1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18
19
20 /* Quick Fair Queueing Plus
21 ========================
22
23 Sources:
24
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29 Sources for QFQ:
30
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38 /*
39
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
46
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
53
54 Virtual time computations.
55
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
58
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63 The layout of the bits is as below:
64
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
69
70 where MIN_SLOT_SHIFT is derived by difference from the others.
71
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
76
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
84
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
87
88 */
89
90 /*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94 #define QFQ_MAX_SLOTS 32
95
96 /*
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
107
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
110
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
113
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116
117 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
118
119 /*
120 * Possible group states. These values are used as indexes for the bitmaps
121 * array of struct qfq_queue.
122 */
123 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
124
125 struct qfq_group;
126
127 struct qfq_aggregate;
128
129 struct qfq_class {
130 struct Qdisc_class_common common;
131
132 unsigned int filter_cnt;
133
134 struct gnet_stats_basic_packed bstats;
135 struct gnet_stats_queue qstats;
136 struct net_rate_estimator __rcu *rate_est;
137 struct Qdisc *qdisc;
138 struct list_head alist; /* Link for active-classes list. */
139 struct qfq_aggregate *agg; /* Parent aggregate. */
140 int deficit; /* DRR deficit counter. */
141 };
142
143 struct qfq_aggregate {
144 struct hlist_node next; /* Link for the slot list. */
145 u64 S, F; /* flow timestamps (exact) */
146
147 /* group we belong to. In principle we would need the index,
148 * which is log_2(lmax/weight), but we never reference it
149 * directly, only the group.
150 */
151 struct qfq_group *grp;
152
153 /* these are copied from the flowset. */
154 u32 class_weight; /* Weight of each class in this aggregate. */
155 /* Max pkt size for the classes in this aggregate, DRR quantum. */
156 int lmax;
157
158 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
159 u32 budgetmax; /* Max budget for this aggregate. */
160 u32 initial_budget, budget; /* Initial and current budget. */
161
162 int num_classes; /* Number of classes in this aggr. */
163 struct list_head active; /* DRR queue of active classes. */
164
165 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
166 };
167
168 struct qfq_group {
169 u64 S, F; /* group timestamps (approx). */
170 unsigned int slot_shift; /* Slot shift. */
171 unsigned int index; /* Group index. */
172 unsigned int front; /* Index of the front slot. */
173 unsigned long full_slots; /* non-empty slots */
174
175 /* Array of RR lists of active aggregates. */
176 struct hlist_head slots[QFQ_MAX_SLOTS];
177 };
178
179 struct qfq_sched {
180 struct tcf_proto __rcu *filter_list;
181 struct tcf_block *block;
182 struct Qdisc_class_hash clhash;
183
184 u64 oldV, V; /* Precise virtual times. */
185 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
186 u32 wsum; /* weight sum */
187 u32 iwsum; /* inverse weight sum */
188
189 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
190 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
191 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
192
193 u32 max_agg_classes; /* Max number of classes per aggr. */
194 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
195 };
196
197 /*
198 * Possible reasons why the timestamps of an aggregate are updated
199 * enqueue: the aggregate switches from idle to active and must scheduled
200 * for service
201 * requeue: the aggregate finishes its budget, so it stops being served and
202 * must be rescheduled for service
203 */
204 enum update_reason {enqueue, requeue};
205
qfq_find_class(struct Qdisc * sch,u32 classid)206 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
207 {
208 struct qfq_sched *q = qdisc_priv(sch);
209 struct Qdisc_class_common *clc;
210
211 clc = qdisc_class_find(&q->clhash, classid);
212 if (clc == NULL)
213 return NULL;
214 return container_of(clc, struct qfq_class, common);
215 }
216
217 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
218 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
219 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
220 };
221
222 /*
223 * Calculate a flow index, given its weight and maximum packet length.
224 * index = log_2(maxlen/weight) but we need to apply the scaling.
225 * This is used only once at flow creation.
226 */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)227 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
228 {
229 u64 slot_size = (u64)maxlen * inv_w;
230 unsigned long size_map;
231 int index = 0;
232
233 size_map = slot_size >> min_slot_shift;
234 if (!size_map)
235 goto out;
236
237 index = __fls(size_map) + 1; /* basically a log_2 */
238 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
239
240 if (index < 0)
241 index = 0;
242 out:
243 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
244 (unsigned long) ONE_FP/inv_w, maxlen, index);
245
246 return index;
247 }
248
249 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
250 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
251 enum update_reason);
252
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)253 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
254 u32 lmax, u32 weight)
255 {
256 INIT_LIST_HEAD(&agg->active);
257 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
258
259 agg->lmax = lmax;
260 agg->class_weight = weight;
261 }
262
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)263 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
264 u32 lmax, u32 weight)
265 {
266 struct qfq_aggregate *agg;
267
268 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
269 if (agg->lmax == lmax && agg->class_weight == weight)
270 return agg;
271
272 return NULL;
273 }
274
275
276 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)277 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
278 int new_num_classes)
279 {
280 u32 new_agg_weight;
281
282 if (new_num_classes == q->max_agg_classes)
283 hlist_del_init(&agg->nonfull_next);
284
285 if (agg->num_classes > new_num_classes &&
286 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
287 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
288
289 /* The next assignment may let
290 * agg->initial_budget > agg->budgetmax
291 * hold, we will take it into account in charge_actual_service().
