/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2019 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Ray Tracing Complex Control Flow tests *//*--------------------------------------------------------------------*/ #include "vktRayTracingComplexControlFlowTests.hpp" #include "vkDefs.hpp" #include "vktTestCase.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkImageWithMemory.hpp" #include "vkTypeUtil.hpp" #include "vkRayTracingUtil.hpp" #include "tcuTestLog.hpp" #include "deRandom.hpp" namespace vkt { namespace RayTracing { namespace { using namespace vk; using namespace std; static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR; #if defined(DE_DEBUG) static const deUint32 PUSH_CONSTANTS_COUNT = 6; #endif static const deUint32 DEFAULT_CLEAR_VALUE = 999999; enum TestType { TEST_TYPE_IF = 0, TEST_TYPE_LOOP, TEST_TYPE_SWITCH, TEST_TYPE_LOOP_DOUBLE_CALL, TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE, TEST_TYPE_NESTED_LOOP, TEST_TYPE_NESTED_LOOP_BEFORE, TEST_TYPE_NESTED_LOOP_AFTER, TEST_TYPE_FUNCTION_CALL, TEST_TYPE_NESTED_FUNCTION_CALL, }; enum TestOp { TEST_OP_EXECUTE_CALLABLE = 0, TEST_OP_TRACE_RAY, TEST_OP_REPORT_INTERSECTION, }; enum ShaderGroups { FIRST_GROUP = 0, RAYGEN_GROUP = FIRST_GROUP, MISS_GROUP, HIT_GROUP, GROUP_COUNT }; struct CaseDef { TestType testType; TestOp testOp; VkShaderStageFlagBits stage; deUint32 width; deUint32 height; }; struct PushConstants { deUint32 a; deUint32 b; deUint32 c; deUint32 d; deUint32 hitOfs; deUint32 miss; }; deUint32 getShaderGroupSize (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupHandleSize(); } deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupBaseAlignment(); } VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, deUint32 depth, VkFormat format) { const VkImageUsageFlags usage = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; (VkImageCreateFlags)0u, // VkImageCreateFlags flags; VK_IMAGE_TYPE_3D, // VkImageType imageType; format, // VkFormat format; makeExtent3D(width, height, depth), // VkExtent3D extent; 1u, // deUint32 mipLevels; 1u, // deUint32 arrayLayers; VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples; VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling; usage, // VkImageUsageFlags usage; VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode; 0u, // deUint32 queueFamilyIndexCount; DE_NULL, // const deUint32* pQueueFamilyIndices; VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout; }; return imageCreateInfo; } Move makePipelineLayout (const DeviceInterface& vk, const VkDevice device, const VkDescriptorSetLayout descriptorSetLayout, const deUint32 pushConstantsSize) { const VkDescriptorSetLayout* descriptorSetLayoutPtr = (descriptorSetLayout == DE_NULL) ? DE_NULL : &descriptorSetLayout; const deUint32 setLayoutCount = (descriptorSetLayout == DE_NULL) ? 0u : 1u; const VkPushConstantRange pushConstantRange = { ALL_RAY_TRACING_STAGES, // VkShaderStageFlags stageFlags; 0u, // deUint32 offset; pushConstantsSize, // deUint32 size; }; const VkPushConstantRange* pPushConstantRanges = (pushConstantsSize == 0) ? DE_NULL : &pushConstantRange; const deUint32 pushConstantRangeCount = (pushConstantsSize == 0) ? 0 : 1u; const VkPipelineLayoutCreateInfo pipelineLayoutParams = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; 0u, // VkPipelineLayoutCreateFlags flags; setLayoutCount, // deUint32 setLayoutCount; descriptorSetLayoutPtr, // const VkDescriptorSetLayout* pSetLayouts; pushConstantRangeCount, // deUint32 pushConstantRangeCount; pPushConstantRanges, // const VkPushConstantRange* pPushConstantRanges; }; return createPipelineLayout(vk, device, &pipelineLayoutParams); } VkBuffer getVkBuffer (const de::MovePtr& buffer) { VkBuffer result = (buffer.get() == DE_NULL) ? DE_NULL : buffer->get(); return result; } VkStridedDeviceAddressRegionKHR makeStridedDeviceAddressRegion (const DeviceInterface& vkd, const VkDevice device, VkBuffer buffer, deUint32 stride, deUint32 count) { if (buffer == DE_NULL) { return makeStridedDeviceAddressRegionKHR(0, 0, 0); } else { return makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, buffer, 0), stride, stride * count); } } // Function replacing all occurrences of substring with string passed in last parameter. static inline std::string replace(const std::string& str, const std::string& from, const std::string& to) { std::string result(str); size_t start_pos = 0; while((start_pos = result.find(from, start_pos)) != std::string::npos) { result.replace(start_pos, from.length(), to); start_pos += to.length(); } return result; } class RayTracingComplexControlFlowInstance : public TestInstance { public: RayTracingComplexControlFlowInstance (Context& context, const CaseDef& data); ~RayTracingComplexControlFlowInstance (void); tcu::TestStatus iterate (void); protected: void calcShaderGroup (deUint32& shaderGroupCounter, const VkShaderStageFlags shaders1, const VkShaderStageFlags shaders2, const VkShaderStageFlags shaderStageFlags, deUint32& shaderGroup, deUint32& shaderGroupCount) const; PushConstants getPushConstants (void) const; std::vector getExpectedValues (void) const; de::MovePtr runTest (void); Move makePipeline (de::MovePtr& rayTracingPipeline, VkPipelineLayout pipelineLayout); de::MovePtr createShaderBindingTable (const InstanceInterface& vki, const DeviceInterface& vkd, const VkDevice device, const VkPhysicalDevice physicalDevice, const VkPipeline pipeline, Allocator& allocator, de::MovePtr& rayTracingPipeline, const deUint32 group, const deUint32 groupCount = 1u); de::MovePtr initTopAccelerationStructure (VkCommandBuffer cmdBuffer, vector >& bottomLevelAccelerationStructures); vector > initBottomAccelerationStructures (VkCommandBuffer cmdBuffer); de::MovePtr initBottomAccelerationStructure (VkCommandBuffer cmdBuffer, tcu::UVec2& startPos); private: CaseDef m_data; VkShaderStageFlags m_shaders; VkShaderStageFlags m_shaders2; deUint32 m_raygenShaderGroup; deUint32 m_missShaderGroup; deUint32 m_hitShaderGroup; deUint32 m_callableShaderGroup; deUint32 m_raygenShaderGroupCount; deUint32 m_missShaderGroupCount; deUint32 m_hitShaderGroupCount; deUint32 m_callableShaderGroupCount; deUint32 m_shaderGroupCount; deUint32 m_depth; PushConstants m_pushConstants; }; RayTracingComplexControlFlowInstance::RayTracingComplexControlFlowInstance (Context& context, const CaseDef& data) : vkt::TestInstance (context) , m_data (data) , m_shaders (0) , m_shaders2 (0) , m_raygenShaderGroup (~0u) , m_missShaderGroup (~0u) , m_hitShaderGroup (~0u) , m_callableShaderGroup (~0u) , m_raygenShaderGroupCount (0) , m_missShaderGroupCount (0) , m_hitShaderGroupCount (0) , m_callableShaderGroupCount (0) , m_shaderGroupCount (0) , m_depth (16) , m_pushConstants (getPushConstants()) { const VkShaderStageFlags hitStages = VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR; BinaryCollection& collection = m_context.getBinaryCollection(); deUint32 shaderCount = 0; if (collection.contains("rgen")) m_shaders |= VK_SHADER_STAGE_RAYGEN_BIT_KHR; if (collection.contains("ahit")) m_shaders |= VK_SHADER_STAGE_ANY_HIT_BIT_KHR; if (collection.contains("chit")) m_shaders |= VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR; if (collection.contains("miss")) m_shaders |= VK_SHADER_STAGE_MISS_BIT_KHR; if (collection.contains("sect")) m_shaders |= VK_SHADER_STAGE_INTERSECTION_BIT_KHR; if (collection.contains("call")) m_shaders |= VK_SHADER_STAGE_CALLABLE_BIT_KHR; if (collection.contains("ahit2")) m_shaders2 |= VK_SHADER_STAGE_ANY_HIT_BIT_KHR; if (collection.contains("chit2")) m_shaders2 |= VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR; if (collection.contains("miss2")) m_shaders2 |= VK_SHADER_STAGE_MISS_BIT_KHR; if (collection.contains("sect2")) m_shaders2 |= VK_SHADER_STAGE_INTERSECTION_BIT_KHR; if (collection.contains("cal0")) m_shaders2 |= VK_SHADER_STAGE_CALLABLE_BIT_KHR; for (BinaryCollection::Iterator it = collection.begin(); it != collection.end(); ++it) shaderCount++; if (shaderCount != (deUint32)dePop32(m_shaders) + (deUint32)dePop32(m_shaders2)) TCU_THROW(InternalError, "Unused shaders detected in the collection"); calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, VK_SHADER_STAGE_RAYGEN_BIT_KHR, m_raygenShaderGroup, m_raygenShaderGroupCount); calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, VK_SHADER_STAGE_MISS_BIT_KHR, m_missShaderGroup, m_missShaderGroupCount); calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, hitStages, m_hitShaderGroup, m_hitShaderGroupCount); calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, VK_SHADER_STAGE_CALLABLE_BIT_KHR, m_callableShaderGroup, m_callableShaderGroupCount); } RayTracingComplexControlFlowInstance::~RayTracingComplexControlFlowInstance (void) { } void RayTracingComplexControlFlowInstance::calcShaderGroup (deUint32& shaderGroupCounter, const VkShaderStageFlags shaders1, const VkShaderStageFlags shaders2, const VkShaderStageFlags shaderStageFlags, deUint32& shaderGroup, deUint32& shaderGroupCount) const { const deUint32 shader1Count = ((shaders1 & shaderStageFlags) != 0) ? 1 : 0; const deUint32 shader2Count = ((shaders2 & shaderStageFlags) != 0) ? 1 : 0; shaderGroupCount = shader1Count + shader2Count; if (shaderGroupCount != 0) { shaderGroup = shaderGroupCounter; shaderGroupCounter += shaderGroupCount; } } Move RayTracingComplexControlFlowInstance::makePipeline (de::MovePtr& rayTracingPipeline, VkPipelineLayout pipelineLayout) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); vk::BinaryCollection& collection = m_context.getBinaryCollection(); if (0 != (m_shaders & VK_SHADER_STAGE_RAYGEN_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR , createShaderModule(vkd, device, collection.get("rgen"), 0), m_raygenShaderGroup); if (0 != (m_shaders & VK_SHADER_STAGE_ANY_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("ahit"), 0), m_hitShaderGroup); if (0 != (m_shaders & VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("chit"), 0), m_hitShaderGroup); if (0 != (m_shaders & VK_SHADER_STAGE_MISS_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR , createShaderModule(vkd, device, collection.get("miss"), 0), m_missShaderGroup); if (0 != (m_shaders & VK_SHADER_STAGE_INTERSECTION_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR , createShaderModule(vkd, device, collection.get("sect"), 0), m_hitShaderGroup); if (0 != (m_shaders & VK_SHADER_STAGE_CALLABLE_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR , createShaderModule(vkd, device, collection.get("call"), 0), m_callableShaderGroup + 1); if (0 != (m_shaders2 & VK_SHADER_STAGE_CALLABLE_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR , createShaderModule(vkd, device, collection.get("cal0"), 0), m_callableShaderGroup); if (0 != (m_shaders2 & VK_SHADER_STAGE_ANY_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("ahit2"), 0), m_hitShaderGroup + 1); if (0 != (m_shaders2 & VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("chit2"), 0), m_hitShaderGroup + 1); if (0 != (m_shaders2 & VK_SHADER_STAGE_MISS_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR , createShaderModule(vkd, device, collection.get("miss2"), 0), m_missShaderGroup + 1); if (0 != (m_shaders2 & VK_SHADER_STAGE_INTERSECTION_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR , createShaderModule(vkd, device, collection.get("sect2"), 0), m_hitShaderGroup + 1); if (m_data.testOp == TEST_OP_TRACE_RAY && m_data.stage != VK_SHADER_STAGE_RAYGEN_BIT_KHR) rayTracingPipeline->setMaxRecursionDepth(2); Move pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout); return