/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2016 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file vktSparseResourcesImageSparseBinding.cpp * \brief Sparse fully resident images with mipmaps tests *//*--------------------------------------------------------------------*/ #include "vktSparseResourcesBufferSparseBinding.hpp" #include "vktSparseResourcesTestsUtil.hpp" #include "vktSparseResourcesBase.hpp" #include "vktTestCaseUtil.hpp" #include "vkDefs.hpp" #include "vkRef.hpp" #include "vkRefUtil.hpp" #include "vkPlatform.hpp" #include "vkPrograms.hpp" #include "vkMemUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkImageUtil.hpp" #include "vkQueryUtil.hpp" #include "vkTypeUtil.hpp" #include "vkCmdUtil.hpp" #include "deUniquePtr.hpp" #include "deStringUtil.hpp" #include "tcuTextureUtil.hpp" #include #include using namespace vk; namespace vkt { namespace sparse { namespace { class ImageSparseBindingCase : public TestCase { public: ImageSparseBindingCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups = false); TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; private: const bool m_useDeviceGroups; const ImageType m_imageType; const tcu::UVec3 m_imageSize; const VkFormat m_format; }; ImageSparseBindingCase::ImageSparseBindingCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups) : TestCase (testCtx, name, description) , m_useDeviceGroups (useDeviceGroups) , m_imageType (imageType) , m_imageSize (imageSize) , m_format (format) { } void ImageSparseBindingCase::checkSupport (Context& context) const { context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING); if (!isImageSizeSupported(context.getInstanceInterface(), context.getPhysicalDevice(), m_imageType, m_imageSize)) TCU_THROW(NotSupportedError, "Image size not supported for device"); if (formatIsR64(m_format)) { context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64"); if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE) { TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device"); } } } class ImageSparseBindingInstance : public SparseResourcesBaseInstance { public: ImageSparseBindingInstance (Context& context, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups); tcu::TestStatus iterate (void); private: const bool m_useDeviceGroups; const ImageType m_imageType; const tcu::UVec3 m_imageSize; const VkFormat m_format; }; ImageSparseBindingInstance::ImageSparseBindingInstance (Context& context, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups) : SparseResourcesBaseInstance (context, useDeviceGroups) , m_useDeviceGroups (useDeviceGroups) , m_imageType (imageType) , m_imageSize (imageSize) , m_format (format) { } tcu::TestStatus ImageSparseBindingInstance::iterate (void) { const InstanceInterface& instance = m_context.getInstanceInterface(); { // Create logical device supporting both sparse and compute queues QueueRequirementsVec queueRequirements; queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u)); queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u)); createDeviceSupportingQueues(queueRequirements); } const VkPhysicalDevice physicalDevice = getPhysicalDevice(); VkImageCreateInfo imageSparseInfo; std::vector deviceMemUniquePtrVec; const DeviceInterface& deviceInterface = getDeviceInterface(); const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0); const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0); const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); // Go through all physical devices for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; ++physDevID) { const deUint32 firstDeviceID = physDevID; const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices; imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; //VkStructureType sType; imageSparseInfo.pNext = DE_NULL; //const void* pNext; imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT; //VkImageCreateFlags flags; imageSparseInfo.imageType = mapImageType(m_imageType); //VkImageType imageType; imageSparseInfo.format = m_format; //VkFormat format; imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); //VkExtent3D extent; imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize); //deUint32 arrayLayers; imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT; //VkSampleCountFlagBits samples; imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL; //VkImageTiling tiling; imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //VkImageLayout initialLayout; imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; //VkImageUsageFlags usage; imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; //VkSharingMode sharingMode; imageSparseInfo.queueFamilyIndexCount = 0u; //deUint32 queueFamilyIndexCount; imageSparseInfo.pQueueFamilyIndices = DE_NULL; //const deUint32* pQueueFamilyIndices; if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY) { imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; } { VkImageFormatProperties imageFormatProperties; if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, imageSparseInfo.format, imageSparseInfo.imageType, imageSparseInfo.tiling, imageSparseInfo.usage, imageSparseInfo.flags, &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) { TCU_THROW(NotSupportedError, "Image format does not support sparse binding operations"); } imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent); } // Create sparse image const Unique imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo)); // Create sparse image memory bind semaphore const Unique imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice())); // Get sparse image general memory requirements const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse); // Check if required image memory size does not exceed device limits if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize) TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits"); DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0); { std::vector sparseMemoryBinds; const deUint32 numSparseBinds = static_cast(imageMemoryRequirements.size / imageMemoryRequirements.alignment); const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any); if (memoryType == NO_MATCH_FOUND) return tcu::TestStatus::fail("No matching memory type found"); if (firstDeviceID != secondDeviceID) { VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0; const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType); deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags); if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) || ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0)) { TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST"); } } for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx) { const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), imageMemoryRequirements.alignment, memoryType, imageMemoryRequirements.alignment * sparseBindNdx); deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move(check(sparseMemoryBind.memory), Deleter(deviceInterface, getDevice(), DE_NULL)))); sparseMemoryBinds.push_back(sparseMemoryBind); } const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(*imageSparse, static_cast(sparseMemoryBinds.size()), sparseMemoryBinds.data()); const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = { VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO, //VkStructureType sType; DE_NULL, //const void* pNext; firstDeviceID, //deUint32 resourceDeviceIndex; secondDeviceID, //deUint32 memoryDeviceIndex; }; const VkBindSparseInfo bindSparseInfo = { VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType; m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext; 0u, //deUint32 waitSemaphoreCount; DE_NULL, //const VkSemaphore* pWaitSemaphores; 0u, //deUint32 bufferBindCount; DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds; 1u, //deUint32 imageOpaqueBindCount; &opaqueBindInfo, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; 