/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/codegen/SkSLSPIRVCodeGenerator.h" #include "src/sksl/GLSL.std.450.h" #include "include/sksl/DSLCore.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLOperators.h" #include "src/sksl/SkSLThreadContext.h" #include "src/sksl/ir/SkSLBinaryExpression.h" #include "src/sksl/ir/SkSLBlock.h" #include "src/sksl/ir/SkSLConstructorArrayCast.h" #include "src/sksl/ir/SkSLConstructorCompound.h" #include "src/sksl/ir/SkSLConstructorCompoundCast.h" #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" #include "src/sksl/ir/SkSLConstructorMatrixResize.h" #include "src/sksl/ir/SkSLConstructorScalarCast.h" #include "src/sksl/ir/SkSLConstructorSplat.h" #include "src/sksl/ir/SkSLDoStatement.h" #include "src/sksl/ir/SkSLExpressionStatement.h" #include "src/sksl/ir/SkSLExtension.h" #include "src/sksl/ir/SkSLField.h" #include "src/sksl/ir/SkSLFieldAccess.h" #include "src/sksl/ir/SkSLForStatement.h" #include "src/sksl/ir/SkSLFunctionCall.h" #include "src/sksl/ir/SkSLFunctionDeclaration.h" #include "src/sksl/ir/SkSLFunctionDefinition.h" #include "src/sksl/ir/SkSLIfStatement.h" #include "src/sksl/ir/SkSLIndexExpression.h" #include "src/sksl/ir/SkSLInterfaceBlock.h" #include "src/sksl/ir/SkSLPostfixExpression.h" #include "src/sksl/ir/SkSLPrefixExpression.h" #include "src/sksl/ir/SkSLReturnStatement.h" #include "src/sksl/ir/SkSLSwitchStatement.h" #include "src/sksl/ir/SkSLSwizzle.h" #include "src/sksl/ir/SkSLTernaryExpression.h" #include "src/sksl/ir/SkSLVarDeclarations.h" #include "src/sksl/ir/SkSLVariableReference.h" #ifdef SK_VULKAN #include "src/gpu/vk/GrVkCaps.h" #endif #define kLast_Capability SpvCapabilityMultiViewport constexpr int DEVICE_FRAGCOORDS_BUILTIN = -1000; constexpr int DEVICE_CLOCKWISE_BUILTIN = -1001; namespace SkSL { // Skia's magic number is 31 and goes in the top 16 bits. We can use the lower bits to version the // sksl generator if we want. // https://github.com/KhronosGroup/SPIRV-Headers/blob/master/include/spirv/spir-v.xml#L84 static const int32_t SKSL_MAGIC = 0x001F0000; void SPIRVCodeGenerator::setupIntrinsics() { #define ALL_GLSL(x) std::make_tuple(kGLSL_STD_450_IntrinsicOpcodeKind, GLSLstd450 ## x, \ GLSLstd450 ## x, GLSLstd450 ## x, GLSLstd450 ## x) #define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) std::make_tuple(kGLSL_STD_450_IntrinsicOpcodeKind, \ GLSLstd450 ## ifFloat, \ GLSLstd450 ## ifInt, \ GLSLstd450 ## ifUInt, \ SpvOpUndef) #define ALL_SPIRV(x) std::make_tuple(kSPIRV_IntrinsicOpcodeKind, \ SpvOp ## x, SpvOp ## x, SpvOp ## x, SpvOp ## x) #define SPECIAL(x) std::make_tuple(kSpecial_IntrinsicOpcodeKind, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic) fIntrinsicMap[k_round_IntrinsicKind] = ALL_GLSL(Round); fIntrinsicMap[k_roundEven_IntrinsicKind] = ALL_GLSL(RoundEven); fIntrinsicMap[k_trunc_IntrinsicKind] = ALL_GLSL(Trunc); fIntrinsicMap[k_abs_IntrinsicKind] = BY_TYPE_GLSL(FAbs, SAbs, SAbs); fIntrinsicMap[k_sign_IntrinsicKind] = BY_TYPE_GLSL(FSign, SSign, SSign); fIntrinsicMap[k_floor_IntrinsicKind] = ALL_GLSL(Floor); fIntrinsicMap[k_ceil_IntrinsicKind] = ALL_GLSL(Ceil); fIntrinsicMap[k_fract_IntrinsicKind] = ALL_GLSL(Fract); fIntrinsicMap[k_radians_IntrinsicKind] = ALL_GLSL(Radians); fIntrinsicMap[k_degrees_IntrinsicKind] = ALL_GLSL(Degrees); fIntrinsicMap[k_sin_IntrinsicKind] = ALL_GLSL(Sin); fIntrinsicMap[k_cos_IntrinsicKind] = ALL_GLSL(Cos); fIntrinsicMap[k_tan_IntrinsicKind] = ALL_GLSL(Tan); fIntrinsicMap[k_asin_IntrinsicKind] = ALL_GLSL(Asin); fIntrinsicMap[k_acos_IntrinsicKind] = ALL_GLSL(Acos); fIntrinsicMap[k_atan_IntrinsicKind] = SPECIAL(Atan); fIntrinsicMap[k_sinh_IntrinsicKind] = ALL_GLSL(Sinh); fIntrinsicMap[k_cosh_IntrinsicKind] = ALL_GLSL(Cosh); fIntrinsicMap[k_tanh_IntrinsicKind] = ALL_GLSL(Tanh); fIntrinsicMap[k_asinh_IntrinsicKind] = ALL_GLSL(Asinh); fIntrinsicMap[k_acosh_IntrinsicKind] = ALL_GLSL(Acosh); fIntrinsicMap[k_atanh_IntrinsicKind] = ALL_GLSL(Atanh); fIntrinsicMap[k_pow_IntrinsicKind] = ALL_GLSL(Pow); fIntrinsicMap[k_exp_IntrinsicKind] = ALL_GLSL(Exp); fIntrinsicMap[k_log_IntrinsicKind] = ALL_GLSL(Log); fIntrinsicMap[k_exp2_IntrinsicKind] = ALL_GLSL(Exp2); fIntrinsicMap[k_log2_IntrinsicKind] = ALL_GLSL(Log2); fIntrinsicMap[k_sqrt_IntrinsicKind] = ALL_GLSL(Sqrt); fIntrinsicMap[k_inverse_IntrinsicKind] = ALL_GLSL(MatrixInverse); fIntrinsicMap[k_outerProduct_IntrinsicKind] = ALL_SPIRV(OuterProduct); fIntrinsicMap[k_transpose_IntrinsicKind] = ALL_SPIRV(Transpose); fIntrinsicMap[k_isinf_IntrinsicKind] = ALL_SPIRV(IsInf); fIntrinsicMap[k_isnan_IntrinsicKind] = ALL_SPIRV(IsNan); fIntrinsicMap[k_inversesqrt_IntrinsicKind] = ALL_GLSL(InverseSqrt); fIntrinsicMap[k_determinant_IntrinsicKind] = ALL_GLSL(Determinant); fIntrinsicMap[k_matrixCompMult_IntrinsicKind] = SPECIAL(MatrixCompMult); fIntrinsicMap[k_matrixInverse_IntrinsicKind] = ALL_GLSL(MatrixInverse); fIntrinsicMap[k_mod_IntrinsicKind] = SPECIAL(Mod); fIntrinsicMap[k_modf_IntrinsicKind] = ALL_GLSL(Modf); fIntrinsicMap[k_min_IntrinsicKind] = SPECIAL(Min); fIntrinsicMap[k_max_IntrinsicKind] = SPECIAL(Max); fIntrinsicMap[k_clamp_IntrinsicKind] = SPECIAL(Clamp); fIntrinsicMap[k_saturate_IntrinsicKind] = SPECIAL(Saturate); fIntrinsicMap[k_dot_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpDot, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap[k_mix_IntrinsicKind] = SPECIAL(Mix); fIntrinsicMap[k_step_IntrinsicKind] = SPECIAL(Step); fIntrinsicMap[k_smoothstep_IntrinsicKind] = SPECIAL(SmoothStep); fIntrinsicMap[k_fma_IntrinsicKind] = ALL_GLSL(Fma); fIntrinsicMap[k_frexp_IntrinsicKind] = ALL_GLSL(Frexp); fIntrinsicMap[k_ldexp_IntrinsicKind] = ALL_GLSL(Ldexp); #define PACK(type) fIntrinsicMap[k_pack##type##_IntrinsicKind] = ALL_GLSL(Pack##type); \ fIntrinsicMap[k_unpack##type##_IntrinsicKind] = ALL_GLSL(Unpack##type) PACK(Snorm4x8); PACK(Unorm4x8); PACK(Snorm2x16); PACK(Unorm2x16); PACK(Half2x16); PACK(Double2x32); #undef PACK fIntrinsicMap[k_length_IntrinsicKind] = ALL_GLSL(Length); fIntrinsicMap[k_distance_IntrinsicKind] = ALL_GLSL(Distance); fIntrinsicMap[k_cross_IntrinsicKind] = ALL_GLSL(Cross); fIntrinsicMap[k_normalize_IntrinsicKind] = ALL_GLSL(Normalize); fIntrinsicMap[k_faceforward_IntrinsicKind] = ALL_GLSL(FaceForward); fIntrinsicMap[k_reflect_IntrinsicKind] = ALL_GLSL(Reflect); fIntrinsicMap[k_refract_IntrinsicKind] = ALL_GLSL(Refract); fIntrinsicMap[k_bitCount_IntrinsicKind] = ALL_SPIRV(BitCount); fIntrinsicMap[k_findLSB_IntrinsicKind] = ALL_GLSL(FindILsb); fIntrinsicMap[k_findMSB_IntrinsicKind] = BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb); fIntrinsicMap[k_dFdx_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpDPdx, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap[k_dFdy_IntrinsicKind] = SPECIAL(DFdy); fIntrinsicMap[k_fwidth_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFwidth, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap[k_makeSampler2D_IntrinsicKind] = SPECIAL(SampledImage); fIntrinsicMap[k_sample_IntrinsicKind] = SPECIAL(Texture); fIntrinsicMap[k_subpassLoad_IntrinsicKind] = SPECIAL(SubpassLoad); fIntrinsicMap[k_floatBitsToInt_IntrinsicKind] = ALL_SPIRV(Bitcast); fIntrinsicMap[k_floatBitsToUint_IntrinsicKind] = ALL_SPIRV(Bitcast); fIntrinsicMap[k_intBitsToFloat_IntrinsicKind] = ALL_SPIRV(Bitcast); fIntrinsicMap[k_uintBitsToFloat_IntrinsicKind] = ALL_SPIRV(Bitcast); fIntrinsicMap[k_any_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOpAny); fIntrinsicMap[k_all_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOpAll); fIntrinsicMap[k_not_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOpLogicalNot); fIntrinsicMap[k_equal_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual); fIntrinsicMap[k_notEqual_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual); fIntrinsicMap[k_lessThan_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef); fIntrinsicMap[k_lessThanEqual_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef); fIntrinsicMap[k_greaterThan_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef); fIntrinsicMap[k_greaterThanEqual_IntrinsicKind] = std::make_tuple(kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef); // interpolateAt* not yet supported... } void SPIRVCodeGenerator::writeWord(int32_t word, OutputStream& out) { out.write((const char*) &word, sizeof(word)); } static bool is_float(const Context& context, const Type& type) { return (type.isScalar() || type.isVector() || type.isMatrix()) && type.componentType().isFloat(); } static bool is_signed(const Context& context, const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isSigned(); } static bool is_unsigned(const Context& context, const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isUnsigned(); } static bool is_bool(const Context& context, const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isBoolean(); } static bool is_out(const Modifiers& m) { return (m.fFlags & Modifiers::kOut_Flag) != 0; } static bool is_in(const Modifiers& m) { switch (m.fFlags & (Modifiers::kOut_Flag | Modifiers::kIn_Flag)) { case Modifiers::kOut_Flag: // out return false; case 0: // implicit in case Modifiers::kIn_Flag: // explicit in case Modifiers::kOut_Flag | Modifiers::kIn_Flag: // inout return true; default: SkUNREACHABLE; } } void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, OutputStream& out) { SkASSERT(opCode != SpvOpLoad || &out != &fConstantBuffer); SkASSERT(opCode != SpvOpUndef); switch (opCode) { case SpvOpReturn: // fall through case SpvOpReturnValue: // fall through case SpvOpKill: // fall through case SpvOpSwitch: // fall through case SpvOpBranch: // fall through case SpvOpBranchConditional: if (fCurrentBlock == 0) { // We just encountered dead code--instructions that don't have an associated block. // Synthesize a label if this happens; this is necessary to satisfy the validator. this->writeLabel(this->nextId(nullptr), out); } fCurrentBlock = 0; break; case SpvOpConstant: // fall through case SpvOpConstantTrue: // fall through case SpvOpConstantFalse: // fall through case SpvOpConstantComposite: // fall through case SpvOpTypeVoid: // fall through case SpvOpTypeInt: // fall through case SpvOpTypeFloat: // fall through case SpvOpTypeBool: // fall through case SpvOpTypeVector: // fall through case SpvOpTypeMatrix: // fall through case SpvOpTypeArray: // fall through case SpvOpTypePointer: // fall through case SpvOpTypeFunction: // fall through case SpvOpTypeRuntimeArray: // fall through case SpvOpTypeStruct: // fall through case SpvOpTypeImage: // fall through case SpvOpTypeSampledImage: // fall through case SpvOpTypeSampler: // fall through case SpvOpVariable: // fall through case SpvOpFunction: // fall through case SpvOpFunctionParameter: // fall through case SpvOpFunctionEnd: // fall through case SpvOpExecutionMode: // fall through case SpvOpMemoryModel: // fall through case SpvOpCapability: // fall through case SpvOpExtInstImport: // fall through case SpvOpEntryPoint: // fall through case SpvOpSource: // fall through case SpvOpSourceExtension: // fall through case SpvOpName: // fall through case SpvOpMemberName: // fall through case SpvOpDecorate: // fall through case SpvOpMemberDecorate: break; default: // We may find ourselves with dead code--instructions that don't have an associated // block. This should be a rare event, but if it happens, synthesize a label; this is // necessary to satisfy the validator. if (fCurrentBlock == 0) { this->writeLabel(this->nextId(nullptr), out); } break; } this->writeWord((length << 16) | opCode, out); } void SPIRVCodeGenerator::writeLabel(SpvId label, OutputStream& out) { SkASSERT(!fCurrentBlock); fCurrentBlock = label; this->writeInstruction(SpvOpLabel, label, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, OutputStream& out) { this->writeOpCode(opCode, 1, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out) { this->writeOpCode(opCode, 2, out); this->writeWord(word1, out); } void SPIRVCodeGenerator::writeString(skstd::string_view s, OutputStream& out) { out.write(s.data(), s.length()); switch (s.length() % 4) { case 1: out.write8(0); [[fallthrough]]; case 2: out.write8(0); [[fallthrough]]; case 3: out.write8(0); break; default: this->writeWord(0, out); break; } } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, skstd::string_view string, OutputStream& out) { this->writeOpCode(opCode, 1 + (string.length() + 4) / 4, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, skstd::string_view string, OutputStream& out) { this->writeOpCode(opCode, 2 + (string.length() + 4) / 4, out); this->writeWord(word1, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, skstd::string_view string, OutputStream& out) { this->writeOpCode(opCode, 3 + (string.length() + 4) / 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, OutputStream& out) { this->writeOpCode(opCode, 3, out); this->writeWord(word1, out); this->writeWord(word2, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, OutputStream& out) { this->writeOpCode(opCode, 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, OutputStream& out) { this->writeOpCode(opCode, 5, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, OutputStream& out) { this->writeOpCode(opCode, 6, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, OutputStream& out) { this->writeOpCode(opCode, 7, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, OutputStream& out) { this->writeOpCode(opCode, 8, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, int32_t word8, OutputStream& out) { this->writeOpCode(opCode, 9, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); this->writeWord(word8, out); } void SPIRVCodeGenerator::writeCapabilities(OutputStream& out) { for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) { if (fCapabilities & bit) { this->writeInstruction(SpvOpCapability, (SpvId) i, out); } } this->writeInstruction(SpvOpCapability, SpvCapabilityShader, out); } SpvId SPIRVCodeGenerator::nextId(const Type* type) { return this->nextId(type && type->hasPrecision() && !type->highPrecision() ? Precision::kRelaxed : Precision::kDefault); } SpvId SPIRVCodeGenerator::nextId(Precision precision) { if (precision == Precision::kRelaxed && !fProgram.fConfig->fSettings.fForceHighPrecision) { this->writeInstruction(SpvOpDecorate, fIdCount, SpvDecorationRelaxedPrecision, fDecorationBuffer); } return fIdCount++; } void SPIRVCodeGenerator::writeStruct(const Type& type, const MemoryLayout& memoryLayout, SpvId resultId) { this->writeInstruction(SpvOpName, resultId, String(type.name()).c_str(), fNameBuffer); // go ahead and write all of the field types, so we don't inadvertently write them while we're // in the middle of writing the struct instruction std::vector types; for (const auto& f : type.fields()) { types.push_back(this->getType(*f.fType, memoryLayout)); } this->writeOpCode(SpvOpTypeStruct, 2 + (int32_t) types.size(), fConstantBuffer); this->writeWord(resultId, fConstantBuffer); for (SpvId id : types) { this->writeWord(id, fConstantBuffer); } size_t offset = 