• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include "bn_local.h"
14 
15 /*
16  * The quick sieve algorithm approach to weeding out primes is Philip
17  * Zimmermann's, as implemented in PGP.  I have had a read of his comments
18  * and implemented my own version.
19  */
20 #include "bn_prime.h"
21 
22 static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
23                           BN_CTX *ctx);
24 static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
25                              const BIGNUM *add, const BIGNUM *rem,
26                              BN_CTX *ctx);
27 static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
28                            int do_trial_division, BN_GENCB *cb);
29 
30 #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
31 
32 #if BN_BITS2 == 64
33 # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
34 #else
35 # define BN_DEF(lo, hi) lo, hi
36 #endif
37 
38 /*
39  * See SP800 89 5.3.3 (Step f)
40  * The product of the set of primes ranging from 3 to 751
41  * Generated using process in test/bn_internal_test.c test_bn_small_factors().
42  * This includes 751 (which is not currently included in SP 800-89).
43  */
44 static const BN_ULONG small_prime_factors[] = {
45     BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
46     BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
47     BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
48     BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
49     BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
50     BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
51     BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
52     BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
53     (BN_ULONG)0x000017b1
54 };
55 
56 #define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
57 static const BIGNUM _bignum_small_prime_factors = {
58     (BN_ULONG *)small_prime_factors,
59     BN_SMALL_PRIME_FACTORS_TOP,
60     BN_SMALL_PRIME_FACTORS_TOP,
61     0,
62     BN_FLG_STATIC_DATA
63 };
64 
ossl_bn_get0_small_factors(void)65 const BIGNUM *ossl_bn_get0_small_factors(void)
66 {
67     return &_bignum_small_prime_factors;
68 }
69 
70 /*
71  * Calculate the number of trial divisions that gives the best speed in
72  * combination with Miller-Rabin prime test, based on the sized of the prime.
73  */
calc_trial_divisions(int bits)74 static int calc_trial_divisions(int bits)
75 {
76     if (bits <= 512)
77         return 64;
78     else if (bits <= 1024)
79         return 128;
80     else if (bits <= 2048)
81         return 384;
82     else if (bits <= 4096)
83         return 1024;
84     return NUMPRIMES;
85 }
86 
87 /*
88  * Use a minimum of 64 rounds of Miller-Rabin, which should give a false
89  * positive rate of 2^-128. If the size of the prime is larger than 2048
90  * the user probably wants a higher security level than 128, so switch
91  * to 128 rounds giving a false positive rate of 2^-256.
92  * Returns the number of rounds.
93  */
bn_mr_min_checks(int bits)94 static int bn_mr_min_checks(int bits)
95 {
96     if (bits > 2048)
97         return 128;
98     return 64;
99 }
100 
BN_GENCB_call(BN_GENCB * cb,int a,int b)101 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
102 {
103     /* No callback means continue */
104     if (!cb)
105         return 1;
106     switch (cb->ver) {
107     case 1:
108         /* Deprecated-style callbacks */
109         if (!cb->cb.cb_1)
110             return 1;
111         cb->cb.cb_1(a, b, cb->arg);
112         return 1;
113     case 2:
114         /* New-style callbacks */
115         return cb->cb.cb_2(a, b, cb);
116     default:
117         break;
118     }
119     /* Unrecognised callback type */
120     return 0;
121 }
122 
BN_generate_prime_ex2(BIGNUM * ret,int bits,int safe,const BIGNUM * add,const BIGNUM * rem,BN_GENCB * cb,BN_CTX * ctx)123 int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
124                           const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
125                           BN_CTX *ctx)
126 {
127     BIGNUM *t;
128     int found = 0;
129     int i, j, c1 = 0;
130     prime_t *mods = NULL;
131     int checks = bn_mr_min_checks(bits);
132 
133     if (bits < 2) {
134         /* There are no prime numbers this small. */
135         ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
136         return 0;
137     } else if (add == NULL && safe && bits < 6 && bits != 3) {
138         /*
139          * The smallest safe prime (7) is three bits.
140          * But the following two safe primes with less than 6 bits (11, 23)
141          * are unreachable for BN_rand with BN_RAND_TOP_TWO.
