• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
4  *
5  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6  * Copyright (c) 2012 Paolo Valente.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18 
19 
20 /*  Quick Fair Queueing Plus
21     ========================
22 
23     Sources:
24 
25     [1] Paolo Valente,
26     "Reducing the Execution Time of Fair-Queueing Schedulers."
27     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28 
29     Sources for QFQ:
30 
31     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33 
34     See also:
35     http://retis.sssup.it/~fabio/linux/qfq/
36  */
37 
38 /*
39 
40   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41   classes. Each aggregate is timestamped with a virtual start time S
42   and a virtual finish time F, and scheduled according to its
43   timestamps. S and F are computed as a function of a system virtual
44   time function V. The classes within each aggregate are instead
45   scheduled with DRR.
46 
47   To speed up operations, QFQ+ divides also aggregates into a limited
48   number of groups. Which group a class belongs to depends on the
49   ratio between the maximum packet length for the class and the weight
50   of the class. Groups have their own S and F. In the end, QFQ+
51   schedules groups, then aggregates within groups, then classes within
52   aggregates. See [1] and [2] for a full description.
53 
54   Virtual time computations.
55 
56   S, F and V are all computed in fixed point arithmetic with
57   FRAC_BITS decimal bits.
58 
59   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 	one bit per index.
61   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62 
63   The layout of the bits is as below:
64 
65                    [ MTU_SHIFT ][      FRAC_BITS    ]
66                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
67 				 ^.__grp->index = 0
68 				 *.__grp->slot_shift
69 
70   where MIN_SLOT_SHIFT is derived by difference from the others.
71 
72   The max group index corresponds to Lmax/w_min, where
73   Lmax=1<<MTU_SHIFT, w_min = 1 .
74   From this, and knowing how many groups (MAX_INDEX) we want,
75   we can derive the shift corresponding to each group.
76 
77   Because we often need to compute
78 	F = S + len/w_i  and V = V + len/wsum
79   instead of storing w_i store the value
80 	inv_w = (1<<FRAC_BITS)/w_i
81   so we can do F = S + len * inv_w * wsum.
82   We use W_TOT in the formulas so we can easily move between
83   static and adaptive weight sum.
84 
85   The per-scheduler-instance data contain all the data structures
86   for the scheduler: bitmaps and bucket lists.
87 
88  */
89 
90 /*
91  * Maximum number of consecutive slots occupied by backlogged classes
92  * inside a group.
93  */
94 #define QFQ_MAX_SLOTS	32
95 
96 /*
97  * Shifts used for aggregate<->group mapping.  We allow class weights that are
98  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99  * group with the smallest index that can support the L_i / r_i configured
100  * for the classes in the aggregate.
101  *
102  * grp->index is the index of the group; and grp->slot_shift
103  * is the shift for the corresponding (scaled) sigma_i.
104  */
105 #define QFQ_MAX_INDEX		24
106 #define QFQ_MAX_WSHIFT		10
107 
108 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
110 
111 #define FRAC_BITS		30	/* fixed point arithmetic */
112 #define ONE_FP			(1UL << FRAC_BITS)
113 
114 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
115 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
116 
117 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
118 
119 /*
120  * Possible group states.  These values are used as indexes for the bitmaps
121  * array of struct qfq_queue.
122  */
123 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
124 
125 struct qfq_group;
126 
127 struct qfq_aggregate;
128 
129 struct qfq_class {
130 	struct Qdisc_class_common common;
131 
132 	unsigned int filter_cnt;
133 
134 	struct gnet_stats_basic_packed bstats;
135 	struct gnet_stats_queue qstats;
136 	struct net_rate_estimator __rcu *rate_est;
137 	struct Qdisc *qdisc;
138 	struct list_head alist;		/* Link for active-classes list. */
139 	struct qfq_aggregate *agg;	/* Parent aggregate. */
140 	int deficit;			/* DRR deficit counter. */
141 };
142 
143 struct qfq_aggregate {
144 	struct hlist_node next;	/* Link for the slot list. */
145 	u64 S, F;		/* flow timestamps (exact) */
146 
147 	/* group we belong to. In principle we would need the index,
148 	 * which is log_2(lmax/weight), but we never reference it
149 	 * directly, only the group.