0; for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) { const Type::Field& field = type.fields()[i]; if (!MemoryLayout::LayoutIsSupported(*field.fType)) { fContext.fErrors->error(type.fLine, "type '" + field.fType->name() + "' is not permitted here"); return; } size_t size = memoryLayout.size(*field.fType); size_t alignment = memoryLayout.alignment(*field.fType); const Layout& fieldLayout = field.fModifiers.fLayout; if (fieldLayout.fOffset >= 0) { if (fieldLayout.fOffset < (int) offset) { fContext.fErrors->error(type.fLine, "offset of field '" + field.fName + "' must be at " "least " + to_string((int) offset)); } if (fieldLayout.fOffset % alignment) { fContext.fErrors->error(type.fLine, "offset of field '" + field.fName + "' must be a multiple" " of " + to_string((int) alignment)); } offset = fieldLayout.fOffset; } else { size_t mod = offset % alignment; if (mod) { offset += alignment - mod; } } this->writeInstruction(SpvOpMemberName, resultId, i, field.fName, fNameBuffer); this->writeLayout(fieldLayout, resultId, i); if (field.fModifiers.fLayout.fBuiltin < 0) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset, (SpvId) offset, fDecorationBuffer); } if (field.fType->isMatrix()) { this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor, fDecorationBuffer); this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride, (SpvId) memoryLayout.stride(*field.fType), fDecorationBuffer); } if (!field.fType->highPrecision()) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationRelaxedPrecision, fDecorationBuffer); } offset += size; if ((field.fType->isArray() || field.fType->isStruct()) && offset % alignment != 0) { offset += alignment - offset % alignment; } } } const Type& SPIRVCodeGenerator::getActualType(const Type& type) { if (type.isFloat()) { return *fContext.fTypes.fFloat; } if (type.isSigned()) { return *fContext.fTypes.fInt; } if (type.isUnsigned()) { return *fContext.fTypes.fUInt; } if (type.isMatrix() || type.isVector()) { if (type.componentType() == *fContext.fTypes.fHalf) { return fContext.fTypes.fFloat->toCompound(fContext, type.columns(), type.rows()); } if (type.componentType() == *fContext.fTypes.fShort) { return fContext.fTypes.fInt->toCompound(fContext, type.columns(), type.rows()); } if (type.componentType() == *fContext.fTypes.fUShort) { return fContext.fTypes.fUInt->toCompound(fContext, type.columns(), type.rows()); } } return type; } SpvId SPIRVCodeGenerator::getType(const Type& type) { return this->getType(type, fDefaultLayout); } SpvId SPIRVCodeGenerator::getType(const Type& rawType, const MemoryLayout& layout) { const Type* type; std::unique_ptr arrayType; String arrayName; if (rawType.isArray()) { // For arrays, we need to synthesize a temporary Array type using the "actual" component // type. That is, if `short[10]` is passed in, we need to synthesize a `int[10]` Type. // Otherwise, we can end up with two different SpvIds for the same array type. const Type& component = this->getActualType(rawType.componentType()); arrayName = component.getArrayName(rawType.columns()); arrayType = Type::MakeArrayType(arrayName, component, rawType.columns()); type = arrayType.get(); } else { // For non-array types, we can simply look up the "actual" type and use it. type = &this->getActualType(rawType); } String key(type->name()); if (type->isStruct() || type->isArray()) { key += to_string((int)layout.fStd); #ifdef SK_DEBUG SkASSERT(layout.fStd == MemoryLayout::Standard::k140_Standard || layout.fStd == MemoryLayout::Standard::k430_Standard); MemoryLayout::Standard otherStd = layout.fStd == MemoryLayout::Standard::k140_Standard ? MemoryLayout::Standard::k430_Standard : MemoryLayout::Standard::k140_Standard; String otherKey = type->name() + to_string((int)otherStd); SkASSERT(fTypeMap.find(otherKey) == fTypeMap.end()); #endif } auto entry = fTypeMap.find(key); if (entry == fTypeMap.end()) { SpvId result = this->nextId(nullptr); switch (type->typeKind()) { case Type::TypeKind::kScalar: if (type->isBoolean()) { this->writeInstruction(SpvOpTypeBool, result, fConstantBuffer); } else if (type->isSigned()) { this->writeInstruction(SpvOpTypeInt, result, 32, 1, fConstantBuffer); } else if (type->isUnsigned()) { this->writeInstruction(SpvOpTypeInt, result, 32, 0, fConstantBuffer); } else if (type->isFloat()) { this->writeInstruction(SpvOpTypeFloat, result, 32, fConstantBuffer); } else { SkDEBUGFAILF("unrecognized scalar type '%s'", type->description().c_str()); } break; case Type::TypeKind::kVector: this->writeInstruction(SpvOpTypeVector, result, this->getType(type->componentType(), layout), type->columns(), fConstantBuffer); break; case Type::TypeKind::kMatrix: this->writeInstruction( SpvOpTypeMatrix, result, this->getType(IndexExpression::IndexType(fContext, *type), layout), type->columns(), fConstantBuffer); break; case Type::TypeKind::kStruct: this->writeStruct(*type, layout, result); break; case Type::TypeKind::kArray: { if (!MemoryLayout::LayoutIsSupported(*type)) { fContext.fErrors->error(type->fLine, "type '" + type->name() + "' is not permitted here"); return this->nextId(nullptr); } if (type->columns() > 0) { SpvId typeId = this->getType(type->componentType(), layout); SpvId countId = this->writeLiteral(type->columns(), *fContext.fTypes.fInt); this->writeInstruction(SpvOpTypeArray, result, typeId, countId, fConstantBuffer); this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride, (int32_t) layout.stride(*type), fDecorationBuffer); } else { // We shouldn't have any runtime-sized arrays right now fContext.fErrors->error(type->fLine, "runtime-sized arrays are not supported in SPIR-V"); this->writeInstruction(SpvOpTypeRuntimeArray, result, this->getType(type->componentType(), layout), fConstantBuffer); this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride, (int32_t) layout.stride(*type), fDecorationBuffer); } break; } case Type::TypeKind::kSampler: { SpvId image = result; if (SpvDimSubpassData != type->dimensions()) { image = this->getType(type->textureType(), layout); } if (SpvDimBuffer == type->dimensions()) { fCapabilities |= (((uint64_t) 1) << SpvCapabilitySampledBuffer); } if (SpvDimSubpassData != type->dimensions()) { this->writeInstruction(SpvOpTypeSampledImage, result, image, fConstantBuffer); } break; } case Type::TypeKind::kSeparateSampler: { this->writeInstruction(SpvOpTypeSampler, result, fConstantBuffer); break; } case Type::TypeKind::kTexture: { this->writeInstruction(SpvOpTypeImage, result, this->getType(*fContext.fTypes.fFloat, layout), type->dimensions(), type->isDepth(), type->isArrayedTexture(), type->isMultisampled(), type->isSampled() ? 1 : 2, SpvImageFormatUnknown, fConstantBuffer); fImageTypeMap[key] = result; break; } default: if (type->isVoid()) { this->writeInstruction(SpvOpTypeVoid, result, fConstantBuffer); } else { SkDEBUGFAILF("invalid type: %s", type->description().c_str()); } break; } fTypeMap[key] = result; return result; } return entry->second; } SpvId SPIRVCodeGenerator::getImageType(const Type& type) { SkASSERT(type.typeKind() == Type::TypeKind::kSampler); this->getType(type); String key = type.name() + to_string((int) fDefaultLayout.fStd); SkASSERT(fImageTypeMap.find(key) != fImageTypeMap.end()); return fImageTypeMap[key]; } SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) { String key = to_string(this->getType(function.returnType())) + "("; String separator; const std::vector& parameters = function.parameters(); for (size_t i = 0; i < parameters.size(); i++) { key += separator; separator = ", "; key += to_string(this->getType(parameters[i]->type())); } key += ")"; auto entry = fTypeMap.find(key); if (entry == fTypeMap.end()) { SpvId result = this->nextId(nullptr); int32_t length = 3 + (int32_t) parameters.size(); SpvId returnType = this->getType(function.returnType()); std::vector parameterTypes; for (size_t i = 0; i < parameters.size(); i++) { // glslang seems to treat all function arguments as pointers whether they need to be or // not. I was initially puzzled by this until I ran bizarre failures with certain // patterns of function calls and control constructs, as exemplified by this minimal // failure case: // // void sphere(float x) { // } // // void map() { // sphere(1.0); // } // // void main() { // for (int i = 0; i < 1; i++) { // map(); // } // } // // As of this writing, compiling this in the "obvious" way (with sphere taking a float) // crashes. Making it take a float* and storing the argument in a temporary variable, // as glslang does, fixes it. It's entirely possible I simply missed whichever part of // the spec makes this make sense. parameterTypes.push_back(this->getPointerType(parameters[i]->type(), SpvStorageClassFunction)); } this->writeOpCode(SpvOpTypeFunction, length, fConstantBuffer); this->writeWord(result, fConstantBuffer); this->writeWord(returnType, fConstantBuffer); for (SpvId id : parameterTypes) { this->writeWord(id, fConstantBuffer); } fTypeMap[key] = result; return result; } return entry->second; } SpvId SPIRVCodeGenerator::getPointerType(const Type& type, SpvStorageClass_ storageClass) { return this->getPointerType(type, fDefaultLayout, storageClass); } SpvId SPIRVCodeGenerator::getPointerType(const Type& rawType, const MemoryLayout& layout, SpvStorageClass_ storageClass) { const Type& type = this->getActualType(rawType); String key = type.displayName() + "*" + to_string(layout.fStd) + to_string(storageClass); auto entry = fTypeMap.find(key); if (entry == fTypeMap.end()) { SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpTypePointer, result, storageClass, this->getType(type), fConstantBuffer); fTypeMap[key] = result; return result; } return entry->second; } SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, OutputStream& out) { switch (expr.kind()) { case Expression::Kind::kBinary: return this->writeBinaryExpression(expr.as(), out); case Expression::Kind::kConstructorArrayCast: return this->writeExpression(*expr.as().argument(), out); case Expression::Kind::kConstructorArray: case Expression::Kind::kConstructorStruct: return this->writeCompositeConstructor(expr.asAnyConstructor(), out); case Expression::Kind::kConstructorDiagonalMatrix: return this->writeConstructorDiagonalMatrix(expr.as(), out); case Expression::Kind::kConstructorMatrixResize: return this->writeConstructorMatrixResize(expr.as(), out); case Expression::Kind::kConstructorScalarCast: return this->writeConstructorScalarCast(expr.as(), out); case Expression::Kind::kConstructorSplat: return this->writeConstructorSplat(expr.as(), out); case Expression::Kind::kConstructorCompound: return this->writeConstructorCompound(expr.as(), out); case Expression::Kind::kConstructorCompoundCast: return this->writeConstructorCompoundCast(expr.as(), out); case Expression::Kind::kFieldAccess: return this->writeFieldAccess(expr.as(), out); case Expression::Kind::kFunctionCall: return this->writeFunctionCall(expr.as(), out); case Expression::Kind::kLiteral: return this->writeLiteral(expr.as()); case Expression::Kind::kPrefix: return this->writePrefixExpression(expr.as(), out); case Expression::Kind::kPostfix: return this->writePostfixExpression(expr.as(), out); case Expression::Kind::kSwizzle: return this->writeSwizzle(expr.as(), out); case Expression::Kind::kVariableReference: return this->writeVariableReference(expr.as(), out); case Expression::Kind::kTernary: return this->writeTernaryExpression(expr.as(), out); case Expression::Kind::kIndex: return this->writeIndexExpression(expr.as(), out); default: SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); break; } return -1; } SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, OutputStream& out) { const FunctionDeclaration& function = c.function(); auto intrinsic = fIntrinsicMap.find(function.intrinsicKind()); if (intrinsic == fIntrinsicMap.end()) { fContext.fErrors->error(c.fLine, "unsupported intrinsic '" + function.description() + "'"); return -1; } int32_t intrinsicId; const ExpressionArray& arguments = c.arguments(); if (arguments.size() > 0) { const Type& type = arguments[0]->type(); if (std::get<0>(intrinsic->second) == kSpecial_IntrinsicOpcodeKind || is_float(fContext, type)) { intrinsicId = std::get<1>(intrinsic->second); } else if (is_signed(fContext, type)) { intrinsicId = std::get<2>(intrinsic->second); } else if (is_unsigned(fContext, type)) { intrinsicId = std::get<3>(intrinsic->second); } else if (is_bool(fContext, type)) { intrinsicId = std::get<4>(intrinsic->second); } else { intrinsicId = std::get<1>(intrinsic->second); } } else { intrinsicId = std::get<1>(intrinsic->second); } switch (std::get<0>(intrinsic->second)) { case kGLSL_STD_450_IntrinsicOpcodeKind: { SpvId result = this->nextId(&c.type()); std::vector argumentIds; std::vector tempVars; argumentIds.reserve(arguments.size()); for (size_t i = 0; i < arguments.size(); i++) { if (is_out(function.parameters()[i]->modifiers())) { argumentIds.push_back( this->writeFunctionCallArgument(*arguments[i], function.parameters()[i]->modifiers(), &tempVars, out)); } else { argumentIds.push_back(this->writeExpression(*arguments[i], out)); } } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(intrinsicId, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } this->copyBackTempVars(tempVars, out); return result; } case kSPIRV_IntrinsicOpcodeKind: { // GLSL supports dot(float, float), but SPIR-V does not. Convert it to FMul if (intrinsicId == SpvOpDot && arguments[0]->type().isScalar()) { intrinsicId = SpvOpFMul; } SpvId result = this->nextId(&c.type()); std::vector argumentIds; std::vector tempVars; argumentIds.reserve(arguments.size()); for (size_t i = 0; i < arguments.size(); i++) { if (is_out(function.parameters()[i]->modifiers())) { argumentIds.push_back( this->writeFunctionCallArgument(*arguments[i], function.parameters()[i]->modifiers(), &tempVars, out)); } else { argumentIds.push_back(this->writeExpression(*arguments[i], out)); } } if (!c.type().isVoid()) { this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); } else { this->writeOpCode((SpvOp_) intrinsicId, 1 + (int32_t) arguments.size(), out); } for (SpvId id : argumentIds) { this->writeWord(id, out); } this->copyBackTempVars(tempVars, out); return result; } case kSpecial_IntrinsicOpcodeKind: return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out); default: fContext.fErrors->error(c.fLine, "unsupported intrinsic '" + function.description() + "'"); return -1; } } SpvId SPIRVCodeGenerator::vectorize(const Expression& arg, int vectorSize, OutputStream& out) { SkASSERT(vectorSize >= 1 && vectorSize <= 4); const Type& argType = arg.type(); SpvId raw = this->writeExpression(arg, out); if (argType.isScalar()) { if (vectorSize == 1) { return raw; } SpvId vector = this->nextId(&argType); this->writeOpCode(SpvOpCompositeConstruct, 3 + vectorSize, out); this->writeWord(this->getType(argType.toCompound(fContext, vectorSize, 1)), out); this->writeWord(vector, out); for (int i = 0; i < vectorSize; i++) { this->writeWord(raw, out); } return vector; } else { SkASSERT(vectorSize == argType.columns()); return raw; } } std::vector SPIRVCodeGenerator::vectorize(const ExpressionArray& args, OutputStream& out) { int vectorSize = 1; for (const auto& a : args) { if (a->type().isVector()) { if (vectorSize > 1) { SkASSERT(a->type().columns() == vectorSize); } else { vectorSize = a->type().columns(); } } } std::vector result; result.reserve(args.size()); for (const auto& arg : args) { result.push_back(this->vectorize(*arg, vectorSize, out)); } return result; } void SPIRVCodeGenerator::writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst, SpvId signedInst, SpvId unsignedInst, const std::vector& args, OutputStream& out) { this->writeOpCode(SpvOpExtInst, 5 + args.size(), out); this->writeWord(this->getType(type), out); this->writeWord(id, out); this->writeWord(fGLSLExtendedInstructions, out); if (is_float(fContext, type)) { this->writeWord(floatInst, out); } else if (is_signed(fContext, type)) { this->writeWord(signedInst, out); } else if (is_unsigned(fContext, type)) { this->writeWord(unsignedInst, out); } else { SkASSERT(false); } for (SpvId a : args) { this->writeWord(a, out); } } SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, OutputStream& out) { const ExpressionArray& arguments = c.arguments(); const Type& callType = c.type(); SpvId result = this->nextId(nullptr); switch (kind) { case kAtan_SpecialIntrinsic: { std::vector argumentIds; argumentIds.reserve(arguments.size()); for (const std::unique_ptr& arg : arguments) { argumentIds.push_back(this->writeExpression(*arg, out)); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); this->writeWord(this->getType(callType), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(argumentIds.