292 */
293 agg->budgetmax = new_num_classes * agg->lmax;
294 new_agg_weight = agg->class_weight * new_num_classes;
295 agg->inv_w = ONE_FP/new_agg_weight;
296
297 if (agg->grp == NULL) {
298 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
299 q->min_slot_shift);
300 agg->grp = &q->groups[i];
301 }
302
303 q->wsum +=
304 (int) agg->class_weight * (new_num_classes - agg->num_classes);
305 q->iwsum = ONE_FP / q->wsum;
306
307 agg->num_classes = new_num_classes;
308 }
309
310 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)311 static void qfq_add_to_agg(struct qfq_sched *q,
312 struct qfq_aggregate *agg,
313 struct qfq_class *cl)
314 {
315 cl->agg = agg;
316
317 qfq_update_agg(q, agg, agg->num_classes+1);
318 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
319 list_add_tail(&cl->alist, &agg->active);
320 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
321 cl && q->in_serv_agg != agg) /* agg was inactive */
322 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
323 }
324 }
325
326 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
327
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)328 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
329 {
330 hlist_del_init(&agg->nonfull_next);
331 q->wsum -= agg->class_weight;
332 if (q->wsum != 0)
333 q->iwsum = ONE_FP / q->wsum;
334
335 if (q->in_serv_agg == agg)
336 q->in_serv_agg = qfq_choose_next_agg(q);
337 kfree(agg);
338 }
339
340 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)341 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
342 {
343 struct qfq_aggregate *agg = cl->agg;
344
345
346 list_del(&cl->alist); /* remove from RR queue of the aggregate */
347 if (list_empty(&agg->active)) /* agg is now inactive */
348 qfq_deactivate_agg(q, agg);
349 }
350
351 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)352 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
353 {
354 struct qfq_aggregate *agg = cl->agg;
355
356 cl->agg = NULL;
357 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
358 qfq_destroy_agg(q, agg);
359 return;
360 }
361 qfq_update_agg(q, agg, agg->num_classes-1);
362 }
363
364 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)365 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 {
367 if (cl->qdisc->q.qlen > 0) /* class is active */
368 qfq_deactivate_class(q, cl);
369
370 qfq_rm_from_agg(q, cl);
371 }
372
373 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)374 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
375 u32 lmax)
376 {
377 struct qfq_sched *q = qdisc_priv(sch);
378 struct qfq_aggregate *new_agg;
379
380 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
381 if (lmax > QFQ_MAX_LMAX)
382 return -EINVAL;
383
384 new_agg = qfq_find_agg(q, lmax, weight);
385 if (new_agg == NULL) { /* create new aggregate */
386 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
387 if (new_agg == NULL)
388 return -ENOBUFS;
389 qfq_init_agg(q, new_agg, lmax, weight);
390 }
391 qfq_deact_rm_from_agg(q, cl);
392 qfq_add_to_agg(q, new_agg, cl);
393
394 return 0;
395 }
396
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)397 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
398 struct nlattr **tca, unsigned long *arg,
399 struct netlink_ext_ack *extack)
400 {
401 struct qfq_sched *q = qdisc_priv(sch);
402 struct qfq_class *cl = (struct qfq_class *)*arg;
403 bool existing = false;
404 struct nlattr *tb[TCA_QFQ_MAX + 1];
405 struct qfq_aggregate *new_agg = NULL;
406 u32 weight, lmax, inv_w;
407 int err;
408 int delta_w;
409
410 if (tca[TCA_OPTIONS] == NULL) {
411 pr_notice("qfq: no options\n");
412 return -EINVAL;
413 }
414
415 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
416 qfq_policy, NULL);
417 if (err < 0)
418 return err;
419
420 if (tb[TCA_QFQ_WEIGHT]) {
421 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
422 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
423 pr_notice("qfq: invalid weight %u\n", weight);
424 return -EINVAL;
425 }
426 } else
427 weight = 1;
428
429 if (tb[TCA_QFQ_LMAX])
430 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
431 else
432 lmax = psched_mtu(qdisc_dev(sch));
433
434 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
435 pr_notice("qfq: invalid max length %u\n", lmax);
436 return -EINVAL;
437 }
438
439 inv_w = ONE_FP / weight;
440 weight = ONE_FP / inv_w;
441
442 if (cl != NULL &&
443 lmax == cl->agg->lmax &&
444 weight == cl->agg->class_weight)
445 return 0; /* nothing to change */
446
447 delta_w = weight - (cl ? cl->agg->class_weight : 0);
448
449 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
450 pr_notice("qfq: total weight out of range (%d + %u)\n",
451 delta_w, q->wsum);
452 return -EINVAL;
453 }
454
455 if (cl != NULL) { /* modify existing class */
456 if (tca[TCA_RATE]) {
457 err = gen_replace_estimator(&cl->bstats, NULL,
458 &cl->rate_est,
459 NULL,
460 qdisc_root_sleeping_running(sch),
461 tca[TCA_RATE]);
462 if (err)
463 return err;
464 }
465 existing = true;
466 goto set_change_agg;
467 }
468
469 /* create and init new class */
470 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
471 if (cl == NULL)
472 return -ENOBUFS;
473
474 cl->common.classid = classid;
475 cl->deficit = lmax;
476
477 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
478 classid, NULL);
479 if (cl->qdisc == NULL)
480 cl->qdisc = &noop_qdisc;
481
482 if (tca[TCA_RATE]) {
483 err = gen_new_estimator(&cl->bstats, NULL,
484 &cl->rate_est,
485 NULL,
486 qdisc_root_sleeping_running(sch),
487 tca[TCA_RATE]);
488 if (err)
489 goto destroy_class;
490 }
491
492 if (cl->qdisc != &noop_qdisc)