pipeline; } de::MovePtr RayTracingComplexControlFlowInstance::createShaderBindingTable (const InstanceInterface& vki, const DeviceInterface& vkd, const VkDevice device, const VkPhysicalDevice physicalDevice, const VkPipeline pipeline, Allocator& allocator, de::MovePtr& rayTracingPipeline, const deUint32 group, const deUint32 groupCount) { de::MovePtr shaderBindingTable; if (group < m_shaderGroupCount) { const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice); const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice); shaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, group, groupCount); } return shaderBindingTable; } de::MovePtr RayTracingComplexControlFlowInstance::initTopAccelerationStructure (VkCommandBuffer cmdBuffer, vector >& bottomLevelAccelerationStructures) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); de::MovePtr result = makeTopLevelAccelerationStructure(); result->setInstanceCount(bottomLevelAccelerationStructures.size()); for (size_t structNdx = 0; structNdx < bottomLevelAccelerationStructures.size(); ++structNdx) result->addInstance(bottomLevelAccelerationStructures[structNdx]); result->createAndBuild(vkd, device, cmdBuffer, allocator); return result; } de::MovePtr RayTracingComplexControlFlowInstance::initBottomAccelerationStructure (VkCommandBuffer cmdBuffer, tcu::UVec2& startPos) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); de::MovePtr result = makeBottomLevelAccelerationStructure(); const float z = (m_data.stage == VK_SHADER_STAGE_MISS_BIT_KHR) ? +1.0f : -1.0f; std::vector geometryData; DE_UNREF(startPos); result->setGeometryCount(1); geometryData.push_back(tcu::Vec3(0.0f, 0.0f, z)); geometryData.push_back(tcu::Vec3(1.0f, 1.0f, z)); result->addGeometry(geometryData, false); result->createAndBuild(vkd, device, cmdBuffer, allocator); return result; } vector > RayTracingComplexControlFlowInstance::initBottomAccelerationStructures (VkCommandBuffer cmdBuffer) { tcu::UVec2 startPos; vector > result; de::MovePtr bottomLevelAccelerationStructure = initBottomAccelerationStructure(cmdBuffer, startPos); result.push_back(de::SharedPtr(bottomLevelAccelerationStructure.release())); return result; } PushConstants RayTracingComplexControlFlowInstance::getPushConstants (void) const { const deUint32 hitOfs = 1; const deUint32 miss = 1; PushConstants result; switch (m_data.testType) { case TEST_TYPE_IF: { result = { 32 | 8 | 1, 10000, 0x0F, 0xF0, hitOfs, miss }; break; } case TEST_TYPE_LOOP: { result = { 8, 10000, 0x0F, 100000, hitOfs, miss }; break; } case TEST_TYPE_SWITCH: { result = { 3, 10000, 0x07, 100000, hitOfs, miss }; break; } case TEST_TYPE_LOOP_DOUBLE_CALL: { result = { 7, 10000, 0x0F, 0xF0, hitOfs, miss }; break; } case TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE: { result = { 16, 5, 0x0F, 0xF0, hitOfs, miss }; break; } case TEST_TYPE_NESTED_LOOP: { result = { 8, 5, 0x0F, 0x09, hitOfs, miss }; break; } case TEST_TYPE_NESTED_LOOP_BEFORE: { result = { 9, 16, 0x0F, 10, hitOfs, miss }; break; } case TEST_TYPE_NESTED_LOOP_AFTER: { result = { 9, 16, 0x0F, 10, hitOfs, miss }; break; } case TEST_TYPE_FUNCTION_CALL: { result = { 0xFFB, 16, 10, 100000, hitOfs, miss }; break; } case TEST_TYPE_NESTED_FUNCTION_CALL: { result = { 0xFFB, 16, 10, 100000, hitOfs, miss }; break; } default: TCU_THROW(InternalError, "Unknown testType"); } return result; } de::MovePtr RayTracingComplexControlFlowInstance::runTest (void) { const InstanceInterface& vki = m_context.getInstanceInterface(); const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const VkQueue queue = m_context.getUniversalQueue(); Allocator& allocator = m_context.getDefaultAllocator(); const VkFormat format = VK_FORMAT_R32_UINT; const deUint32 pushConstants[] = { m_pushConstants.a, m_pushConstants.b, m_pushConstants.c, m_pushConstants.d, m_pushConstants.hitOfs, m_pushConstants.miss }; const deUint32 pushConstantsSize = sizeof(pushConstants); const deUint32 pixelCount = m_data.width * m_data.height * m_depth; const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice); const Move descriptorSetLayout = DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES) .addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES) .build(vkd, device); const Move descriptorPool = DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) .addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) .build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const Move descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const Move pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get(), pushConstantsSize); const Move cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex); const Move cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); de::MovePtr rayTracingPipeline = de::newMovePtr(); const Move pipeline = makePipeline(rayTracingPipeline, *pipelineLayout); const de::MovePtr raygenShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_raygenShaderGroup, m_raygenShaderGroupCount); const de::MovePtr missShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_missShaderGroup, m_missShaderGroupCount); const de::MovePtr hitShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_hitShaderGroup, m_hitShaderGroupCount); const de::MovePtr callableShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_callableShaderGroup, m_callableShaderGroupCount); const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(raygenShaderBindingTable), shaderGroupHandleSize, m_raygenShaderGroupCount); const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(missShaderBindingTable), shaderGroupHandleSize, m_missShaderGroupCount); const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(hitShaderBindingTable), shaderGroupHandleSize, m_hitShaderGroupCount); const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(callableShaderBindingTable), shaderGroupHandleSize, m_callableShaderGroupCount); const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, m_depth, format); const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u); const