1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This file tests string processing functions related to numeric values.
16
17 #include "absl/strings/numbers.h"
18
19 #include <sys/types.h>
20
21 #include <cfenv> // NOLINT(build/c++11)
22 #include <cinttypes>
23 #include <climits>
24 #include <cmath>
25 #include <cstddef>
26 #include <cstdint>
27 #include <cstdio>
28 #include <cstdlib>
29 #include <cstring>
30 #include <limits>
31 #include <numeric>
32 #include <random>
33 #include <set>
34 #include <string>
35 #include <vector>
36
37 #include "gmock/gmock.h"
38 #include "gtest/gtest.h"
39 #include "absl/base/internal/raw_logging.h"
40 #include "absl/random/distributions.h"
41 #include "absl/random/random.h"
42 #include "absl/strings/internal/numbers_test_common.h"
43 #include "absl/strings/internal/ostringstream.h"
44 #include "absl/strings/internal/pow10_helper.h"
45 #include "absl/strings/str_cat.h"
46
47 namespace {
48
49 using absl::SimpleAtoi;
50 using absl::numbers_internal::kSixDigitsToBufferSize;
51 using absl::numbers_internal::safe_strto32_base;
52 using absl::numbers_internal::safe_strto64_base;
53 using absl::numbers_internal::safe_strtou32_base;
54 using absl::numbers_internal::safe_strtou64_base;
55 using absl::numbers_internal::SixDigitsToBuffer;
56 using absl::strings_internal::Itoa;
57 using absl::strings_internal::strtouint32_test_cases;
58 using absl::strings_internal::strtouint64_test_cases;
59 using testing::Eq;
60 using testing::MatchesRegex;
61
62 // Number of floats to test with.
63 // 5,000,000 is a reasonable default for a test that only takes a few seconds.
64 // 1,000,000,000+ triggers checking for all possible mantissa values for
65 // double-precision tests. 2,000,000,000+ triggers checking for every possible
66 // single-precision float.
67 const int kFloatNumCases = 5000000;
68
69 // This is a slow, brute-force routine to compute the exact base-10
70 // representation of a double-precision floating-point number. It
71 // is useful for debugging only.
PerfectDtoa(double d)72 std::string PerfectDtoa(double d) {
73 if (d == 0) return "0";
74 if (d < 0) return "-" + PerfectDtoa(-d);
75
76 // Basic theory: decompose d into mantissa and exp, where
77 // d = mantissa * 2^exp, and exp is as close to zero as possible.
78 int64_t mantissa, exp = 0;
79 while (d >= 1ULL << 63) ++exp, d *= 0.5;
80 while ((mantissa = d) != d) --exp, d *= 2.0;
81
82 // Then convert mantissa to ASCII, and either double it (if
83 // exp > 0) or halve it (if exp < 0) repeatedly. "halve it"
84 // in this case means multiplying it by five and dividing by 10.
85 constexpr int maxlen = 1100; // worst case is actually 1030 or so.
86 char buf[maxlen + 5];
87 for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
88 buf[pos] = '0' + (num % 10);
89 num /= 10;
90 }
91 char* begin = &buf[0];
92 char* end = buf + maxlen;
93 for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
94 int carry = 0;
95 for (char* p = end; --p != begin;) {
96 int dig = *p - '0';
97 dig = dig * (exp > 0 ? 2 : 5) + carry;
98 carry = dig / 10;
99 dig %= 10;
100 *p = '0' + dig;
101 }
102 }
103 if (exp < 0) {
104 // "dividing by 10" above means we have to add the decimal point.
105 memmove(end + 1 + exp, end + exp, 1 - exp);
106 end[exp] = '.';
107 ++end;
108 }
109 while (*begin == '0' && begin[1] != '.') ++begin;
110 return {begin, end};
111 }
112
TEST(ToString,PerfectDtoa)113 TEST(ToString, PerfectDtoa) {
114 EXPECT_THAT(PerfectDtoa(1), Eq("1"));
115 EXPECT_THAT(PerfectDtoa(0.1),
116 Eq("0.1000000000000000055511151231257827021181583404541015625"));
117 EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
118 EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
119 for (int i = 0; i < 100; ++i) {
120 for (double multiplier :
121 {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
122 double d = multiplier * i;
123 std::string s = PerfectDtoa(d);
124 EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
125 }
126 }
127 }
128
129 template <typename integer>
130 struct MyInteger {
131 integer i;
MyInteger__anon69d1f07e0111::MyInteger132 explicit constexpr MyInteger(integer i) : i(i) {}
operator integer__anon69d1f07e0111::MyInteger133 constexpr operator integer() const { return i; }
134
operator +__anon69d1f07e0111::MyInteger135 constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
operator -__anon69d1f07e0111::MyInteger136 constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
operator *__anon69d1f07e0111::MyInteger137 constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
operator /__anon69d1f07e0111::MyInteger138 constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }
139
operator <__anon69d1f07e0111::MyInteger140 constexpr bool operator<(MyInteger other) const { return i < other.i; }
operator <=__anon69d1f07e0111::MyInteger141 constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
operator ==__anon69d1f07e0111::MyInteger142 constexpr bool operator==(MyInteger other) const { return i == other.i; }
operator >=__anon69d1f07e0111::MyInteger143 constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
operator >__anon69d1f07e0111::MyInteger144 constexpr bool operator>(MyInteger other) const { return i > other.i; }
operator !=__anon69d1f07e0111::MyInteger145 constexpr bool operator!=(MyInteger other) const { return i != other.i; }
146
as_integer__anon69d1f07e0111::MyInteger147 integer as_integer() const { return i; }
148 };
149
150 typedef MyInteger<int64_t> MyInt64;
151 typedef MyInteger<uint64_t> MyUInt64;
152
CheckInt32(int32_t x)153 void CheckInt32(int32_t x) {
154 char buffer[absl::numbers_internal::kFastToBufferSize];
155 char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
156 std::string expected = std::to_string(x);
157 EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
158
159 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
160 EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
161 }
162
CheckInt64(int64_t x)163 void CheckInt64(int64_t x) {
164 char buffer[absl::numbers_internal::kFastToBufferSize + 3];
165 buffer[0] = '*';
166 buffer[23] = '*';
167 buffer[24] = '*';
168 char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
169 std::string expected = std::to_string(x);
170 EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
171 EXPECT_EQ(buffer[0], '*');
172 EXPECT_EQ(buffer[23], '*');
173 EXPECT_EQ(buffer[24], '*');
174
175 char* my_actual =
176 absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
177 EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
