core/SkPoint.h" #include "include/private/SkTemplates.h" #include "src/core/SkMathPriv.h" #include "src/core/SkPathPriv.h" #include namespace skgpu { // This class generates a middle-out triangulation of a polygon. Conceptually, middle-out emits one // large triangle with vertices on both endpoints and a middle point, then recurses on both sides of // the new triangle. i.e.: // // void emit_middle_out_triangulation(int startIdx, int endIdx) { // if (startIdx + 1 == endIdx) { // return; // } // int middleIdx = startIdx + SkNextPow2(endIdx - startIdx) / 2; // // // Recurse on the left half. // emit_middle_out_triangulation(startIdx, middleIdx); // // // Emit a large triangle with vertices on both endpoints and a middle point. // emit_triangle(vertices[startIdx], vertices[middleIdx], vertices[endIdx - 1]); // // // Recurse on the right half. // emit_middle_out_triangulation(middleIdx, endIdx); // } // // Middle-out produces drastically less work for the rasterizer as compared a linear triangle strip // or fan. // // This class is designed to not know or store all the vertices in the polygon at once. The caller // pushes each vertex in linear order (perhaps while parsing a path), then rather than relying on // recursion, we manipulate an O(log N) stack to determine the correct middle-out triangulation. class MiddleOutPolygonTriangulator { private: // Internal representation of how we store vertices on our stack. struct StackVertex { SkPoint fPoint; // How many polygon vertices away is this vertex from the previous vertex on the stack? // i.e., the ith stack element's vertex index in the original polygon is: // // fVertexStack[i].fVertexIdxDelta + fVertexStack[i - 1].fVertexIdxDelta + ... + // fVertexStack[1].fVertexIdxDelta. // // NOTE: fVertexStack[0].fVertexIdxDelta always == 0. int fVertexIdxDelta; }; public: // RAII. This class is designed to first allow the caller to iterate the triangles that will be // popped off our stack, and then (during the destructor) it actually pops the finished vertices // and pushes a new one. Example usage: // // for (auto [p0, p1, p2] : middleOut.pushVertex(pt)) { // vertexWriter << p0 << p1 << p2; // } // // The above code iterates over the triangles being popped, and then once iteration is finished, // the PoppedTriangleStack is destroyed, triggering the pending stack update. class PoppedTriangleStack { public: PoppedTriangleStack(MiddleOutPolygonTriangulator* middleOut, SkPoint lastPoint, StackVertex* end, StackVertex* newTopVertex, StackVertex newTopValue) : fMiddleOut(middleOut) , fLastPoint(lastPoint) , fEnd(end) , fNewTopVertex(newTopVertex) , fNewTopValue(newTopValue) { } PoppedTriangleStack(PoppedTriangleStack&& that) { memcpy(this, &that, sizeof(*this)); that.fMiddleOut = nullptr; // Don't do a stack update during our destructor. } ~PoppedTriangleStack() { if (fMiddleOut) { fMiddleOut->fTop = fNewTopVertex; *fNewTopVertex = fNewTopValue; } } struct Iter { bool operator!=(const Iter& iter) { return fVertex != iter.fVertex; } void operator++() { --fVertex; } std::tuple operator*() { return {fVertex[-1].fPoint, fVertex[0].fPoint, fLastPoint}; } StackVertex* fVertex; SkPoint fLastPoint; }; Iter begin() const { return {fMiddleOut ? fMiddleOut->fTop : fEnd, fLastPoint}; } Iter end() const { return {fEnd, fLastPoint}; } private: MiddleOutPolygonTriangulator* fMiddleOut; SkPoint fLastPoint; StackVertex* fEnd; StackVertex* fNewTopVertex; StackVertex fNewTopValue; }; // maxPushVertexCalls is an upper bound on the number of times the caller will call // pushVertex(). The caller must not call it more times than this. (Beware of int overflow.) MiddleOutPolygonTriangulator(int maxPushVertexCalls, SkPoint startPoint = {0,0}) { SkASSERT(maxPushVertexCalls >= 0); // Determine the deepest our stack can ever go. int maxStackDepth = SkNextLog2(maxPushVertexCalls) + 1; if (maxStackDepth > kStackPreallocCount) { fVertexStack.reset(maxStackDepth); } SkDEBUGCODE(fStackAllocCount = maxStackDepth;) // The stack will always contain a starting point. This is an implicit moveTo(0, 0) // initially, but will be overridden if moveTo() gets called before adding geometry. fVertexStack[0] = {startPoint, 0}; fTop = fVertexStack; } // Returns an RAII object that first allows the caller to iterate the triangles we will pop, // pops those triangles, and finally pushes 'pt' onto the vertex stack. SK_WARN_UNUSED_RESULT PoppedTriangleStack pushVertex(SkPoint pt) { // Our topology wants triangles that have the same vertexIdxDelta on both sides: // e.g., a run of 9 points should be triangulated as: // // [0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8] // vertexIdxDelta == 1 // [0, 2, 4], [4, 6, 8] // vertexIdxDelta == 2 // [0, 4, 8] // vertexIdxDelta == 4 // // Find as many new triangles as we can pop off the stack that have equal-delta sides. (This // is a stack-based implementation of the recursive example method from the class comment.) StackVertex* endVertex = fTop; int vertexIdxDelta = 1; while (endVertex->fVertexIdxDelta == vertexIdxDelta) { --endVertex; vertexIdxDelta *= 2; } // Once the above triangles are popped, push 'pt' to the top of the stack. StackVertex* newTopVertex = endVertex + 1; StackVertex newTopValue = {pt, vertexIdxDelta}; SkASSERT(newTopVertex < fVertexStack + fStackAllocCount); // Is fStackAllocCount enough? return PoppedTriangleStack(this, pt, endVertex, newTopVertex, newTopValue); } // Returns an RAII object that first allows the caller to iterate the remaining triangles, then // resets the vertex stack with newStartPoint. SK_WARN_UNUSED_RESULT PoppedTriangleStack closeAndMove(SkPoint newStartPoint) { // Add an implicit line back to the starting point. SkPoint startPt = fVertexStack[0].fPoint; // Triangulate the rest of the polygon. Since we simply have to finish now, we can't be // picky anymore about getting a pure middle-out topology. StackVertex* endVertex = std::min(fTop, fVertexStack + 1); // Once every remaining triangle is popped, reset the vertex stack with newStartPoint. StackVertex* newTopVertex = fVertexStack; StackVertex newTopValue = {newStartPoint, 0}; return PoppedTriangleStack(this, startPt, endVertex, newTopVertex, newTopValue); } // Returns an RAII object that first allows the caller to iterate the remaining triangles, then // resets the vertex stack with the same starting point as it had before. SK_WARN_UNUSED_RESULT PoppedTriangleStack close() { return this->closeAndMove(fVertexStack[0].fPoint); } private: constexpr static int kStackPreallocCount = 32; SkAutoSTMalloc fVertexStack; SkDEBUGCODE(int fStackAllocCount;) StackVertex* fTop; }; // This is a helper class that transforms and pushes a path's inner fan vertices onto a // MiddleOutPolygonTriangulator. Example usage: // // for (PathMiddleOutFanIter it(pathMatrix, path); !it.done();) { // for (auto [p0, p1, p2] : it.nextStack()) { // vertexWriter << p0 << p1 << p2; // } // } // class PathMiddleOutFanIter { public: PathMiddleOutFanIter(const SkPath& path) : fMiddleOut(path.countVerbs()) { SkPathPriv::Iterate it(path); fPathIter = it.begin(); fPathEnd = it.end(); } bool done() const { return fDone; } MiddleOutPolygonTriangulator::PoppedTriangleStack nextStack() { SkASSERT(!fDone); if (fPathIter == fPathEnd) { fDone = true; return fMiddleOut.close(); } switch (auto [verb, pts, w] = *fPathIter++; verb) { SkPoint pt; case SkPathVerb::kMove: return fMiddleOut.closeAndMove(pts[0]); case SkPathVerb::kLine: case SkPathVerb::kQuad: case SkPathVerb::kConic: case SkPathVerb::kCubic: pt = pts[SkPathPriv::PtsInIter((unsigned)verb) - 1]; return fMiddleOut.pushVertex(pt); case SkPathVerb::kClose: return fMiddleOut.close(); } SkUNREACHABLE; } private: MiddleOutPolygonTriangulator fMiddleOut; SkPathPriv::RangeIter fPathIter; SkPathPriv::RangeIter fPathEnd; bool fDone = false; }; } // namespace skgpu #endif // tessellate_MiddleOutPolygonTriangulator_DEFINED