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } break; } case kSampledImage_SpecialIntrinsic: { SkASSERT(arguments.size() == 2); SpvId img = this->writeExpression(*arguments[0], out); SpvId sampler = this->writeExpression(*arguments[1], out); this->writeInstruction(SpvOpSampledImage, this->getType(callType), result, img, sampler, out); break; } case kSubpassLoad_SpecialIntrinsic: { SpvId img = this->writeExpression(*arguments[0], out); ExpressionArray args; args.reserve_back(2); args.push_back(Literal::MakeInt(fContext, /*line=*/-1, /*value=*/0)); args.push_back(Literal::MakeInt(fContext, /*line=*/-1, /*value=*/0)); ConstructorCompound ctor(/*line=*/-1, *fContext.fTypes.fInt2, std::move(args)); SpvId coords = this->writeConstantVector(ctor); if (arguments.size() == 1) { this->writeInstruction(SpvOpImageRead, this->getType(callType), result, img, coords, out); } else { SkASSERT(arguments.size() == 2); SpvId sample = this->writeExpression(*arguments[1], out); this->writeInstruction(SpvOpImageRead, this->getType(callType), result, img, coords, SpvImageOperandsSampleMask, sample, out); } break; } case kTexture_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleImplicitLod; const Type& arg1Type = arguments[1]->type(); switch (arguments[0]->type().dimensions()) { case SpvDim1D: if (arg1Type == *fContext.fTypes.fFloat2) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type == *fContext.fTypes.fFloat); } break; case SpvDim2D: if (arg1Type == *fContext.fTypes.fFloat3) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type == *fContext.fTypes.fFloat2); } break; case SpvDim3D: if (arg1Type == *fContext.fTypes.fFloat4) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type == *fContext.fTypes.fFloat3); } break; case SpvDimCube: // fall through case SpvDimRect: // fall through case SpvDimBuffer: // fall through case SpvDimSubpassData: break; } SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); if (arguments.size() == 3) { this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsBiasMask, this->writeExpression(*arguments[2], out), out); } else { SkASSERT(arguments.size() == 2); if (fProgram.fConfig->fSettings.fSharpenTextures) { SpvId lodBias = this->writeLiteral(-0.5, *fContext.fTypes.fFloat); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsBiasMask, lodBias, out); } else { this->writeInstruction(op, type, result, sampler, uv, out); } } break; } case kMod_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); const Type& operandType = arguments[0]->type(); SpvOp_ op; if (is_float(fContext, operandType)) { op = SpvOpFMod; } else if (is_signed(fContext, operandType)) { op = SpvOpSMod; } else if (is_unsigned(fContext, operandType)) { op = SpvOpUMod; } else { SkASSERT(false); return 0; } this->writeOpCode(op, 5, out); this->writeWord(this->getType(operandType), out); this->writeWord(result, out); this->writeWord(args[0], out); this->writeWord(args[1], out); break; } case kDFdy_SpecialIntrinsic: { SpvId fn = this->writeExpression(*arguments[0], out); this->writeOpCode(SpvOpDPdy, 4, out); this->writeWord(this->getType(callType), out); this->writeWord(result, out); this->writeWord(fn, out); this->addRTFlipUniform(c.fLine); using namespace dsl; DSLExpression rtFlip(ThreadContext::Compiler().convertIdentifier(/*line=*/-1, SKSL_RTFLIP_NAME)); SpvId rtFlipY = this->vectorize(*rtFlip.y().release(), callType.columns(), out); SpvId flipped = this->nextId(&callType); this->writeInstruction(SpvOpFMul, this->getType(callType), flipped, result, rtFlipY, out); result = flipped; break; } case kClamp_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, GLSLstd450UClamp, args, out); break; } case kMax_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMax, GLSLstd450SMax, GLSLstd450UMax, args, out); break; } case kMin_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMin, GLSLstd450SMin, GLSLstd450UMin, args, out); break; } case kMix_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); if (arguments[2]->type().componentType().isBoolean()) { // Use OpSelect to implement Boolean mix(). SpvId falseId = this->writeExpression(*arguments[0], out); SpvId trueId = this->writeExpression(*arguments[1], out); SpvId conditionId = this->writeExpression(*arguments[2], out); this->writeInstruction(SpvOpSelect, this->getType(arguments[0]->type()), result, conditionId, trueId, falseId, out); } else { this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMix, SpvOpUndef, SpvOpUndef, args, out); } break; } case kSaturate_SpecialIntrinsic: { SkASSERT(arguments.size() == 1); ExpressionArray finalArgs; finalArgs.reserve_back(3); finalArgs.push_back(arguments[0]->clone()); finalArgs.push_back(Literal::MakeFloat(fContext, /*line=*/-1, /*value=*/0)); finalArgs.push_back(Literal::MakeFloat(fContext, /*line=*/-1, /*value=*/1)); std::vector spvArgs = this->vectorize(finalArgs, out); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, GLSLstd450UClamp, spvArgs, out); break; } case kSmoothStep_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450SmoothStep, SpvOpUndef, SpvOpUndef, args, out); break; } case kStep_SpecialIntrinsic: { std::vector args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450Step, SpvOpUndef, SpvOpUndef, args, out); break; } case kMatrixCompMult_SpecialIntrinsic: { SkASSERT(arguments.size() == 2); SpvId lhs = this->writeExpression(*arguments[0], out); SpvId rhs = this->writeExpression(*arguments[1], out); result = this->writeComponentwiseMatrixBinary(callType, lhs, rhs, SpvOpFMul, out); break; } } return result; } SpvId SPIRVCodeGenerator::writeFunctionCallArgument(const Expression& arg, const Modifiers& paramModifiers, std::vector* tempVars, OutputStream& out) { // ID of temporary variable that we will use to hold this argument, or 0 if it is being // passed directly SpvId tmpVar; // if we need a temporary var to store this argument, this is the value to store in the var SpvId tmpValueId = -1; if (is_out(paramModifiers)) { std::unique_ptr lv = this->getLValue(arg, out); SpvId ptr = lv->getPointer(); if (ptr != (SpvId) -1 && lv->isMemoryObjectPointer()) { return ptr; } // lvalue cannot simply be read and written via a pointer (e.g. it's a swizzle). We need to // to use a temp variable. if (is_in(paramModifiers)) { tmpValueId = lv->load(out); } tmpVar = this->nextId(&arg.type()); tempVars->push_back(TempVar{tmpVar, &arg.type(), std::move(lv)}); } else { // See getFunctionType for an explanation of why we're always using pointer parameters. tmpValueId = this->writeExpression(arg, out); tmpVar = this->nextId(nullptr); } this->writeInstruction(SpvOpVariable, this->getPointerType(arg.type(), SpvStorageClassFunction), tmpVar, SpvStorageClassFunction, fVariableBuffer); if (tmpValueId != (SpvId)-1) { this->writeInstruction(SpvOpStore, tmpVar, tmpValueId, out); } return tmpVar; } void SPIRVCodeGenerator::copyBackTempVars(const std::vector& tempVars, OutputStream& out) { for (const TempVar& tempVar : tempVars) { SpvId load = this->nextId(tempVar.type); this->writeInstruction(SpvOpLoad, this->getType(*tempVar.type), load, tempVar.spvId, out); tempVar.lvalue->store(load, out); } } SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, OutputStream& out) { const FunctionDeclaration& function = c.function(); if (function.isIntrinsic() && !function.definition()) { return this->writeIntrinsicCall(c, out); } const ExpressionArray& arguments = c.arguments(); const auto& entry = fFunctionMap.find(&function); if (entry == fFunctionMap.end()) { fContext.fErrors->error(c.fLine, "function '" + function.description() + "' is not defined"); return -1; } // Temp variables are used to write back out-parameters after the function call is complete. std::vector tempVars; std::vector argumentIds; argumentIds.reserve(arguments.size()); for (size_t i = 0; i < arguments.size(); i++) { argumentIds.push_back(this->writeFunctionCallArgument(*arguments[i], function.parameters()[i]->modifiers(), &tempVars, out)); } SpvId result = this->nextId(nullptr); this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); this->writeWord(entry->second, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } // Now that the call is complete, we copy temp out-variables back to their real lvalues. this->copyBackTempVars(tempVars, out); return result; } SpvId SPIRVCodeGenerator::writeConstantVector(const AnyConstructor& c) { const Type& type = c.type(); SkASSERT(type.isVector() && c.isCompileTimeConstant()); // Get each of the constructor components as SPIR-V constants. SPIRVVectorConstant key{this->getType(type), /*fValueId=*/{SpvId(-1), SpvId(-1), SpvId(-1), SpvId(-1)}}; const Type& scalarType = type.componentType(); for (int n = 0; n < type.columns(); n++) { skstd::optional slotVal = c.getConstantValue(n); if (!slotVal.has_value()) { SkDEBUGFAILF("writeConstantVector: %s not actually constant", c.description().c_str()); return (SpvId)-1; } key.fValueId[n] = this->writeLiteral(*slotVal, scalarType); } // Check to see if we've already synthesized this vector constant. auto [iter, newlyCreated] = fVectorConstants.insert({key, (SpvId)-1}); if (newlyCreated) { // Emit an OpConstantComposite instruction for this constant. SpvId result = this->nextId(&type); this->writeOpCode(SpvOpConstantComposite, 3 + type.columns(), fConstantBuffer); this->writeWord(key.fTypeId, fConstantBuffer); this->writeWord(result, fConstantBuffer); for (int i = 0; i < type.columns(); i++) { this->writeWord(key.fValueId[i], fConstantBuffer); } iter->second = result; } return iter->second; } SpvId SPIRVCodeGenerator::castScalarToType(SpvId inputExprId, const Type& inputType, const Type& outputType, OutputStream& out) { if (outputType.isFloat()) { return this->castScalarToFloat(inputExprId, inputType, outputType, out); } if (outputType.isSigned()) { return this->castScalarToSignedInt(inputExprId, inputType, outputType, out); } if (outputType.isUnsigned()) { return this->castScalarToUnsignedInt(inputExprId, inputType, outputType, out); } if (outputType.isBoolean()) { return this->castScalarToBoolean(inputExprId, inputType, outputType, out); } fContext.fErrors->error(-1, "unsupported cast: " + inputType.description() + " to " + outputType.description()); return inputExprId; } SpvId SPIRVCodeGenerator::writeFloatConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isFloat()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToFloat(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToFloat(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a float to float is a no-op. if (inputType.isFloat()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to float. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1.0 or 0.0. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fFloat); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isSigned()) { this->writeInstruction(SpvOpConvertSToF, this->getType(outputType), result, inputId, out); } else if (inputType.isUnsigned()) { this->writeInstruction(SpvOpConvertUToF, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for float typecast: %s", inputType.description().c_str()); return (SpvId)-1; } return result; } SpvId SPIRVCodeGenerator::writeIntConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isSigned()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToSignedInt(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToSignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a signed int to signed int is a no-op. if (inputType.isSigned()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to signed int. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1 or 0. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fInt); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isFloat()) { this->writeInstruction(SpvOpConvertFToS, this->getType(outputType), result, inputId, out); } else if (inputType.isUnsigned()) { this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for signed int typecast: %s", inputType.description().c_str()); return (SpvId)-1; } return result; } SpvId SPIRVCodeGenerator::writeUIntConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isUnsigned()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToUnsignedInt(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToUnsignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting an unsigned int to unsigned int is a no-op. if (inputType.isUnsigned()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to unsigned int. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1u or 0u. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fUInt); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isFloat()) { this->writeInstruction(SpvOpConvertFToU, this->getType(outputType), result, inputId, out); } else if (inputType.isSigned()) { this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for unsigned int typecast: %s", inputType.description().c_str()); return (SpvId)-1; } return result; } SpvId SPIRVCodeGenerator::writeBooleanConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isBoolean()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToBoolean(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToBoolean(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a bool to bool is a no-op. if (inputType.isBoolean()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to bool. SpvId result = this->nextId(nullptr); if (inputType.isSigned()) { // Synthesize a boolean result by comparing the input against a signed zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, inputId, zeroID, out); } else if (inputType.isUnsigned()) { // Synthesize a boolean result by comparing the input against an unsigned zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, inputId, zeroID, out); } else if (inputType.isFloat()) { // Synthesize a boolean result by comparing the input against a floating-point zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); this->writeInstruction(SpvOpFUnordNotEqual, this->getType(outputType), result, inputId, zeroID, out); } else { SkDEBUGFAILF("unsupported type for boolean typecast: %s", inputType.description().c_str()); return (SpvId)-1; } return result; } void SPIRVCodeGenerator::writeUniformScaleMatrix(SpvId id, SpvId diagonal, const Type& type, OutputStream& out) { SpvId zeroId = this->writeLiteral(0.0, *fContext.fTypes.fFloat); std::vector columnIds; columnIds.reserve(type.columns()); for (int column = 0; column < type.columns(); column++) { this->writeOpCode(SpvOpCompositeConstruct, 3 + type.rows(), out); this->writeWord(this->getType(type.componentType().toCompound( fContext, /*columns=*/type.rows(), /*rows=*/1)), out); SpvId columnId = this->nextId(&type); this->writeWord(columnId, out); columnIds.push_back(columnId); for (int row = 0; row < type.rows(); row++) { this->writeWord(row == column ? diagonal : zeroId, out); } } this->writeOpCode(SpvOpCompositeConstruct, 3 + type.columns(), out); this->writeWord(this->getType(type), out); this->writeWord(id, out); for (SpvId columnId : columnIds) { this->writeWord(columnId, out); } } SpvId SPIRVCodeGenerator::writeMatrixCopy(SpvId src, const Type& srcType, const Type& dstType, OutputStream& out) { SkASSERT(srcType.isMatrix()); SkASSERT(dstType.isMatrix()); SkASSERT(srcType.componentType() == dstType.componentType()); SpvId id = this->nextId(&dstType); SpvId srcColumnType = this->getType(srcType.componentType().toCompound(fContext, srcType.rows(), 1)); SpvId dstColumnType = this->getType(dstType.componentType().toCompound(fContext, dstType.rows(), 1)); SkASSERT(dstType.componentType().isFloat()); const SpvId zeroId = this->writeLiteral(0.0, dstType.componentType()); const SpvId oneId = this->writeLiteral(1.0, dstType.componentType()); SpvId columns[4]; for (int i = 0; i < dstType.columns(); i++) { if (i < srcType.columns()) { // we're still inside the src matrix, copy the column SpvId srcColumn = this->nextId(&dstType); this->writeInstruction(SpvOpCompositeExtract, srcColumnType, srcColumn, src, i, out); SpvId dstColumn; if (srcType.rows() == dstType.rows()) { // columns are equal size, don't need to do anything dstColumn = srcColumn; } else if (dstType.rows() > srcType.rows()) { // dst column is bigger, need to zero-pad it dstColumn = this->nextId(&dstType); int delta = dstType.rows() - srcType.rows(); this->writeOpCode(SpvOpCompositeConstruct, 4 + delta, out); this->writeWord(dstColumnType, out); this->writeWord(dstColumn, out); this->writeWord(srcColumn, out); for (int j = srcType.rows(); j < dstType.rows(); ++j) { this->writeWord((i == j) ? oneId : zeroId, out); } } else { // dst column is smaller, need to swizzle the src column dstColumn = this->nextId(&dstType); this->writeOpCode(SpvOpVectorShuffle, 5 + dstType.rows(), out); this->writeWord(dstColumnType, out); this->writeWord(dstColumn, out); this->writeWord(srcColumn, out); this->writeWord(srcColumn, out); for (int j = 0; j < dstType.rows(); j++) { this->writeWord(j, out); } } columns[i] = dstColumn; } else { // we're past the end of the src matrix, need to synthesize an identity-matrix column SpvId identityColumn = this->nextId(&dstType); this->writeOpCode(SpvOpCompositeConstruct, 3 + dstType.rows(), out); this->writeWord(dstColumnType, out); this->writeWord(identityColumn, out); for (int j = 0; j < dstType.rows(); ++j) { this->writeWord((i == j) ? oneId : zeroId, out); } columns[i] = identityColumn; } } this->writeOpCode(SpvOpCompositeConstruct, 3 + dstType.columns(), out); this->writeWord(this->getType(dstType), out); this->writeWord(id, out); for (int i = 0; i < dstType.columns(); i++) { this->writeWord(columns[i], out); } return id; } void SPIRVCodeGenerator::addColumnEntry(const Type& columnType, std::vector* currentColumn, std::vector* columnIds, int rows, SpvId entry, OutputStream& out) { SkASSERT((int)currentColumn->size() < rows); currentColumn->push_back(entry); if ((int)currentColumn->size() == rows) { // Synthesize this column into a vector. SpvId columnId = this->writeComposite(*currentColumn, columnType, out); columnIds->push_back(columnId); currentColumn->clear(); } } SpvId SPIRVCodeGenerator::writeMatrixConstructor(const ConstructorCompound& c, OutputStream& out) { const Type& type = c.type(); SkASSERT(type.isMatrix()); SkASSERT(!c.arguments().empty()); const Type& arg0Type = c.arguments()[0]->type(); // go ahead and write the arguments so we don't try to write new instructions in the middle of // an instruction std::vector arguments; arguments.reserve(c.arguments().size()); for (const std::unique_ptr& arg : c.arguments()) { arguments.push_back(this->writeExpression(*arg, out)); } if (arguments.size() == 1 && arg0Type.isVector()) { // Special-case handling of float4 -> mat2x2. SkASSERT(type.rows() == 2 && type.columns() == 2); SkASSERT(arg0Type.columns() == 4); SpvId componentType = this->getType(type.componentType()); SpvId v[4]; for (int i = 0; i < 4; ++i) { v[i] = this->nextId(&type); this->writeInstruction(SpvOpCompositeExtract, componentType, v[i], arguments[0], i, out); } const Type& vecType = type.componentType().toCompound(fContext, /*columns=*/2, /*rows=*/1); SpvId v0v1 = this->writeComposite({v[0], v[1]}, vecType, out); SpvId v2v3 = this->writeComposite({v[2], v[3]}, vecType, out); return this->writeComposite({v0v1, v2v3}, type, out); } int rows = type.rows(); const Type& columnType = type.componentType().toCompound(fContext, /*columns=*/rows, /*rows=*/1); // SpvIds of completed columns of the matrix. std::vector columnIds; // SpvIds of scalars we have written to the current column so far. std::vector currentColumn; for (size_t i = 0; i < arguments.size(); i++) { const Type& argType = c.arguments()[i]->type(); if (currentColumn.empty() && argType.isVector() && argType.columns() == rows) { // This vector is a complete matrix column by itself and can be used as-is. columnIds.push_back(arguments[i]); } else if (argType.columns() == 1) { // This argument is a lone scalar and can be added to the current column as-is. this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, arguments[i], out); } else { // This argument needs to be decomposed into its constituent scalars. SpvId componentType = this->getType(argType.componentType()); for (int j = 0; j < argType.columns(); ++j) { SpvId swizzle = this->nextId(&argType); this->writeInstruction(SpvOpCompositeExtract, componentType, swizzle, arguments[i], j, out); this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, swizzle, out); } } } SkASSERT(columnIds.size() == (size_t) type.columns()); return this->writeComposite(columnIds, type, out); } SpvId SPIRVCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, OutputStream& out) { return c.type().isMatrix() ? this->writeMatrixConstructor(c, out) : this->writeVectorConstructor(c, out); } SpvId SPIRVCodeGenerator::writeVectorConstructor(const ConstructorCompound& c, OutputStream& out) { const Type& type = c.type(); const Type& componentType = type.componentType(); SkASSERT(type.isVector()); if (c.isCompileTimeConstant()) { return this->writeConstantVector(c); } std::vector arguments; arguments.reserve(c.arguments().size()); for (size_t i = 0; i < c.arguments().size(); i++) { const Type& argType = c.arguments()[i]->type(); SkASSERT(componentType == argType.componentType()); SpvId arg = this->writeExpression(*c.arguments()[i], out); if (argType.isMatrix()) { // CompositeConstruct cannot take a 2x2 matrix as an input, so we need to extract out // each scalar separately. SkASSERT(argType.rows() == 2); SkASSERT(argType.columns() == 2); for (int j = 0; j < 4; ++j) { SpvId componentId = this->nextId(&componentType); this->writeInstruction(SpvOpCompositeExtract, this->getType(componentType), componentId, arg, j / 2, j % 2, out); arguments.push_back(componentId); } } else if (argType.isVector()) { // There's a bug in the Intel Vulkan driver where OpCompositeConstruct doesn't handle // vector arguments at all, so we always extract each vector component and pass them // into OpCompositeConstruct individually. for (int j = 0; j < argType.columns(); j++) { SpvId componentId = this->nextId(&componentType); this->writeInstruction(SpvOpCompositeExtract, this->getType(componentType), componentId, arg, j, out); arguments.push_back(componentId); } } else { arguments.push_back(arg); } } return this->writeComposite(arguments, type, out); } SpvId SPIRVCodeGenerator::writeComposite(const std::vector& arguments, const Type& type, OutputStream& out) { SkASSERT(arguments.size() == (type.isStruct() ? type.fields().size() : (size_t)type.columns())); SpvId result = this->nextId(&type); this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) arguments.size(), out); this->writeWord(this->getType(type), out); this->writeWord(result, out); for (SpvId id : arguments) { this->writeWord(id, out); } return result; } SpvId SPIRVCodeGenerator::writeConstructorSplat(const ConstructorSplat& c, OutputStream& out) { // Use writeConstantVector to deduplicate constant splats. if (c.isCompileTimeConstant()) { return this->writeConstantVector(c); } // Write the splat argument. SpvId argument = this->writeExpression(*c.argument(), out); // Generate a OpCompositeConstruct which repeats the argument N times. std::vector arguments(/*count*/ c.type().columns(), /*value*/ argument); return this->writeComposite(arguments, c.type(), out); } SpvId SPIRVCodeGenerator::writeCompositeConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.type().isArray() || c.type().isStruct()); auto ctorArgs = c.argumentSpan(); std::vector arguments; arguments.reserve(ctorArgs.size()); for (const std::unique_ptr& arg : ctorArgs) { arguments.push_back(this->writeExpression(*arg, out)); } return this->writeComposite(arguments, c.type(), out); } SpvId SPIRVCodeGenerator::writeConstructorScalarCast(const ConstructorScalarCast& c, OutputStream& out) { const Type& type = c.type(); if (this->getActualType(type) == this->getActualType(c.argument()->type())) { return this->writeExpression(*c.argument(), out); } const Expression& ctorExpr = *c.argument(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToType(expressionId, ctorExpr.type(), type, out); } SpvId SPIRVCodeGenerator::writeConstructorCompoundCast(const ConstructorCompoundCast& c, OutputStream& out) { const Type& ctorType = c.type(); const Type& argType = c.argument()->type(); SkASSERT(ctorType.isVector() || ctorType.isMatrix()); // Write the composite that we are casting. If the actual type matches, we are done. SpvId compositeId = this->writeExpression(*c.argument(), out); if (this->getActualType(ctorType) == this->getActualType(argType)) { return compositeId; } // writeMatrixCopy can cast matrices to a different type. if (ctorType.isMatrix()) { return this->writeMatrixCopy(compositeId, argType, ctorType, out); } // SPIR-V doesn't support vector(vector-of-different-type) directly, so we need to extract the // components and convert each one manually. const Type& srcType = argType.componentType(); const Type& dstType = ctorType.componentType(); std::vector arguments; arguments.reserve(argType.columns()); for (int index = 0; index < argType.columns(); ++index) { SpvId componentId = this->nextId(&srcType); this->writeInstruction(SpvOpCompositeExtract, this->getType(srcType), componentId, compositeId, index, out); arguments.push_back(this->castScalarToType(componentId, srcType, dstType, out)); } return this->writeComposite(arguments, ctorType, out); } SpvId SPIRVCodeGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c, OutputStream& out) { const Type& type = c.type(); SkASSERT(type.isMatrix()); SkASSERT(c.argument()->type().isScalar()); // Write out the scalar argument. SpvId argument = this->writeExpression(*c.argument(), out); // Build the diagonal matrix. SpvId result = this->nextId(&type); this->writeUniformScaleMatrix(result, argument, type, out); return result; } SpvId SPIRVCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, OutputStream& out) { // Write the input matrix. SpvId argument = this->writeExpression(*c.argument(), out); // Use matrix-copy to resize the input matrix to its new size. return this->writeMatrixCopy(argument, c.argument()->type(), c.type(), out); } static SpvStorageClass_ get_storage_class(const Variable& var, SpvStorageClass_ fallbackStorageClass) { const Modifiers& modifiers = var.modifiers(); if (modifiers.fFlags & Modifiers::kIn_Flag) { SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag)); return SpvStorageClassInput; } if (modifiers.fFlags & Modifiers::kOut_Flag) { SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag)); return SpvStorageClassOutput; } if (modifiers.fFlags & Modifiers::kUniform_Flag) { if (modifiers.fLayout.fFlags & Layout::kPushConstant_Flag) { return SpvStorageClassPushConstant; } if (var.type().typeKind() == Type::TypeKind::kSampler || var.type().typeKind() == Type::TypeKind::kSeparateSampler || var.type().typeKind() == Type::TypeKind::kTexture) { return SpvStorageClassUniformConstant; } return SpvStorageClassUniform; } return fallbackStorageClass; } static SpvStorageClass_ get_storage_class(const Expression& expr) { switch (expr.kind()) { case Expression::Kind::kVariableReference: { const Variable& var = *expr.as().variable(); if (var.storage() != Variable::Storage::kGlobal) { return SpvStorageClassFunction; } return get_storage_class(var, SpvStorageClassPrivate); } case Expression::Kind::kFieldAccess: return get_storage_class(*expr.as().base()); case Expression::Kind::kIndex: return get_storage_class(*expr.as().base()); default: return SpvStorageClassFunction; } } std::vector SPIRVCodeGenerator::getAccessChain(const Expression& expr, OutputStream& out) { std::vector chain; switch (expr.kind()) { case Expression::Kind::kIndex: { const IndexExpression& indexExpr = expr.as(); chain = this->getAccessChain(*indexExpr.base(), out); chain.push_back(this->writeExpression(*indexExpr.index(), out)); break; } case Expression::Kind::kFieldAccess: { const FieldAccess& fieldExpr = expr.as(); chain = this->getAccessChain(*fieldExpr.base(), out); chain.push_back(this->writeLiteral(fieldExpr.fieldIndex(), *fContext.fTypes.fInt)); break; } default: { SpvId id = this->getLValue(expr, out)->getPointer(); SkASSERT(id != (SpvId) -1); chain.push_back(id); break; } } return chain; } class PointerLValue : public SPIRVCodeGenerator::LValue { public: PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, bool