178 }
179
CheckUInt32(uint32_t x)180 void CheckUInt32(uint32_t x) {
181 char buffer[absl::numbers_internal::kFastToBufferSize];
182 char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
183 std::string expected = std::to_string(x);
184 EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
185
186 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
187 EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
188 }
189
CheckUInt64(uint64_t x)190 void CheckUInt64(uint64_t x) {
191 char buffer[absl::numbers_internal::kFastToBufferSize + 1];
192 char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
193 std::string expected = std::to_string(x);
194 EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
195
196 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
197 EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
198 << " Input " << x;
199
200 char* my_actual =
201 absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
202 EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
203 }
204
CheckHex64(uint64_t v)205 void CheckHex64(uint64_t v) {
206 char expected[16 + 1];
207 std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
208 snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
209 EXPECT_EQ(expected, actual) << " Input " << v;
210 actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
211 snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
212 EXPECT_EQ(expected, actual) << " Input " << v;
213 }
214
TEST(Numbers,TestFastPrints)215 TEST(Numbers, TestFastPrints) {
216 for (int i = -100; i <= 100; i++) {
217 CheckInt32(i);
218 CheckInt64(i);
219 }
220 for (int i = 0; i <= 100; i++) {
221 CheckUInt32(i);
222 CheckUInt64(i);
223 }
224 // Test min int to make sure that works
225 CheckInt32(INT_MIN);
226 CheckInt32(INT_MAX);
227 CheckInt64(LONG_MIN);
228 CheckInt64(uint64_t{1000000000});
229 CheckInt64(uint64_t{9999999999});
230 CheckInt64(uint64_t{100000000000000});
231 CheckInt64(uint64_t{999999999999999});
232 CheckInt64(uint64_t{1000000000000000000});
233 CheckInt64(uint64_t{1199999999999999999});
234 CheckInt64(int64_t{-700000000000000000});
235 CheckInt64(LONG_MAX);
236 CheckUInt32(std::numeric_limits<uint32_t>::max());
237 CheckUInt64(uint64_t{1000000000});
238 CheckUInt64(uint64_t{9999999999});
239 CheckUInt64(uint64_t{100000000000000});
240 CheckUInt64(uint64_t{999999999999999});
241 CheckUInt64(uint64_t{1000000000000000000});
242 CheckUInt64(uint64_t{1199999999999999999});
243 CheckUInt64(std::numeric_limits<uint64_t>::max());
244
245 for (int i = 0; i < 10000; i++) {
246 CheckHex64(i);
247 }
248 CheckHex64(uint64_t{0x123456789abcdef0});
249 }
250
251 template <typename int_type, typename in_val_type>
VerifySimpleAtoiGood(in_val_type in_value,int_type exp_value)252 void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
253 std::string s;
254 // (u)int128 can be streamed but not StrCat'd.
255 absl::strings_internal::OStringStream(&s) << in_value;
256 int_type x = static_cast<int_type>(~exp_value);
257 EXPECT_TRUE(SimpleAtoi(s, &x))
258 << "in_value=" << in_value << " s=" << s << " x=" << x;
259 EXPECT_EQ(exp_value, x);
260 x = static_cast<int_type>(~exp_value);
261 EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
262 EXPECT_EQ(exp_value, x);
263 }
264
265 template <typename int_type, typename in_val_type>
VerifySimpleAtoiBad(in_val_type in_value)266 void VerifySimpleAtoiBad(in_val_type in_value) {
267 std::string s;
268 // (u)int128 can be streamed but not StrCat'd.
269 absl::strings_internal::OStringStream(&s) << in_value;
270 int_type x;
271 EXPECT_FALSE(SimpleAtoi(s, &x));
272 EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
273 }
274
TEST(NumbersTest,Atoi)275 TEST(NumbersTest, Atoi) {
276 // SimpleAtoi(absl::string_view, int32_t)
277 VerifySimpleAtoiGood<int32_t>(0, 0);
278 VerifySimpleAtoiGood<int32_t>(42, 42);
279 VerifySimpleAtoiGood<int32_t>(-42, -42);
280
281 VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
282 std::numeric_limits<int32_t>::min());
283 VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
284 std::numeric_limits<int32_t>::max());
285
286 // SimpleAtoi(absl::string_view, uint32_t)
287 VerifySimpleAtoiGood<uint32_t>(0, 0);
288 VerifySimpleAtoiGood<uint32_t>(42, 42);
289 VerifySimpleAtoiBad<uint32_t>(-42);
290
291 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
292 VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
293 std::numeric_limits<int32_t>::max());
294 VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
295 std::numeric_limits<uint32_t>::max());
296 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
297 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
298 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
299
300 // SimpleAtoi(absl::string_view, int64_t)
301 VerifySimpleAtoiGood<int64_t>(0, 0);
302 VerifySimpleAtoiGood<int64_t>(42, 42);
303 VerifySimpleAtoiGood<int64_t>(-42, -42);
304
305 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
306 std::numeric_limits<int32_t>::min());
307 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
308 std::numeric_limits<int32_t>::max());
309 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
310 std::numeric_limits<uint32_t>::max());
311 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
312 std::numeric_limits<int64_t>::min());
313 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
314 std::numeric_limits<int64_t>::max());
315 VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
316
317 // SimpleAtoi(absl::string_view, uint64_t)
318 VerifySimpleAtoiGood<uint64_t>(0, 0);
319 VerifySimpleAtoiGood<uint64_t>(42, 42);
320 VerifySimpleAtoiBad<uint64_t>(-42);
321
322 VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
323 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
324 std::numeric_limits<int32_t>::max());
325 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
326 std::numeric_limits<uint32_t>::max());
327 VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
328 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
329 std::numeric_limits<int64_t>::max());
330 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
331 std::numeric_limits<uint64_t>::max());
332
333 // SimpleAtoi(absl::string_view, absl::uint128)
334 VerifySimpleAtoiGood<absl::uint128>(0, 0);
335 VerifySimpleAtoiGood<absl::uint128>(42, 42);
336 VerifySimpleAtoiBad<absl::uint128>(-42);
337
338 VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
339 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
340 std::numeric_limits<int32_t>::max());