0u, //deUint32 imageBindCount; DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds; 1u, //deUint32 signalSemaphoreCount; &imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores; }; // Submit sparse bind commands for execution VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL)); } deUint32 imageSizeInBytes = 0; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); std::vector bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels); { deUint32 bufferOffset = 0; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) { bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] = { bufferOffset, // VkDeviceSize bufferOffset; 0u, // deUint32 bufferRowLength; 0u, // deUint32 bufferImageHeight; makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource; makeOffset3D(0, 0, 0), // VkOffset3D imageOffset; vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent; }; bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); } } } // Create command buffer for compute and transfer operations const Unique commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex)); const Unique commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); // Start recording commands beginCommandBuffer(deviceInterface, *commandBuffer); const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT); const Unique inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo)); const de::UniquePtr inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible)); std::vector referenceData(imageSizeInBytes); for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx) { referenceData[valueNdx] = static_cast((valueNdx % imageMemoryRequirements.alignment) + 1u); } { deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes); flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc); const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier ( VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *inputBuffer, 0u, imageSizeInBytes ); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL); } { std::vector imageSparseTransferDstBarriers; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; imageSparseTransferDstBarriers.push_back( makeImageMemoryBarrier ( 0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, *imageSparse, makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers), sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED, sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED )); } deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data()); } deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(bufferImageCopy.size()), bufferImageCopy.data()); { std::vector imageSparseTransferSrcBarriers; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; imageSparseTransferSrcBarriers.push_back( makeImageMemoryBarrier ( VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *imageSparse, makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers) )); } deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data()); } const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT); const Unique outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo)); const de::UniquePtr outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible)); deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast(bufferImageCopy.size()), bufferImageCopy.data()); { const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier ( VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *outputBuffer, 0u, imageSizeInBytes ); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL); } // End recording commands endCommandBuffer(deviceInterface, *commandBuffer); const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT }; // Submit commands for execution and wait for completion submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID); // Retrieve data from buffer to host memory invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc); // Wait for sparse queue to become idle deviceInterface.queueWaitIdle(sparseQueue.queueHandle); const deUint8* outputData = static_cast(outputBufferAlloc->getHostPtr()); bool ignoreLsb6Bits = areLsb6BitsDontCare(imageSparseInfo.format); bool ignoreLsb4Bits = areLsb4BitsDontCare(imageSparseInfo.format); for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) { const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx); const deUint32 bufferOffset = static_cast(bufferImageCopy[ planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset); // Validate results for (size_t byteNdx = 0; byteNdx < mipLevelSizeInBytes; byteNdx++) { const deUint8 res = *(outputData + bufferOffset + byteNdx); const deUint8 ref = referenceData[bufferOffset + byteNdx]; deUint8 mask = 0xFF; if (!(byteNdx & 0x01) && (ignoreLsb6Bits)) mask = 0xC0; else if (!(byteNdx & 0x01) && (ignoreLsb4Bits)) mask = 0xF0; if ((res & mask) != (ref & mask)) { return tcu::TestStatus::fail("Failed"); } } } } } return tcu::TestStatus::pass("Passed"); } TestInstance* ImageSparseBindingCase::createInstance (Context& context) const { return new ImageSparseBindingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups); } } // anonymous ns tcu::TestCaseGroup* createImageSparseBindingTestsCommon(tcu::TestContext& testCtx, de::MovePtr testGroup, const bool useDeviceGroup = false) { const std::vector imageParameters { { IMAGE_TYPE_1D, { tcu::UVec3(512u, 1u, 1u ), tcu::UVec3(1024u, 1u, 1u), tcu::UVec3(11u, 1u, 1u) }, getTestFormats(IMAGE_TYPE_1D) }, { IMAGE_TYPE_1D_ARRAY, { tcu::UVec3(512u, 1u, 64u), tcu::UVec3(1024u, 1u, 8u), tcu::UVec3(11u, 1u, 3u) }, getTestFormats(IMAGE_TYPE_1D_ARRAY) }, { IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u ), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_2D) }, { IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u ), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_2D_ARRAY) }, { IMAGE_TYPE_3D, { tcu::UVec3(512u, 256u, 6u ), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_3D) }, { IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u ), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_CUBE) }, { IMAGE_TYPE_CUBE_ARRAY, { tcu::UVec3(256u, 256u, 6u ), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_CUBE_ARRAY) } }; for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx) { const ImageType imageType = imageParameters[imageTypeNdx].imageType; de::MovePtr imageTypeGroup (new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), "")); for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx) { VkFormat format = imageParameters[imageTypeNdx].formats[formatNdx].format; tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format); de::MovePtr formatGroup (new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str(), "")); for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx) { const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx]; // skip test for images with odd sizes for some YCbCr formats if ((imageSize.x() % imageSizeAlignment.x()) != 0) continue; if ((imageSize.y() % imageSizeAlignment.y()) != 0) continue; std::ostringstream stream; stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z(); formatGroup->addChild(new ImageSparseBindingCase(testCtx, stream.str(), "", imageType, imageSize, format, useDeviceGroup)); } imageTypeGroup->addChild(formatGroup.release()); } testGroup->addChild(imageTypeGroup.release()); } return testGroup.release(); } tcu::TestCaseGroup* createImageSparseBindingTests(tcu::TestContext& testCtx) { de::MovePtr testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_binding", "Image Sparse Binding")); return createImageSparseBindingTestsCommon(testCtx, testGroup); } tcu::TestCaseGroup* createDeviceGroupImageSparseBindingTests(tcu::TestContext& testCtx) { de::MovePtr testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_binding", "Device Group Image Sparse Binding")); return createImageSparseBindingTestsCommon(testCtx, testGroup, true); } } // sparse } // vkt