isMemoryObject, SpvId type, SPIRVCodeGenerator::Precision precision) : fGen(gen) , fPointer(pointer) , fIsMemoryObject(isMemoryObject) , fType(type) , fPrecision(precision) {} SpvId getPointer() override { return fPointer; } bool isMemoryObjectPointer() const override { return fIsMemoryObject; } SpvId load(OutputStream& out) override { SpvId result = fGen.nextId(fPrecision); fGen.writeInstruction(SpvOpLoad, fType, result, fPointer, out); return result; } void store(SpvId value, OutputStream& out) override { fGen.writeInstruction(SpvOpStore, fPointer, value, out); } private: SPIRVCodeGenerator& fGen; const SpvId fPointer; const bool fIsMemoryObject; const SpvId fType; const SPIRVCodeGenerator::Precision fPrecision; }; class SwizzleLValue : public SPIRVCodeGenerator::LValue { public: SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const ComponentArray& components, const Type& baseType, const Type& swizzleType) : fGen(gen) , fVecPointer(vecPointer) , fComponents(components) , fBaseType(&baseType) , fSwizzleType(&swizzleType) {} bool applySwizzle(const ComponentArray& components, const Type& newType) override { ComponentArray updatedSwizzle; for (int8_t component : components) { if (component < 0 || component >= fComponents.count()) { SkDEBUGFAILF("swizzle accessed nonexistent component %d", (int)component); return false; } updatedSwizzle.push_back(fComponents[component]); } fComponents = updatedSwizzle; fSwizzleType = &newType; return true; } SpvId load(OutputStream& out) override { SpvId base = fGen.nextId(fBaseType); fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); SpvId result = fGen.nextId(fBaseType); fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out); fGen.writeWord(fGen.getType(*fSwizzleType), out); fGen.writeWord(result, out); fGen.writeWord(base, out); fGen.writeWord(base, out); for (int component : fComponents) { fGen.writeWord(component, out); } return result; } void store(SpvId value, OutputStream& out) override { // use OpVectorShuffle to mix and match the vector components. We effectively create // a virtual vector out of the concatenation of the left and right vectors, and then // select components from this virtual vector to make the result vector. For // instance, given: // float3L = ...; // float3R = ...; // L.xz = R.xy; // we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want // our result vector to look like (R.x, L.y, R.y), so we need to select indices // (3, 1, 4). SpvId base = fGen.nextId(fBaseType); fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); SpvId shuffle = fGen.nextId(fBaseType); fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType->columns(), out); fGen.writeWord(fGen.getType(*fBaseType), out); fGen.writeWord(shuffle, out); fGen.writeWord(base, out); fGen.writeWord(value, out); for (int i = 0; i < fBaseType->columns(); i++) { // current offset into the virtual vector, defaults to pulling the unmodified // value from the left side int offset = i; // check to see if we are writing this component for (size_t j = 0; j < fComponents.size(); j++) { if (fComponents[j] == i) { // we're writing to this component, so adjust the offset to pull from // the correct component of the right side instead of preserving the // value from the left offset = (int) (j + fBaseType->columns()); break; } } fGen.writeWord(offset, out); } fGen.writeInstruction(SpvOpStore, fVecPointer, shuffle, out); } private: SPIRVCodeGenerator& fGen; const SpvId fVecPointer; ComponentArray fComponents; const Type* fBaseType; const Type* fSwizzleType; }; int SPIRVCodeGenerator::findUniformFieldIndex(const Variable& var) const { auto iter = fTopLevelUniformMap.find(&var); return (iter != fTopLevelUniformMap.end()) ? iter->second : -1; } std::unique_ptr SPIRVCodeGenerator::getLValue(const Expression& expr, OutputStream& out) { const Type& type = expr.type(); Precision precision = type.highPrecision() ? Precision::kDefault : Precision::kRelaxed; switch (expr.kind()) { case Expression::Kind::kVariableReference: { const Variable& var = *expr.as().variable(); int uniformIdx = this->findUniformFieldIndex(var); if (uniformIdx >= 0) { SpvId memberId = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, SpvStorageClassUniform); SpvId uniformIdxId = this->writeLiteral((double)uniformIdx, *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, memberId, fUniformBufferId, uniformIdxId, out); return std::make_unique(*this, memberId, /*isMemoryObjectPointer=*/true, this->getType(type), precision); } SpvId typeId = this->getType(type, this->memoryLayoutForVariable(var)); auto entry = fVariableMap.find(&var); SkASSERTF(entry != fVariableMap.end(), "%s", expr.description().c_str()); return std::make_unique(*this, entry->second, /*isMemoryObjectPointer=*/true, typeId, precision); } case Expression::Kind::kIndex: // fall through case Expression::Kind::kFieldAccess: { std::vector chain = this->getAccessChain(expr, out); SpvId member = this->nextId(nullptr); this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out); this->writeWord(this->getPointerType(type, get_storage_class(expr)), out); this->writeWord(member, out); for (SpvId idx : chain) { this->writeWord(idx, out); } return std::make_unique(*this, member, /*isMemoryObjectPointer=*/false, this->getType(type), precision); } case Expression::Kind::kSwizzle: { const Swizzle& swizzle = expr.as(); std::unique_ptr lvalue = this->getLValue(*swizzle.base(), out); if (lvalue->applySwizzle(swizzle.components(), type)) { return lvalue; } SpvId base = lvalue->getPointer(); if (base == (SpvId) -1) { fContext.fErrors->error(swizzle.fLine, "unable to retrieve lvalue from swizzle"); } if (swizzle.components().size() == 1) { SpvId member = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, get_storage_class(*swizzle.base())); SpvId indexId = this->writeLiteral(swizzle.components()[0], *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, member, base, indexId, out); return std::make_unique(*this, member, /*isMemoryObjectPointer=*/false, this->getType(type), precision); } else { return std::make_unique(*this, base, swizzle.components(), swizzle.base()->type(), type); } } default: { // expr isn't actually an lvalue, create a placeholder variable for it. This case // happens due to the need to store values in temporary variables during function // calls (see comments in getFunctionType); erroneous uses of rvalues as lvalues // should have been caught before code generation SpvId result = this->nextId(nullptr); SpvId pointerType = this->getPointerType(type, SpvStorageClassFunction); this->writeInstruction(SpvOpVariable, pointerType, result, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpStore, result, this->writeExpression(expr, out), out); return std::make_unique(*this, result, /*isMemoryObjectPointer=*/true, this->getType(type), precision); } } } SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, OutputStream& out) { const Variable* variable = ref.variable(); if (variable->modifiers().fLayout.fBuiltin == DEVICE_FRAGCOORDS_BUILTIN) { // Down below, we rewrite raw references to sk_FragCoord with expressions that reference // DEVICE_FRAGCOORDS_BUILTIN. This is a fake variable that means we need to directly access // the fragcoord; do so now. dsl::DSLGlobalVar fragCoord("sk_FragCoord"); return this->getLValue(*dsl::DSLExpression(fragCoord).release(), out)->load(out); } if (variable->modifiers().fLayout.fBuiltin == DEVICE_CLOCKWISE_BUILTIN) { // Down below, we rewrite raw references to sk_Clockwise with expressions that reference // DEVICE_CLOCKWISE_BUILTIN. This is a fake variable that means we need to directly // access front facing; do so now. dsl::DSLGlobalVar clockwise("sk_Clockwise"); return this->getLValue(*dsl::DSLExpression(clockwise).release(), out)->load(out); } // Handle inserting use of uniform to flip y when referencing sk_FragCoord. if (variable->modifiers().fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { this->addRTFlipUniform(ref.fLine); // Use sk_RTAdjust to compute the flipped coordinate using namespace dsl; const char* DEVICE_COORDS_NAME = "__device_FragCoords"; SymbolTable& symbols = *ThreadContext::SymbolTable(); // Use a uniform to flip the Y coordinate. The new expression will be written in // terms of __device_FragCoords, which is a fake variable that means "access the // underlying fragcoords directly without flipping it". DSLExpression rtFlip(ThreadContext::Compiler().convertIdentifier(/*line=*/-1, SKSL_RTFLIP_NAME)); if (!symbols[DEVICE_COORDS_NAME]) { AutoAttachPoolToThread attach(fProgram.fPool.get()); Modifiers modifiers; modifiers.fLayout.fBuiltin = DEVICE_FRAGCOORDS_BUILTIN; auto coordsVar = std::make_unique(/*line=*/-1, fContext.fModifiersPool->add(modifiers), DEVICE_COORDS_NAME, fContext.fTypes.fFloat4.get(), true, Variable::Storage::kGlobal); fSPIRVBonusVariables.insert(coordsVar.get()); symbols.add(std::move(coordsVar)); } DSLGlobalVar deviceCoord(DEVICE_COORDS_NAME); std::unique_ptr rtFlipSkSLExpr = rtFlip.release(); DSLExpression x = DSLExpression(rtFlipSkSLExpr->clone()).x(); DSLExpression y = DSLExpression(std::move(rtFlipSkSLExpr)).y(); return this->writeExpression(*dsl::Float4(deviceCoord.x(), std::move(x) + std::move(y) * deviceCoord.y(), deviceCoord.z(), deviceCoord.w()).release(), out); } // Handle flipping sk_Clockwise. if (variable->modifiers().fLayout.fBuiltin == SK_CLOCKWISE_BUILTIN) { this->addRTFlipUniform(ref.fLine); using namespace dsl; const char* DEVICE_CLOCKWISE_NAME = "__device_Clockwise"; SymbolTable& symbols = *ThreadContext::SymbolTable(); // Use a uniform to flip the Y coordinate. The new expression will be written in // terms of __device_Clockwise, which is a fake variable that means "access the // underlying FrontFacing directly". DSLExpression rtFlip(ThreadContext::Compiler().convertIdentifier(/*line=*/-1, SKSL_RTFLIP_NAME)); if (!symbols[DEVICE_CLOCKWISE_NAME]) { AutoAttachPoolToThread attach(fProgram.fPool.get()); Modifiers modifiers; modifiers.fLayout.fBuiltin = DEVICE_CLOCKWISE_BUILTIN; auto clockwiseVar = std::make_unique(/*line=*/-1, fContext.fModifiersPool->add(modifiers), DEVICE_CLOCKWISE_NAME, fContext.fTypes.fBool.get(), true, Variable::Storage::kGlobal); fSPIRVBonusVariables.insert(clockwiseVar.get()); symbols.add(std::move(clockwiseVar)); } DSLGlobalVar deviceClockwise(DEVICE_CLOCKWISE_NAME); // FrontFacing in Vulkan is defined in terms of a top-down render target. In skia, // we use the default convention of "counter-clockwise face is front". return this->writeExpression(*dsl::Bool(Select(rtFlip.y() > 0, !deviceClockwise, deviceClockwise)).release(), out); } return this->getLValue(ref, out)->load(out); } SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, OutputStream& out) { if (expr.base()->type().isVector()) { SpvId base = this->writeExpression(*expr.base(), out); SpvId index = this->writeExpression(*expr.index(), out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpVectorExtractDynamic, this->getType(expr.type()), result, base, index, out); return result; } return getLValue(expr, out)->load(out); } SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, OutputStream& out) { return getLValue(f, out)->load(out); } SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, OutputStream& out) { SpvId base = this->writeExpression(*swizzle.base(), out); SpvId result = this->nextId(&swizzle.type()); size_t count = swizzle.components().size(); if (count == 1) { this->writeInstruction(SpvOpCompositeExtract, this->getType(swizzle.type()), result, base, swizzle.components()[0], out); } else { this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out); this->writeWord(this->getType(swizzle.type()), out); this->writeWord(result, out); this->writeWord(base, out); this->writeWord(base, out); for (int component : swizzle.components()) { this->writeWord(component, out); } } return result; } SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) { SpvId result = this->nextId(&resultType); if (is_float(fContext, operandType)) { this->writeInstruction(ifFloat, this->getType(resultType), result, lhs, rhs, out); } else if (is_signed(fContext, operandType)) { this->writeInstruction(ifInt, this->getType(resultType), result, lhs, rhs, out); } else if (is_unsigned(fContext, operandType)) { this->writeInstruction(ifUInt, this->getType(resultType), result, lhs, rhs, out); } else if (is_bool(fContext, operandType)) { this->writeInstruction(ifBool, this->getType(resultType), result, lhs, rhs, out); } else { fContext.fErrors->error(operandType.fLine, "unsupported operand for binary expression: " + operandType.description()); } return result; } SpvId SPIRVCodeGenerator::foldToBool(SpvId id, const Type& operandType, SpvOp op, OutputStream& out) { if (operandType.isVector()) { SpvId result = this->nextId(nullptr); this->writeInstruction(op, this->getType(*fContext.fTypes.fBool), result, id, out); return result; } return id; } SpvId SPIRVCodeGenerator::writeMatrixComparison(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ floatOperator, SpvOp_ intOperator, SpvOp_ vectorMergeOperator, SpvOp_ mergeOperator, OutputStream& out) { SpvOp_ compareOp = is_float(fContext, operandType) ? floatOperator : intOperator; SkASSERT(operandType.isMatrix()); SpvId columnType = this->getType(operandType.componentType().toCompound(fContext, operandType.rows(), 1)); SpvId bvecType = this->getType(fContext.fTypes.fBool->toCompound(fContext, operandType.rows(), 1)); SpvId boolType = this->getType(*fContext.fTypes.fBool); SpvId result = 0; for (int i = 0; i < operandType.columns(); i++) { SpvId columnL = this->nextId(&operandType); this->writeInstruction(SpvOpCompositeExtract, columnType, columnL, lhs, i, out); SpvId columnR = this->nextId(&operandType); this->writeInstruction(SpvOpCompositeExtract, columnType, columnR, rhs, i, out); SpvId compare = this->nextId(&operandType); this->writeInstruction(compareOp, bvecType, compare, columnL, columnR, out); SpvId merge = this->nextId(nullptr); this->writeInstruction(vectorMergeOperator, boolType, merge, compare, out); if (result != 0) { SpvId next = this->nextId(nullptr); this->writeInstruction(mergeOperator, boolType, next, result, merge, out); result = next; } else { result = merge; } } return result; } SpvId SPIRVCodeGenerator::writeComponentwiseMatrixBinary(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ op, OutputStream& out) { SkASSERT(operandType.isMatrix()); SpvId columnType = this->getType(operandType.componentType().toCompound(fContext, operandType.rows(), 1)); std::vector columns; columns.reserve(operandType.columns()); for (int i = 0; i < operandType.columns(); i++) { SpvId columnL = this->nextId(&operandType); this->writeInstruction(SpvOpCompositeExtract, columnType, columnL, lhs, i, out); SpvId columnR = this->nextId(&operandType); this->writeInstruction(SpvOpCompositeExtract, columnType, columnR, rhs, i, out); columns.push_back(this->nextId(&operandType)); this->writeInstruction(op, columnType, columns[i], columnL, columnR, out); } return