341 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
342 std::numeric_limits<uint32_t>::max());
343 VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
344 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
345 std::numeric_limits<int64_t>::max());
346 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
347 std::numeric_limits<uint64_t>::max());
348 VerifySimpleAtoiGood<absl::uint128>(
349 std::numeric_limits<absl::uint128>::max(),
350 std::numeric_limits<absl::uint128>::max());
351
352 // SimpleAtoi(absl::string_view, absl::int128)
353 VerifySimpleAtoiGood<absl::int128>(0, 0);
354 VerifySimpleAtoiGood<absl::int128>(42, 42);
355 VerifySimpleAtoiGood<absl::int128>(-42, -42);
356
357 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),
358 std::numeric_limits<int32_t>::min());
359 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),
360 std::numeric_limits<int32_t>::max());
361 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),
362 std::numeric_limits<uint32_t>::max());
363 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),
364 std::numeric_limits<int64_t>::min());
365 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),
366 std::numeric_limits<int64_t>::max());
367 VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),
368 std::numeric_limits<uint64_t>::max());
369 VerifySimpleAtoiGood<absl::int128>(
370 std::numeric_limits<absl::int128>::min(),
371 std::numeric_limits<absl::int128>::min());
372 VerifySimpleAtoiGood<absl::int128>(
373 std::numeric_limits<absl::int128>::max(),
374 std::numeric_limits<absl::int128>::max());
375 VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());
376
377 // Some other types
378 VerifySimpleAtoiGood<int>(-42, -42);
379 VerifySimpleAtoiGood<int32_t>(-42, -42);
380 VerifySimpleAtoiGood<uint32_t>(42, 42);
381 VerifySimpleAtoiGood<unsigned int>(42, 42);
382 VerifySimpleAtoiGood<int64_t>(-42, -42);
383 VerifySimpleAtoiGood<long>(-42, -42); // NOLINT: runtime-int
384 VerifySimpleAtoiGood<uint64_t>(42, 42);
385 VerifySimpleAtoiGood<size_t>(42, 42);
386 VerifySimpleAtoiGood<std::string::size_type>(42, 42);
387 }
388
TEST(NumbersTest,Atod)389 TEST(NumbersTest, Atod) {
390 double d;
391 EXPECT_TRUE(absl::SimpleAtod("nan", &d));
392 EXPECT_TRUE(std::isnan(d));
393 }
394
TEST(NumbersTest,Prefixes)395 TEST(NumbersTest, Prefixes) {
396 double d;
397 EXPECT_FALSE(absl::SimpleAtod("++1", &d));
398 EXPECT_FALSE(absl::SimpleAtod("+-1", &d));
399 EXPECT_FALSE(absl::SimpleAtod("-+1", &d));
400 EXPECT_FALSE(absl::SimpleAtod("--1", &d));
401 EXPECT_TRUE(absl::SimpleAtod("-1", &d));
402 EXPECT_EQ(d, -1.);
403 EXPECT_TRUE(absl::SimpleAtod("+1", &d));
404 EXPECT_EQ(d, +1.);
405
406 float f;
407 EXPECT_FALSE(absl::SimpleAtof("++1", &f));
408 EXPECT_FALSE(absl::SimpleAtof("+-1", &f));
409 EXPECT_FALSE(absl::SimpleAtof("-+1", &f));
410 EXPECT_FALSE(absl::SimpleAtof("--1", &f));
411 EXPECT_TRUE(absl::SimpleAtof("-1", &f));
412 EXPECT_EQ(f, -1.f);
413 EXPECT_TRUE(absl::SimpleAtof("+1", &f));
414 EXPECT_EQ(f, +1.f);
415 }
416
TEST(NumbersTest,Atoenum)417 TEST(NumbersTest, Atoenum) {
418 enum E01 {
419 E01_zero = 0,
420 E01_one = 1,
421 };
422
423 VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
424 VerifySimpleAtoiGood<E01>(E01_one, E01_one);
425
426 enum E_101 {
427 E_101_minusone = -1,
428 E_101_zero = 0,
429 E_101_one = 1,
430 };
431
432 VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
433 VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
434 VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);
435
436 enum E_bigint {
437 E_bigint_zero = 0,
438 E_bigint_one = 1,
439 E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
440 };
441
442 VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
443 VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
444 VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);
445
446 enum E_fullint {
447 E_fullint_zero = 0,
448 E_fullint_one = 1,
449 E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
450 E_fullint_min32 = INT32_MIN,
451 };
452
453 VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
454 VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
455 VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
456 VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);
457
458 enum E_biguint {
459 E_biguint_zero = 0,
460 E_biguint_one = 1,
461 E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
462 E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
463 };
464
465 VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
466 VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
467 VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
468 VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
469 }
470
TEST(stringtest,safe_strto32_base)471 TEST(stringtest, safe_strto32_base) {
472 int32_t value;
473 EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
474 EXPECT_EQ(0x34234324, value);
475
476 EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
477 EXPECT_EQ(0x34234324, value);
478
479 EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
480 EXPECT_EQ(0x34234324, value);
481
482 EXPECT_TRUE(safe_strto32_base("0", &value, 16));
483 EXPECT_EQ(0, value);
484
485 EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
486 EXPECT_EQ(-0x34234324, value);
487
488 EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
489 EXPECT_EQ(-0x34234324, value);
490
491 EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
492 EXPECT_EQ(07654321, value);
493
494 EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
495 EXPECT_EQ(-01234, value);
496
497 EXPECT_FALSE(safe_strto32_base("1834", &value, 8));
498
499 // Autodetect base.
500 EXPECT_TRUE(safe_strto32_base("0", &value, 0));
501 EXPECT_EQ(0, value);
502
503 EXPECT_TRUE(safe_strto32_base("077", &value, 0));
504 EXPECT_EQ(077, value); // Octal interpretation
505
506 // Leading zero indicates octal, but then followed by invalid digit.
507 EXPECT_FALSE(safe_strto32_base("088", &value, 0));
508
509 // Leading 0x indicated hex, but then followed by invalid digit.
510 EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));
511
512 // Base-10 version.
513 EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
514 EXPECT_EQ(34234324, value);
515
516 EXPECT_TRUE(safe_strto32_base("0", &value, 10));
517 EXPECT_EQ(0, value);
518
519 EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
520 EXPECT_EQ(-34234324, value);
521
522 EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
523 EXPECT_EQ(34234324, value);
524
525 // Invalid ints.
