/* * Copyright 2020 Google LLC. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/tessellate/shaders/GrStrokeTessellationShader.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLVarying.h" #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" #include "src/gpu/tessellate/WangsFormula.h" void GrStrokeTessellationShader::HardwareImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { const auto& shader = args.fGeomProc.cast(); auto* uniHandler = args.fUniformHandler; auto* v = args.fVertBuilder; args.fVaryingHandler->emitAttributes(shader); v->defineConstant("float", "PI", "3.141592653589793238"); // The vertex shader chops the curve into 3 sections in order to meet our tessellation // requirements. The stroke tessellator does not allow curve sections to inflect or to rotate // more than 180 degrees. // // We start by chopping at inflections (if the curve has any), or else at midtangent. If we // still don't have 3 sections after that then we just subdivide uniformly in parametric space. using TypeModifier = GrShaderVar::TypeModifier; v->defineConstantf("float", "kParametricEpsilon", "1.0 / (%i * 128)", args.fShaderCaps->maxTessellationSegments()); // 1/128 of a segment. // [numSegmentsInJoin, innerJoinRadiusMultiplier, prevJoinTangent.xy] v->declareGlobal(GrShaderVar("vsJoinArgs0", kFloat4_GrSLType, TypeModifier::Out)); // [radsPerJoinSegment, joinOutsetClamp.xy] v->declareGlobal(GrShaderVar("vsJoinArgs1", kFloat3_GrSLType, TypeModifier::Out)); // Curve args. v->declareGlobal(GrShaderVar("vsPts01", kFloat4_GrSLType, TypeModifier::Out)); v->declareGlobal(GrShaderVar("vsPts23", kFloat4_GrSLType, TypeModifier::Out)); v->declareGlobal(GrShaderVar("vsPts45", kFloat4_GrSLType, TypeModifier::Out)); v->declareGlobal(GrShaderVar("vsPts67", kFloat4_GrSLType, TypeModifier::Out)); v->declareGlobal(GrShaderVar("vsPts89", kFloat4_GrSLType, TypeModifier::Out)); v->declareGlobal(GrShaderVar("vsTans01", kFloat4_GrSLType, TypeModifier::Out)); v->declareGlobal(GrShaderVar("vsTans23", kFloat4_GrSLType, TypeModifier::Out)); if (shader.hasDynamicStroke()) { // [NUM_RADIAL_SEGMENTS_PER_RADIAN, STROKE_RADIUS] v->declareGlobal(GrShaderVar("vsStrokeArgs", kFloat2_GrSLType, TypeModifier::Out)); } if (shader.hasDynamicColor()) { v->declareGlobal(GrShaderVar("vsColor", kHalf4_GrSLType, TypeModifier::Out)); } v->insertFunction(kCosineBetweenVectorsFn); v->insertFunction(kMiterExtentFn); v->insertFunction(kUncheckedMixFn); if (shader.hasDynamicStroke()) { v->insertFunction(kNumRadialSegmentsPerRadianFn); } if (!shader.hasDynamicStroke()) { // [PARAMETRIC_PRECISION, NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS] const char* tessArgsName; fTessControlArgsUniform = uniHandler->addUniform(nullptr, kVertex_GrShaderFlag | kTessControl_GrShaderFlag | kTessEvaluation_GrShaderFlag, kFloat4_GrSLType, "tessArgs", &tessArgsName); v->codeAppendf(R"( float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.y; float JOIN_TYPE = %s.z;)", tessArgsName, tessArgsName); } else { const char* parametricPrecisionName; fTessControlArgsUniform = uniHandler->addUniform(nullptr, kVertex_GrShaderFlag | kTessControl_GrShaderFlag | kTessEvaluation_GrShaderFlag, kFloat_GrSLType, "parametricPrecision", ¶metricPrecisionName); v->codeAppendf(R"( float STROKE_RADIUS = dynamicStrokeAttr.x; float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian(%s,STROKE_RADIUS); float JOIN_TYPE = dynamicStrokeAttr.y;)", parametricPrecisionName); } fTranslateUniform = uniHandler->addUniform(nullptr, kTessEvaluation_GrShaderFlag, kFloat2_GrSLType, "translate", nullptr); // View