#!/usr/bin/python3 -i # # Copyright (c) 2019 Collabora, Ltd. # # SPDX-License-Identifier: Apache-2.0 # # Author(s): Ryan Pavlik """Provides utilities to write a script to verify XML registry consistency.""" import re from typing import Set import networkx as nx from networkx.algorithms import shortest_path from .algo import RecursiveMemoize from .attributes import ExternSyncEntry, LengthEntry from .data_structures import DictOfStringSets from .util import findNamedElem, getElemName, getElemType from .conventions import ConventionsBase def _get_extension_tags(reg): """Get a set of all author tags registered for use.""" return set(elt.get("name") for elt in reg.tree.findall("./tags/tag[@name]")) class XMLChecker: def __init__(self, entity_db, conventions: ConventionsBase, manual_types_to_codes=None, forward_only_types_to_codes=None, reverse_only_types_to_codes=None, suppressions=None): """Set up data structures. May extend - call: `super().__init__(db, conventions, manual_types_to_codes)` as the last statement in your function. manual_types_to_codes is a dictionary of hard-coded "manual" return codes: the codes of the value are available for a command if-and-only-if the key type is passed as an input. forward_only_types_to_codes is additional entries to the above that should only be used in the "forward" direction (arg type implies return code) reverse_only_types_to_codes is additional entries to manual_types_to_codes that should only be used in the "reverse" direction (return code implies arg type) """ self.fail = False self.entity = None self.errors = DictOfStringSets() self.warnings = DictOfStringSets() self.db = entity_db self.reg = entity_db.registry self.handle_data = HandleData(self.reg) self.conventions = conventions self.CONST_RE = re.compile(r"\bconst\b") self.ARRAY_RE = re.compile(r"\[[^]]+\]") # Init memoized properties self._handle_data = None if not manual_types_to_codes: manual_types_to_codes = {} if not reverse_only_types_to_codes: reverse_only_types_to_codes = {} if not forward_only_types_to_codes: forward_only_types_to_codes = {} reverse_codes = DictOfStringSets(reverse_only_types_to_codes) forward_codes = DictOfStringSets(forward_only_types_to_codes) for k, v in manual_types_to_codes.items(): forward_codes.add(k, v) reverse_codes.add(k, v) self.forward_only_manual_types_to_codes = forward_codes.get_dict() self.reverse_only_manual_types_to_codes = reverse_codes.get_dict() # The presence of some types as input to a function imply the # availability of some return codes. self.input_type_to_codes = compute_type_to_codes( self.handle_data, forward_codes, extra_op=self.add_extra_codes) # Some return codes require a type (or its child) in the input. self.codes_requiring_input_type = compute_codes_requiring_type( self.handle_data, reverse_codes ) specified_codes = set(self.codes_requiring_input_type.keys()) for codes in self.forward_only_manual_types_to_codes.values(): specified_codes.update(codes) for codes in self.reverse_only_manual_types_to_codes.values(): specified_codes.update(codes) for codes in self.input_type_to_codes.values(): specified_codes.update(codes) self.return_codes: Set[str] unrecognized = specified_codes - self.return_codes if unrecognized: raise RuntimeError("Return code mentioned in script that isn't in the registry: " + ', '.join(unrecognized)) self.referenced_input_types = ReferencedTypes(self.db, self.is_input) self.referenced_types = ReferencedTypes(self.db) if not suppressions: suppressions = {} self.suppressions = DictOfStringSets(suppressions) self.tags = _get_extension_tags(self.db.registry) def is_api_type(self, member_elem): """Return true if the member/parameter ElementTree passed is from this API. May override or extend.""" membertext = "".join(member_elem.itertext()) return self.conventions.type_prefix in membertext def is_input(self, member_elem): """Return true if the member/parameter ElementTree passed is considered "input". May override or extend.""" membertext = "".join(member_elem.itertext()) if self.conventions.type_prefix not in membertext: return False ret = True # Const is always input. if self.CONST_RE.search(membertext): ret = True # Arrays and pointers that aren't const are always output. elif "*" in membertext: ret = False elif self.ARRAY_RE.search(membertext): ret = False return ret def strip_extension_tag(self, name): """Remove a single author tag from the end of a name, if any. Returns the stripped name and the tag, or the input and None if there was no tag. """ for t in self.tags: if name.endswith(t): name = name[:-(len(t))] if name[-1] == "_": # remove trailing underscore name = name[:-1] return name, t return name, None def add_extra_codes(self, types_to_codes): """Add any desired entries to the types-to-codes DictOfStringSets before performing "ancestor propagation". Passed to compute_type_to_codes as the