• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ccpr/GrCCCoverageProcessor.h"
9 
10 #include "src/core/SkMakeUnique.h"
11 #include "src/gpu/GrGpuCommandBuffer.h"
12 #include "src/gpu/GrOpFlushState.h"
13 #include "src/gpu/ccpr/GrCCConicShader.h"
14 #include "src/gpu/ccpr/GrCCCubicShader.h"
15 #include "src/gpu/ccpr/GrCCQuadraticShader.h"
16 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
17 #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
18 #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
19 
20 class GrCCCoverageProcessor::TriangleShader : public GrCCCoverageProcessor::Shader {
onEmitVaryings(GrGLSLVaryingHandler * varyingHandler,GrGLSLVarying::Scope scope,SkString * code,const char * position,const char * coverage,const char * cornerCoverage,const char *)21     void onEmitVaryings(
22             GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code,
23             const char* position, const char* coverage, const char* cornerCoverage,
24             const char* /*wind*/) override {
25         if (!cornerCoverage) {
26             fCoverages.reset(kHalf_GrSLType, scope);
27             varyingHandler->addVarying("coverage", &fCoverages);
28             code->appendf("%s = %s;", OutName(fCoverages), coverage);
29         } else {
30             fCoverages.reset(kHalf3_GrSLType, scope);
31             varyingHandler->addVarying("coverages", &fCoverages);
32             code->appendf("%s = half3(%s, %s);", OutName(fCoverages), coverage, cornerCoverage);
33         }
34     }
35 
emitFragmentCoverageCode(GrGLSLFPFragmentBuilder * f,const char * outputCoverage) const36     void emitFragmentCoverageCode(
37             GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override {
38         if (kHalf_GrSLType == fCoverages.type()) {
39             f->codeAppendf("%s = %s;", outputCoverage, fCoverages.fsIn());
40         } else {
41             f->codeAppendf("%s = %s.z * %s.y + %s.x;",
42                            outputCoverage, fCoverages.fsIn(), fCoverages.fsIn(), fCoverages.fsIn());
43         }
44     }
45 
emitSampleMaskCode(GrGLSLFPFragmentBuilder *) const46     void emitSampleMaskCode(GrGLSLFPFragmentBuilder*) const override { return; }
47 
48     GrGLSLVarying fCoverages;
49 };
50 
CalcWind(const GrCCCoverageProcessor & proc,GrGLSLVertexGeoBuilder * s,const char * pts,const char * outputWind)51 void GrCCCoverageProcessor::Shader::CalcWind(const GrCCCoverageProcessor& proc,
52                                              GrGLSLVertexGeoBuilder* s, const char* pts,
53                                              const char* outputWind) {
54     if (3 == proc.numInputPoints()) {
55         s->codeAppendf("float2 a = %s[0] - %s[1], "
56                               "b = %s[0] - %s[2];", pts, pts, pts, pts);
57     } else {
58         // All inputs are convex, so it's sufficient to just average the middle two input points.
59         SkASSERT(4 == proc.numInputPoints());
60         s->codeAppendf("float2 p12 = (%s[1] + %s[2]) * .5;", pts, pts);
61         s->codeAppendf("float2 a = %s[0] - p12, "
62                               "b = %s[0] - %s[3];", pts, pts, pts);
63     }
64 
65     s->codeAppend ("float area_x2 = determinant(float2x2(a, b));");
66     if (proc.isTriangles()) {
67         // We cull extremely thin triangles by zeroing wind. When a triangle gets too thin it's
68         // possible for FP round-off error to actually give us the wrong winding direction, causing
69         // rendering artifacts. The criteria we choose is "height <~ 1/1024". So we drop a triangle
70         // if the max effect it can have on any single pixel is <~ 1/1024, or 1/4 of a bit in 8888.
71         s->codeAppend ("float2 bbox_size = max(abs(a), abs(b));");
72         s->codeAppend ("float basewidth = max(bbox_size.x + bbox_size.y, 1);");
73         s->codeAppendf("%s = (abs(area_x2 * 1024) > basewidth) ? sign(half(area_x2)) : 0;",
74                        outputWind);
75     } else {
76         // We already converted nearly-flat curves to lines on the CPU, so no need to worry about
77         // thin curve hulls at this point.
78         s->codeAppendf("%s = sign(half(area_x2));", outputWind);
79     }
80 }
81 
CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * rasterVertexDir,const char * outputCoverage)82 void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
83                                                                   const char* leftPt,
84                                                                   const char* rightPt,
85                                                                   const char* rasterVertexDir,
86                                                                   const char* outputCoverage) {
87     // Here we find an edge's coverage at one corner of a conservative raster bloat box whose center
88     // falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We
89     // always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at
90     // the center. Interpolated, these coverage values convert jagged conservative raster edges into
91     // smooth antialiased edges.
92     //
93     // d1 == (P + sign(n) * bloat) dot n                   (Distance at the bloat box vertex whose
94     //    == P dot n + (abs(n.x) + abs(n.y)) * bloatSize    coverage=-1, where the bloat box is
95     //                                                      centered on P.)
96     //
97     // d0 == (P - sign(n) * bloat) dot n                   (Distance at the bloat box vertex whose
98     //    == P dot n - (abs(n.x) + abs(n.y)) * bloatSize    coverage=0, where the bloat box is
99     //                                                      centered on P.)
100     //
101     // d == (P + rasterVertexDir * bloatSize) dot n        (Distance at the bloat box vertex whose
102     //   == P dot n + (rasterVertexDir dot n) * bloatSize   coverage we wish to calculate.)