493 qdisc_hash_add(cl->qdisc, true);
494
495 set_change_agg:
496 sch_tree_lock(sch);
497 new_agg = qfq_find_agg(q, lmax, weight);
498 if (new_agg == NULL) { /* create new aggregate */
499 sch_tree_unlock(sch);
500 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
501 if (new_agg == NULL) {
502 err = -ENOBUFS;
503 gen_kill_estimator(&cl->rate_est);
504 goto destroy_class;
505 }
506 sch_tree_lock(sch);
507 qfq_init_agg(q, new_agg, lmax, weight);
508 }
509 if (existing)
510 qfq_deact_rm_from_agg(q, cl);
511 else
512 qdisc_class_hash_insert(&q->clhash, &cl->common);
513 qfq_add_to_agg(q, new_agg, cl);
514 sch_tree_unlock(sch);
515 qdisc_class_hash_grow(sch, &q->clhash);
516
517 *arg = (unsigned long)cl;
518 return 0;
519
520 destroy_class:
521 qdisc_put(cl->qdisc);
522 kfree(cl);
523 return err;
524 }
525
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)526 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
527 {
528 struct qfq_sched *q = qdisc_priv(sch);
529
530 qfq_rm_from_agg(q, cl);
531 gen_kill_estimator(&cl->rate_est);
532 qdisc_put(cl->qdisc);
533 kfree(cl);
534 }
535
qfq_delete_class(struct Qdisc * sch,unsigned long arg)536 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
537 {
538 struct qfq_sched *q = qdisc_priv(sch);
539 struct qfq_class *cl = (struct qfq_class *)arg;
540
541 if (cl->filter_cnt > 0)
542 return -EBUSY;
543
544 sch_tree_lock(sch);
545
546 qdisc_purge_queue(cl->qdisc);
547 qdisc_class_hash_remove(&q->clhash, &cl->common);
548
549 sch_tree_unlock(sch);
550
551 qfq_destroy_class(sch, cl);
552 return 0;
553 }
554
qfq_search_class(struct Qdisc * sch,u32 classid)555 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
556 {
557 return (unsigned long)qfq_find_class(sch, classid);
558 }
559
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)560 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
561 struct netlink_ext_ack *extack)
562 {
563 struct qfq_sched *q = qdisc_priv(sch);
564
565 if (cl)
566 return NULL;
567
568 return q->block;
569 }
570
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)571 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
572 u32 classid)
573 {
574 struct qfq_class *cl = qfq_find_class(sch, classid);
575
576 if (cl != NULL)
577 cl->filter_cnt++;
578
579 return (unsigned long)cl;
580 }
581
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)582 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
583 {
584 struct qfq_class *cl = (struct qfq_class *)arg;
585
586 cl->filter_cnt--;
587 }
588
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)589 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
590 struct Qdisc *new, struct Qdisc **old,
591 struct netlink_ext_ack *extack)
592 {
593 struct qfq_class *cl = (struct qfq_class *)arg;
594
595 if (new == NULL) {
596 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
597 cl->common.classid, NULL);
598 if (new == NULL)
599 new = &noop_qdisc;
600 }
601
602 *old = qdisc_replace(sch, new, &cl->qdisc);
603 return 0;
604 }
605
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)606 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
607 {
608 struct qfq_class *cl = (struct qfq_class *)arg;
609
610 return cl->qdisc;
611 }
612
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)613 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
614 struct sk_buff *skb, struct tcmsg *tcm)
615 {
616 struct qfq_class *cl = (struct qfq_class *)arg;
617 struct nlattr *nest;
618
619 tcm->tcm_parent = TC_H_ROOT;
620 tcm->tcm_handle = cl->common.classid;
621 tcm->tcm_info = cl->qdisc->handle;
622
623 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
624 if (nest == NULL)
625 goto nla_put_failure;
626 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
627 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
628 goto nla_put_failure;
629 return nla_nest_end(skb, nest);
630
631 nla_put_failure:
632 nla_nest_cancel(skb, nest);
633 return -EMSGSIZE;
634 }
635
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)636 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
637 struct gnet_dump *d)
638 {
639 struct qfq_class *cl = (struct qfq_class *)arg;
640 struct tc_qfq_stats xstats;
641
642 memset(&xstats, 0, sizeof(xstats));
643
644 xstats.weight = cl->agg->class_weight;
645 xstats.lmax = cl->agg->lmax;
646
647 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
648 d, NULL, &cl->bstats) < 0 ||
649 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
650 qdisc_qstats_copy(d, cl->qdisc) < 0)
651 return -1;
652
653 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
654 }
655
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)656 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
657 {
658 struct qfq_sched *q = qdisc_priv(sch);
659 struct qfq_class *cl;
660 unsigned int i;
661
662 if (arg->stop)
663 return;
664
665 for (i = 0; i < q->clhash.hashsize; i++) {
666 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
667 if (arg->count < arg->skip) {
668 arg->count++;
669 continue;
670 }
671 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
672 arg->stop = 1;
673 return;
674 }
675 arg->count++;
676 }
677 }
678 }
679
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)680 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
681 int *qerr)
682 {
683 struct qfq_sched *q = qdisc_priv(sch);
684 struct qfq_class *cl;
685 struct tcf_result res;
686 struct tcf_proto *fl;
687 int result;
688
689 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
690 pr_debug("qfq_classify: found %d\n", skb->priority);
691 cl = qfq_find_class(sch, skb->priority);