extra_op. May override.""" pass def should_skip_checking_codes(self, name): """Return True if more than the basic validation of return codes should be skipped for a command. May override.""" return self.conventions.should_skip_checking_codes def get_codes_for_command_and_type(self, cmd_name, type_name): """Return a set of return codes expected due to having an input argument of type type_name. The cmd_name is passed for use by extending methods. Note that you should not use cmd_name to add codes, just to filter them out. See get_required_codes_for_command() to do that. May extend.""" return self.input_type_to_codes.get(type_name, set()) def get_required_codes_for_command(self, cmd_name): """Return a set of return codes required due to having a particular name. May override.""" return set() def get_forbidden_codes_for_command(self, cmd_name): """Return a set of return codes not permittted due to having a particular name. May override.""" return set() def check(self): """Iterate through the registry, looking for consistency problems. Outputs error messages at the end.""" # Iterate through commands, looking for consistency problems. for name, info in self.reg.cmddict.items(): self.set_error_context(entity=name, elem=info.elem) self.check_command(name, info) for name, info in self.reg.typedict.items(): cat = info.elem.get('category') if not cat: # This is an external thing, skip it. continue self.set_error_context(entity=name, elem=info.elem) self.check_type(name, info, cat) self.ext_numbers = set() for name, info in self.reg.extdict.items(): self.set_error_context(entity=name, elem=info.elem) # Determine if this extension is supported by the API we're # testing, and pass that flag to check_extension. # For Vulkan, multiple APIs can be specified in the 'supported' # attribute. supported_apis = info.elem.get('supported', '').split(',') supported = self.conventions.xml_api_name in supported_apis self.check_extension(name, info, supported) self.check_format() entities_with_messages = set( self.errors.keys()).union(self.warnings.keys()) if entities_with_messages: print('xml_consistency/consistency_tools error and warning messages follow.') for entity in entities_with_messages: print() print('-------------------') print('Messages for', entity) print() messages = self.errors.get(entity) if messages: for m in messages: print('Error:', m) messages = self.warnings.get(entity) if messages: for m in messages: print('Warning:', m) def check_param(self, param): """Check a member of a struct or a param of a function. Called from check_params. May extend.""" param_name = getElemName(param) # Make sure there's something between the type and the name # Can't just look at the .tail of for some reason, # so instead we look to see if anything's between # type's text and name's text in the itertext. # If there's no text between the tags, there will be no string # between those tags' text in itertext() text_parts = list(param.itertext()) type_idx = text_parts.index(getElemType(param)) name_idx = text_parts.index(param_name) if name_idx - type_idx == 1: self.record_error( "Space (or other delimiter text) missing between and for param/member named", param_name) # Check external sync entries externsyncs = ExternSyncEntry.parse_externsync_from_param(param) if externsyncs: for entry in externsyncs: if entry.entirely_extern_sync: if len(externsyncs) > 1: self.record_error("Comma-separated list in externsync attribute includes 'true' for", param_name) else: # member name # TODO only looking at the superficial feature here, # not entry.param_ref_parts if entry.member != param_name: self.record_error("externsync attribute for", param_name, "refers to some other member/parameter:", entry.member) def check_params(self, params): """Check the members of a struct or params of a function. Called from check_type and check_command. May extend.""" for param in params: self.check_param(param) # Check for parameters referenced by len= attribute lengths = LengthEntry.parse_len_from_param(param) if lengths: for entry in lengths: if not entry.other_param_name: continue # TODO only looking at the superficial feature here, # not entry.param_ref_parts other_param = findNamedElem(params, entry.other_param_name) if other_param is None: self.record_error("References a non-existent parameter/member in the length of", getElemName(param), ":", entry.other_param_name) def check_referenced_type(self, desc, ref_name): """ Record an error if a type mentioned somewhere doesn't exist. :param desc: Description of where this type reference was found, for the error message. :param ref_name: The name of the referenced type. If false-ish (incl. None), checking is skipped, so OK to pass the results of info.elem.get() directly """ if ref_name: entity = self.db.findEntity(ref_name) if not entity: self.record_error("Unknown type named