142          */
143         ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
144         return 0;
145     }
146 
147     mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
148     if (mods == NULL) {
149         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
150         return 0;
151     }
152 
153     BN_CTX_start(ctx);
154     t = BN_CTX_get(ctx);
155     if (t == NULL)
156         goto err;
157  loop:
158     /* make a random number and set the top and bottom bits */
159     if (add == NULL) {
160         if (!probable_prime(ret, bits, safe, mods, ctx))
161             goto err;
162     } else {
163         if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
164             goto err;
165     }
166 
167     if (!BN_GENCB_call(cb, 0, c1++))
168         /* aborted */
169         goto err;
170 
171     if (!safe) {
172         i = bn_is_prime_int(ret, checks, ctx, 0, cb);
173         if (i == -1)
174             goto err;
175         if (i == 0)
176             goto loop;
177     } else {
178         /*
179          * for "safe prime" generation, check that (p-1)/2 is prime. Since a
180          * prime is odd, We just need to divide by 2
181          */
182         if (!BN_rshift1(t, ret))
183             goto err;
184 
185         for (i = 0; i < checks; i++) {
186             j = bn_is_prime_int(ret, 1, ctx, 0, cb);
187             if (j == -1)
188                 goto err;
189             if (j == 0)
190                 goto loop;
191 
192             j = bn_is_prime_int(t, 1, ctx, 0, cb);
193             if (j == -1)
194                 goto err;
195             if (j == 0)
196                 goto loop;
197 
198             if (!BN_GENCB_call(cb, 2, c1 - 1))
199                 goto err;
200             /* We have a safe prime test pass */
201         }
202     }
203     /* we have a prime :-) */
204     found = 1;
205  err:
206     OPENSSL_free(mods);
207     BN_CTX_end(ctx);
208     bn_check_top(ret);
209     return found;
210 }
211 
212 #ifndef FIPS_MODULE
BN_generate_prime_ex(BIGNUM * ret,int bits,int safe,const BIGNUM * add,const BIGNUM * rem,BN_GENCB * cb)213 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
214                          const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
215 {
216     BN_CTX *ctx = BN_CTX_new();
217     int retval;
218 
219     if (ctx == NULL)
220         return 0;
221 
222     retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx);
223 
224     BN_CTX_free(ctx);
225     return retval;
226 }
227 #endif
228 
229 #ifndef OPENSSL_NO_DEPRECATED_3_0
BN_is_prime_ex(const BIGNUM * a,int checks,BN_CTX * ctx_passed,BN_GENCB * cb)230 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
231                    BN_GENCB *cb)
232 {
233     return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb);
234 }
235 
BN_is_prime_fasttest_ex(const BIGNUM * w,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)236 int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
237                             int do_trial_division, BN_GENCB *cb)
238 {
239     return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb);
240 }
241 #endif
242 
243 /* Wrapper around bn_is_prime_int that sets the minimum number of checks */
ossl_bn_check_prime(const BIGNUM * w,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)244 int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
245                         int do_trial_division, BN_GENCB *cb)
246 {
247     int min_checks = bn_mr_min_checks(BN_num_bits(w));
248 
249     if (checks < min_checks)
250         checks = min_checks;
251 
252     return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
253 }
254 
BN_check_prime(const BIGNUM * p,BN_CTX * ctx,BN_GENCB * cb)255 int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
256 {
257     return ossl_bn_check_prime(p, 0, ctx, 1, cb);
258 }
259 
260 /*
261  * Tests that |w| is probably prime
262  * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
263  *
264  * Returns 0 when composite, 1 when probable prime, -1 on error.
265  */
bn_is_prime_int(const BIGNUM * w,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)266 static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
267                            int do_trial_division, BN_GENCB *cb)
268 {
269     int i, status, ret = -1;
270 #ifndef FIPS_MODULE
271     BN_CTX *ctxlocal = NULL;
272 #else
273 
274     if (ctx == NULL)
275         return -1;
276 #endif
277 
278     /* w must be bigger than 1 */
279     if (BN_cmp(w, BN_value_one()) <= 0)
280         return 0;
281 
282     /* w must be odd */
283     if (BN_is_odd(w)) {
284         /* Take care of the really small prime 3 */
285         if (BN_is_word(w, 3))
286             return 1;
287     } else {
288         /* 2 is the only even prime */
289         return BN_is_word(w, 2);
290     }
291 
292     /* first look for small factors */
293     if (do_trial_division) {
294         int trial_divisions = calc_trial_divisions(BN_num_bits(w));
295 
296         for (i = 1; i < trial_divisions; i++) {
297             BN_ULONG mod = BN_mod_word(w, primes[i]);
298             if (mod == (BN_ULONG)-1)
299                 return -1;
300             if (mod == 0)
301                 return BN_is_word(w, primes[i]);
302         }
303         if (!BN_GENCB_call(cb, 1, -1))
304             return -1;
305     }
306 #ifndef FIPS_MODULE
307     if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL)
308         goto err;
309 #endif
310 
311     if (!ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status)) {
312         ret = -1;
313         goto err;
314     }
315     ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
316 err:
317 #ifndef FIPS_MODULE
318     BN_CTX_free(ctxlocal);
319 #endif
320     return ret;
321 }
322 
323 /*
324  * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
325  * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
326  * The Step numbers listed in the code refer to the enhanced case.