150 	 */
151 	struct qfq_group *grp;
152 
153 	/* these are copied from the flowset. */
154 	u32	class_weight; /* Weight of each class in this aggregate. */
155 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
156 	int	lmax;
157 
158 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
159 	u32	budgetmax;  /* Max budget for this aggregate. */
160 	u32	initial_budget, budget;     /* Initial and current budget. */
161 
162 	int		  num_classes;	/* Number of classes in this aggr. */
163 	struct list_head  active;	/* DRR queue of active classes. */
164 
165 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
166 };
167 
168 struct qfq_group {
169 	u64 S, F;			/* group timestamps (approx). */
170 	unsigned int slot_shift;	/* Slot shift. */
171 	unsigned int index;		/* Group index. */
172 	unsigned int front;		/* Index of the front slot. */
173 	unsigned long full_slots;	/* non-empty slots */
174 
175 	/* Array of RR lists of active aggregates. */
176 	struct hlist_head slots[QFQ_MAX_SLOTS];
177 };
178 
179 struct qfq_sched {
180 	struct tcf_proto __rcu *filter_list;
181 	struct tcf_block	*block;
182 	struct Qdisc_class_hash clhash;
183 
184 	u64			oldV, V;	/* Precise virtual times. */
185 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
186 	u32			wsum;		/* weight sum */
187 	u32			iwsum;		/* inverse weight sum */
188 
189 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
190 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
191 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
192 
193 	u32 max_agg_classes;		/* Max number of classes per aggr. */
194 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
195 };
196 
197 /*
198  * Possible reasons why the timestamps of an aggregate are updated
199  * enqueue: the aggregate switches from idle to active and must scheduled
200  *	    for service
201  * requeue: the aggregate finishes its budget, so it stops being served and
202  *	    must be rescheduled for service
203  */
204 enum update_reason {enqueue, requeue};
205 
qfq_find_class(struct Qdisc * sch,u32 classid)206 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
207 {
208 	struct qfq_sched *q = qdisc_priv(sch);
209 	struct Qdisc_class_common *clc;
210 
211 	clc = qdisc_class_find(&q->clhash, classid);
212 	if (clc == NULL)
213 		return NULL;
214 	return container_of(clc, struct qfq_class, common);
215 }
216 
217 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
218 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
219 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
220 };
221 
222 /*
223  * Calculate a flow index, given its weight and maximum packet length.
224  * index = log_2(maxlen/weight) but we need to apply the scaling.
225  * This is used only once at flow creation.
226  */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)227 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
228 {
229 	u64 slot_size = (u64)maxlen * inv_w;
230 	unsigned long size_map;
231 	int index = 0;
232 
233 	size_map = slot_size >> min_slot_shift;
234 	if (!size_map)
235 		goto out;
236 
237 	index = __fls(size_map) + 1;	/* basically a log_2 */
238 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
239 
240 	if (index < 0)
241 		index = 0;
242 out:
243 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
244 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
245 
246 	return index;
247 }
248 
249 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
250 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
251 			     enum update_reason);
252 
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)253 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
254 			 u32 lmax, u32 weight)
255 {
256 	INIT_LIST_HEAD(&agg->active);
257 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
258 
259 	agg->lmax = lmax;
260 	agg->class_weight = weight;
261 }
262 
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)263 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
264 					  u32 lmax, u32 weight)
265 {
266 	struct qfq_aggregate *agg;
267 
268 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
269 		if (agg->lmax == lmax && agg->class_weight == weight)
270 			return agg;
271 
272 	return NULL;
273 }
274 
275 
276 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)277 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
278 			   int new_num_classes)
279 {
280 	u32 new_agg_weight;
281 
282 	if (new_num_classes == q->max_agg_classes)
283 		hlist_del_init(&agg->nonfull_next);
284 
285 	if (agg->num_classes > new_num_classes &&
286 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
287 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
288 
289 	/* The next assignment may let
290 	 * agg->initial_budget > agg->budgetmax
291 	 * hold, we will take it into account in charge_actual_service().