this->writeComposite(columns, operandType, out); } SpvId SPIRVCodeGenerator::writeReciprocal(const Type& type, SpvId value, OutputStream& out) { SkASSERT(type.isFloat()); SpvId one = this->writeLiteral(1.0, type); SpvId reciprocal = this->nextId(&type); this->writeInstruction(SpvOpFDiv, this->getType(type), reciprocal, one, value, out); return reciprocal; } SpvId SPIRVCodeGenerator::writeScalarToMatrixSplat(const Type& matrixType, SpvId scalarId, OutputStream& out) { // Splat the scalar into a vector. const Type& vectorType = matrixType.componentType().toCompound(fContext, /*columns=*/matrixType.rows(), /*rows=*/1); std::vector vecArguments(/*count*/ matrixType.rows(), /*value*/ scalarId); SpvId vectorId = this->writeComposite(vecArguments, vectorType, out); // Splat the vector into a matrix. std::vector matArguments(/*count*/ matrixType.columns(), /*value*/ vectorId); return this->writeComposite(matArguments, matrixType, out); } SpvId SPIRVCodeGenerator::writeBinaryExpression(const Type& leftType, SpvId lhs, Operator op, const Type& rightType, SpvId rhs, const Type& resultType, OutputStream& out) { // The comma operator ignores the type of the left-hand side entirely. if (op.kind() == Token::Kind::TK_COMMA) { return rhs; } // overall type we are operating on: float2, int, uint4... const Type* operandType; // IR allows mismatched types in expressions (e.g. float2 * float), but they need special // handling in SPIR-V if (this->getActualType(leftType) != this->getActualType(rightType)) { if (leftType.isVector() && rightType.isNumber()) { if (resultType.componentType().isFloat()) { switch (op.kind()) { case Token::Kind::TK_SLASH: { rhs = this->writeReciprocal(rightType, rhs, out); [[fallthrough]]; } case Token::Kind::TK_STAR: { SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType), result, lhs, rhs, out); return result; } default: break; } } // promote number to vector const Type& vecType = leftType; SpvId vec = this->nextId(&vecType); this->writeOpCode(SpvOpCompositeConstruct, 3 + vecType.columns(), out); this->writeWord(this->getType(vecType), out); this->writeWord(vec, out); for (int i = 0; i < vecType.columns(); i++) { this->writeWord(rhs, out); } rhs = vec; operandType = &leftType; } else if (rightType.isVector() && leftType.isNumber()) { if (resultType.componentType().isFloat()) { if (op.kind() == Token::Kind::TK_STAR) { SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType), result, rhs, lhs, out); return result; } } // promote number to vector const Type& vecType = rightType; SpvId vec = this->nextId(&vecType); this->writeOpCode(SpvOpCompositeConstruct, 3 + vecType.columns(), out); this->writeWord(this->getType(vecType), out); this->writeWord(vec, out); for (int i = 0; i < vecType.columns(); i++) { this->writeWord(lhs, out); } lhs = vec; operandType = &rightType; } else if (leftType.isMatrix()) { if (op.kind() == Token::Kind::TK_STAR) { // Matrix-times-vector and matrix-times-scalar have dedicated ops in SPIR-V. SpvOp_ spvop; if (rightType.isMatrix()) { spvop = SpvOpMatrixTimesMatrix; } else if (rightType.isVector()) { spvop = SpvOpMatrixTimesVector; } else { SkASSERT(rightType.isScalar()); spvop = SpvOpMatrixTimesScalar; } SpvId result = this->nextId(&resultType); this->writeInstruction(spvop, this->getType(resultType), result, lhs, rhs, out); return result; } else { // Matrix-op-vector is not supported in GLSL/SkSL for non-multiplication ops; we // expect to have a scalar here. SkASSERT(rightType.isScalar()); // Splat rhs across an entire matrix so we can reuse the matrix-op-matrix path. SpvId rhsMatrix = this->writeScalarToMatrixSplat(leftType, rhs, out); // Perform this operation as matrix-op-matrix. return this->writeBinaryExpression(leftType, lhs, op, leftType, rhsMatrix, resultType, out); } } else if (rightType.isMatrix()) { if (op.kind() == Token::Kind::TK_STAR) { // Matrix-times-vector and matrix-times-scalar have dedicated ops in SPIR-V. SpvId result = this->nextId(&resultType); if (leftType.isVector()) { this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(resultType), result, lhs, rhs, out); } else { SkASSERT(leftType.isScalar()); this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(resultType), result, rhs, lhs, out); } return result; } else { // Vector-op-matrix is not supported in GLSL/SkSL for non-multiplication ops; we // expect to have a scalar here. SkASSERT(leftType.isScalar()); // Splat lhs across an entire matrix so we can reuse the matrix-op-matrix path. SpvId lhsMatrix = this->writeScalarToMatrixSplat(rightType, lhs, out); // Perform this operation as matrix-op-matrix. return this->writeBinaryExpression(rightType, lhsMatrix, op, rightType, rhs, resultType, out); } } else { fContext.fErrors->error(leftType.fLine, "unsupported mixed-type expression"); return -1; } } else { operandType = &this->getActualType(leftType); SkASSERT(*operandType == this->getActualType(rightType)); } switch (op.kind()) { case Token::Kind::TK_EQEQ: { if (operandType->isMatrix()) { return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpAll, SpvOpLogicalAnd, out); } if (operandType->isStruct()) { return this->writeStructComparison(*operandType, lhs, op, rhs, out); } if (operandType->isArray()) { return this->writeArrayComparison(*operandType, lhs, op, rhs, out); } SkASSERT(resultType.isBoolean()); const Type* tmpType; if (operandType->isVector()) { tmpType = &fContext.fTypes.fBool->toCompound(fContext, operandType->columns(), operandType->rows()); } else { tmpType = &resultType; } return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual, out), *operandType, SpvOpAll, out); } case Token::Kind::TK_NEQ: if (operandType->isMatrix()) { return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdNotEqual, SpvOpINotEqual, SpvOpAny, SpvOpLogicalOr, out); } if (operandType->isStruct()) { return this->writeStructComparison(*operandType, lhs, op, rhs, out); } if (operandType->isArray()) { return this->writeArrayComparison(*operandType, lhs, op, rhs, out); } [[fallthrough]]; case Token::Kind::TK_LOGICALXOR: SkASSERT(resultType.isBoolean()); const Type* tmpType; if (operandType->isVector()) { tmpType = &fContext.fTypes.fBool->toCompound(fContext, operandType->columns(), operandType->rows()); } else { tmpType = &resultType; } return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs, SpvOpFOrdNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual, out), *operandType, SpvOpAny, out); case Token::Kind::TK_GT: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef, out); case Token::Kind::TK_LT: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out); case Token::Kind::TK_GTEQ: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef, out); case Token::Kind::TK_LTEQ: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef, out); case Token::Kind::TK_PLUS: if (leftType.isMatrix() && rightType.isMatrix()) { SkASSERT(leftType == rightType); return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs, SpvOpFAdd, out); } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); case Token::Kind::TK_MINUS: if (leftType.isMatrix() && rightType.isMatrix()) { SkASSERT(leftType == rightType); return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs, SpvOpFSub, out); } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); case Token::Kind::TK_STAR: if (leftType.isMatrix() && rightType.isMatrix()) { // matrix multiply SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result, lhs, rhs, out); return result; } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul, SpvOpIMul, SpvOpIMul, SpvOpUndef, out); case Token::Kind::TK_SLASH: if (leftType.isMatrix() && rightType.isMatrix()) { SkASSERT(leftType == rightType); return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs, SpvOpFDiv, out); } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv, SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out); case Token::Kind::TK_PERCENT: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef, out); case Token::Kind::TK_SHL: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpShiftLeftLogical, SpvOpShiftLeftLogical, SpvOpUndef, out); case Token::Kind::TK_SHR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpShiftRightArithmetic, SpvOpShiftRightLogical, SpvOpUndef, out); case Token::Kind::TK_BITWISEAND: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseAnd, SpvOpBitwiseAnd, SpvOpUndef, out); case Token::Kind::TK_BITWISEOR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseOr, SpvOpBitwiseOr, SpvOpUndef, out); case Token::Kind::TK_BITWISEXOR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseXor, SpvOpBitwiseXor, SpvOpUndef, out); default: fContext.fErrors->error(0, "unsupported token"); return -1; } } SpvId SPIRVCodeGenerator::writeArrayComparison(const Type& arrayType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out) { // The inputs must be arrays, and the op must be == or !=. SkASSERT(op.kind() == Token::Kind::TK_EQEQ || op.kind() == Token::Kind::TK_NEQ); SkASSERT(arrayType.isArray()); const Type& componentType = arrayType.componentType(); const SpvId componentTypeId = this->getType(componentType); const int arraySize = arrayType.columns(); SkASSERT(arraySize > 0); // Synthesize equality checks for each item in the array. const Type& boolType = *fContext.fTypes.fBool; SpvId allComparisons = (SpvId)-1; for (int index = 0; index < arraySize; ++index) { // Get the left and right item in the array. SpvId itemL = this->nextId(&componentType); this->writeInstruction(SpvOpCompositeExtract, componentTypeId, itemL, lhs, index, out); SpvId itemR = this->nextId(&componentType); this->writeInstruction(SpvOpCompositeExtract, componentTypeId, itemR, rhs, index, out); // Use `writeBinaryExpression` with the requested == or != operator on these items. SpvId comparison = this->writeBinaryExpression(componentType, itemL, op, componentType, itemR, boolType, out); // Merge this comparison result with all the other comparisons we've done. allComparisons = this->mergeComparisons(comparison, allComparisons, op, out); } return allComparisons; } SpvId SPIRVCodeGenerator::writeStructComparison(const Type& structType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out) { // The inputs must be structs containing fields, and the op must be == or !=. SkASSERT(op.kind() == Token::Kind::TK_EQEQ || op.kind() == Token::Kind::TK_NEQ); SkASSERT(structType.isStruct()); const std::vector& fields = structType.fields(); SkASSERT(!fields.empty()); // Synthesize equality checks for each field in the struct. const Type& boolType = *fContext.fTypes.fBool; SpvId allComparisons = (SpvId)-1; for (int index = 0; index < (int)fields.size(); ++index) { // Get the left and right versions of this field. const Type& fieldType = *fields[index].fType; const SpvId fieldTypeId = this->getType(fieldType); SpvId fieldL = this->nextId(&fieldType); this->writeInstruction(SpvOpCompositeExtract, fieldTypeId, fieldL, lhs, index, out); SpvId fieldR = this->nextId(&fieldType); this->writeInstruction(SpvOpCompositeExtract, fieldTypeId, fieldR, rhs, index, out); // Use `writeBinaryExpression` with the requested == or != operator on these fields. SpvId comparison = this->writeBinaryExpression(fieldType, fieldL, op, fieldType, fieldR, boolType, out); // Merge this comparison result with all the other comparisons we've done. allComparisons = this->mergeComparisons(comparison, allComparisons, op, out); } return allComparisons; } SpvId SPIRVCodeGenerator::mergeComparisons(SpvId comparison, SpvId allComparisons, Operator op, OutputStream& out) { // If this is the first entry, we don't need to merge comparison results with anything. if (allComparisons == (SpvId)-1) { return comparison; } // Use LogicalAnd or LogicalOr to combine the comparison with all the other comparisons. const Type& boolType = *fContext.fTypes.fBool; SpvId boolTypeId = this->getType(boolType); SpvId logicalOp = this->nextId(&boolType); switch (op.kind()) { case Token::Kind::TK_EQEQ: this->writeInstruction(SpvOpLogicalAnd, boolTypeId, logicalOp, comparison, allComparisons, out); break; case Token::Kind::TK_NEQ: this->writeInstruction(SpvOpLogicalOr, boolTypeId, logicalOp, comparison, allComparisons, out); break; default: SkDEBUGFAILF("mergeComparisons only supports == and !=, not %s", op.operatorName()); return (SpvId)-1; } return logicalOp; } static float division_by_literal_value(Operator op, const Expression& right) { // If this is a division by a literal value, returns that literal value. Otherwise, returns 0. if (op.kind() == Token::Kind::TK_SLASH && right.isFloatLiteral()) { float rhsValue = right.as().floatValue(); if (std::isfinite(rhsValue)) { return rhsValue; } } return 0.0f; } SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, OutputStream& out) { const Expression* left = b.left().get(); const Expression* right = b.right().get(); Operator op = b.getOperator(); switch (op.kind()) { case Token::Kind::TK_EQ: { // Handles assignment. SpvId rhs = this->writeExpression(*right, out); this->getLValue(*left, out)->store(rhs, out); return rhs; } case Token::Kind::TK_LOGICALAND: // Handles short-circuiting; we don't necessarily evaluate both LHS and RHS. return this->writeLogicalAnd(*b.left(), *b.right(), out); case Token::Kind::TK_LOGICALOR: // Handles short-circuiting; we don't necessarily evaluate both LHS and RHS. return this->writeLogicalOr(*b.left(), *b.right(), out); default: break; } std::unique_ptr lvalue; SpvId lhs; if (op.isAssignment()) { lvalue = this->getLValue(*left, out); lhs = lvalue->load(out); } else { lvalue = nullptr; lhs = this->writeExpression(*left, out); } SpvId rhs; float rhsValue = division_by_literal_value(op, *right); if (rhsValue != 0.0f) { // Rewrite floating-point division by a literal into multiplication by the reciprocal. // This converts `expr / 2` into `expr * 0.5` // This improves codegen, especially for certain types of divides (e.g. vector/scalar). op = Operator(Token::Kind::TK_STAR); rhs = this->writeLiteral(1.0 / rhsValue, right->type()); } else { // Write the right-hand side expression normally. rhs = this->writeExpression(*right, out); } SpvId result = this->writeBinaryExpression(left->type(), lhs, op.removeAssignment(), right->type(), rhs, b.type(), out); if (lvalue) { lvalue->store(result, out); } return result; } SpvId SPIRVCodeGenerator::writeLogicalAnd(const Expression& left, const Expression& right, OutputStream& out) { SpvId falseConstant = this->writeLiteral(0.0, *fContext.fTypes.fBool); SpvId lhs = this->writeExpression(left, out); SpvId rhsLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, rhsLabel, end, out); this->writeLabel(rhsLabel, out); SpvId rhs = this->writeExpression(right, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fTypes.fBool), result, falseConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeLogicalOr(const Expression& left, const Expression& right, OutputStream& out) { SpvId trueConstant = this->writeLiteral(1.0, *fContext.fTypes.fBool); SpvId