in", desc, ":", ref_name) def check_type(self, name, info, category): """Check a type's XML data for consistency. Called from check. May extend.""" if category == 'struct': if not name.startswith(self.conventions.type_prefix): self.record_error("Name does not start with", self.conventions.type_prefix) members = info.elem.findall('member') self.check_params(members) # Check the structure type member, if present. type_member = findNamedElem( members, self.conventions.structtype_member_name) if type_member is not None: val = type_member.get('values') if val: expected = self.conventions.generate_structure_type_from_name( name) if val != expected: self.record_error("Type has incorrect type-member value: expected", expected, "got", val) # Check structextends attribute, if present. # For Vulkan, this may be a comma-separated list of multiple types for type in info.elem.get("structextends", '').split(','): self.check_referenced_type("'structextends' attribute", type) # Check parentstruct attribute, if present. self.check_referenced_type("'parentstruct' attribute", info.elem.get("parentstruct")) elif category == "bitmask": if 'Flags' not in name: self.record_error("Name of bitmask doesn't include 'Flags'") elif category == "handle": # Check parent attribute, if present. self.check_referenced_type("'parent' attribute", info.elem.get("parent")) def check_extension(self, name, info, supported): """Check an extension's XML data for consistency. Called from check. May extend.""" # Verify that each extension has a unique number extension_number = info.elem.get('number') if extension_number is not None and extension_number != '0': if extension_number in self.ext_numbers: self.record_error('Duplicate extension number ' + extension_number) else: self.ext_numbers.add(extension_number) def check_format(self): """Check an extension's XML data for consistency. Called from check. May extend.""" pass def check_command(self, name, info): """Check a command's XML data for consistency. Called from check. May extend.""" elem = info.elem self.check_params(elem.findall('param')) # Some minimal return code checking errorcodes = elem.get("errorcodes") if errorcodes: errorcodes = errorcodes.split(",") else: errorcodes = [] successcodes = elem.get("successcodes") if successcodes: successcodes = successcodes.split(",") else: successcodes = [] if not successcodes and not errorcodes: # Early out if no return codes. return # Create a set for each group of codes, and check that # they aren't duplicated within or between groups. errorcodes_set = set(errorcodes) if len(errorcodes) != len(errorcodes_set): self.record_error("Contains a duplicate in errorcodes") successcodes_set = set(successcodes) if len(successcodes) != len(successcodes_set): self.record_error("Contains a duplicate in successcodes") if not successcodes_set.isdisjoint(errorcodes_set): self.record_error("Has errorcodes and successcodes that overlap") self.check_command_return_codes_basic( name, info, successcodes_set, errorcodes_set) # Continue to further return code checking if not "complicated" if not self.should_skip_checking_codes(name): codes_set = successcodes_set.union(errorcodes_set) self.check_command_return_codes( name, info, successcodes_set, errorcodes_set, codes_set) def check_command_return_codes_basic(self, name, info, successcodes, errorcodes): """Check a command's return codes for consistency. Called from check_command on every command. May extend.""" # Check that all error codes include _ERROR_, # and that no success codes do. for code in errorcodes: if "_ERROR_" not in code: self.record_error( code, "in errorcodes but doesn't contain _ERROR_") for code in successcodes: if "_ERROR_" in code: self.record_error(code, "in successcodes but contain _ERROR_") def check_command_return_codes(self, name, type_info, successcodes, errorcodes, codes): """Check a command's return codes in-depth for consistency. Called from check_command, only if `self.should_skip_checking_codes(name)` is False. May extend.""" referenced_input = self.referenced_input_types[name] referenced_types = self.referenced_types[name] error_prefix = self.conventions.api_prefix + "ERROR" bad_success = {x for x in successcodes if x.startswith(error_prefix)} if bad_success: self.record_error("Found error code(s)", ",".join(bad_success), "listed in the successcodes attributes") bad_errors = {x for x in errorcodes if not x.startswith(error_prefix)} if bad_errors: self.record_error("Found success code(s)", ",".join(bad_errors), "listed in the errorcodes attributes") # Check that we have all the codes we expect, based on input types. for referenced_type in referenced_input: required_codes = self.get_codes_for_command_and_type( name, referenced_type) missing_codes = required_codes - codes if missing_codes: path = self.referenced_input_types.shortest_path( name, referenced_type) path_str = " -> ".join(path) self.record_error("Missing expected return code(s)", ",".join(missing_codes), "implied because of input of type", referenced_type, "found via path", path_str) # Check that we have all the codes we expect based on command name. missing_codes = self.get_required_codes_for_command(name) - codes if missing_codes: self.record_error("Missing expected return code(s)", ",".join(missing_codes), "implied because of the name of this command") # Check that we don't have any codes forbidden based on command name. forbidden = self.get_forbidden_codes_for_command(name).intersection(codes) if forbidden: self.record_error("Got return code(s)", ", ".join(forbidden), "that were forbidden due to the name of this command") # Check that, for each code returned by this command that we can # associate with a type, we have some type that can provide it. # e.g. can't have INSTANCE_LOST without an Instance # (or child of Instance). for code in codes: required_types = self.codes_requiring_input_type.get(code) if not required_types: # This code doesn't have a known requirement continue # TODO: do we look at referenced_types or referenced_input here? # the latter is stricter if not referenced_types.intersection(required_types): self.record_error("Unexpected return code", code, "- none of these types:", required_types, "found in the set of referenced types", referenced_types) ### # Utility properties/methods ### def set_error_context(self, entity=None, elem=None): """Set the entity and/or element for future record_error calls.""" self.entity = entity self.elem = elem self.name = getElemName(elem) self.entity_suppressions = self.suppressions.get(getElemName(elem)) def record_error(self, *args, **kwargs): """Record failure and an error message for the current context.""" message = " ".join((str(x) for x in args)) if self._is_message_suppressed(message): return message = self._prepend_sourceline_to_message(message, **kwargs) self.fail = True self.errors.add(self.entity, message) def record_warning(self, *args, **kwargs): """Record a warning message for the current context.""" message = " ".join((str(x) for x in args)) if self._is_message_suppressed(message): return message = self._prepend_sourceline_to_message(message, **kwargs) self.warnings.add(self.entity, message) def _is_message_suppressed(self, message): """Return True if the given message, for this entity, should be suppressed.""" if not self.entity_suppressions: return False for suppress in self.entity_suppressions: if suppress in message: return True return False def _prepend_sourceline_to_message(self, message, **kwargs): """Prepend a file and/or line reference to the message, if possible. If filename is given as a keyword argument, it is used on its own. If filename is not given, this will attempt to retrieve the filename and line from an XML element. If 'elem' is given as a keyword argument and is not None, it is used to find the line. If 'elem' is given as None, no XML elements are looked at. If 'elem' is not supplied, the error context element is used. If using XML, the filename, if available, is retrieved from the Registry class. If using XML and python-lxml is installed, the source line is retrieved from whatever element is chosen.""" fn = kwargs.get('filename') sourceline = None if fn is None: elem = kwargs.get('elem', self.elem) if elem is not None: sourceline = getattr(elem, 'sourceline', None) if self.reg.filename: fn = self.reg.filename if fn is None and sourceline is None: return message if fn is None: return "Line {}: {}".format(sourceline, message) if sourceline is None: return "{}: {}".format(fn, message) return "{}:{}: {}".format(fn, sourceline, message) class HandleParents(RecursiveMemoize): def __init__(self, handle_types): self.handle_types = handle_types def compute(handle_type): immediate_parent = self.handle_types[handle_type].elem.get( 'parent') if immediate_parent is None: # No parents, no need to recurse return [] # Support multiple (alternate) parents immediate_parents = immediate_parent.split(',') # Recurse, combine, and return all_parents = immediate_parents[:] for parent in immediate_parents: all_parents.extend(self[parent]) return all_parents super().__init__(compute, handle_types.keys()) def _always_true(x): return True class ReferencedTypes(RecursiveMemoize): """Find all types(optionally matching a predicate) that are referenced by a struct or function, recursively.""" def __init__(self, db, predicate=None): """Initialize. Provide an EntityDB object and a predicate function.""" self.db = db self.predicate = predicate if not self.predicate: # Default predicate is "anything goes" self.predicate = _always_true self._directly_referenced = {} self.graph = nx.DiGraph() def compute(type_name): """Compute and return all types referenced by type_name, recursively, that satisfy the predicate. Called by the [] operator in the base class.""" types = self.directly_referenced(type_name) if not types: return types all_types = set() all_types.update(types) for t in types: referenced = self[t] if referenced is not None: # If not leading to a cycle all_types.update(referenced) return all_types # Initialize base class super().