327  *
328  * if enhanced is set, then status returns one of the following:
329  *     BN_PRIMETEST_PROBABLY_PRIME
330  *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR
331  *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
332  * if enhanced is zero, then status returns either
333  *     BN_PRIMETEST_PROBABLY_PRIME or
334  *     BN_PRIMETEST_COMPOSITE
335  *
336  * returns 0 if there was an error, otherwise it returns 1.
337  */
ossl_bn_miller_rabin_is_prime(const BIGNUM * w,int iterations,BN_CTX * ctx,BN_GENCB * cb,int enhanced,int * status)338 int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
339                                   BN_GENCB *cb, int enhanced, int *status)
340 {
341     int i, j, a, ret = 0;
342     BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
343     BN_MONT_CTX *mont = NULL;
344 
345     /* w must be odd */
346     if (!BN_is_odd(w))
347         return 0;
348 
349     BN_CTX_start(ctx);
350     g = BN_CTX_get(ctx);
351     w1 = BN_CTX_get(ctx);
352     w3 = BN_CTX_get(ctx);
353     x = BN_CTX_get(ctx);
354     m = BN_CTX_get(ctx);
355     z = BN_CTX_get(ctx);
356     b = BN_CTX_get(ctx);
357 
358     if (!(b != NULL
359             /* w1 := w - 1 */
360             && BN_copy(w1, w)
361             && BN_sub_word(w1, 1)
362             /* w3 := w - 3 */
363             && BN_copy(w3, w)
364             && BN_sub_word(w3, 3)))
365         goto err;
366 
367     /* check w is larger than 3, otherwise the random b will be too small */
368     if (BN_is_zero(w3) || BN_is_negative(w3))
369         goto err;
370 
371     /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
372     a = 1;
373     while (!BN_is_bit_set(w1, a))
374         a++;
375     /* (Step 2) m = (w-1) / 2^a */
376     if (!BN_rshift(m, w1, a))
377         goto err;
378 
379     /* Montgomery setup for computations mod a */
380     mont = BN_MONT_CTX_new();
381     if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
382         goto err;
383 
384     if (iterations == 0)
385         iterations = bn_mr_min_checks(BN_num_bits(w));
386 
387     /* (Step 4) */
388     for (i = 0; i < iterations; ++i) {
389         /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
390         if (!BN_priv_rand_range_ex(b, w3, 0, ctx)
391                 || !BN_add_word(b, 2)) /* 1 < b < w-1 */
392             goto err;
393 
394         if (enhanced) {
395             /* (Step 4.3) */
396             if (!BN_gcd(g, b, w, ctx))
397                 goto err;
398             /* (Step 4.4) */
399             if (!BN_is_one(g)) {
400                 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
401                 ret = 1;
402                 goto err;
403             }
404         }
405         /* (Step 4.5) z = b^m mod w */
406         if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
407             goto err;
408         /* (Step 4.6) if (z = 1 or z = w-1) */
409         if (BN_is_one(z) || BN_cmp(z, w1) == 0)
410             goto outer_loop;
411         /* (Step 4.7) for j = 1 to a-1 */
412         for (j = 1; j < a ; ++j) {
413             /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
414             if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
415                 goto err;
416             /* (Step 4.7.3) */
417             if (BN_cmp(z, w1) == 0)
418                 goto outer_loop;
419             /* (Step 4.7.4) */
420             if (BN_is_one(z))
421                 goto composite;
422         }
423         /* At this point z = b^((w-1)/2) mod w */
424         /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
425         if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
426             goto err;
427         /* (Step 4.10) */
428         if (BN_is_one(z))
429             goto composite;
430         /* (Step 4.11) x = b^(w-1) mod w */
431         if (!BN_copy(x, z))
432             goto err;
433 composite:
434         if (enhanced) {
435             /* (Step 4.1.2) g = GCD(x-1, w) */
436             if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
437                 goto err;
438             /* (Steps 4.1.3 - 4.1.4) */
439             if (BN_is_one(g))
440                 *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
441             else
442                 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
443         } else {
444             *status = BN_PRIMETEST_COMPOSITE;
445         }
446         ret = 1;
447         goto err;
448 outer_loop: ;
449         /* (Step 4.1.5) */
450         if (!BN_GENCB_call(cb, 1, i))
451             goto err;
452     }
453     /* (Step 5) */
454     *status = BN_PRIMETEST_PROBABLY_PRIME;
455     ret = 1;
456 err:
457     BN_clear(g);
458     BN_clear(w1);
459     BN_clear(w3);
460     BN_clear(x);
461     BN_clear(m);
462     BN_clear(z);
463     BN_clear(b);
464     BN_CTX_end(ctx);
465     BN_MONT_CTX_free(mont);
466     return ret;
467 }
468 
469 /*
470  * Generate a random number of |bits| bits that is probably prime by sieving.