lhs = this->writeExpression(left, out); SpvId rhsLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, end, rhsLabel, out); this->writeLabel(rhsLabel, out); SpvId rhs = this->writeExpression(right, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fTypes.fBool), result, trueConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeTernaryExpression(const TernaryExpression& t, OutputStream& out) { const Type& type = t.type(); SpvId test = this->writeExpression(*t.test(), out); if (t.ifTrue()->type().columns() == 1 && t.ifTrue()->isCompileTimeConstant() && t.ifFalse()->isCompileTimeConstant()) { // both true and false are constants, can just use OpSelect SpvId result = this->nextId(nullptr); SpvId trueId = this->writeExpression(*t.ifTrue(), out); SpvId falseId = this->writeExpression(*t.ifFalse(), out); this->writeInstruction(SpvOpSelect, this->getType(type), result, test, trueId, falseId, out); return result; } // was originally using OpPhi to choose the result, but for some reason that is crashing on // Adreno. Switched to storing the result in a temp variable as glslang does. SpvId var = this->nextId(nullptr); this->writeInstruction(SpvOpVariable, this->getPointerType(type, SpvStorageClassFunction), var, SpvStorageClassFunction, fVariableBuffer); SpvId trueLabel = this->nextId(nullptr); SpvId falseLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, trueLabel, falseLabel, out); this->writeLabel(trueLabel, out); this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.ifTrue(), out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(falseLabel, out); this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.ifFalse(), out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, out); SpvId result = this->nextId(&type); this->writeInstruction(SpvOpLoad, this->getType(type), result, var, out); return result; } SpvId SPIRVCodeGenerator::writePrefixExpression(const PrefixExpression& p, OutputStream& out) { const Type& type = p.type(); if (p.getOperator().kind() == Token::Kind::TK_MINUS) { SpvId result = this->nextId(&type); SpvId typeId = this->getType(type); SpvId expr = this->writeExpression(*p.operand(), out); if (is_float(fContext, type)) { this->writeInstruction(SpvOpFNegate, typeId, result, expr, out); } else if (is_signed(fContext, type) || is_unsigned(fContext, type)) { this->writeInstruction(SpvOpSNegate, typeId, result, expr, out); } else { SkDEBUGFAILF("unsupported prefix expression %s", p.description().c_str()); } return result; } switch (p.getOperator().kind()) { case Token::Kind::TK_PLUS: return this->writeExpression(*p.operand(), out); case Token::Kind::TK_PLUSPLUS: { std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId one = this->writeLiteral(1.0, type); SpvId result = this->writeBinaryOperation(type, type, lv->load(out), one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(result, out); return result; } case Token::Kind::TK_MINUSMINUS: { std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId one = this->writeLiteral(1.0, type); SpvId result = this->writeBinaryOperation(type, type, lv->load(out), one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(result, out); return result; } case Token::Kind::TK_LOGICALNOT: { SkASSERT(p.operand()->type().isBoolean()); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpLogicalNot, this->getType(type), result, this->writeExpression(*p.operand(), out), out); return result; } case Token::Kind::TK_BITWISENOT: { SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpNot, this->getType(type), result, this->writeExpression(*p.operand(), out), out); return result; } default: SkDEBUGFAILF("unsupported prefix expression: %s", p.description().c_str()); return -1; } } SpvId SPIRVCodeGenerator::writePostfixExpression(const PostfixExpression& p, OutputStream& out) { const Type& type = p.type(); std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId result = lv->load(out); SpvId one = this->writeLiteral(1.0, type); switch (p.getOperator().kind()) { case Token::Kind::TK_PLUSPLUS: { SpvId temp = this->writeBinaryOperation(type, type, result, one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(temp, out); return result; } case Token::Kind::TK_MINUSMINUS: { SpvId temp = this->writeBinaryOperation(type, type, result, one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(temp, out); return result; } default: SkDEBUGFAILF("unsupported postfix expression %s", p.description().c_str()); return -1; } } SpvId SPIRVCodeGenerator::writeLiteral(const Literal& l) { return this->writeLiteral(l.value(), l.type()); } SpvId SPIRVCodeGenerator::writeLiteral(double value, const Type& type) { int32_t valueBits; if (type.isFloat()) { float fValue = value; memcpy(&valueBits, &fValue, sizeof(valueBits)); } else { SKSL_INT iValue = value; valueBits = iValue; } SPIRVNumberConstant key{valueBits, type.numberKind()}; auto [iter, newlyCreated] = fNumberConstants.insert({key, (SpvId)-1}); if (newlyCreated) { SpvId result = this->nextId(nullptr); iter->second = result; if (type.isBoolean()) { this->writeInstruction(valueBits ? SpvOpConstantTrue : SpvOpConstantFalse, this->getType(type), result, fConstantBuffer); } else { this->writeInstruction(SpvOpConstant, this->getType(type), result, (SpvId)valueBits, fConstantBuffer); } } return iter->second; } SpvId SPIRVCodeGenerator::writeFunctionStart(const FunctionDeclaration& f, OutputStream& out) { SpvId result = fFunctionMap[&f]; SpvId returnTypeId = this->getType(f.returnType()); SpvId functionTypeId = this->getFunctionType(f); this->writeInstruction(SpvOpFunction, returnTypeId, result, SpvFunctionControlMaskNone, functionTypeId, out); String mangledName = f.mangledName(); this->writeInstruction(SpvOpName, result, skstd::string_view(mangledName.c_str(), mangledName.size()), fNameBuffer); for (const Variable* parameter : f.parameters()) { SpvId id = this->nextId(nullptr); fVariableMap[parameter] = id; SpvId type = this->getPointerType(parameter->type(), SpvStorageClassFunction); this->writeInstruction(SpvOpFunctionParameter, type, id, out); } return result; } SpvId SPIRVCodeGenerator::writeFunction(const FunctionDefinition& f, OutputStream& out) { fVariableBuffer.reset(); SpvId result = this->writeFunctionStart(f.declaration(), out); fCurrentBlock = 0; this->writeLabel(this->nextId(nullptr), out); StringStream bodyBuffer; this->writeBlock(f.body()->as(), bodyBuffer); write_stringstream(fVariableBuffer, out); if (f.declaration().isMain()) { write_stringstream(fGlobalInitializersBuffer, out); } write_stringstream(bodyBuffer, out); if (fCurrentBlock) { if (f.declaration().returnType().isVoid()) { this->writeInstruction(SpvOpReturn, out); } else { this->writeInstruction(SpvOpUnreachable, out); } } this->writeInstruction(SpvOpFunctionEnd, out); return result; } void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target) { if (layout.fLocation >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fBinding >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBinding, layout.fBinding, fDecorationBuffer); } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fSet >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationDescriptorSet, layout.fSet, fDecorationBuffer); } if (layout.fInputAttachmentIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationInputAttachmentIndex, layout.fInputAttachmentIndex, fDecorationBuffer); fCapabilities |= (((uint64_t) 1) << SpvCapabilityInputAttachment); } if (layout.fBuiltin >= 0 && layout.fBuiltin != SK_FRAGCOLOR_BUILTIN) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target, int member) { if (layout.fLocation >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fBinding >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBinding, layout.fBinding, fDecorationBuffer); } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fSet >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationDescriptorSet, layout.fSet, fDecorationBuffer); } if (layout.fInputAttachmentIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, member, SpvDecorationInputAttachmentIndex, layout.fInputAttachmentIndex, fDecorationBuffer); } if (layout.fBuiltin >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } MemoryLayout SPIRVCodeGenerator::memoryLayoutForVariable(const Variable& v) const { bool pushConstant = ((v.modifiers().fLayout.fFlags & Layout::kPushConstant_Flag) != 0); return pushConstant ? MemoryLayout(MemoryLayout::k430_Standard) : fDefaultLayout; } SpvId SPIRVCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf, bool appendRTFlip) { MemoryLayout memoryLayout = this->memoryLayoutForVariable(intf.variable()); SpvId result = this->nextId(nullptr); const Variable& intfVar = intf.variable(); const Type& type = intfVar.type(); if (!MemoryLayout::LayoutIsSupported(type)) { fContext.fErrors->error(type.fLine, "type '" + type.name() + "' is not permitted here"); return this->nextId(nullptr); } SpvStorageClass_ storageClass = get_storage_class(intf.variable(), SpvStorageClassFunction); if (fProgram.fInputs.fUseFlipRTUniform && appendRTFlip && type.isStruct()) { // We can only have one interface block (because we use push_constant and that is limited // to one per program), so we need to append rtflip to this one rather than synthesize an // entirely new block when the variable is referenced. And we can't modify the existing // block, so we instead create a modified copy of it and write that. std::vector fields = type.fields(); fields.emplace_back(Modifiers(Layout(/*flags=*/0, /*location=*/-1, fProgram.fConfig->fSettings.fRTFlipOffset, /*binding=*/-1, /*index=*/-1, /*set=*/-1, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), /*flags=*/0), SKSL_RTFLIP_NAME, fContext.fTypes.fFloat2.get()); { AutoAttachPoolToThread attach(fProgram.fPool.get()); const Type* rtFlipStructType = fProgram.fSymbols->takeOwnershipOfSymbol( Type::MakeStructType(type.fLine, type.name(), std::move(fields))); const Variable* modifiedVar = fProgram.fSymbols->takeOwnershipOfSymbol( std::make_unique(intfVar.fLine, &intfVar.modifiers(), intfVar.name(), rtFlipStructType, intfVar.isBuiltin(), intfVar.storage())); fSPIRVBonusVariables.insert(modifiedVar); InterfaceBlock modifiedCopy(intf.fLine, *modifiedVar, intf.typeName(), intf.instanceName(), intf.arraySize(), intf.typeOwner()); result = this->writeInterfaceBlock(modifiedCopy, false); fProgram.fSymbols->add(std::make_unique( /*line=*/-1, modifiedVar, rtFlipStructType->fields().size() - 1)); } fVariableMap[&intfVar] = result; fWroteRTFlip = true; return result; } const Modifiers& intfModifiers = intfVar.modifiers(); SpvId typeId = this->getType(type, memoryLayout); if (intfModifiers.fLayout.fBuiltin == -1) { this->writeInstruction(SpvOpDecorate, typeId, SpvDecorationBlock, fDecorationBuffer); } SpvId ptrType = this->nextId(nullptr); this->writeInstruction(SpvOpTypePointer, ptrType, storageClass, typeId, fConstantBuffer); this->writeInstruction(SpvOpVariable, ptrType, result, storageClass, fConstantBuffer); Layout layout = intfModifiers.fLayout; if (intfModifiers.fFlags & Modifiers::kUniform_Flag && layout.fSet == -1) { layout.fSet = 0; } this->writeLayout(layout, result); fVariableMap[&intfVar] = result; return result; } bool SPIRVCodeGenerator::isDead(const Variable& var) const { // During SPIR-V code generation, we synthesize some extra bonus variables that don't actually // exist in the Program at all and aren't tracked by the ProgramUsage. They aren't dead, though. if (fSPIRVBonusVariables.count(&var)) { return false; } ProgramUsage::VariableCounts counts = fProgram.usage()->get(var); if (counts.fRead || counts.fWrite) { return false; } // It's not entirely clear what the rules are for eliding interface variables. Generally, it // causes problems to elide them, even when they're dead. return !(var.modifiers().fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag)); } void SPIRVCodeGenerator::writeGlobalVar(ProgramKind kind, const VarDeclaration& varDecl) { const Variable& var = varDecl.var(); if (var.modifiers().fLayout.fBuiltin == SK_FRAGCOLOR_BUILTIN && kind != ProgramKind::kFragment) { SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut); return; } if (var.modifiers().fLayout.fBuiltin == SK_SECONDARYFRAGCOLOR_BUILTIN) { return; } if (this->isDead(var)) { return; } SpvStorageClass_ storageClass = get_storage_class(var, SpvStorageClassPrivate); if (storageClass == SpvStorageClassUniform) { // Top-level uniforms are emitted in writeUniformBuffer. fTopLevelUniforms.push_back(&varDecl); return; } const Type& type = var.type(); Layout layout = var.modifiers().fLayout; if (layout.fSet < 0 && storageClass == SpvStorageClassUniformConstant) { layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; } SpvId id = this->nextId(&type); fVariableMap[&var] = id; SpvId typeId = this->getPointerType(type, storageClass); this->writeInstruction(SpvOpVariable, typeId, id, storageClass, fConstantBuffer); this->writeInstruction(SpvOpName, id, var.name(), fNameBuffer); if (varDecl.value()) { SkASSERT(!fCurrentBlock); fCurrentBlock = -1; SpvId value = this->writeExpression(*varDecl.value(), fGlobalInitializersBuffer); this->writeInstruction(SpvOpStore, id, value, fGlobalInitializersBuffer); fCurrentBlock = 0; } this->writeLayout(layout, id); if (var.modifiers().fFlags & Modifiers::kFlat_Flag) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationFlat, fDecorationBuffer); } if (var.modifiers().fFlags & Modifiers::kNoPerspective_Flag) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationNoPerspective, fDecorationBuffer); } } void SPIRVCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl, OutputStream& out) { const Variable& var = varDecl.var(); SpvId id = this->nextId(&var.type()); fVariableMap[&var] = id; SpvId type = this->getPointerType(var.type(), SpvStorageClassFunction); this->writeInstruction(SpvOpVariable, type, id, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpName, id, var.name(), fNameBuffer); if (varDecl.value()) { SpvId value = this->writeExpression(*varDecl.value(), out); this->writeInstruction(SpvOpStore, id, value, out); } } void SPIRVCodeGenerator::writeStatement(const Statement& s, OutputStream& out) { switch (s.kind()) { case Statement::Kind::kInlineMarker: case Statement::Kind::kNop: break; case Statement::Kind::kBlock: this->writeBlock(s.as(), out); break; case Statement::Kind::kExpression: this->writeExpression(*s.as().expression(), out); break; case Statement::Kind::kReturn: this->writeReturnStatement(s.as(), out); break; case Statement::Kind::kVarDeclaration: this->writeVarDeclaration(s.as(), out); break; case Statement::Kind::kIf: this->writeIfStatement(s.as(), out); break; case Statement::Kind::kFor: this->writeForStatement(s.as(), out); break; case Statement::Kind::kDo: this->writeDoStatement(s.as(), out); break; case Statement::Kind::kSwitch: this->writeSwitchStatement(s.as(), out); break; case Statement::Kind::kBreak: this->writeInstruction(SpvOpBranch, fBreakTarget.top(), out); break; case Statement::Kind::kContinue: this->writeInstruction(SpvOpBranch, fContinueTarget.top(), out); break; case Statement::Kind::kDiscard: this->writeInstruction(SpvOpKill, out); break; default: SkDEBUGFAILF("unsupported statement: %s", s.description().c_str()); break; } } void SPIRVCodeGenerator::writeBlock(const Block& b, OutputStream& out) { for (const std::unique_ptr& stmt : b.children()) { this->writeStatement(*stmt, out); } } void SPIRVCodeGenerator::writeIfStatement(const IfStatement& stmt, OutputStream& out) { SpvId test = this->writeExpression(*stmt.test(), out); SpvId ifTrue = this->nextId(nullptr); SpvId ifFalse = this->nextId(nullptr); if (stmt.ifFalse()) { SpvId end = this->nextId(nullptr); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, out); this->writeStatement(*stmt.ifTrue(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(ifFalse, out); this->writeStatement(*stmt.ifFalse(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(end, out); } else { this->writeInstruction(SpvOpSelectionMerge, ifFalse, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, out); this->writeStatement(*stmt.ifTrue(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, ifFalse, out); } this->writeLabel(ifFalse, out); } } void SPIRVCodeGenerator::writeForStatement(const ForStatement& f, OutputStream& out) { if (f.initializer()) { this->writeStatement(*f.initializer(), out); } SpvId header = this->nextId(nullptr); SpvId start = this->nextId(nullptr); SpvId body = this->nextId(nullptr); SpvId next = this->nextId(nullptr); fContinueTarget.push(next); SpvId end = this->nextId(nullptr); fBreakTarget.push(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, out); this->writeInstruction(SpvOpLoopMerge, end, next, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, out); if (f.test()) { SpvId test = this->writeExpression(*f.test(), out); this->writeInstruction(SpvOpBranchConditional, test, body, end, out); } else { this->writeInstruction(SpvOpBranch, body, out); } this->writeLabel(body, out); this->writeStatement(*f.