matrix uniforms. const char* affineMatrixName; // Hairlines apply the affine matrix in their vertex shader, prior to tessellation. // Otherwise the entire view matrix gets applied at the end of the tess eval shader. auto affineMatrixVisibility = kTessEvaluation_GrShaderFlag; if (shader.stroke().isHairlineStyle()) { affineMatrixVisibility |= kVertex_GrShaderFlag; } fAffineMatrixUniform = uniHandler->addUniform(nullptr, affineMatrixVisibility, kFloat4_GrSLType, "affineMatrix", &affineMatrixName); if (affineMatrixVisibility & kVertex_GrShaderFlag) { v->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s);\n", affineMatrixName); } v->codeAppend(R"( // Unpack the control points. float2 prevControlPoint = prevCtrlPtAttr; float4x2 P = float4x2(pts01Attr.xy, pts01Attr.zw, pts23Attr.xy, pts23Attr.zw);)"); if (shader.stroke().isHairlineStyle()) { // Hairline case. Transform the points before tessellation. We can still hold off on the // translate until the end; we just need to perform the scale and skew right now. v->codeAppend(R"( P = AFFINE_MATRIX * P; if (isinf(pts23Attr.w)) { // If y3 is infinity then x3 is a conic weight. Don't transform. P[3] = pts23Attr.zw; } prevControlPoint = AFFINE_MATRIX * prevControlPoint;)"); } v->codeAppend(R"( // Find the tangents. It's imperative that we compute these tangents from the original // (pre-chopping) input points or else the seams might crack. float2 prevJoinTangent = P[0] - prevControlPoint; float2 tan0 = ((P[1] == P[0]) ? P[2] : P[1]) - P[0]; float2 tan1 = (P[3] == P[2] || isinf(P[3].y)) ? P[2] - P[1] : P[3] - P[2]; if (tan0 == float2(0)) { // [p0, p0, p0, p3] is a reserved pattern that means this patch is a "bowtie". P[3] = P[0]; // Colocate all the points on the center of the bowtie. // Use the final curve section to draw the bowtie. Since the points are colocated, this // curve will register as a line, which overrides innerTangents as [tan0, tan0]. That // disables the first two sections of the curve because their tangents and points are all // equal. tan0 = prevJoinTangent; prevJoinTangent = float2(0); // Disable the join section. } if (tan1 == float2(0)) { // [p0, p3, p3, p3] is a reserved pattern that means this patch is a join only. Colocate all // the curve's points to ensure it gets disabled by the tessellation stages. P[1] = P[2] = P[3] = P[0]; // Since the points are colocated, this curve will register as a line, which overrides // innerTangents as [tan0, tan0]. Setting tan1=tan0 as well results in all tangents and all // points being equal, which disables every section of the curve. tan1 = tan0; } // Calculate the number of segments to chop the join into. float cosTheta = cosine_between_vectors(prevJoinTangent, tan0); float joinRotation = (cosTheta == 1) ? 0 : acos(cosTheta); if (cross(prevJoinTangent, tan0) < 0) { joinRotation = -joinRotation; } float joinRadialSegments = abs(joinRotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN; float numSegmentsInJoin = (joinRadialSegments != 0 /*Is the join non-empty?*/ && JOIN_TYPE >= 0 /*Is the join not a round type?*/) ? sign(JOIN_TYPE) + 1 // Non-empty bevel joins have 1 segment and miters have 2. : ceil(joinRadialSegments); // Otherwise round up the number of radial segments. // Extends the middle join edge to the miter point. float innerJoinRadiusMultiplier = 1; if (JOIN_TYPE > 0 /*Is the join a miter type?