692 if (cl != NULL)
693 return cl;
694 }
695
696 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
697 fl = rcu_dereference_bh(q->filter_list);
698 result = tcf_classify(skb, fl, &res, false);
699 if (result >= 0) {
700 #ifdef CONFIG_NET_CLS_ACT
701 switch (result) {
702 case TC_ACT_QUEUED:
703 case TC_ACT_STOLEN:
704 case TC_ACT_TRAP:
705 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
706 fallthrough;
707 case TC_ACT_SHOT:
708 return NULL;
709 }
710 #endif
711 cl = (struct qfq_class *)res.class;
712 if (cl == NULL)
713 cl = qfq_find_class(sch, res.classid);
714 return cl;
715 }
716
717 return NULL;
718 }
719
720 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)721 static inline int qfq_gt(u64 a, u64 b)
722 {
723 return (s64)(a - b) > 0;
724 }
725
726 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)727 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
728 {
729 return ts & ~((1ULL << shift) - 1);
730 }
731
732 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)733 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
734 unsigned long bitmap)
735 {
736 int index = __ffs(bitmap);
737 return &q->groups[index];
738 }
739 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)740 static inline unsigned long mask_from(unsigned long bitmap, int from)
741 {
742 return bitmap & ~((1UL << from) - 1);
743 }
744
745 /*
746 * The state computation relies on ER=0, IR=1, EB=2, IB=3
747 * First compute eligibility comparing grp->S, q->V,
748 * then check if someone is blocking us and possibly add EB
749 */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)750 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
751 {
752 /* if S > V we are not eligible */
753 unsigned int state = qfq_gt(grp->S, q->V);
754 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
755 struct qfq_group *next;
756
757 if (mask) {
758 next = qfq_ffs(q, mask);
759 if (qfq_gt(grp->F, next->F))
760 state |= EB;
761 }
762
763 return state;
764 }
765
766
767 /*
768 * In principle
769 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
770 * q->bitmaps[src] &= ~mask;
771 * but we should make sure that src != dst
772 */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)773 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
774 int src, int dst)
775 {
776 q->bitmaps[dst] |= q->bitmaps[src] & mask;
777 q->bitmaps[src] &= ~mask;
778 }
779
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)780 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
781 {
782 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
783 struct qfq_group *next;
784
785 if (mask) {
786 next = qfq_ffs(q, mask);
787 if (!qfq_gt(next->F, old_F))
788 return;
789 }
790
791 mask = (1UL << index) - 1;
792 qfq_move_groups(q, mask, EB, ER);
793 qfq_move_groups(q, mask, IB, IR);
794 }
795
796 /*
797 * perhaps
798 *
799 old_V ^= q->V;
800 old_V >>= q->min_slot_shift;
801 if (old_V) {
802 ...
803 }
804 *
805 */
qfq_make_eligible(struct qfq_sched * q)806 static void qfq_make_eligible(struct qfq_sched *q)
807 {
808 unsigned long vslot = q->V >> q->min_slot_shift;
809 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
810
811 if (vslot != old_vslot) {
812 unsigned long mask;
813 int last_flip_pos = fls(vslot ^ old_vslot);
814
815 if (last_flip_pos > 31) /* higher than the number of groups */
816 mask = ~0UL; /* make all groups eligible */
817 else
818 mask = (1UL << last_flip_pos) - 1;
819
820 qfq_move_groups(q, mask, IR, ER);
821 qfq_move_groups(q, mask, IB, EB);
822 }
823 }
824
825 /*
826 * The index of the slot in which the input aggregate agg is to be
827 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
828 * and not a '-1' because the start time of the group may be moved
829 * backward by one slot after the aggregate has been inserted, and
830 * this would cause non-empty slots to be right-shifted by one
831 * position.
832 *
833 * QFQ+ fully satisfies this bound to the slot index if the parameters
834 * of the classes are not changed dynamically, and if QFQ+ never
835 * happens to postpone the service of agg unjustly, i.e., it never
836 * happens that the aggregate becomes backlogged and eligible, or just
837 * eligible, while an aggregate with a higher approximated finish time
838 * is being served. In particular, in this case QFQ+ guarantees that
839 * the timestamps of agg are low enough that the slot index is never
840 * higher than 2. Unfortunately, QFQ+ cannot provide the same
841 * guarantee if it happens to unjustly postpone the service of agg, or
842 * if the parameters of some class are changed.
843 *
844 * As for the first event, i.e., an out-of-order service, the
845 * upper bound to the slot index guaranteed by QFQ+ grows to
846 * 2 +
847 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
848 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
849 *
850 * The following function deals with this problem by backward-shifting
851 * the timestamps of agg, if needed, so as to guarantee that the slot
852 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
853 * cause the service of other aggregates to be postponed, yet the
854 * worst-case guarantees of these aggregates are not violated. In
855 * fact, in case of no out-of-order service, the timestamps of agg
856 * would have been even lower than they are after the backward shift,
857 * because QFQ+ would have guaranteed a maximum value equal to 2 for
858 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
859 * service is postponed because of the backward-shift would have
860 * however waited for the service of agg before being served.