471  * If |safe| != 0, it generates a safe prime.
472  * |mods| is a preallocated array that gets reused when called again.
473  *
474  * The probably prime is saved in |rnd|.
475  *
476  * Returns 1 on success and 0 on error.
477  */
probable_prime(BIGNUM * rnd,int bits,int safe,prime_t * mods,BN_CTX * ctx)478 static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
479                           BN_CTX *ctx)
480 {
481     int i;
482     BN_ULONG delta;
483     int trial_divisions = calc_trial_divisions(bits);
484     BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
485 
486  again:
487     if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0,
488                          ctx))
489         return 0;
490     if (safe && !BN_set_bit(rnd, 1))
491         return 0;
492     /* we now have a random number 'rnd' to test. */
493     for (i = 1; i < trial_divisions; i++) {
494         BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
495         if (mod == (BN_ULONG)-1)
496             return 0;
497         mods[i] = (prime_t) mod;
498     }
499     delta = 0;
500  loop:
501     for (i = 1; i < trial_divisions; i++) {
502         /*
503          * check that rnd is a prime and also that
504          * gcd(rnd-1,primes) == 1 (except for 2)
505          * do the second check only if we are interested in safe primes
506          * in the case that the candidate prime is a single word then
507          * we check only the primes up to sqrt(rnd)
508          */
509         if (bits <= 31 && delta <= 0x7fffffff
510                 && square(primes[i]) > BN_get_word(rnd) + delta)
511             break;
512         if (safe ? (mods[i] + delta) % primes[i] <= 1
513                  : (mods[i] + delta) % primes[i] == 0) {
514             delta += safe ? 4 : 2;
515             if (delta > maxdelta)
516                 goto again;
517             goto loop;
518         }
519     }
520     if (!BN_add_word(rnd, delta))
521         return 0;
522     if (BN_num_bits(rnd) != bits)
523         goto again;
524     bn_check_top(rnd);
525     return 1;
526 }
527 
528 /*
529  * Generate a random number |rnd| of |bits| bits that is probably prime
530  * and satisfies |rnd| % |add| == |rem| by sieving.
531  * If |safe| != 0, it generates a safe prime.
532  * |mods| is a preallocated array that gets reused when called again.
533  *
534  * Returns 1 on success and 0 on error.
535  */
probable_prime_dh(BIGNUM * rnd,int bits,int safe,prime_t * mods,const BIGNUM * add,const BIGNUM * rem,BN_CTX * ctx)536 static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
537                              const BIGNUM *add, const BIGNUM *rem,
538                              BN_CTX *ctx)
539 {
540     int i, ret = 0;
541     BIGNUM *t1;
542     BN_ULONG delta;
543     int trial_divisions = calc_trial_divisions(bits);
544     BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
545 
546     BN_CTX_start(ctx);
547     if ((t1 = BN_CTX_get(ctx)) == NULL)
548         goto err;
549 
550     if (maxdelta > BN_MASK2 - BN_get_word(add))
551         maxdelta = BN_MASK2 - BN_get_word(add);
552 
553  again:
554     if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx))
555         goto err;
556 
557     /* we need ((rnd-rem) % add) == 0 */
558 
559     if (!BN_mod(t1, rnd, add, ctx))
560         goto err;
561     if (!BN_sub(rnd, rnd, t1))
562         goto err;
563     if (rem == NULL) {
564         if (!BN_add_word(rnd, safe ? 3u : 1u))
565             goto err;
566     } else {
567         if (!BN_add(rnd, rnd, rem))
568             goto err;
569     }
570 
571     if (BN_num_bits(rnd) < bits
572             || BN_get_word(rnd) < (safe ? 5u : 3u)) {
573         if (!BN_add(rnd, rnd, add))
574             goto err;
575     }
576 
577     /* we now have a random number 'rnd' to test. */
578     for (i = 1; i < trial_divisions; i++) {
579         BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
580         if (mod == (BN_ULONG)-1)
581             goto err;
582         mods[i] = (prime_t) mod;
583     }
584     delta = 0;
585  loop:
586     for (i = 1; i < trial_divisions; i++) {
587         /* check that rnd is a prime */
588         if (bits <= 31 && delta <= 0x7fffffff
589                 && square(primes[i]) > BN_get_word(rnd) + delta)
590             break;
591         /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
592         if (safe ? (mods[i] + delta) % primes[i] <= 1
593                  : (mods[i] + delta) % primes[i] == 0) {
594             delta += BN_get_word(add);
595             if (delta > maxdelta)
596                 goto again;
597             goto loop;
598         }
599     }
600     if (!BN_add_word(rnd, delta))
601         goto err;
602     ret = 1;
603 
604  err:
605     BN_CTX_end(ctx);
606     bn_check_top(rnd);
607     return ret;
608 }
609