103     //
104     // coverage == -(d - d0) / (d1 - d0)                   (coverage=-1 at d=d1; coverage=0 at d=d0)
105     //
106     //          == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5
107     //
108     s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
109                    rightPt, leftPt, leftPt, rightPt);
110     s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
111     s->codeAppendf("float t = dot(%s, n);", rasterVertexDir);
112     // The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the
113     // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
114     s->codeAppendf("%s = half(abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;",
115                    outputCoverage);
116 }
117 
CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder * s,const char * leftPt,const char * rightPt,const char * bloatDir1,const char * bloatDir2,const char * outputCoverages)118 void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s,
119                                                                      const char* leftPt,
120                                                                      const char* rightPt,
121                                                                      const char* bloatDir1,
122                                                                      const char* bloatDir2,
123                                                                      const char* outputCoverages) {
124     // See comments in CalcEdgeCoverageAtBloatVertex.
125     s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
126                    rightPt, leftPt, leftPt, rightPt);
127     s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
128     s->codeAppendf("float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2);
129     s->codeAppendf("for (int i = 0; i < 2; ++i) {");
130     s->codeAppendf(    "%s[i] = half(abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;",
131                        outputCoverages);
132     s->codeAppendf("}");
133 }
134 
CalcCornerAttenuation(GrGLSLVertexGeoBuilder * s,const char * leftDir,const char * rightDir,const char * outputAttenuation)135 void GrCCCoverageProcessor::Shader::CalcCornerAttenuation(GrGLSLVertexGeoBuilder* s,
136                                                           const char* leftDir, const char* rightDir,
137                                                           const char* outputAttenuation) {
138     // obtuseness = cos(corner_angle)  if corner_angle > 90 degrees
139     //                              0  if corner_angle <= 90 degrees
140     //
141     // NOTE: leftDir and rightDir are normalized and point in the same direction the path was
142     // defined with, i.e., leftDir points into the corner and rightDir points away from the corner.
143     s->codeAppendf("half obtuseness = max(half(dot(%s, %s)), 0);", leftDir, rightDir);
144 
145     // axis_alignedness = 1 - tan(angle_to_nearest_axis_from_corner_bisector)
146     //                    (i.e.,  1  when the corner bisector is aligned with the x- or y-axis
147     //                            0  when the corner bisector falls on a 45 degree angle
148     //                         0..1  when the corner bisector falls somewhere in between
149     s->codeAppendf("half2 abs_bisect_maybe_transpose = abs((0 == obtuseness) ? half2(%s - %s) : "
150                                                                               "half2(%s + %s));",
151                    leftDir, rightDir, leftDir, rightDir);
152     s->codeAppend ("half axis_alignedness = "
153                            "1 - min(abs_bisect_maybe_transpose.y, abs_bisect_maybe_transpose.x) / "
154                                "max(abs_bisect_maybe_transpose.x, abs_bisect_maybe_transpose.y);");
155 
156     // ninety_degreesness = sin^2(corner_angle)
157     // sin^2 just because... it's always positive and the results looked better than plain sine... ?
158     s->codeAppendf("half ninety_degreesness = determinant(half2x2(%s, %s));", leftDir, rightDir);
159     s->codeAppend ("ninety_degreesness = ninety_degreesness * ninety_degreesness;");
160 
161     // The below formula is not smart. It was just arrived at by considering the following
162     // observations:
163     //
164     // 1. 90-degree, axis-aligned corners have full attenuation along the bisector.
165     //    (i.e. coverage = 1 - distance_to_corner^2)
166     //    (i.e. outputAttenuation = 0)
167     //
168     // 2. 180-degree corners always have zero attenuation.
169     //    (i.e. coverage = 1 - distance_to_corner)
170     //    (i.e. outputAttenuation = 1)
171     //
172     // 3. 90-degree corners whose bisector falls on a 45 degree angle also do not attenuate.
173     //    (i.e. outputAttenuation = 1)
174     s->codeAppendf("%s = max(obtuseness, axis_alignedness * ninety_degreesness);",
175                    outputAttenuation);
176 }
177 
createGLSLInstance(const GrShaderCaps &) const178 GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
179     std::unique_ptr<Shader> shader;
180     switch (fPrimitiveType) {
181         case PrimitiveType::kTriangles:
182         case PrimitiveType::kWeightedTriangles:
183             shader = skstd::make_unique<TriangleShader>();
184             break;
185         case PrimitiveType::kQuadratics:
186             shader = skstd::make_unique<GrCCQuadraticShader>();
187             break;
188         case PrimitiveType::kCubics:
189             shader = skstd::make_unique<GrCCCubicShader>();
190             break;
191         case PrimitiveType::kConics:
192             shader = skstd::make_unique<GrCCConicShader>();
193             break;
194     }
195     return this->onCreateGLSLInstance(std::move(shader));
196 }
197 
draw(GrOpFlushState * flushState,const GrPipeline & pipeline,const SkIRect scissorRects[],const GrMesh meshes[],int meshCount,const SkRect & drawBounds) const198 void GrCCCoverageProcessor::draw(
199         GrOpFlushState* flushState, const GrPipeline& pipeline, const SkIRect scissorRects[],
200         const GrMesh meshes[], int meshCount, const SkRect& drawBounds) const {
201     GrPipeline::DynamicStateArrays dynamicStateArrays;
202     dynamicStateArrays.fScissorRects = scissorRects;
203     GrGpuRTCommandBuffer* cmdBuff = flushState->rtCommandBuffer();
204     cmdBuff->draw(*this, pipeline, nullptr, &dynamicStateArrays, meshes, meshCount, drawBounds);
205 }
206