861 *
862 * The other event that may cause the slot index to be higher than 2
863 * for agg is a recent change of the parameters of some class. If the
864 * weight of a class is increased or the lmax (max_pkt_size) of the
865 * class is decreased, then a new aggregate with smaller slot size
866 * than the original parent aggregate of the class may happen to be
867 * activated. The activation of this aggregate should be properly
868 * delayed to when the service of the class has finished in the ideal
869 * system tracked by QFQ+. If the activation of the aggregate is not
870 * delayed to this reference time instant, then this aggregate may be
871 * unjustly served before other aggregates waiting for service. This
872 * may cause the above bound to the slot index to be violated for some
873 * of these unlucky aggregates.
874 *
875 * Instead of delaying the activation of the new aggregate, which is
876 * quite complex, the above-discussed capping of the slot index is
877 * used to handle also the consequences of a change of the parameters
878 * of a class.
879 */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)880 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
881 u64 roundedS)
882 {
883 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
884 unsigned int i; /* slot index in the bucket list */
885
886 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
887 u64 deltaS = roundedS - grp->S -
888 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
889 agg->S -= deltaS;
890 agg->F -= deltaS;
891 slot = QFQ_MAX_SLOTS - 2;
892 }
893
894 i = (grp->front + slot) % QFQ_MAX_SLOTS;
895
896 hlist_add_head(&agg->next, &grp->slots[i]);
897 __set_bit(slot, &grp->full_slots);
898 }
899
900 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)901 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
902 {
903 return hlist_entry(grp->slots[grp->front].first,
904 struct qfq_aggregate, next);
905 }
906
907 /*
908 * remove the entry from the slot
909 */
qfq_front_slot_remove(struct qfq_group * grp)910 static void qfq_front_slot_remove(struct qfq_group *grp)
911 {
912 struct qfq_aggregate *agg = qfq_slot_head(grp);
913
914 BUG_ON(!agg);
915 hlist_del(&agg->next);
916 if (hlist_empty(&grp->slots[grp->front]))
917 __clear_bit(0, &grp->full_slots);
918 }
919
920 /*
921 * Returns the first aggregate in the first non-empty bucket of the
922 * group. As a side effect, adjusts the bucket list so the first
923 * non-empty bucket is at position 0 in full_slots.
924 */
qfq_slot_scan(struct qfq_group * grp)925 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
926 {
927 unsigned int i;
928
929 pr_debug("qfq slot_scan: grp %u full %#lx\n",
930 grp->index, grp->full_slots);
931
932 if (grp->full_slots == 0)
933 return NULL;
934
935 i = __ffs(grp->full_slots); /* zero based */
936 if (i > 0) {
937 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
938 grp->full_slots >>= i;
939 }
940
941 return qfq_slot_head(grp);
942 }
943
944 /*
945 * adjust the bucket list. When the start time of a group decreases,
946 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
947 * move the objects. The mask of occupied slots must be shifted
948 * because we use ffs() to find the first non-empty slot.
949 * This covers decreases in the group's start time, but what about
950 * increases of the start time ?
951 * Here too we should make sure that i is less than 32
952 */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)953 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
954 {
955 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
956
957 grp->full_slots <<= i;
958 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
959 }
960
qfq_update_eligible(struct qfq_sched * q)961 static void qfq_update_eligible(struct qfq_sched *q)
962 {
963 struct qfq_group *grp;
964 unsigned long ineligible;
965
966 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
967 if (ineligible) {
968 if (!q->bitmaps[ER]) {
969 grp = qfq_ffs(q, ineligible);
970 if (qfq_gt(grp->S, q->V))
971 q->V = grp->S;
972 }
973 qfq_make_eligible(q);
974 }
975 }
976
977 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)978 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
979 struct qfq_class *cl, unsigned int len)
980 {
981 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
982
983 if (!skb)
984 return NULL;
985
986 cl->deficit -= (int) len;
987
988 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
989 list_del(&cl->alist);
990 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
991 cl->deficit += agg->lmax;
992 list_move_tail(&cl->alist, &agg->active);
993 }
994
995 return skb;
996 }
997
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)998 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
999 struct qfq_class **cl,
1000 unsigned int *len)
1001 {
1002 struct sk_buff *skb;
1003
1004 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1005 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1006 if (skb == NULL)
1007 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1008 else
1009 *len = qdisc_pkt_len(skb);
1010
1011 return skb;
1012 }
1013
1014 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1015 static inline void charge_actual_service(struct qfq_aggregate *agg)
1016 {
1017 /* Compute the service received by the aggregate, taking into
1018 * account that, after decreasing the number of classes in
1019 * agg, it may happen that
1020 * agg->initial_budget - agg->budget > agg->bugdetmax
1021 */
1022 u32 service_received = min(agg->budgetmax,
1023 agg->initial_budget - agg->budget);
1024
1025 agg->F = agg->S + (u64)service_received * agg->inv_w;
1026 }
1027
1028 /* Assign a reasonable start time for a new aggregate in group i.
1029 * Admissible values for \hat(F) are multiples of \sigma_i
1030 * no greater than V+\sigma_i . Larger values mean that
1031 * we had a wraparound so we consider the timestamp to be stale.
1032 *
1033 * If F is not stale and F >= V then we set S = F.
1034 * Otherwise we should assign S = V, but this may violate
1035 * the ordering in EB (see [2]). So, if we have groups in ER,
1036 * set S to the F_j of the first group j which would be blocking us.
1037 * We are guaranteed not to move S backward because
1038 * otherwise our group i would still be blocked.