de::MovePtr image = de::MovePtr(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any)); const Move imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_3D, format, imageSubresourceRange); const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount*sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT); const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u); const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, m_depth), bufferImageSubresourceLayers); de::MovePtr buffer = de::MovePtr(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible)); const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL); const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, **image, imageSubresourceRange); const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, **image, imageSubresourceRange); const VkMemoryBarrier preTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT); const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); const VkClearValue clearValue = makeClearValueColorU32(DEFAULT_CLEAR_VALUE, 0u, 0u, 255u); vector > bottomLevelAccelerationStructures; de::MovePtr topLevelAccelerationStructure; DE_ASSERT(DE_LENGTH_OF_ARRAY(pushConstants) == PUSH_CONSTANTS_COUNT); beginCommandBuffer(vkd, *cmdBuffer, 0u); { vkd.cmdPushConstants(*cmdBuffer, *pipelineLayout, ALL_RAY_TRACING_STAGES, 0, pushConstantsSize, &m_pushConstants); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier); vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, ALL_RAY_TRACING_STAGES, &postImageBarrier); bottomLevelAccelerationStructures = initBottomAccelerationStructures(*cmdBuffer); topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructures); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, ALL_RAY_TRACING_STAGES, &preTraceMemoryBarrier); const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get(); VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType; DE_NULL, // const void* pNext; 1u, // deUint32 accelerationStructureCount; topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures; }; DescriptorSetUpdateBuilder() .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo) .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet) .update(vkd, device); vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL); vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline); cmdTraceRays(vkd, *cmdBuffer, &raygenShaderBindingTableRegion, &missShaderBindingTableRegion, &hitShaderBindingTableRegion, &callableShaderBindingTableRegion, m_data.width, m_data.height, 1); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, ALL_RAY_TRACING_STAGES, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier); vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier); } endCommandBuffer(vkd, *cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer.get()); invalidateMappedMemoryRange(vkd, device, buffer->getAllocation().getMemory(), buffer->getAllocation().getOffset(), pixelCount * sizeof(deUint32)); return buffer; } std::vector RayTracingComplexControlFlowInstance::getExpectedValues (void) const { const deUint32 plainSize = m_data.width * m_data.height; const deUint32 plain8Ofs = 8 * plainSize; const struct PushConstants& p = m_pushConstants; const deUint32 pushConstants[] = { 0, m_pushConstants.a, m_pushConstants.b, m_pushConstants.c, m_pushConstants.d, m_pushConstants.hitOfs, m_pushConstants.miss }; const deUint32 resultSize = plainSize * m_depth; const bool fixed = m_data.testOp == TEST_OP_REPORT_INTERSECTION; std::vector result (resultSize, DEFAULT_CLEAR_VALUE); deUint32 v0; deUint32 v1; deUint32 v2; deUint32 v3; switch (m_data.testType) { case TEST_TYPE_IF: { for (deUint32 id = 0; id < plainSize; ++id) { v2 = v3 = p.b; if ((p.a & id) != 0) { v0 = p.c & id; v1 = (p.d & id) + 1; result[plain8Ofs + id] = v0; if (!fixed) v0++; } else { v0 = p.d & id; v1 = (p.c & id) + 1; if (!fixed) { result[plain8Ofs + id] = v1; v1++; } else result[plain8Ofs + id] = v0; } result[id] = v0 + v1 + v2 + v3; } break; } case TEST_TYPE_LOOP: { for (deUint32 id = 0; id < plainSize; ++id) { result[id] = 0; v1 = v3 = p.b; for (deUint32 n = 0; n < p.a; n++) { v0 = (p.c & id) + n; result[((n % 8) + 8) * plainSize + id] = v0; if (!fixed) v0++; result[id] += v0 + v1 + v3; } } break; } case TEST_TYPE_SWITCH: { for (deUint32 id = 0; id < plainSize; ++id) { switch (p.a & id) { case 0: { v1 = v2 = v3 = p.b; v0 = p.c & id; break; } case 1: { v0 = v2 = v3 = p.b; v1 = p.c & id; break; } case 2: { v0 = v1 = v3 = p.b; v2 = p.c & id; break; } case 3: { v0 = v1 = v2 = p.b; v3 = p.c & id; break; } default: { v0 = v1 = v2 = v3 = 0; break; } } if (!fixed) result[plain8Ofs + id] = p.c & id; else result[plain8Ofs + id] = v0; result[id] = v0 + v1 + v2 + v3; if (!fixed) result[id]++; } break; } case TEST_TYPE_LOOP_DOUBLE_CALL: { for (deUint32 id = 0; id < plainSize; ++id) { result[id] = 0; v3 = p.b; for (deUint32 x = 0; x < p.a; x++) { v0 = (p.c & id) + x; v1 = (p.d & id) + x + 1; result[(((2 * x + 0) % 8) + 8) * plainSize + id] = v0; if (!fixed) v0++; if (!fixed) { result[(((2 * x + 1) % 8) + 8) * plainSize + id] = v1; v1++; } result[id] += v0 + v1 + v3; } } break; } case TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE: { for (deUint32 id = 0; id < plainSize; ++id) { result[id] = 0; v3 = p.a + p.b; for (deUint32 x = 0; x < p.a; x++) { if ((x & p.b) != 0) { v0 = (p.c & id) + x; v1 = (p.d & id) + x + 1; result[(((2 * x + 0) % 8) + 8) * plainSize + id] = v0; if (!fixed) v0++; if (!fixed) { result[(((2 * x + 1) % 8) + 