526 EXPECT_FALSE(safe_strto32_base("", &value, 10));
527 EXPECT_FALSE(safe_strto32_base(" ", &value, 10));
528 EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
529 EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
530 EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));
531
532 // Out of bounds.
533 EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
534 EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
535
536 // String version.
537 EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
538 EXPECT_EQ(0x1234, value);
539
540 // Base-10 string version.
541 EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
542 EXPECT_EQ(1234, value);
543 }
544
TEST(stringtest,safe_strto32_range)545 TEST(stringtest, safe_strto32_range) {
546 // These tests verify underflow/overflow behaviour.
547 int32_t value;
548 EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
549 EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);
550
551 EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
552 EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
553
554 EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
555 EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
556 }
557
TEST(stringtest,safe_strto64_range)558 TEST(stringtest, safe_strto64_range) {
559 // These tests verify underflow/overflow behaviour.
560 int64_t value;
561 EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
562 EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);
563
564 EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
565 EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
566
567 EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
568 EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
569 }
570
TEST(stringtest,safe_strto32_leading_substring)571 TEST(stringtest, safe_strto32_leading_substring) {
572 // These tests verify this comment in numbers.h:
573 // On error, returns false, and sets *value to: [...]
574 // conversion of leading substring if available ("123@@@" -> 123)
575 // 0 if no leading substring available
576 int32_t value;
577 EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
578 EXPECT_EQ(4069, value);
579
580 EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
581 EXPECT_EQ(0406, value);
582
583 EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
584 EXPECT_EQ(4069, value);
585
586 EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
587 EXPECT_EQ(0x4069ba, value);
588
589 EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
590 EXPECT_EQ(0, value); // there was no leading substring
591 }
592
TEST(stringtest,safe_strto64_leading_substring)593 TEST(stringtest, safe_strto64_leading_substring) {
594 // These tests verify this comment in numbers.h:
595 // On error, returns false, and sets *value to: [...]
596 // conversion of leading substring if available ("123@@@" -> 123)
597 // 0 if no leading substring available
598 int64_t value;
599 EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
600 EXPECT_EQ(4069, value);
601
602 EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
603 EXPECT_EQ(0406, value);
604
605 EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
606 EXPECT_EQ(4069, value);
607
608 EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
609 EXPECT_EQ(0x4069ba, value);
610
611 EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
612 EXPECT_EQ(0, value); // there was no leading substring
613 }
614
TEST(stringtest,safe_strto64_base)615 TEST(stringtest, safe_strto64_base) {
616 int64_t value;
617 EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
618 EXPECT_EQ(int64_t{0x3423432448783446}, value);
619
620 EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
621 EXPECT_EQ(int64_t{0x3423432448783446}, value);
622
623 EXPECT_TRUE(safe_strto64_base("0", &value, 16));
624 EXPECT_EQ(0, value);
625
626 EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
627 EXPECT_EQ(int64_t{-0x3423432448783446}, value);
628
629 EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
630 EXPECT_EQ(int64_t{-0x3423432448783446}, value);
631
632 EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
633 EXPECT_EQ(int64_t{0123456701234567012}, value);
634
635 EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
636 EXPECT_EQ(int64_t{-017777777777777}, value);
637
638 EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));
639
640 // Autodetect base.
641 EXPECT_TRUE(safe_strto64_base("0", &value, 0));
642 EXPECT_EQ(0, value);
643
644 EXPECT_TRUE(safe_strto64_base("077", &value, 0));
645 EXPECT_EQ(077, value); // Octal interpretation
646
647 // Leading zero indicates octal, but then followed by invalid digit.
648 EXPECT_FALSE(safe_strto64_base("088", &value, 0));
649
650 // Leading 0x indicated hex, but then followed by invalid digit.
651 EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));
652
653 // Base-10 version.
654 EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
655 EXPECT_EQ(int64_t{34234324487834466}, value);
656
657 EXPECT_TRUE(safe_strto64_base("0", &value, 10));
658 EXPECT_EQ(0, value);
659
660 EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
661 EXPECT_EQ(int64_t{-34234324487834466}, value);
662
663 EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
664 EXPECT_EQ(int64_t{34234324487834466}, value);
665
666 // Invalid ints.
667 EXPECT_FALSE(safe_strto64_base("", &value, 10));
668 EXPECT_FALSE(safe_strto64_base(" ", &value, 10));
669 EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
670 EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
671 EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));
672
673 // Out of bounds.
674 EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
675 EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
676
677 // String version.
678 EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
679 EXPECT_EQ(0x1234, value);
680
681 // Base-10 string version.
682 EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
683 EXPECT_EQ(1234, value);
684 }
685
686 const size_t kNumRandomTests = 10000;
687
688 template <typename IntType>
test_random_integer_parse_base(bool (* parse_func)(absl::string_view,IntType * value,int base))689 void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
690 IntType* value,
691 int base)) {
692 using RandomEngine = std::minstd_rand0;
693 std::random_device rd;
694 RandomEngine rng(rd());
695 std::uniform_int_distribution<IntType> random_int(
696 std::numeric_limits<IntType>::min());
697 std::uniform_int_distribution<int> random_base(2, 35);
698 for (size_t i = 0; i < kNumRandomTests; i++) {
699 IntType value = random_int(rng);
700 int base = random_base(rng);
701 std::string str_value;
702 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
703 IntType parsed_value;
704
705 // Test successful parse
706 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
707 EXPECT_EQ(parsed_value, value);
708
709 // Test overflow
710 EXPECT_FALSE(
711 parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
712 &parsed_value, base));
713
714 // Test underflow
715 if (std::numeric_limits<IntType>::min() < 0) {
716 EXPECT_FALSE(
717 parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
718 &parsed_value, base));
719 } else {
720 EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
721 }
722 }
723 }
724
TEST(stringtest,safe_strto32_random)725 TEST(stringtest, safe_strto32_random) {
726 test_random_integer_parse_base<int32_t>(&safe_strto32_base);
727 }
TEST(stringtest,safe_strto64_random)728 TEST(stringtest, safe_strto64_random) {
729 test_random_integer_parse_base<int64_t>(&safe_strto64_base);
730 }
TEST(stringtest,safe_strtou32_random)731 TEST(stringtest, safe_strtou32_random) {
732 test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
733 }
TEST(stringtest,safe_strtou64_random)734 TEST(stringtest, safe_strtou64_random) {
735 test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
736 }
TEST(stringtest,safe_strtou128_random)737 TEST(stringtest, safe_strtou128_random) {
738 // random number generators don't work for uint128, and
739 // uint128 can be streamed but not StrCat'd, so this code must be custom
740 // implemented for uint128, but is generally the same as what's above.