1039 */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1040 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1041 {
1042 unsigned long mask;
1043 u64 limit, roundedF;
1044 int slot_shift = agg->grp->slot_shift;
1045
1046 roundedF = qfq_round_down(agg->F, slot_shift);
1047 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1048
1049 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1050 /* timestamp was stale */
1051 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1052 if (mask) {
1053 struct qfq_group *next = qfq_ffs(q, mask);
1054 if (qfq_gt(roundedF, next->F)) {
1055 if (qfq_gt(limit, next->F))
1056 agg->S = next->F;
1057 else /* preserve timestamp correctness */
1058 agg->S = limit;
1059 return;
1060 }
1061 }
1062 agg->S = q->V;
1063 } else /* timestamp is not stale */
1064 agg->S = agg->F;
1065 }
1066
1067 /* Update the timestamps of agg before scheduling/rescheduling it for
1068 * service. In particular, assign to agg->F its maximum possible
1069 * value, i.e., the virtual finish time with which the aggregate
1070 * should be labeled if it used all its budget once in service.
1071 */
1072 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1073 qfq_update_agg_ts(struct qfq_sched *q,
1074 struct qfq_aggregate *agg, enum update_reason reason)
1075 {
1076 if (reason != requeue)
1077 qfq_update_start(q, agg);
1078 else /* just charge agg for the service received */
1079 agg->S = agg->F;
1080
1081 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1082 }
1083
1084 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1085
qfq_dequeue(struct Qdisc * sch)1086 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1087 {
1088 struct qfq_sched *q = qdisc_priv(sch);
1089 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1090 struct qfq_class *cl;
1091 struct sk_buff *skb = NULL;
1092 /* next-packet len, 0 means no more active classes in in-service agg */
1093 unsigned int len = 0;
1094
1095 if (in_serv_agg == NULL)
1096 return NULL;
1097
1098 if (!list_empty(&in_serv_agg->active))
1099 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1100
1101 /*
1102 * If there are no active classes in the in-service aggregate,
1103 * or if the aggregate has not enough budget to serve its next
1104 * class, then choose the next aggregate to serve.
1105 */
1106 if (len == 0 || in_serv_agg->budget < len) {
1107 charge_actual_service(in_serv_agg);
1108
1109 /* recharge the budget of the aggregate */
1110 in_serv_agg->initial_budget = in_serv_agg->budget =
1111 in_serv_agg->budgetmax;
1112
1113 if (!list_empty(&in_serv_agg->active)) {
1114 /*
1115 * Still active: reschedule for
1116 * service. Possible optimization: if no other
1117 * aggregate is active, then there is no point
1118 * in rescheduling this aggregate, and we can
1119 * just keep it as the in-service one. This
1120 * should be however a corner case, and to
1121 * handle it, we would need to maintain an
1122 * extra num_active_aggs field.
1123 */
1124 qfq_update_agg_ts(q, in_serv_agg, requeue);
1125 qfq_schedule_agg(q, in_serv_agg);
1126 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1127 q->in_serv_agg = NULL;
1128 return NULL;
1129 }
1130
1131 /*
1132 * If we get here, there are other aggregates queued:
1133 * choose the new aggregate to serve.
1134 */
1135 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1136 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1137 }
1138 if (!skb)
1139 return NULL;
1140
1141 sch->q.qlen--;
1142
1143 skb = agg_dequeue(in_serv_agg, cl, len);
1144
1145 if (!skb) {
1146 sch->q.qlen++;
1147 return NULL;
1148 }
1149
1150 qdisc_qstats_backlog_dec(sch, skb);
1151 qdisc_bstats_update(sch, skb);
1152
1153 /* If lmax is lowered, through qfq_change_class, for a class
1154 * owning pending packets with larger size than the new value
1155 * of lmax, then the following condition may hold.
1156 */
1157 if (unlikely(in_serv_agg->budget < len))
1158 in_serv_agg->budget = 0;
1159 else
1160 in_serv_agg->budget -= len;
1161
1162 q->V += (u64)len * q->iwsum;
1163 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1164 len, (unsigned long long) in_serv_agg->F,
1165 (unsigned long long) q->V);
1166
1167 return skb;
1168 }
1169
qfq_choose_next_agg(struct qfq_sched * q)1170 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1171 {
1172 struct qfq_group *grp;
1173 struct qfq_aggregate *agg, *new_front_agg;
1174 u64 old_F;
1175
1176 qfq_update_eligible(q);
1177 q->oldV = q->V;
1178
1179 if (!q->bitmaps[ER])
1180 return NULL;
1181
1182 grp = qfq_ffs(q, q->bitmaps[ER]);
1183 old_F = grp->F;
1184
1185 agg = qfq_slot_head(grp);
1186
1187 /* agg starts to be served, remove it from schedule */
1188 qfq_front_slot_remove(grp);
1189
1190 new_front_agg = qfq_slot_scan(grp);
1191
1192 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1193 __clear_bit(grp->index, &q->bitmaps[ER]);
1194 else {
1195 u64 roundedS = qfq_round_down(new_front_agg->S,
1196 grp->slot_shift);
1197 unsigned int s;
1198
1199 if (grp->S == roundedS)
1200 return agg;
1201 grp->S = roundedS;
1202 grp->F = roundedS + (2ULL << grp->slot_shift);
1203 __clear_bit(grp->index, &q->bitmaps[ER]);