8) * plainSize + id] = v1; v1++; } result[id] += v0 + v1 + v3; } } } break; } case TEST_TYPE_NESTED_LOOP: { for (deUint32 id = 0; id < plainSize; ++id) { result[id] = 0; v1 = v3 = p.b; for (deUint32 y = 0; y < p.a; y++) for (deUint32 x = 0; x < p.a; x++) { const deUint32 n = x + y * p.a; if ((n & p.d) != 0) { v0 = (p.c & id) + n; result[((n % 8) + 8) * plainSize + id] = v0; if (!fixed) v0++; result[id] += v0 + v1 + v3; } } } break; } case TEST_TYPE_NESTED_LOOP_BEFORE: { for (deUint32 id = 0; id < plainSize; ++id) { result[id] = 0; for (deUint32 y = 0; y < p.d; y++) for (deUint32 x = 0; x < p.d; x++) { if (((x + y * p.a) & p.b) != 0) result[id] += (x + y); } v1 = v3 = p.a; for (deUint32 x = 0; x < p.b; x++) { if ((x & p.a) != 0) { v0 = p.c & id; result[((x % 8) + 8) * plainSize + id] = v0; if (!fixed) v0++; result[id] += v0 + v1 + v3; } } } break; } case TEST_TYPE_NESTED_LOOP_AFTER: { for (deUint32 id = 0; id < plainSize; ++id) { result[id] = 0; v1 = v3 = p.a; for (deUint32 x = 0; x < p.b; x++) { if ((x & p.a) != 0) { v0 = p.c & id; result[((x % 8) + 8) * plainSize + id] = v0; if (!fixed) v0++; result[id] += v0 + v1 + v3; } } for (deUint32 y = 0; y < p.d; y++) for (deUint32 x = 0; x < p.d; x++) { if (((x + y * p.a) & p.b) != 0) result[id] += (x + y); } } break; } case TEST_TYPE_FUNCTION_CALL: { deUint32 a[42]; for (deUint32 id = 0; id < plainSize; ++id) { deUint32 r = 0; deUint32 i; v0 = p.a & id; v1 = v3 = p.d; for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++) a[i] = p.c * i; result[plain8Ofs + id] = v0; if (!fixed) v0++; for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++) r += a[i]; result[id] = (r + i) + v0 + v1 + v3; } break; } case TEST_TYPE_NESTED_FUNCTION_CALL: { deUint32 a[14]; deUint32 b[256]; for (deUint32 id = 0; id < plainSize; ++id) { deUint32 r = 0; deUint32 i; deUint32 t = 0; deUint32 j; v0 = p.a & id; v3 = p.d; for (j = 0; j < DE_LENGTH_OF_ARRAY(b); j++) b[j] = p.c * j; v1 = p.b; for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++) a[i] = p.c * i; result[plain8Ofs + id] = v0; if (!fixed) v0++; for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++) r += a[i]; for (j = 0; j < DE_LENGTH_OF_ARRAY(b); j++) t += b[j]; result[id] = (r + i) + (t + j) + v0 + v1 + v3; } break; } default: TCU_THROW(InternalError, "Unknown testType"); } { const deUint32 startOfs = 7 * plainSize; for (deUint32 n = 0; n < plainSize; ++n) result[startOfs + n] = n; } for (deUint32 z = 1; z < DE_LENGTH_OF_ARRAY(pushConstants); ++z) { const deUint32 startOfs = z * plainSize; const deUint32 pushConstant = pushConstants[z]; for (deUint32 n = 0; n < plainSize; ++n) result[startOfs + n] = pushConstant; } return result; } tcu::TestStatus RayTracingComplexControlFlowInstance::iterate (void) { const de::MovePtr buffer = runTest(); const deUint32* bufferPtr = (deUint32*)buffer->getAllocation().getHostPtr(); const vector expected = getExpectedValues(); tcu::TestLog& log = m_context.getTestContext().getLog(); deUint32 failures = 0; deUint32 pos = 0; for (deUint32 z = 0; z < m_depth; ++z) for (deUint32 y = 0; y < m_data.height; ++y) for (deUint32 x = 0; x < m_data.width; ++x) { if (bufferPtr[pos] != expected[pos]) failures++; ++pos; } if (failures != 0) { deUint32 pos0 = 0; deUint32 pos1 = 0; std::stringstream css; for (deUint32 z = 0; z < m_depth; ++z) { css << "z=" << z << std::endl; for (deUint32 y = 0; y < m_data.height; ++y) { for (deUint32 x = 0; x < m_data.width; ++x) css << std::setw(6) << bufferPtr[pos0++] << ' '; css << " "; for (deUint32 x = 0; x < m_data.width; ++x) css << std::setw(6) << expected[pos1++] << ' '; css << std::endl; } css << std::endl; } log << tcu::TestLog::Message << css.str() << tcu::TestLog::EndMessage; } if (failures == 0) return tcu::TestStatus::pass("Pass"); else return tcu::TestStatus::fail("failures=" + de::toString(failures)); } class ComplexControlFlowTestCase : public TestCase { public: ComplexControlFlowTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data); ~ComplexControlFlowTestCase (void); virtual void initPrograms (SourceCollections& programCollection) const; virtual TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; private: static inline const std::string getIntersectionPassthrough (void); static inline const std::string getMissPassthrough (void); static inline const std::string getHitPassthrough (void); CaseDef m_data; }; ComplexControlFlowTestCase::ComplexControlFlowTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data) : vkt::TestCase (context, name, desc) , m_data (data) { } ComplexControlFlowTestCase::~ComplexControlFlowTestCase (void) { } void ComplexControlFlowTestCase::checkSupport (Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures(); if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE) TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure"); context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline"); const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures(); if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline"); const VkPhysicalDeviceRayTracingPipelinePropertiesKHR& rayTracingPipelinePropertiesKHR = context.getRayTracingPipelineProperties(); if (m_data.testOp == TEST_OP_TRACE_RAY && m_data.stage != VK_SHADER_STAGE_RAYGEN_BIT_KHR) { if (rayTracingPipelinePropertiesKHR.maxRayRecursionDepth < 2) TCU_THROW(NotSupportedError, "rayTracingPipelinePropertiesKHR.maxRayRecursionDepth is smaller than required"); } } const std::string ComplexControlFlowTestCase::getIntersectionPassthrough (void) { const std::string intersectionPassthrough = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "hitAttributeEXT vec3 hitAttribute;\n" "\n" "void main()\n" "{\n" " reportIntersectionEXT(0.95f, 0u);\n" "}\n"; return intersectionPassthrough; } const std::string