741 // test_random_integer_parse_base<absl::uint128>(
742 // &absl::numbers_internal::safe_strtou128_base);
743 using RandomEngine = std::minstd_rand0;
744 using IntType = absl::uint128;
745 constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;
746
747 std::random_device rd;
748 RandomEngine rng(rd());
749 std::uniform_int_distribution<uint64_t> random_uint64(
750 std::numeric_limits<uint64_t>::min());
751 std::uniform_int_distribution<int> random_base(2, 35);
752
753 for (size_t i = 0; i < kNumRandomTests; i++) {
754 IntType value = random_uint64(rng);
755 value = (value << 64) + random_uint64(rng);
756 int base = random_base(rng);
757 std::string str_value;
758 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
759 IntType parsed_value;
760
761 // Test successful parse
762 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
763 EXPECT_EQ(parsed_value, value);
764
765 // Test overflow
766 std::string s;
767 absl::strings_internal::OStringStream(&s)
768 << std::numeric_limits<IntType>::max() << value;
769 EXPECT_FALSE(parse_func(s, &parsed_value, base));
770
771 // Test underflow
772 s.clear();
773 absl::strings_internal::OStringStream(&s) << "-" << value;
774 EXPECT_FALSE(parse_func(s, &parsed_value, base));
775 }
776 }
TEST(stringtest,safe_strto128_random)777 TEST(stringtest, safe_strto128_random) {
778 // random number generators don't work for int128, and
779 // int128 can be streamed but not StrCat'd, so this code must be custom
780 // implemented for int128, but is generally the same as what's above.
781 // test_random_integer_parse_base<absl::int128>(
782 // &absl::numbers_internal::safe_strto128_base);
783 using RandomEngine = std::minstd_rand0;
784 using IntType = absl::int128;
785 constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base;
786
787 std::random_device rd;
788 RandomEngine rng(rd());
789 std::uniform_int_distribution<int64_t> random_int64(
790 std::numeric_limits<int64_t>::min());
791 std::uniform_int_distribution<uint64_t> random_uint64(
792 std::numeric_limits<uint64_t>::min());
793 std::uniform_int_distribution<int> random_base(2, 35);
794
795 for (size_t i = 0; i < kNumRandomTests; ++i) {
796 int64_t high = random_int64(rng);
797 uint64_t low = random_uint64(rng);
798 IntType value = absl::MakeInt128(high, low);
799
800 int base = random_base(rng);
801 std::string str_value;
802 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
803 IntType parsed_value;
804
805 // Test successful parse
806 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
807 EXPECT_EQ(parsed_value, value);
808
809 // Test overflow
810 std::string s;
811 absl::strings_internal::OStringStream(&s)
812 << std::numeric_limits<IntType>::max() << value;
813 EXPECT_FALSE(parse_func(s, &parsed_value, base));
814
815 // Test underflow
816 s.clear();
817 absl::strings_internal::OStringStream(&s)
818 << std::numeric_limits<IntType>::min() << value;
819 EXPECT_FALSE(parse_func(s, &parsed_value, base));
820 }
821 }
822
TEST(stringtest,safe_strtou32_base)823 TEST(stringtest, safe_strtou32_base) {
824 for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
825 const auto& e = strtouint32_test_cases()[i];
826 uint32_t value;
827 EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
828 << "str=\"" << e.str << "\" base=" << e.base;
829 if (e.expect_ok) {
830 EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
831 << "\" base=" << e.base;
832 }
833 }
834 }
835
TEST(stringtest,safe_strtou32_base_length_delimited)836 TEST(stringtest, safe_strtou32_base_length_delimited) {
837 for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
838 const auto& e = strtouint32_test_cases()[i];
839 std::string tmp(e.str);
840 tmp.append("12"); // Adds garbage at the end.
841
842 uint32_t value;
843 EXPECT_EQ(e.expect_ok,
844 safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
845 &value, e.base))
846 << "str=\"" << e.str << "\" base=" << e.base;
847 if (e.expect_ok) {
848 EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
849 << " base=" << e.base;
850 }
851 }
852 }
853
TEST(stringtest,safe_strtou64_base)854 TEST(stringtest, safe_strtou64_base) {
855 for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
856 const auto& e = strtouint64_test_cases()[i];
857 uint64_t value;
858 EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
859 << "str=\"" << e.str << "\" base=" << e.base;
860 if (e.expect_ok) {
861 EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
862 }
863 }
864 }
865
TEST(stringtest,safe_strtou64_base_length_delimited)866 TEST(stringtest, safe_strtou64_base_length_delimited) {
867 for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
868 const auto& e = strtouint64_test_cases()[i];
869 std::string tmp(e.str);
870 tmp.append("12"); // Adds garbage at the end.
871
872 uint64_t value;
873 EXPECT_EQ(e.expect_ok,
874 safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
875 &value, e.base))
876 << "str=\"" << e.str << "\" base=" << e.base;
877 if (e.expect_ok) {
878 EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
879 }
880 }
881 }
882
883 // feenableexcept() and fedisableexcept() are extensions supported by some libc
884 // implementations.
885 #if defined(__GLIBC__) || defined(__BIONIC__)
886 #define ABSL_HAVE_FEENABLEEXCEPT 1
887 #define ABSL_HAVE_FEDISABLEEXCEPT 1
888 #endif
889
890 class SimpleDtoaTest : public testing::Test {
891 protected:
SetUp()892 void SetUp() override {
893 // Store the current floating point env & clear away any pending exceptions.
894 feholdexcept(&fp_env_);
895 #ifdef ABSL_HAVE_FEENABLEEXCEPT
896 // Turn on floating point exceptions.
897 feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
898 #endif
899 }
900
TearDown()901 void TearDown() override {
902 // Restore the floating point environment to the original state.
903 // In theory fedisableexcept is unnecessary; fesetenv will also do it.
904 // In practice, our toolchains have subtle bugs.