1204 s = qfq_calc_state(q, grp);
1205 __set_bit(grp->index, &q->bitmaps[s]);
1206 }
1207
1208 qfq_unblock_groups(q, grp->index, old_F);
1209
1210 return agg;
1211 }
1212
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1213 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1214 struct sk_buff **to_free)
1215 {
1216 unsigned int len = qdisc_pkt_len(skb), gso_segs;
1217 struct qfq_sched *q = qdisc_priv(sch);
1218 struct qfq_class *cl;
1219 struct qfq_aggregate *agg;
1220 int err = 0;
1221 bool first;
1222
1223 cl = qfq_classify(skb, sch, &err);
1224 if (cl == NULL) {
1225 if (err & __NET_XMIT_BYPASS)
1226 qdisc_qstats_drop(sch);
1227 __qdisc_drop(skb, to_free);
1228 return err;
1229 }
1230 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1231
1232 if (unlikely(cl->agg->lmax < len)) {
1233 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1234 cl->agg->lmax, len, cl->common.classid);
1235 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1236 if (err) {
1237 cl->qstats.drops++;
1238 return qdisc_drop(skb, sch, to_free);
1239 }
1240 }
1241
1242 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1243 first = !cl->qdisc->q.qlen;
1244 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1245 if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 if (net_xmit_drop_count(err)) {
1248 cl->qstats.drops++;
1249 qdisc_qstats_drop(sch);
1250 }
1251 return err;
1252 }
1253
1254 cl->bstats.bytes += len;
1255 cl->bstats.packets += gso_segs;
1256 sch->qstats.backlog += len;
1257 ++sch->q.qlen;
1258
1259 agg = cl->agg;
1260 /* if the queue was not empty, then done here */
1261 if (!first) {
1262 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1263 list_first_entry(&agg->active, struct qfq_class, alist)
1264 == cl && cl->deficit < len)
1265 list_move_tail(&cl->alist, &agg->active);
1266
1267 return err;
1268 }
1269
1270 /* schedule class for service within the aggregate */
1271 cl->deficit = agg->lmax;
1272 list_add_tail(&cl->alist, &agg->active);
1273
1274 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1275 q->in_serv_agg == agg)
1276 return err; /* non-empty or in service, nothing else to do */
1277
1278 qfq_activate_agg(q, agg, enqueue);
1279
1280 return err;
1281 }
1282
1283 /*
1284 * Schedule aggregate according to its timestamps.
1285 */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1286 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1287 {
1288 struct qfq_group *grp = agg->grp;
1289 u64 roundedS;
1290 int s;
1291
1292 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1293
1294 /*
1295 * Insert agg in the correct bucket.
1296 * If agg->S >= grp->S we don't need to adjust the
1297 * bucket list and simply go to the insertion phase.
1298 * Otherwise grp->S is decreasing, we must make room
1299 * in the bucket list, and also recompute the group state.
1300 * Finally, if there were no flows in this group and nobody
1301 * was in ER make sure to adjust V.
1302 */
1303 if (grp->full_slots) {
1304 if (!qfq_gt(grp->S, agg->S))
1305 goto skip_update;
1306
1307 /* create a slot for this agg->S */
1308 qfq_slot_rotate(grp, roundedS);
1309 /* group was surely ineligible, remove */
1310 __clear_bit(grp->index, &q->bitmaps[IR]);
1311 __clear_bit(grp->index, &q->bitmaps[IB]);
1312 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1313 q->in_serv_agg == NULL)
1314 q->V = roundedS;
1315
1316 grp->S = roundedS;
1317 grp->F = roundedS + (2ULL << grp->slot_shift);
1318 s = qfq_calc_state(q, grp);
1319 __set_bit(grp->index, &q->bitmaps[s]);
1320
1321 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1322 s, q->bitmaps[s],
1323 (unsigned long long) agg->S,
1324 (unsigned long long) agg->F,
1325 (unsigned long long) q->V);
1326
1327 skip_update:
1328 qfq_slot_insert(grp, agg, roundedS);
1329 }
1330
1331
1332 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1333 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1334 enum update_reason reason)
1335 {
1336 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1337
1338 qfq_update_agg_ts(q, agg, reason);
1339 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1340 q->in_serv_agg = agg; /* start serving this aggregate */
1341 /* update V: to be in service, agg must be eligible */
1342 q->oldV = q->V = agg->S;
1343 } else if (agg != q->in_serv_agg)
1344 qfq_schedule_agg(q, agg);
1345 }
1346
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1347 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1348 struct qfq_aggregate *agg)
1349 {
1350 unsigned int i, offset;
1351 u64 roundedS;
1352
1353 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1354 offset = (roundedS - grp->S) >> grp->slot_shift;
1355
1356 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1357
1358 hlist_del(&agg->next);
1359 if (hlist_empty(&grp->slots[i]))
1360 __clear_bit(offset, &grp->full_slots);
1361 }
1362
1363 /*
1364 * Called to forcibly deschedule an aggregate. If the aggregate is
1365 * not in the front bucket, or if the latter has other aggregates in
1366 * the front bucket, we can simply remove the aggregate with no other
1367 * side effects.
1368 * Otherwise we must propagate the event up.