*/) { innerJoinRadiusMultiplier = miter_extent(cosTheta, JOIN_TYPE/*miterLimit*/); } // Clamps join geometry to the exterior side of the junction. float2 joinOutsetClamp = float2(-1, 1); if (joinRadialSegments > .1 /*Does the join rotate more than 1/10 of a segment?*/) { // Only clamp if the join angle is large enough to guarantee there won't be cracks on // the interior side of the junction. joinOutsetClamp = (joinRotation < 0) ? float2(-1, 0) : float2(0, 1); } // Pack join args for the tessellation control stage. vsJoinArgs0 = float4(numSegmentsInJoin, innerJoinRadiusMultiplier, prevJoinTangent); vsJoinArgs1 = float3(joinRotation / numSegmentsInJoin, joinOutsetClamp); // Now find where to chop the curve so the resulting sub-curves are convex and do not rotate // more than 180 degrees. We don't need to worry about cusps because the caller chops those out // on the CPU. Start by finding the cubic's power basis coefficients. These define the bezier // curve as: // // |T^3| // Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0 // |. . .| |T | // // And the tangent direction (scaled by a uniform 1/3) will be: // // |T^2| // Tangent_Direction(T) = dx,dy = |A 2B C| * |T | // |. . .| |1 | // float2 C = P[1] - P[0]; float2 D = P[2] - P[1]; float2 E = P[3] - P[0]; float2 B = D - C; float2 A = fma(float2(-3), D, E); // Now find the cubic's inflection function. There are inflections where F' x F'' == 0. // We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0. // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf // NOTE: We only need the roots, so a uniform scale factor does not affect the solution. float a = cross(A, B); float b = cross(A, C); float c = cross(B, C); float b_over_2 = b*.5; float discr_over_4 = b_over_2*b_over_2 - a*c; float2x2 innerTangents = float2x2(0); if (discr_over_4 <= 0) { // The curve does not inflect. This means it might rotate more than 180 degrees instead. // Craft a quadratic whose roots are the points were rotation == 180 deg and 0. (These are // the points where the tangent is parallel to tan0.) // // Tangent_Direction(T) x tan0 == 0 // (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0 // (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]] // bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]] // // NOTE: When P0 == P1 then C != tan0, C == 0 and these roots will be undefined. But that's // ok because when P0 == P1 the curve cannot rotate more than 180 degrees anyway. a = b; b_over_2 = c; c = 0; discr_over_4 = b_over_2*b_over_2; innerTangents[0] = -C; } // Solve our quadratic equation for the chop points. This is inspired by the quadratic formula // from Numerical Recipes in C. float q = sqrt(discr_over_4); if (b_over_2 > 0) { q = -q; } q -= b_over_2; float2 chopT = float2((a != 0) ? q/a : 0, (q != 0) ? c/q : 0); // Reposition any chop points that fall outside ~0..1 and clear their innerTangent. int numOutside = 0; if (chopT[0] <= kParametricEpsilon || chopT[0] >= 1 - kParametricEpsilon) { innerTangents[0] = float2(0); ++numOutside; } if (chopT[1] <= kParametricEpsilon || chopT[1] >= 1 - kParametricEpsilon) { // Swap places with chopT[0]. This ensures chopT[0] is outside when numOutside > 0. chopT = chopT.ts; innerTangents = float2x2(0,0, innerTangents[0]); ++numOutside; } if (numOutside == 2) { chopT[1] = 2/3.0; } if (numOutside >= 1) { chopT[0] = (chopT[1] <= .5) ? chopT[1] * .5 : fma(chopT[1], .5, .5); } // Sort the chop points. if (chopT[0] > chopT[1]) { chopT = chopT.ts; innerTangents = float2x2(innerTangents[1], innerTangents[0]); } // If the curve is a straight line, point, or conic, don't chop it into sections after all. if ((P[0] == P[1] && P[2] == P[3]) || isinf(P[3].y)) { chopT = float2(0); innerTangents = float2x2(tan0, tan0); } // Chop the curve at chopT[0] and chopT[1]. float4 ab = unchecked_mix(P[0].xyxy, P[1].xyxy, chopT.sstt); float4 bc = unchecked_mix(P[1].xyxy, P[2].xyxy, chopT.sstt); float4 cd = isinf(P[3].y) ? P[2].xyxy : unchecked_mix(P[2].xyxy, P[3].xyxy, chopT.sstt); float4 abc = unchecked_mix(ab, bc, chopT.sstt); float4 bcd = unchecked_mix(bc, cd, chopT.sstt); float4 abcd = unchecked_mix(abc, bcd, chopT.sstt); float4 middle = unchecked_mix(abc, bcd, chopT.ttss); // Find tangents at the chop points if an inner tangent wasn't specified. if (innerTangents[0] == float2(0)) { innerTangents[0] = bcd.xy - abc.xy; } if (innerTangents[1] == float2(0)) { innerTangents[1] = bcd.zw - abc.zw; } // Pack curve args for the tessellation control stage. vsPts01 = float4(P[0], ab.xy); vsPts23 = float4(abc.xy, abcd.xy); vsPts45 = middle; vsPts67 = float4(abcd.zw, bcd.zw); vsPts89 = float4(cd.zw, P[3]); vsTans01 = float4(tan0, innerTangents[0]); vsTans23 = float4(innerTangents[1], tan1);)"); if (shader.hasDynamicStroke()) { v->codeAppend(R"( vsStrokeArgs = float2(NUM_RADIAL_SEGMENTS_PER_RADIAN, STROKE_RADIUS);)"); } if (shader.hasDynamicColor()) { v->codeAppend(R"( vsColor = dynamicColorAttr;)"); } if (shader.hasDynamicColor()) { // Color gets passed in from the tess evaluation shader. fDynamicColorName = "dynamicColor"; SkString flatness(args.fShaderCaps->preferFlatInterpolation() ? "flat" : ""); args.fFragBuilder->declareGlobal(GrShaderVar(fDynamicColorName, kHalf4_GrSLType, TypeModifier::In, 0, SkString(), flatness)); } this->emitFragmentCode(shader, args); } SkString GrStrokeTessellationShader::HardwareImpl::getTessControlShaderGLSL( const GrGeometryProcessor& geomProc, const char* versionAndExtensionDecls, const GrGLSLUniformHandler& uniformHandler, const GrShaderCaps& shaderCaps) const { const auto& shader = geomProc.cast(); SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kHardwareTessellation); SkString code(versionAndExtensionDecls); // Run 3 invocations: 1 for each section that the vertex shader chopped the curve into. code.append("layout(vertices = 3) out;\n"); code.appendf("precision highp float;\n"); code.appendf("#define float2 vec2\n"); code.appendf("#define float3 vec3\n"); code.appendf("#define float4 vec4\n"); code.appendf("#define float2x2 mat2\n"); code.appendf("#define float3x2 mat3x2\n"); code.appendf("#define float4x2 mat4x2\n"); code.appendf("#define PI 3.141592653589793238\n"); code.appendf("#define MAX_TESSELLATION_SEGMENTS %i.0\n", shaderCaps.maxTessellationSegments()); code.appendf("#define cross cross2d\n"); // GLSL already has a function named "cross". const char* tessArgsName = uniformHandler.getUniformCStr(fTessControlArgsUniform); if (!shader.hasDynamicStroke()) { code.appendf("uniform vec4 %s;\n", tessArgsName); code.appendf("#define PARAMETRIC_PRECISION %s.x\n", tessArgsName); code.appendf("#define NUM_RADIAL_SEGMENTS_PER_RADIAN %s.y\n", tessArgsName); } else { code.appendf("uniform float %s;\n", tessArgsName); code.appendf("#define PARAMETRIC_PRECISION %s\n", tessArgsName); code.appendf("#define NUM_RADIAL_SEGMENTS_PER_RADIAN vsStrokeArgs[0].x\n"); } code.append(skgpu::wangs_formula::as_sksl()); code.append(kCosineBetweenVectorsFn); code.append(kMiterExtentFn); code.append(R"( float cross2d(vec2 a, vec2 b) { return determinant(mat2(a,b)); })"); code.append(R"( in vec4 vsJoinArgs0[]; in vec3 vsJoinArgs1[]; in vec4 vsPts01[]; in vec4 vsPts23[]; in vec4 