905 #ifdef ABSL_HAVE_FEDISABLEEXCEPT
906 fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
907 #endif
908 fesetenv(&fp_env_);
909 }
910
ToNineDigits(double value)911 std::string ToNineDigits(double value) {
912 char buffer[16]; // more than enough for %.9g
913 snprintf(buffer, sizeof(buffer), "%.9g", value);
914 return buffer;
915 }
916
917 fenv_t fp_env_;
918 };
919
920 // Run the given runnable functor for "cases" test cases, chosen over the
921 // available range of float. pi and e and 1/e are seeded, and then all
922 // available integer powers of 2 and 10 are multiplied against them. In
923 // addition to trying all those values, we try the next higher and next lower
924 // float, and then we add additional test cases evenly distributed between them.
925 // Each test case is passed to runnable as both a positive and negative value.
926 template <typename R>
ExhaustiveFloat(uint32_t cases,R && runnable)927 void ExhaustiveFloat(uint32_t cases, R&& runnable) {
928 runnable(0.0f);
929 runnable(-0.0f);
930 if (cases >= 2e9) { // more than 2 billion? Might as well run them all.
931 for (float f = 0; f < std::numeric_limits<float>::max(); ) {
932 f = nextafterf(f, std::numeric_limits<float>::max());
933 runnable(-f);
934 runnable(f);
935 }
936 return;
937 }
938 std::set<float> floats = {3.4028234e38f};
939 for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
940 for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
941 for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
942 for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
943 floats.insert(testf);
944 for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
945 }
946
947 float last = *floats.begin();
948
949 runnable(last);
950 runnable(-last);
951 int iters_per_float = cases / floats.size();
952 if (iters_per_float == 0) iters_per_float = 1;
953 for (float f : floats) {
954 if (f == last) continue;
955 float testf = std::nextafter(last, std::numeric_limits<float>::max());
956 runnable(testf);
957 runnable(-testf);
958 last = testf;
959 if (f == last) continue;
960 double step = (double{f} - last) / iters_per_float;
961 for (double d = last + step; d < f; d += step) {
962 testf = d;
963 if (testf != last) {
964 runnable(testf);
965 runnable(-testf);
966 last = testf;
967 }
968 }
969 testf = std::nextafter(f, 0.0f);
970 if (testf > last) {
971 runnable(testf);
972 runnable(-testf);
973 last = testf;
974 }
975 if (f != last) {
976 runnable(f);
977 runnable(-f);
978 last = f;
979 }
980 }
981 }
982
TEST_F(SimpleDtoaTest,ExhaustiveDoubleToSixDigits)983 TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
984 uint64_t test_count = 0;
985 std::vector<double> mismatches;
986 auto checker = [&](double d) {
987 if (d != d) return; // rule out NaNs
988 ++test_count;
989 char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
990 SixDigitsToBuffer(d, sixdigitsbuf);
991 char snprintfbuf[kSixDigitsToBufferSize] = {0};
992 snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
993 if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
994 mismatches.push_back(d);
995 if (mismatches.size() < 10) {
996 ABSL_RAW_LOG(ERROR, "%s",
997 absl::StrCat("Six-digit failure with double. ", "d=", d,
998 "=", d, " sixdigits=", sixdigitsbuf,
999 " printf(%g)=", snprintfbuf)
1000 .c_str());
1001 }
1002 }
1003 };
1004 // Some quick sanity checks...
1005 checker(5e-324);
1006 checker(1e-308);
1007 checker(1.0);
1008 checker(1.000005);
1009 checker(1.7976931348623157e308);
1010 checker(0.00390625);
1011 #ifndef _MSC_VER
1012 // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
1013 // to 0.00195312 (round half to even).
1014 checker(0.001953125);
1015 #endif
1016 checker(0.005859375);
1017 // Some cases where the rounding is very very close
1018 checker(1.089095e-15);
1019 checker(3.274195e-55);
1020 checker(6.534355e-146);
1021 checker(2.920845e+234);
1022
1023 if (mismatches.empty()) {
1024 test_count = 0;
1025 ExhaustiveFloat(kFloatNumCases, checker);
1026
1027 test_count = 0;
1028 std::vector<int> digit_testcases{
1029 100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc
1030 195312, 195313, // 1.953125 is a case where we round down, just barely.
1031 200000, 500000, 800000, // misc mid-range cases
1032 585937, 585938, // 5.859375 is a case where we round up, just barely.
1033 900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
1034 if (kFloatNumCases >= 1e9) {
1035 // If at least 1 billion test cases were requested, user wants an
1036 // exhaustive test. So let's test all mantissas, too.
1037 constexpr int min_mantissa = 100000, max_mantissa = 999999;
1038 digit_testcases.resize(max_mantissa - min_mantissa + 1);
1039 std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
1040 }
1041
1042 for (int exponent = -324; exponent <= 308; ++exponent) {
1043 double powten = absl::strings_internal::Pow10(exponent);
1044 if (powten == 0) powten = 5e-324;
1045 if (kFloatNumCases >= 1e9) {
1046 // The exhaustive test takes a very long time, so log progress.
1047 char buf[kSixDigitsToBufferSize];
1048 ABSL_RAW_LOG(
1049 INFO, "%s",
1050 absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten,
1051 ") (",
1052 std::string(buf, SixDigitsToBuffer(powten, buf)), ")")
1053 .c_str());
1054 }
1055 for (int digits : digit_testcases) {
1056 if (exponent == 308 && digits >= 179769) break; // don't overflow!