1369 */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1370 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1371 {
1372 struct qfq_group *grp = agg->grp;
1373 unsigned long mask;
1374 u64 roundedS;
1375 int s;
1376
1377 if (agg == q->in_serv_agg) {
1378 charge_actual_service(agg);
1379 q->in_serv_agg = qfq_choose_next_agg(q);
1380 return;
1381 }
1382
1383 agg->F = agg->S;
1384 qfq_slot_remove(q, grp, agg);
1385
1386 if (!grp->full_slots) {
1387 __clear_bit(grp->index, &q->bitmaps[IR]);
1388 __clear_bit(grp->index, &q->bitmaps[EB]);
1389 __clear_bit(grp->index, &q->bitmaps[IB]);
1390
1391 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1392 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1393 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1394 if (mask)
1395 mask = ~((1UL << __fls(mask)) - 1);
1396 else
1397 mask = ~0UL;
1398 qfq_move_groups(q, mask, EB, ER);
1399 qfq_move_groups(q, mask, IB, IR);
1400 }
1401 __clear_bit(grp->index, &q->bitmaps[ER]);
1402 } else if (hlist_empty(&grp->slots[grp->front])) {
1403 agg = qfq_slot_scan(grp);
1404 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1405 if (grp->S != roundedS) {
1406 __clear_bit(grp->index, &q->bitmaps[ER]);
1407 __clear_bit(grp->index, &q->bitmaps[IR]);
1408 __clear_bit(grp->index, &q->bitmaps[EB]);
1409 __clear_bit(grp->index, &q->bitmaps[IB]);
1410 grp->S = roundedS;
1411 grp->F = roundedS + (2ULL << grp->slot_shift);
1412 s = qfq_calc_state(q, grp);
1413 __set_bit(grp->index, &q->bitmaps[s]);
1414 }
1415 }
1416 }
1417
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1418 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1419 {
1420 struct qfq_sched *q = qdisc_priv(sch);
1421 struct qfq_class *cl = (struct qfq_class *)arg;
1422
1423 qfq_deactivate_class(q, cl);
1424 }
1425
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1426 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1427 struct netlink_ext_ack *extack)
1428 {
1429 struct qfq_sched *q = qdisc_priv(sch);
1430 struct qfq_group *grp;
1431 int i, j, err;
1432 u32 max_cl_shift, maxbudg_shift, max_classes;
1433
1434 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1435 if (err)
1436 return err;
1437
1438 err = qdisc_class_hash_init(&q->clhash);
1439 if (err < 0)
1440 return err;
1441
1442 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1443 QFQ_MAX_AGG_CLASSES);
1444 /* max_cl_shift = floor(log_2(max_classes)) */
1445 max_cl_shift = __fls(max_classes);
1446 q->max_agg_classes = 1<<max_cl_shift;
1447
1448 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1449 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1450 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1451
1452 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1453 grp = &q->groups[i];
1454 grp->index = i;
1455 grp->slot_shift = q->min_slot_shift + i;
1456 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1457 INIT_HLIST_HEAD(&grp->slots[j]);
1458 }
1459
1460 INIT_HLIST_HEAD(&q->nonfull_aggs);
1461
1462 return 0;
1463 }
1464
qfq_reset_qdisc(struct Qdisc * sch)1465 static void qfq_reset_qdisc(struct Qdisc *sch)
1466 {
1467 struct qfq_sched *q = qdisc_priv(sch);
1468 struct qfq_class *cl;
1469 unsigned int i;
1470
1471 for (i = 0; i < q->clhash.hashsize; i++) {
1472 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1473 if (cl->qdisc->q.qlen > 0)
1474 qfq_deactivate_class(q, cl);
1475
1476 qdisc_reset(cl->qdisc);
1477 }
1478 }
1479 }
1480
qfq_destroy_qdisc(struct Qdisc * sch)1481 static void qfq_destroy_qdisc(struct Qdisc *sch)
1482 {
1483 struct qfq_sched *q = qdisc_priv(sch);
1484 struct qfq_class *cl;
1485 struct hlist_node *next;
1486 unsigned int i;
1487
1488 tcf_block_put(q->block);
1489
1490 for (i = 0; i < q->clhash.hashsize; i++) {
1491 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1492 common.hnode) {
1493 qfq_destroy_class(sch, cl);
1494 }
1495 }
1496 qdisc_class_hash_destroy(&q->clhash);
1497 }
1498
1499 static const struct Qdisc_class_ops qfq_class_ops = {
1500 .change = qfq_change_class,
1501 .delete = qfq_delete_class,
1502 .find = qfq_search_class,
1503 .tcf_block = qfq_tcf_block,
1504 .bind_tcf = qfq_bind_tcf,
1505 .unbind_tcf = qfq_unbind_tcf,
1506 .graft = qfq_graft_class,
1507 .leaf = qfq_class_leaf,
1508 .qlen_notify = qfq_qlen_notify,
1509 .dump = qfq_dump_class,
1510 .dump_stats = qfq_dump_class_stats,
1511 .walk = qfq_walk,
1512 };
1513
1514 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1515 .cl_ops = &qfq_class_ops,
1516 .id = "qfq",
1517 .priv_size = sizeof(struct qfq_sched),
1518 .enqueue = qfq_enqueue,
1519 .dequeue = qfq_dequeue,
1520 .peek = qdisc_peek_dequeued,
1521 .init = qfq_init_qdisc,
1522 .reset = qfq_reset_qdisc,
1523 .destroy = qfq_destroy_qdisc,
1524 .owner = THIS_MODULE,
1525 };
1526
qfq_init(void)1527 static int __init qfq_init(void)
1528 {
1529 return register_qdisc(&qfq_qdisc_ops);
1530 }
1531
qfq_exit(void)1532 static void __exit qfq_exit(void)
1533 {
1534 unregister_qdisc(&qfq_qdisc_ops);
1535 }
1536
1537 module_init(qfq_init);
1538 module_exit(qfq_exit);
1539 MODULE_LICENSE("GPL");
1540