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); } this->writeLabel(next, out); if (f.next()) { this->writeExpression(*f.next(), out); } this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(end, out); fBreakTarget.pop(); fContinueTarget.pop(); } void SPIRVCodeGenerator::writeDoStatement(const DoStatement& d, OutputStream& out) { SpvId header = this->nextId(nullptr); SpvId start = this->nextId(nullptr); SpvId next = this->nextId(nullptr); SpvId continueTarget = this->nextId(nullptr); fContinueTarget.push(continueTarget); SpvId end = this->nextId(nullptr); fBreakTarget.push(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, out); this->writeInstruction(SpvOpLoopMerge, end, continueTarget, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, out); this->writeStatement(*d.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); } this->writeLabel(next, out); this->writeInstruction(SpvOpBranch, continueTarget, out); this->writeLabel(continueTarget, out); SpvId test = this->writeExpression(*d.test(), out); this->writeInstruction(SpvOpBranchConditional, test, header, end, out); this->writeLabel(end, out); fBreakTarget.pop(); fContinueTarget.pop(); } void SPIRVCodeGenerator::writeSwitchStatement(const SwitchStatement& s, OutputStream& out) { SpvId value = this->writeExpression(*s.value(), out); std::vector labels; SpvId end = this->nextId(nullptr); SpvId defaultLabel = end; fBreakTarget.push(end); int size = 3; auto& cases = s.cases(); for (const std::unique_ptr& stmt : cases) { const SwitchCase& c = stmt->as(); SpvId label = this->nextId(nullptr); labels.push_back(label); if (c.value()) { size += 2; } else { defaultLabel = label; } } labels.push_back(end); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeOpCode(SpvOpSwitch, size, out); this->writeWord(value, out); this->writeWord(defaultLabel, out); for (size_t i = 0; i < cases.size(); ++i) { const SwitchCase& c = cases[i]->as(); if (!c.value()) { continue; } this->writeWord(c.value()->as().intValue(), out); this->writeWord(labels[i], out); } for (size_t i = 0; i < cases.size(); ++i) { const SwitchCase& c = cases[i]->as(); this->writeLabel(labels[i], out); this->writeStatement(*c.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, labels[i + 1], out); } } this->writeLabel(end, out); fBreakTarget.pop(); } void SPIRVCodeGenerator::writeReturnStatement(const ReturnStatement& r, OutputStream& out) { if (r.expression()) { this->writeInstruction(SpvOpReturnValue, this->writeExpression(*r.expression(), out), out); } else { this->writeInstruction(SpvOpReturn, out); } } // Given any function, returns the top-level symbol table (OUTSIDE of the function's scope). static std::shared_ptr get_top_level_symbol_table(const FunctionDeclaration& anyFunc) { return anyFunc.definition()->body()->as().symbolTable()->fParent; } SPIRVCodeGenerator::EntrypointAdapter SPIRVCodeGenerator::writeEntrypointAdapter( const FunctionDeclaration& main) { // Our goal is to synthesize a tiny helper function which looks like this: // void _entrypoint() { sk_FragColor = main(); } // Fish a symbol table out of main(). std::shared_ptr symbolTable = get_top_level_symbol_table(main); // Get `sk_FragColor` as a writable reference. const Symbol* skFragColorSymbol = (*symbolTable)["sk_FragColor"]; SkASSERT(skFragColorSymbol); const Variable& skFragColorVar = skFragColorSymbol->as(); auto skFragColorRef = std::make_unique(/*line=*/-1, &skFragColorVar, VariableReference::RefKind::kWrite); // Synthesize a call to the `main()` function. if (main.returnType() != skFragColorRef->type()) { fContext.fErrors->error(main.fLine, "SPIR-V does not support returning '" + main.returnType().description() + "' from main()"); return {}; } ExpressionArray args; if (main.parameters().size() == 1) { if (main.parameters()[0]->type() != *fContext.fTypes.fFloat2) { fContext.fErrors->error(main.fLine, "SPIR-V does not support parameter of type '" + main.parameters()[0]->type().description() + "' to main()"); return {}; } args.push_back(dsl::Float2(0).release()); } auto callMainFn = std::make_unique(/*line=*/-1, &main.returnType(), &main, std::move(args)); // Synthesize `skFragColor = main()` as a BinaryExpression. auto assignmentStmt = std::make_unique(std::make_unique( /*line=*/-1, std::move(skFragColorRef), Token::Kind::TK_EQ, std::move(callMainFn), &main.returnType())); // Function bodies are always wrapped in a Block. StatementArray entrypointStmts; entrypointStmts.push_back(std::move(assignmentStmt)); auto entrypointBlock = Block::Make(/*line=*/-1, std::move(entrypointStmts), symbolTable, /*isScope=*/true); // Declare an entrypoint function. EntrypointAdapter adapter; adapter.fLayout = {}; adapter.fModifiers = Modifiers{adapter.fLayout, Modifiers::kHasSideEffects_Flag}; adapter.entrypointDecl = std::make_unique(/*line=*/-1, &adapter.fModifiers, "_entrypoint", /*parameters=*/std::vector{}, /*returnType=*/fContext.fTypes.fVoid.get(), /*builtin=*/false); // Define it. adapter.entrypointDef = FunctionDefinition::Convert(fContext, /*line=*/-1, *adapter.entrypointDecl, std::move(entrypointBlock), /*builtin=*/false); adapter.entrypointDecl->setDefinition(adapter.entrypointDef.get()); return adapter; } void SPIRVCodeGenerator::writeUniformBuffer(std::shared_ptr topLevelSymbolTable) { SkASSERT(!fTopLevelUniforms.empty()); static constexpr char kUniformBufferName[] = "_UniformBuffer"; // Convert the list of top-level uniforms into a matching struct named _UniformBuffer, and build // a lookup table of variables to UniformBuffer field indices. std::vector fields; fields.reserve(fTopLevelUniforms.size()); fTopLevelUniformMap.reserve(fTopLevelUniforms.size()); for (const VarDeclaration* topLevelUniform : fTopLevelUniforms) { const Variable* var = &topLevelUniform->var(); fTopLevelUniformMap[var] = (int)fields.size(); fields.emplace_back(var->modifiers(), var->name(), &var->type()); } fUniformBuffer.fStruct = Type::MakeStructType(/*line=*/-1, kUniformBufferName, std::move(fields)); // Create a global variable to contain this struct. Layout layout; layout.fBinding = fProgram.fConfig->fSettings.fDefaultUniformBinding; layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; Modifiers modifiers{layout, Modifiers::kUniform_Flag}; fUniformBuffer.fInnerVariable = std::make_unique( /*line=*/-1, fProgram.fModifiers->add(modifiers), kUniformBufferName, fUniformBuffer.fStruct.get(), /*builtin=*/false, Variable::Storage::kGlobal); // Create an interface block object for this global variable. fUniformBuffer.fInterfaceBlock = std::make_unique( /*offset=*/-1, *fUniformBuffer.fInnerVariable, kUniformBufferName, kUniformBufferName, /*arraySize=*/0, topLevelSymbolTable); // Generate an interface block and hold onto its ID. fUniformBufferId = this->writeInterfaceBlock(*fUniformBuffer.fInterfaceBlock); } void SPIRVCodeGenerator::addRTFlipUniform(int line) { if (fWroteRTFlip) { return; } // Flip variable hasn't been written yet. This means we don't have an existing // interface block, so we're free to just synthesize one. fWroteRTFlip = true; std::vector fields; if (fProgram.fConfig->fSettings.fRTFlipOffset < 0) { fContext.fErrors->error(line, "RTFlipOffset is negative"); } fields.emplace_back(Modifiers(Layout(/*flags=*/0, /*location=*/-1, fProgram.fConfig->fSettings.fRTFlipOffset, /*binding=*/-1, /*index=*/-1, /*set=*/-1, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), /*flags=*/0), SKSL_RTFLIP_NAME, fContext.fTypes.fFloat2.get()); skstd::string_view name = "sksl_synthetic_uniforms"; const Type* intfStruct = fSynthetics.takeOwnershipOfSymbol(Type::MakeStructType(/*line=*/-1, name, fields)); int binding = fProgram.fConfig->fSettings.fRTFlipBinding; if (binding == -1) { fContext.fErrors->error(line, "layout(binding=...) is required in SPIR-V"); } int set = fProgram.fConfig->fSettings.fRTFlipSet; if (set == -1) { fContext.fErrors->error(line, "layout(set=...) is required in SPIR-V"); } bool usePushConstants = fProgram.fConfig->fSettings.fUsePushConstants; int flags = usePushConstants ? Layout::Flag::kPushConstant_Flag : 0; const Modifiers* modsPtr; { AutoAttachPoolToThread attach(fProgram.fPool.get()); Modifiers modifiers(Layout(flags, /*location=*/-1, /*offset=*/-1, binding, /*index=*/-1, set, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), Modifiers::kUniform_Flag); modsPtr = fProgram.fModifiers->add(modifiers); } const Variable* intfVar = fSynthetics.takeOwnershipOfSymbol( std::make_unique(/*line=*/-1, modsPtr, name, intfStruct, /*builtin=*/false, Variable::Storage::kGlobal)); fSPIRVBonusVariables.insert(intfVar); { AutoAttachPoolToThread attach(fProgram.fPool.get()); fProgram.fSymbols->add(std::make_unique(/*line=*/-1, intfVar, /*field=*/0)); } InterfaceBlock intf(/*line=*/-1, *intfVar, name, /*instanceName=*/"", /*arraySize=*/0, std::make_shared(fContext, /*builtin=*/false)); this->writeInterfaceBlock(intf, false); } void SPIRVCodeGenerator::writeInstructions(const Program& program, OutputStream& out) { fGLSLExtendedInstructions = this->nextId(nullptr); StringStream body; // Assign SpvIds to functions. const FunctionDeclaration* main = nullptr; for (const ProgramElement* e : program.elements()) { if (e->is()) { const FunctionDefinition& funcDef = e->as(); const FunctionDeclaration& funcDecl = funcDef.declaration(); fFunctionMap[&funcDecl] = this->nextId(nullptr); if (funcDecl.isMain()) { main = &funcDecl; } } } // Make sure we have a main() function. if (!main) { fContext.fErrors->error(/*line=*/-1, "program does not contain a main() function"); return; } // Emit interface blocks. std::set interfaceVars; for (const ProgramElement* e : program.elements()) { if (e->is()) { const InterfaceBlock& intf = e->as(); SpvId id = this->writeInterfaceBlock(intf); const Modifiers& modifiers = intf.variable().modifiers(); if ((modifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag)) && modifiers.fLayout.fBuiltin == -1 && !this->isDead(intf.variable())) { interfaceVars.insert(id); } } } // Emit global variable declarations. for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeGlobalVar(program.fConfig->fKind, e->as().declaration()->as()); } } // Emit top-level uniforms into a dedicated uniform buffer. if (!fTopLevelUniforms.empty()) { this->writeUniformBuffer(get_top_level_symbol_table(*main)); } // If main() returns a half4, synthesize a tiny entrypoint function which invokes the real // main() and stores the result into sk_FragColor. EntrypointAdapter adapter; if (main->returnType() == *fContext.fTypes.fHalf4) { adapter = this->writeEntrypointAdapter(*main); if (adapter.entrypointDecl) { fFunctionMap[adapter.entrypointDecl.get()] = this->nextId(nullptr); this->writeFunction(*adapter.entrypointDef, body); main = adapter.entrypointDecl.get(); } } // Emit all the functions. for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeFunction(e->as(), body); } } // Add global in/out variables to the list of interface variables. for (auto entry : fVariableMap) { const Variable* var = entry.first; if (var->storage() == Variable::Storage::kGlobal && (var->modifiers().fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag)) && !this->isDead(*var)) { interfaceVars.insert(entry.second); } } this->writeCapabilities(out); this->writeInstruction(SpvOpExtInstImport, fGLSLExtendedInstructions, "GLSL.std.450", out); this->writeInstruction(SpvOpMemoryModel, SpvAddressingModelLogical, SpvMemoryModelGLSL450, out); this->writeOpCode(SpvOpEntryPoint, (SpvId) (3 + (main->name().length() + 4) / 4) + (int32_t) interfaceVars.size(), out); switch (program.fConfig->fKind) { case ProgramKind::kVertex: this->writeWord(SpvExecutionModelVertex, out); break; case ProgramKind::kFragment: this->writeWord(SpvExecutionModelFragment, out); break; default: SK_ABORT("cannot write this kind of program to SPIR-V\n"); } SpvId entryPoint = fFunctionMap[main]; this->writeWord(entryPoint, out); this->writeString(main->name(), out); for (int var : interfaceVars) { this->writeWord(var, out); } if (program.fConfig->fKind == ProgramKind::kFragment) { this->writeInstruction(SpvOpExecutionMode, fFunctionMap[main], SpvExecutionModeOriginUpperLeft, out); } for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeInstruction(SpvOpSourceExtension, e->as().name(), out); } } write_stringstream(fExtraGlobalsBuffer, out); write_stringstream(fNameBuffer, out); write_stringstream(fDecorationBuffer, out); write_stringstream(fConstantBuffer, out); write_stringstream(body, out); } bool SPIRVCodeGenerator::generateCode() { SkASSERT(!fContext.fErrors->errorCount()); this->writeWord(SpvMagicNumber, *fOut); this->writeWord(SpvVersion, *fOut); this->writeWord(SKSL_MAGIC, *fOut); StringStream buffer; this->writeInstructions(fProgram, buffer); this->writeWord(fIdCount, *fOut); this->writeWord(0, *fOut); // reserved, always zero write_stringstream(buffer, *fOut); fContext.fErrors->reportPendingErrors(PositionInfo()); return fContext.fErrors->errorCount() == 0; } } // namespace SkSL