1057 double digiform = (digits + 0.5) * 0.00001;
1058 double testval = digiform * powten;
1059 double pretestval = nextafter(testval, 0);
1060 double posttestval = nextafter(testval, 1.7976931348623157e308);
1061 checker(testval);
1062 checker(pretestval);
1063 checker(posttestval);
1064 }
1065 }
1066 } else {
1067 EXPECT_EQ(mismatches.size(), 0);
1068 for (size_t i = 0; i < mismatches.size(); ++i) {
1069 if (i > 100) i = mismatches.size() - 1;
1070 double d = mismatches[i];
1071 char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
1072 SixDigitsToBuffer(d, sixdigitsbuf);
1073 char snprintfbuf[kSixDigitsToBufferSize] = {0};
1074 snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
1075 double before = nextafter(d, 0.0);
1076 double after = nextafter(d, 1.7976931348623157e308);
1077 char b1[32], b2[kSixDigitsToBufferSize];
1078 ABSL_RAW_LOG(
1079 ERROR, "%s",
1080 absl::StrCat(
1081 "Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")",
1082 " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,
1083 "'", " Before.=", PerfectDtoa(before), " ",
1084 (SixDigitsToBuffer(before, b2), b2),
1085 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),
1086 " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),
1087 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),
1088 " After.=.", PerfectDtoa(after), " ",
1089 (SixDigitsToBuffer(after, b2), b2),
1090 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))
1091 .c_str());
1092 }
1093 }
1094 }
1095
TEST(StrToInt32,Partial)1096 TEST(StrToInt32, Partial) {
1097 struct Int32TestLine {
1098 std::string input;
1099 bool status;
1100 int32_t value;
1101 };
1102 const int32_t int32_min = std::numeric_limits<int32_t>::min();
1103 const int32_t int32_max = std::numeric_limits<int32_t>::max();
1104 Int32TestLine int32_test_line[] = {
1105 {"", false, 0},
1106 {" ", false, 0},
1107 {"-", false, 0},
1108 {"123@@@", false, 123},
1109 {absl::StrCat(int32_min, int32_max), false, int32_min},
1110 {absl::StrCat(int32_max, int32_max), false, int32_max},
1111 };
1112
1113 for (const Int32TestLine& test_line : int32_test_line) {
1114 int32_t value = -2;
1115 bool status = safe_strto32_base(test_line.input, &value, 10);
1116 EXPECT_EQ(test_line.status, status) << test_line.input;
1117 EXPECT_EQ(test_line.value, value) << test_line.input;
1118 value = -2;
1119 status = safe_strto32_base(test_line.input, &value, 10);
1120 EXPECT_EQ(test_line.status, status) << test_line.input;
1121 EXPECT_EQ(test_line.value, value) << test_line.input;
1122 value = -2;
1123 status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
1124 EXPECT_EQ(test_line.status, status) << test_line.input;
1125 EXPECT_EQ(test_line.value, value) << test_line.input;
1126 }
1127 }
1128
TEST(StrToUint32,Partial)1129 TEST(StrToUint32, Partial) {
1130 struct Uint32TestLine {
1131 std::string input;
1132 bool status;
1133 uint32_t value;
1134 };
1135 const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
1136 Uint32TestLine uint32_test_line[] = {
1137 {"", false, 0},
1138 {" ", false, 0},
1139 {"-", false, 0},
1140 {"123@@@", false, 123},
1141 {absl::StrCat(uint32_max, uint32_max), false, uint32_max},
1142 };
1143
1144 for (const Uint32TestLine& test_line : uint32_test_line) {
1145 uint32_t value = 2;
1146 bool status = safe_strtou32_base(test_line.input, &value, 10);
1147 EXPECT_EQ(test_line.status, status) << test_line.input;
1148 EXPECT_EQ(test_line.value, value) << test_line.input;
1149 value = 2;
1150 status = safe_strtou32_base(test_line.input, &value, 10);
1151 EXPECT_EQ(test_line.status, status) << test_line.input;
1152 EXPECT_EQ(test_line.value, value) << test_line.input;
1153 value = 2;
1154 status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
1155 EXPECT_EQ(test_line.status, status) << test_line.input;
1156 EXPECT_EQ(test_line.value, value) << test_line.input;
1157 }
1158 }
1159
TEST(StrToInt64,Partial)1160 TEST(StrToInt64, Partial) {
1161 struct Int64TestLine {
1162 std::string input;
1163 bool status;
1164 int64_t value;
1165 };
1166 const int64_t int64_min = std::numeric_limits<int64_t>::min();
1167 const int64_t int64_max = std::numeric_limits<int64_t>::max();
1168 Int64TestLine int64_test_line[] = {
1169 {"", false, 0},
1170 {" ", false, 0},
1171 {"-", false, 0},
1172 {"123@@@", false, 123},
1173 {absl::StrCat(int64_min, int64_max), false, int64_min},
1174 {absl::StrCat(int64_max, int64_max), false, int64_max},
1175 };
1176
1177 for (const Int64TestLine& test_line : int64_test_line) {
1178 int64_t value = -2;
1179 bool status = safe_strto64_base(test_line.input, &value, 10);
1180 EXPECT_EQ(test_line.status, status) << test_line.input;
1181 EXPECT_EQ(test_line.value, value) << test_line.input;
1182 value = -2;
1183 status = safe_strto64_base(test_line.input, &value, 10);
1184 EXPECT_EQ(test_line.status, status) << test_line.input;
1185 EXPECT_EQ(test_line.value, value) << test_line.input;
1186 value = -2;
1187 status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
1188 EXPECT_EQ(test_line.status, status) << test_line.input;
1189 EXPECT_EQ(test_line.value, value) << test_line.input;
1190 }
1191 }
1192
TEST(StrToUint64,Partial)1193 TEST(StrToUint64, Partial) {
1194 struct Uint64TestLine {
1195 std::string input;
1196 bool status;
1197 uint64_t value;
1198 };
1199 const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
1200 Uint64TestLine uint64_test_line[] = {
1201 {"", false, 0},
1202 {" ", false, 0},
1203 {"-", false, 0},
1204 {"123@@@", false, 123},
1205 {absl::StrCat(uint64_max, uint64_max), false, uint64_max},
1206 };
1207
1208 for (const Uint64TestLine& test_line : uint64_test_line) {
1209 uint64_t value = 2;
1210 bool status = safe_strtou64_base(test_line.input, &value, 10);
1211 EXPECT_EQ(test_line.status, status) << test_line.input;
1212 EXPECT_EQ(test_line.value, value) << test_line.input;
1213 value = 2;
1214 status = safe_strtou64_base(test_line.input, &value, 10);
1215 EXPECT_EQ(test_line.status, status) << test_line.input;