vsPts45[]; in vec4 vsPts67[]; in vec4 vsPts89[]; in vec4 vsTans01[]; in vec4 vsTans23[];)"); if (shader.hasDynamicStroke()) { code.append(R"( in vec2 vsStrokeArgs[];)"); } if (shader.hasDynamicColor()) { code.append(R"( in mediump vec4 vsColor[];)"); } code.append(R"( out vec4 tcsPts01[]; out vec4 tcsPt2Tan0[]; out vec3 tcsTessArgs[]; // [numCombinedSegments, numParametricSegments, radsPerSegment] patch out vec4 tcsJoinArgs0; // [numSegmentsInJoin, innerJoinRadiusMultiplier, // prevJoinTangent.xy] patch out vec3 tcsJoinArgs1; // [radsPerJoinSegment, joinOutsetClamp.xy] patch out vec4 tcsEndPtEndTan;)"); if (shader.hasDynamicStroke()) { code.append(R"( patch out float tcsStrokeRadius;)"); } if (shader.hasDynamicColor()) { code.append(R"( patch out mediump vec4 tcsColor;)"); } code.append(R"( void main() { // Forward join args to the evaluation stage. tcsJoinArgs0 = vsJoinArgs0[0]; tcsJoinArgs1 = vsJoinArgs1[0];)"); if (shader.hasDynamicStroke()) { code.append(R"( tcsStrokeRadius = vsStrokeArgs[0].y;)"); } if (shader.hasDynamicColor()) { code.append(R"( tcsColor = vsColor[0];)"); } code.append(R"( // Unpack the curve args from the vertex shader. mat4x2 P; mat2 tangents; if (gl_InvocationID == 0) { // This is the first section of the curve. P = mat4x2(vsPts01[0], vsPts23[0]); tangents = mat2(vsTans01[0]); } else if (gl_InvocationID == 1) { // This is the middle section of the curve. P = mat4x2(vsPts23[0].zw, vsPts45[0], vsPts67[0].xy); tangents = mat2(vsTans01[0].zw, vsTans23[0].xy); } else { // This is the final section of the curve. P = mat4x2(vsPts67[0], vsPts89[0]); tangents = mat2(vsTans23[0]); } // Calculate the number of parametric segments. The final tessellated strip will be a // composition of these parametric segments as well as radial segments. float w = isinf(P[3].y) ? P[3].x : -1.0; // w<0 means the curve is an integral cubic. float numParametricSegments; if (w < 0.0) { numParametricSegments = wangs_formula_cubic(PARAMETRIC_PRECISION, P[0], P[1], P[2], P[3], mat2(1)); } else { numParametricSegments = wangs_formula_conic(PARAMETRIC_PRECISION, P[0], P[1], P[2], w); } if (P[0] == P[1] && P[2] == P[3]) { // This is how the patch builder articulates lineTos but Wang's formula returns // >>1 segment in this scenario. Assign 1 parametric segment. numParametricSegments = 1.0; } // Determine the curve's total rotation. The vertex shader ensures our curve does not rotate // more than 180 degrees or inflect, so the inverse cosine has enough range. float cosTheta = cosine_between_vectors(tangents[0], tangents[1]); float rotation = acos(cosTheta); // Adjust sign of rotation to match the direction the curve turns. // NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5). // NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1) float turn = isinf(P[3].y) ? cross2d(P[1] - P[0], P[2] - P[1]) : cross2d(P[2] - P[0], P[3] - P[1]); if (turn == 0.0) { // This is the case for joins and cusps where points are co-located. turn = determinant(tangents); } if (turn < 0.0) { rotation = -rotation; } // Calculate the number of evenly spaced radial segments to chop this section of the curve // into. Radial segments divide the curve's rotation into even steps. The final tessellated // strip will be a composition of both parametric and radial segments. float numRadialSegments = abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN; numRadialSegments = max(ceil(numRadialSegments), 1.0); // The first and last edges are shared by both the parametric and radial sets of edges, so // the total