__init__(compute, permit_cycles=True) def shortest_path(self, source, target): """Get the shortest path between one type/function name and another.""" # Trigger computation _ = self[source] return shortest_path(self.graph, source=source, target=target) def directly_referenced(self, type_name): """Get all types referenced directly by type_name that satisfy the predicate. Memoizes its results.""" if type_name not in self._directly_referenced: members = self.db.getMemberElems(type_name) if members: types = ((member, member.find("type")) for member in members) self._directly_referenced[type_name] = set(type_elem.text for (member, type_elem) in types if type_elem is not None and self.predicate(member)) else: self._directly_referenced[type_name] = set() children = self.db.childTypes(type_name) if children: self._directly_referenced[type_name].update(children) # Update graph self.graph.add_node(type_name) self.graph.add_edges_from((type_name, t) for t in self._directly_referenced[type_name]) return self._directly_referenced[type_name] class HandleData: """Data about all the handle types available in an API specification.""" def __init__(self, registry): self.reg = registry self._handle_types = None self._ancestors = None self._descendants = None @property def handle_types(self): """Return a dictionary of handle type names to type info.""" if not self._handle_types: # First time requested - compute it. self._handle_types = { type_name: type_info for type_name, type_info in self.reg.typedict.items() if type_info.elem.get('category') == 'handle' } return self._handle_types @property def ancestors_dict(self): """Return a dictionary of handle type names to sets of ancestors.""" if not self._ancestors: # First time requested - compute it. self._ancestors = HandleParents(self.handle_types).get_dict() return self._ancestors @property def descendants_dict(self): """Return a dictionary of handle type names to sets of descendants.""" if not self._descendants: # First time requested - compute it. handle_parents = self.ancestors_dict def get_descendants(handle): return set(h for h in handle_parents.keys() if handle in handle_parents[h]) self._descendants = { h: get_descendants(h) for h in handle_parents.keys() } return self._descendants def compute_type_to_codes(handle_data, types_to_codes, extra_op=None): """Compute a DictOfStringSets of input type to required return codes. - handle_data is a HandleData instance. - d is a dictionary of type names to strings or string collections of return codes. - extra_op, if any, is called after populating the output from the input dictionary, but before propagation of parent codes to child types. extra_op is called with the in-progress DictOfStringSets. Returns a DictOfStringSets of input type name to set of required return code names. """ # Initialize with the supplied "manual" codes types_to_codes = DictOfStringSets(types_to_codes) # Dynamically generate more codes, if desired if extra_op: extra_op(types_to_codes) # Final post-processing # Any handle can result in its parent handle's codes too. handle_ancestors = handle_data.ancestors_dict extra_handle_codes = {} for handle_type, ancestors in handle_ancestors.items(): # The sets of return codes corresponding to each ancestor type. ancestors_codes = [types_to_codes.get(ancestor, set()) for ancestor in ancestors] extra_handle_codes[handle_type] = set().union(*ancestors_codes) for handle_type, extras in extra_handle_codes.items(): types_to_codes.add(handle_type, extras) return types_to_codes def compute_codes_requiring_type(handle_data, types_to_codes, registry=None): """Compute a DictOfStringSets of return codes to a set of input types able to provide the ability to generate that code. handle_data is a HandleData instance. d is a dictionary of input types to associated return codes(same format as for input to compute_type_to_codes, may use same dict). This will invert that relationship, and also permit any "child handles" to satisfy a requirement for a parent in producing a code. Returns a DictOfStringSets of return code name to the set of parameter types that would allow that return code. """ # Use DictOfStringSets to normalize the input into a dict with values # that are sets of strings in_dict = DictOfStringSets(types_to_codes) handle_descendants = handle_data.descendants_dict out = DictOfStringSets() for in_type, code_set in in_dict.items(): descendants = handle_descendants.get(in_type) for code in code_set: out.add(code, in_type) if descendants: out.add(code, descendants) return out