1216 EXPECT_EQ(test_line.value, value) << test_line.input;
1217 value = 2;
1218 status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
1219 EXPECT_EQ(test_line.status, status) << test_line.input;
1220 EXPECT_EQ(test_line.value, value) << test_line.input;
1221 }
1222 }
1223
TEST(StrToInt32Base,PrefixOnly)1224 TEST(StrToInt32Base, PrefixOnly) {
1225 struct Int32TestLine {
1226 std::string input;
1227 bool status;
1228 int32_t value;
1229 };
1230 Int32TestLine int32_test_line[] = {
1231 { "", false, 0 },
1232 { "-", false, 0 },
1233 { "-0", true, 0 },
1234 { "0", true, 0 },
1235 { "0x", false, 0 },
1236 { "-0x", false, 0 },
1237 };
1238 const int base_array[] = { 0, 2, 8, 10, 16 };
1239
1240 for (const Int32TestLine& line : int32_test_line) {
1241 for (const int base : base_array) {
1242 int32_t value = 2;
1243 bool status = safe_strto32_base(line.input.c_str(), &value, base);
1244 EXPECT_EQ(line.status, status) << line.input << " " << base;
1245 EXPECT_EQ(line.value, value) << line.input << " " << base;
1246 value = 2;
1247 status = safe_strto32_base(line.input, &value, base);
1248 EXPECT_EQ(line.status, status) << line.input << " " << base;
1249 EXPECT_EQ(line.value, value) << line.input << " " << base;
1250 value = 2;
1251 status = safe_strto32_base(absl::string_view(line.input), &value, base);
1252 EXPECT_EQ(line.status, status) << line.input << " " << base;
1253 EXPECT_EQ(line.value, value) << line.input << " " << base;
1254 }
1255 }
1256 }
1257
TEST(StrToUint32Base,PrefixOnly)1258 TEST(StrToUint32Base, PrefixOnly) {
1259 struct Uint32TestLine {
1260 std::string input;
1261 bool status;
1262 uint32_t value;
1263 };
1264 Uint32TestLine uint32_test_line[] = {
1265 { "", false, 0 },
1266 { "0", true, 0 },
1267 { "0x", false, 0 },
1268 };
1269 const int base_array[] = { 0, 2, 8, 10, 16 };
1270
1271 for (const Uint32TestLine& line : uint32_test_line) {
1272 for (const int base : base_array) {
1273 uint32_t value = 2;
1274 bool status = safe_strtou32_base(line.input.c_str(), &value, base);
1275 EXPECT_EQ(line.status, status) << line.input << " " << base;
1276 EXPECT_EQ(line.value, value) << line.input << " " << base;
1277 value = 2;
1278 status = safe_strtou32_base(line.input, &value, base);
1279 EXPECT_EQ(line.status, status) << line.input << " " << base;
1280 EXPECT_EQ(line.value, value) << line.input << " " << base;
1281 value = 2;
1282 status = safe_strtou32_base(absl::string_view(line.input), &value, base);
1283 EXPECT_EQ(line.status, status) << line.input << " " << base;
1284 EXPECT_EQ(line.value, value) << line.input << " " << base;
1285 }
1286 }
1287 }
1288
TEST(StrToInt64Base,PrefixOnly)1289 TEST(StrToInt64Base, PrefixOnly) {
1290 struct Int64TestLine {
1291 std::string input;
1292 bool status;
1293 int64_t value;
1294 };
1295 Int64TestLine int64_test_line[] = {
1296 { "", false, 0 },
1297 { "-", false, 0 },
1298 { "-0", true, 0 },
1299 { "0", true, 0 },
1300 { "0x", false, 0 },
1301 { "-0x", false, 0 },
1302 };
1303 const int base_array[] = { 0, 2, 8, 10, 16 };
1304
1305 for (const Int64TestLine& line : int64_test_line) {
1306 for (const int base : base_array) {
1307 int64_t value = 2;
1308 bool status = safe_strto64_base(line.input.c_str(), &value, base);
1309 EXPECT_EQ(line.status, status) << line.input << " " << base;
1310 EXPECT_EQ(line.value, value) << line.input << " " << base;
1311 value = 2;
1312 status = safe_strto64_base(line.input, &value, base);
1313 EXPECT_EQ(line.status, status) << line.input << " " << base;
1314 EXPECT_EQ(line.value, value) << line.input << " " << base;
1315 value = 2;
1316 status = safe_strto64_base(absl::string_view(line.input), &value, base);
1317 EXPECT_EQ(line.status, status) << line.input << " " << base;
1318 EXPECT_EQ(line.value, value) << line.input << " " << base;
1319 }
1320 }
1321 }
1322
TEST(StrToUint64Base,PrefixOnly)1323 TEST(StrToUint64Base, PrefixOnly) {
1324 struct Uint64TestLine {
1325 std::string input;
1326 bool status;
1327 uint64_t value;
1328 };
1329 Uint64TestLine uint64_test_line[] = {
1330 { "", false, 0 },
1331 { "0", true, 0 },
1332 { "0x", false, 0 },
1333 };
1334 const int base_array[] = { 0, 2, 8, 10, 16 };
1335
1336 for (const Uint64TestLine& line : uint64_test_line) {
1337 for (const int base : base_array) {
1338 uint64_t value = 2;
1339 bool status = safe_strtou64_base(line.input.c_str(), &value, base);
1340 EXPECT_EQ(line.status, status) << line.input << " " << base;
1341 EXPECT_EQ(line.value, value) << line.input << " " << base;
1342 value = 2;
1343 status = safe_strtou64_base(line.input, &value, base);
1344 EXPECT_EQ(line.status, status) << line.input << " " << base;
1345 EXPECT_EQ(line.value, value) << line.input << " " << base;
1346 value = 2;
1347 status = safe_strtou64_base(absl::string_view(line.input), &value, base);
1348 EXPECT_EQ(line.status, status) << line.input << " " << base;
1349 EXPECT_EQ(line.value, value) << line.input << " " << base;
1350 }
1351 }
1352 }
1353
TestFastHexToBufferZeroPad16(uint64_t v)1354 void TestFastHexToBufferZeroPad16(uint64_t v) {
1355 char buf[16];
1356 auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);
1357 absl::string_view res(buf, 16);
1358 char buf2[17];
1359 snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);
1360 EXPECT_EQ(res, buf2) << v;
1361 size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);
1362 EXPECT_EQ(digits, expected_digits) << v;
1363 }
1364
TEST(FastHexToBufferZeroPad16,Smoke)1365 TEST(FastHexToBufferZeroPad16, Smoke) {
1366 TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());
1367 TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());
1368 TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());
1369 TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());
1370 absl::BitGen rng;
1371 for (int i = 0; i < 100000; ++i) {
1372 TestFastHexToBufferZeroPad16(
1373 absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),
1374 std::numeric_limits<uint64_t>::max()));
1375 }
1376 }
1377
1378 } // namespace
1379