number of edges is: // // numCombinedEdges = numParametricEdges + numRadialEdges - 2 // // It's also important to differentiate between the number of edges and segments in a strip: // // numCombinedSegments = numCombinedEdges - 1 // // So the total number of segments in the combined strip is: // // numCombinedSegments = numParametricEdges + numRadialEdges - 2 - 1 // = numParametricSegments + 1 + numRadialSegments + 1 - 2 - 1 // = numParametricSegments + numRadialSegments - 1 // float numCombinedSegments = numParametricSegments + numRadialSegments - 1.0; if (P[0] == P[3] && tangents[0] == tangents[1]) { // The vertex shader intentionally disabled our section. Set numCombinedSegments to 0. numCombinedSegments = 0.0; } // Pack the args for the evaluation stage. tcsPts01[gl_InvocationID] = vec4(P[0], P[1]); tcsPt2Tan0[gl_InvocationID] = vec4(P[2], tangents[0]); tcsTessArgs[gl_InvocationID] = vec3(numCombinedSegments, numParametricSegments, rotation / numRadialSegments); if (gl_InvocationID == 2) { tcsEndPtEndTan = vec4(P[3], tangents[1]); } barrier(); // Tessellate a quad strip with enough segments for the join plus all 3 curve sections // combined. float numTotalCombinedSegments = tcsJoinArgs0.x + tcsTessArgs[0].x + tcsTessArgs[1].x + tcsTessArgs[2].x; if (tcsJoinArgs0.x != 0.0 && tcsJoinArgs0.x != numTotalCombinedSegments) { // We are tessellating a quad strip with both a single-sided join and a double-sided // stroke. Add one more edge to the join. This new edge will fall parallel with the // first edge of the stroke, eliminating artifacts on the transition from single // sided to double. ++tcsJoinArgs0.x; ++numTotalCombinedSegments; } numTotalCombinedSegments = min(numTotalCombinedSegments, MAX_TESSELLATION_SEGMENTS); gl_TessLevelInner[0] = numTotalCombinedSegments; gl_TessLevelInner[1] = 2.0; gl_TessLevelOuter[0] = 2.0; gl_TessLevelOuter[1] = numTotalCombinedSegments; gl_TessLevelOuter[2] = 2.0; gl_TessLevelOuter[3] = numTotalCombinedSegments; })"); return code; } SkString GrStrokeTessellationShader::HardwareImpl::getTessEvaluationShaderGLSL( const GrGeometryProcessor& geomProc, const char* versionAndExtensionDecls, const GrGLSLUniformHandler& uniformHandler, const GrShaderCaps& shaderCaps) const { const auto& shader = geomProc.cast(); SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kHardwareTessellation); SkString code(versionAndExtensionDecls); code.append("layout(quads, equal_spacing, ccw) in;\n"); code.appendf("precision highp float;\n"); code.appendf("#define float2 vec2\n"); code.appendf("#define float3 vec3\n"); code.appendf("#define float4 vec4\n"); code.appendf("#define float2x2 mat2\n"); code.appendf("#define float3x2 mat3x2\n"); code.appendf("#define float4x2 mat4x2\n"); code.appendf("#define PI 3.141592653589793238\n"); if (!shader.hasDynamicStroke()) { const char* tessArgsName = uniformHandler.getUniformCStr(fTessControlArgsUniform); code.appendf("uniform vec4 %s;\n", tessArgsName); code.appendf("#define STROKE_RADIUS %s.w\n", tessArgsName); } else { code.appendf("#define STROKE_RADIUS tcsStrokeRadius\n"); } const char* translateName = uniformHandler.getUniformCStr(fTranslateUniform); code.appendf("uniform vec2 %s;\n", translateName); code.appendf("#define TRANSLATE %s\n", translateName); const char* affineMatrixName = uniformHandler.getUniformCStr(fAffineMatrixUniform); code.appendf("uniform vec4 %s;\n", affineMatrixName); code.appendf("#define AFFINE_MATRIX mat2(%s)\n", affineMatrixName); code.append(R"( in vec4 tcsPts01[]; in vec4 tcsPt2Tan0[]; in