ComplexControlFlowTestCase::getMissPassthrough (void) { const std::string missPassthrough = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n" "\n" "void main()\n" "{\n" "}\n"; return missPassthrough; } const std::string ComplexControlFlowTestCase::getHitPassthrough (void) { const std::string hitPassthrough = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "hitAttributeEXT vec3 attribs;\n" "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n" "\n" "void main()\n" "{\n" "}\n"; return hitPassthrough; } void ComplexControlFlowTestCase::initPrograms (SourceCollections& programCollection) const { const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); const std::string calleeMainPart = " uint z = (inValue.x % 8) + 8;\n" " uint v = inValue.y;\n" " uint n = gl_LaunchIDEXT.x + gl_LaunchSizeEXT.x * gl_LaunchIDEXT.y;\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, z), uvec4(v, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 7), uvec4(n, 0, 0, 1));\n"; const std::string idTemplate = "$"; const std::string shaderCallInstruction = (m_data.testOp == TEST_OP_EXECUTE_CALLABLE) ? "executeCallableEXT(0, " + idTemplate + ")" : (m_data.testOp == TEST_OP_TRACE_RAY) ? "traceRayEXT(as, 0, 0xFF, p.hitOfs, 0, p.miss, vec3((gl_LaunchIDEXT.x) + vec3(0.5f)) / vec3(gl_LaunchSizeEXT), 1.0f, vec3(0.0f, 0.0f, 1.0f), 100.0f, " + idTemplate + ")" : (m_data.testOp == TEST_OP_REPORT_INTERSECTION) ? "reportIntersectionEXT(1.0f, 0u)" : "TEST_OP_NOT_IMPLEMENTED_FAILURE"; std::string declsPreMain = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n" "layout(set = 0, binding = 1) uniform accelerationStructureEXT as;\n" "\n" "layout(push_constant) uniform TestParams\n" "{\n" " uint a;\n" " uint b;\n" " uint c;\n" " uint d;\n" " uint hitOfs;\n" " uint miss;\n" "} p;\n"; std::string declsInMainBeforeOp = " uint result = 0;\n" " uint id = uint(gl_LaunchIDEXT.x + gl_LaunchSizeEXT.x * gl_LaunchIDEXT.y);\n"; std::string declsInMainAfterOp = " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 0), uvec4(result, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 1), uvec4(p.a, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 2), uvec4(p.b, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 3), uvec4(p.c, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 4), uvec4(p.d, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 5), uvec4(p.hitOfs, 0, 0, 1));\n" " imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 6), uvec4(p.miss, 0, 0, 1));\n"; std::string opInMain = ""; std::string opPreMain = ""; DE_ASSERT(!declsPreMain.empty() && PUSH_CONSTANTS_COUNT == 6); switch (m_data.testType) { case TEST_TYPE_IF: { opInMain = " v2 = v3 = uvec2(0, p.b);\n" "\n" " if ((p.a & id) != 0)\n" " { v0 = uvec2(0, p.c & id); v1 = uvec2(0, (p.d & id) + 1);" + replace(shaderCallInstruction, idTemplate, "0") + "; }\n" " else\n" " { v0 = uvec2(0, p.d & id); v1 = uvec2(0, (p.c & id) + 1);" + replace(shaderCallInstruction, idTemplate, "1") + "; }\n" "\n" " result = v0.y + v1.y + v2.y + v3.y;\n"; break; } case TEST_TYPE_LOOP: { opInMain = " v1 = v3 = uvec2(0, p.b);\n" "\n" " for (uint x = 0; x < p.a; x++)\n" " {\n" " v0 = uvec2(x, (p.c & id) + x);\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" " result += v0.y + v1.y + v3.y;\n" " }\n"; break; } case TEST_TYPE_SWITCH: { opInMain = " switch (p.a & id)\n" " {\n" " case 0: { v1 = v2 = v3 = uvec2(0, p.b); v0 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "0") + "; break; }\n" " case 1: { v0 = v2 = v3 = uvec2(0, p.b); v1 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "1") + "; break; }\n" " case 2: { v0 = v1 = v3 = uvec2(0, p.b); v2 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "2") + "; break; }\n" " case 3: { v0 = v1 = v2 = uvec2(0, p.b); v3 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "3") + "; break; }\n" " default: break;\n" " }\n" "\n" " result = v0.y + v1.y + v2.y + v3.y;\n"; break; } case TEST_TYPE_LOOP_DOUBLE_CALL: { opInMain = " v3 = uvec2(0, p.b);\n" " for (uint x = 0; x < p.a; x++)\n" " {\n" " v0 = uvec2(2 * x + 0, (p.c & id) + x);\n" " v1 = uvec2(2 * x + 1, (p.d & id) + x + 1);\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" " " + replace(shaderCallInstruction, idTemplate, "1") + ";\n" " result += v0.y + v1.y + v3.y;\n" " }\n"; break; } case TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE: { opInMain = " v3 = uvec2(0, p.a + p.b);\n" " for (uint x = 0; x < p.a; x++)\n" " if ((x & p.b) != 0)\n" " {\n" " v0 = uvec2(2 * x + 0, (p.c & id) + x + 0);\n" " v1 = uvec2(2 * x + 1, (p.d & id) + x + 1);\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" " " + replace(shaderCallInstruction, idTemplate, "1") + ";\n" " result += v0.y + v1.y + v3.y;\n" " }\n" "\n"; break; } case TEST_TYPE_NESTED_LOOP: { opInMain = " v1 = v3 = uvec2(0, p.b);\n" " for (uint y = 0; y < p.a; y++)\n" " for (uint x = 0; x < p.a; x++)\n" " {\n" " uint n = x + y * p.a;\n" " if ((n & p.d) != 0)\n" " {\n" " v0 = uvec2(n, (p.c & id) + (x + y * p.a));\n" " "+ replace(shaderCallInstruction, idTemplate, "0") + ";\n" " result += v0.y + v1.y + v3.y;\n" " }\n" " }\n" "\n"; break; } case TEST_TYPE_NESTED_LOOP_BEFORE: { opInMain = " for (uint y = 0; y < p.d; y++)\n" " for (uint x = 0; x < p.d; x++)\n" " if (((x + y * p.a) & p.b) != 0)\n" " result += (x + y);\n" "\n" " v1 = v3 = uvec2(0, p.a);\n" "\n" " for (uint x = 0; x < p.b; x++)\n" " if ((x & p.a) != 0)\n" " {\n" " v0 = uvec2(x, p.c & id);\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" " result += v0.y + v1.y + v3.y;\n" " }\n"; break; } case TEST_TYPE_NESTED_LOOP_AFTER: { opInMain = " v1 = v3 = uvec2(0, p.a); \n" " for (uint x = 0; x < p.b; x++)\n" " if ((x & p.a) != 0)\n" " {\n" " v0 = uvec2(x, p.c & id);\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" " result += v0.y + v1.y + v3.y;\n" " }\n" "\n" " for (uint y = 0; y < p.d; y++)\n" " for (uint x = 0; x < p.d; x++)\n" " if (((x + y * p.a) & p.b) != 0)\n" " result += x + y;\n"; break; } case TEST_TYPE_FUNCTION_CALL: { opPreMain = "uint f1(void)\n" "{\n" " uint i, r = 0;\n" " uint a[42];\n" "\n" " for (i = 0; i < a.length(); i++) a[i] = p.c * i;\n" "\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" "\n" " for (i = 0; i < a.length(); i++) r += a[i];\n" "\n" " return r + i;\n" "}\n"; opInMain = " v0 = uvec2(0, p.a & id); v1 = v3 = uvec2(0, p.d);\n" " result = f1() + v0.y + v1.y + v3.y;\n"; break; } case TEST_TYPE_NESTED_FUNCTION_CALL: { opPreMain = "uint f0(void)\n" "{\n" " uint i, r = 0;\n" " uint a[14];\n" "\n" " for (i = 0; i < a.length(); i++) a[i] = p.c * i;\n" "\n" " " + replace(shaderCallInstruction, idTemplate, "0") + ";\n" "\n" " for (i = 0; i < a.length(); i++) r += a[i];\n" "\n" " return r + i;\n" "}\n" "\n" "uint f1(void)\n" "{\n" " uint j, t = 0;\n" " uint b[256];\n" "\n" " for (j = 0; j < b.length(); j++) b[j] = p.c * j;\n" "\n" " v1 = uvec2(0, p.b);\n" "\n" " t += f0();\n" "\n" " for (j = 0; j < b.length(); j++) t += b[j];\n" "\n" " return t + j;\n" "}\n"; opInMain = " v0 = uvec2(0, p.a & id); v3 = uvec2(0, p.d);\n" " result = f1() + v0.y + v1.y + v3.y;\n"; break; } default: TCU_THROW(InternalError, "Unknown testType"); } if (m_data.testOp == TEST_OP_EXECUTE_CALLABLE) { const std::string calleeShader = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n" "layout(location = 0) callableDataInEXT uvec2 inValue;\n" "\n" "void main()\n" "{\n" + calleeMainPart + " inValue.y++;\n" "}\n"; declsPreMain += "layout(location = 0) callableDataEXT uvec2 v0;\n" "layout(location = 1) callableDataEXT uvec2 v1;\n" "layout(location = 2) callableDataEXT uvec2 v2;\n" "layout(location = 3) callableDataEXT uvec2 v3;\n" "\n"; switch (m_data.stage) { case VK_SHADER_STAGE_RAYGEN_BIT_KHR: { std::stringstream css; css << declsPreMain << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // executeCallableEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("rgen") << glu::RaygenSource(css.str()) << buildOptions; programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions; break; } case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR: { programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions; std::stringstream css; css << declsPreMain << "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n" << "hitAttributeEXT vec3 attribs;\n" << "\n" << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // executeCallableEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("chit") << glu::ClosestHitSource(css.str()) << buildOptions; programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions; programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions; programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; break; } case VK_SHADER_STAGE_MISS_BIT_KHR: { programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions; std::stringstream css; css << declsPreMain << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // executeCallableEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("miss") << glu::MissSource(css.str()) << buildOptions; programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions; programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; break; } case VK_SHADER_STAGE_CALLABLE_BIT_KHR: { { std::stringstream css; css << "#version 460 core\n" << "#extension GL_EXT_nonuniform_qualifier : enable\n" << "#extension GL_EXT_ray_tracing : require\n" << "\n" << "layout(location = 4) callableDataEXT float dummy;\n" << "layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n" << "\n" << "void main()\n" << "{\n" << " executeCallableEXT(1, 4);\n" << "}\n"; programCollection.glslSources.add("rgen") << glu::RaygenSource(css.str()) << buildOptions; } { std::stringstream css; css << declsPreMain << "layout(location = 4) callableDataInEXT float dummyIn;\n" << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // executeCallableEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("call") << glu::CallableSource(css.str()) << buildOptions; } programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions; break; } default: TCU_THROW(InternalError, "Unknown stage"); } } else if (m_data.testOp == TEST_OP_TRACE_RAY) { const std::string missShader = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n" "layout(location = 0) rayPayloadInEXT uvec2 inValue;\n" "\n" "void main()\n" "{\n" + calleeMainPart + " inValue.y++;\n" "}\n"; declsPreMain += "layout(location = 0) rayPayloadEXT uvec2 v0;\n" "layout(location = 1) rayPayloadEXT uvec2 v1;\n" "layout(location = 2) rayPayloadEXT uvec2 v2;\n" "layout(location = 3) rayPayloadEXT uvec2 v3;\n"; switch (m_data.stage) { case VK_SHADER_STAGE_RAYGEN_BIT_KHR: { std::stringstream css; css << declsPreMain << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // traceRayEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("rgen") << glu::RaygenSource(css.str()) << buildOptions; programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions; programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; programCollection.glslSources.add("miss2") << glu::MissSource(missShader) << buildOptions; programCollection.glslSources.add("ahit2") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("chit2") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect2") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; break; } case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR: { programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions; std::stringstream css; css << declsPreMain << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // traceRayEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("chit") << glu::ClosestHitSource(css.str()) << buildOptions; programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions; programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; programCollection.glslSources.add("miss2") << glu::MissSource(missShader) << buildOptions; programCollection.glslSources.add("ahit2") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("chit2") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect2") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; break; } case VK_SHADER_STAGE_MISS_BIT_KHR: { programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions; std::stringstream css; css << declsPreMain << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // traceRayEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("miss") << glu::MissSource(css.str()) << buildOptions; programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; programCollection.glslSources.add("miss2") << glu::MissSource(missShader) << buildOptions; programCollection.glslSources.add("ahit2") << glu::AnyHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("chit2") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("sect2") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions; break; } default: TCU_THROW(InternalError, "Unknown stage"); } } else if (m_data.testOp == TEST_OP_REPORT_INTERSECTION) { const std::string anyHitShader = "#version 460 core\n" "#extension GL_EXT_nonuniform_qualifier : enable\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n" "hitAttributeEXT block { uvec2 inValue; };\n" "\n" "void main()\n" "{\n" + calleeMainPart + "}\n"; declsPreMain += "hitAttributeEXT block { uvec2 v0; };\n" "uvec2 v1;\n" "uvec2 v2;\n" "uvec2 v3;\n"; switch (m_data.stage) { case VK_SHADER_STAGE_INTERSECTION_BIT_KHR: { programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions; std::stringstream css; css << declsPreMain << opPreMain << "\n" << "void main()\n" << "{\n" << declsInMainBeforeOp << opInMain // reportIntersectionEXT << declsInMainAfterOp << "}\n"; programCollection.glslSources.add("sect") << glu::IntersectionSource(css.str()) << buildOptions; programCollection.glslSources.add("ahit") << glu::AnyHitSource(anyHitShader) << buildOptions; programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions; programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions; break; } default: TCU_THROW(InternalError, "Unknown stage"); } } else { TCU_THROW(InternalError, "Unknown operation"); } } TestInstance* ComplexControlFlowTestCase::createInstance (Context& context) const { return new RayTracingComplexControlFlowInstance(context, m_data); } } // anonymous tcu::TestCaseGroup* createComplexControlFlowTests (tcu::TestContext& testCtx) { const VkShaderStageFlagBits R = VK_SHADER_STAGE_RAYGEN_BIT_KHR; const VkShaderStageFlagBits A = VK_SHADER_STAGE_ANY_HIT_BIT_KHR; const VkShaderStageFlagBits C = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR; const VkShaderStageFlagBits M = VK_SHADER_STAGE_MISS_BIT_KHR; const VkShaderStageFlagBits I = VK_SHADER_STAGE_INTERSECTION_BIT_KHR; const VkShaderStageFlagBits L = VK_SHADER_STAGE_CALLABLE_BIT_KHR; DE_UNREF(A); static const struct { const char* name; VkShaderStageFlagBits stage; } testStages[] { { "rgen", VK_SHADER_STAGE_RAYGEN_BIT_KHR }, { "chit", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR }, { "ahit", VK_SHADER_STAGE_ANY_HIT_BIT_KHR }, { "sect", VK_SHADER_STAGE_INTERSECTION_BIT_KHR }, { "miss", VK_SHADER_STAGE_MISS_BIT_KHR }, { "call", VK_SHADER_STAGE_CALLABLE_BIT_KHR }, }; static const struct { const char* name; TestOp op; VkShaderStageFlags applicableInStages; } testOps[] { { "execute_callable", TEST_OP_EXECUTE_CALLABLE, R | C | M | L }, { "trace_ray", TEST_OP_TRACE_RAY, R | C | M }, { "report_intersection", TEST_OP_REPORT_INTERSECTION, I }, }; static const struct { const char* name; TestType testType; } testTypes[] { { "if", TEST_TYPE_IF }, { "loop", TEST_TYPE_LOOP }, { "switch", TEST_TYPE_SWITCH }, { "loop_double_call", TEST_TYPE_LOOP_DOUBLE_CALL }, { "loop_double_call_sparse", TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE }, { "nested_loop", TEST_TYPE_NESTED_LOOP }, { "nested_loop_loop_before", TEST_TYPE_NESTED_LOOP_BEFORE }, { "nested_loop_loop_after", TEST_TYPE_NESTED_LOOP_AFTER }, { "function_call", TEST_TYPE_FUNCTION_CALL }, { "nested_function_call", TEST_TYPE_NESTED_FUNCTION_CALL }, }; de::MovePtr group(new tcu::TestCaseGroup(testCtx, "complexcontrolflow", "Ray tracing complex control flow tests")); for (size_t testTypeNdx = 0; testTypeNdx < DE_LENGTH_OF_ARRAY(testTypes); ++testTypeNdx) { const TestType testType = testTypes[testTypeNdx].testType; de::MovePtr testTypeGroup (new tcu::TestCaseGroup(testCtx, testTypes[testTypeNdx].name, "")); for (size_t testOpNdx = 0; testOpNdx < DE_LENGTH_OF_ARRAY(testOps); ++testOpNdx) { const TestOp testOp = testOps[testOpNdx].op; de::MovePtr testOpGroup (new tcu::TestCaseGroup(testCtx, testOps[testOpNdx].name, "")); for (size_t testStagesNdx = 0; testStagesNdx < DE_LENGTH_OF_ARRAY(testStages); ++testStagesNdx) { const VkShaderStageFlagBits testStage = testStages[testStagesNdx].stage; const std::string testName = de::toString(testStages[testStagesNdx].name); const deUint32 width = 4u; const deUint32 height = 4u; const CaseDef caseDef = { testType, // TestType testType; testOp, // TestOp testOp; testStage, // VkShaderStageFlagBits stage; width, // deUint32 width; height, // deUint32 height; }; if ((testOps[testOpNdx].applicableInStages & static_cast(testStage)) == 0) continue; testOpGroup->addChild(new ComplexControlFlowTestCase(testCtx, testName.c_str(), "", caseDef)); } testTypeGroup->addChild(testOpGroup.release()); } group->addChild(testTypeGroup.release()); } return group.release(); } } // RayTracing } // vkt