vec3 tcsTessArgs[]; // [numCombinedSegments, numParametricSegments, radsPerSegment] patch in vec4 tcsJoinArgs0; // [numSegmentsInJoin, innerJoinRadiusMultiplier, // prevJoinTangent.xy] patch in vec3 tcsJoinArgs1; // [radsPerJoinSegment, joinOutsetClamp.xy] patch in vec4 tcsEndPtEndTan;)"); if (shader.hasDynamicStroke()) { code.append(R"( patch in float tcsStrokeRadius;)"); } if (shader.hasDynamicColor()) { code.appendf(R"( patch in mediump vec4 tcsColor; %s out mediump vec4 %s;)", shaderCaps.preferFlatInterpolation() ? "flat" : "", fDynamicColorName.c_str()); } code.append(R"( uniform vec4 sk_RTAdjust;)"); code.append(kUncheckedMixFn); code.append(R"( void main() { // Our patch is composed of exactly "numTotalCombinedSegments + 1" stroke-width edges that // run orthogonal to the curve and make a strip of "numTotalCombinedSegments" quads. // Determine which discrete edge belongs to this invocation. An edge can either come from a // parametric segment or a radial one. float numSegmentsInJoin = tcsJoinArgs0.x; float numTotalCombinedSegments = numSegmentsInJoin + tcsTessArgs[0].x + tcsTessArgs[1].x + tcsTessArgs[2].x; float combinedEdgeID = round(gl_TessCoord.x * numTotalCombinedSegments); float strokeOutset = gl_TessCoord.y * 2.0 - 1.0; // Furthermore, the vertex shader may have chopped the curve into 3 different sections. // Determine which section we belong to, and where we fall relative to its first edge. float2 p0, p1, p2, p3; vec2 tan0; float numParametricSegments, radsPerSegment; if (combinedEdgeID < numSegmentsInJoin || numSegmentsInJoin == numTotalCombinedSegments) { // Our edge belongs to the join preceding the curve. p3 = p2 = p1 = p0 = tcsPts01[0].xy; tan0 = tcsJoinArgs0.zw; numParametricSegments = 1; radsPerSegment = tcsJoinArgs1.x; strokeOutset = clamp(strokeOutset, tcsJoinArgs1.y, tcsJoinArgs1.z); strokeOutset *= (combinedEdgeID == 1.0) ? tcsJoinArgs0.y : 1.0; } else if ((combinedEdgeID -= numSegmentsInJoin) < tcsTessArgs[0].x) { // Our edge belongs to the first curve section. p0=tcsPts01[0].xy, p1=tcsPts01[0].zw, p2=tcsPt2Tan0[0].xy, p3=tcsPts01[1].xy; tan0 = tcsPt2Tan0[0].zw; numParametricSegments = tcsTessArgs[0].y; radsPerSegment = tcsTessArgs[0].z; } else if ((combinedEdgeID -= tcsTessArgs[0].x) < tcsTessArgs[1].x) { // Our edge belongs to the second curve section. p0=tcsPts01[1].xy, p1=tcsPts01[1].zw, p2=tcsPt2Tan0[1].xy, p3=tcsPts01[2].xy; tan0 = tcsPt2Tan0[1].zw; numParametricSegments = tcsTessArgs[1].y; radsPerSegment = tcsTessArgs[1].z; } else { // Our edge belongs to the third curve section. combinedEdgeID -= tcsTessArgs[1].x; p0=tcsPts01[2].xy, p1=tcsPts01[2].zw, p2=tcsPt2Tan0[2].xy, p3=tcsEndPtEndTan.xy; tan0 = tcsPt2Tan0[2].zw; numParametricSegments = tcsTessArgs[2].y; radsPerSegment = tcsTessArgs[2].z; } float2 tan1 = tcsEndPtEndTan.zw; bool isFinalEdge = (gl_TessCoord.x == 1); float w = -1.0; // w<0 means the curve is an integral cubic. if (isinf(p3.y)) { w = p3.x; // The curve is actually a conic. p3 = p2; // Setting p3 equal to p2 works for the remaining rotational logic. })"); GrGPArgs gpArgs; this->emitTessellationCode(shader, &code, &gpArgs, shaderCaps); // Manually map the position to OpenGL clip space, since we are generating raw GLSL. code.appendf(R"( gl_Position = vec4(%s * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);)", gpArgs.fPositionVar.c_str()); if (shader.hasDynamicColor()) { // Pass color on to the fragment shader. code.appendf(R"( %s = tcsColor;)", fDynamicColorName.c_str()); } code.append(R"( })"); return code; }