292 	 */
293 	agg->budgetmax = new_num_classes * agg->lmax;
294 	new_agg_weight = agg->class_weight * new_num_classes;
295 	agg->inv_w = ONE_FP/new_agg_weight;
296 
297 	if (agg->grp == NULL) {
298 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
299 				       q->min_slot_shift);
300 		agg->grp = &q->groups[i];
301 	}
302 
303 	q->wsum +=
304 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
305 	q->iwsum = ONE_FP / q->wsum;
306 
307 	agg->num_classes = new_num_classes;
308 }
309 
310 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)311 static void qfq_add_to_agg(struct qfq_sched *q,
312 			   struct qfq_aggregate *agg,
313 			   struct qfq_class *cl)
314 {
315 	cl->agg = agg;
316 
317 	qfq_update_agg(q, agg, agg->num_classes+1);
318 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
319 		list_add_tail(&cl->alist, &agg->active);
320 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
321 		    cl && q->in_serv_agg != agg) /* agg was inactive */
322 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
323 	}
324 }
325 
326 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
327 
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)328 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
329 {
330 	hlist_del_init(&agg->nonfull_next);
331 	q->wsum -= agg->class_weight;
332 	if (q->wsum != 0)
333 		q->iwsum = ONE_FP / q->wsum;
334 
335 	if (q->in_serv_agg == agg)
336 		q->in_serv_agg = qfq_choose_next_agg(q);
337 	kfree(agg);
338 }
339 
340 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)341 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
342 {
343 	struct qfq_aggregate *agg = cl->agg;
344 
345 
346 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
347 	if (list_empty(&agg->active)) /* agg is now inactive */
348 		qfq_deactivate_agg(q, agg);
349 }
350 
351 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)352 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
353 {
354 	struct qfq_aggregate *agg = cl->agg;
355 
356 	cl->agg = NULL;
357 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
358 		qfq_destroy_agg(q, agg);
359 		return;
360 	}
361 	qfq_update_agg(q, agg, agg->num_classes-1);
362 }
363 
364 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)365 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 {
367 	if (cl->qdisc->q.qlen > 0) /* class is active */
368 		qfq_deactivate_class(q, cl);
369 
370 	qfq_rm_from_agg(q, cl);
371 }
372 
373 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)374 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
375 			   u32 lmax)
376 {
377 	struct qfq_sched *q = qdisc_priv(sch);
378 	struct qfq_aggregate *new_agg;
379 
380 	/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
381 	if (lmax > QFQ_MAX_LMAX)
382 		return -EINVAL;
383 
384 	new_agg = qfq_find_agg(q, lmax, weight);
385 	if (new_agg == NULL) { /* create new aggregate */
386 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
387 		if (new_agg == NULL)
388 			return -ENOBUFS;
389 		qfq_init_agg(q, new_agg, lmax, weight);
390 	}
391 	qfq_deact_rm_from_agg(q, cl);
392 	qfq_add_to_agg(q, new_agg, cl);
393 
394 	return 0;
395 }
396 
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)397 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
398 			    struct nlattr **tca, unsigned long *arg,
399 			    struct netlink_ext_ack *extack)
400 {
401 	struct qfq_sched *q = qdisc_priv(sch);
402 	struct qfq_class *cl = (struct qfq_class *)*arg;
403 	bool existing = false;
404 	struct nlattr *tb[TCA_QFQ_MAX + 1];
405 	struct qfq_aggregate *new_agg = NULL;
406 	u32 weight, lmax, inv_w;
407 	int err;
408 	int delta_w;
409 
410 	if (tca[TCA_OPTIONS] == NULL) {
411 		pr_notice("qfq: no options\n");
412 		return -EINVAL;
413 	}
414 
415 	err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
416 					  qfq_policy, NULL);
417 	if (err < 0)
418 		return err;
419 
420 	if (tb[TCA_QFQ_WEIGHT]) {
421 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
422 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
423 			pr_notice("qfq: invalid weight %u\n", weight);
424 			return -EINVAL;
425 		}
426 	} else
427 		weight = 1;
428 
429 	if (tb[TCA_QFQ_LMAX])
430 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
431 	else
432 		lmax = psched_mtu(qdisc_dev(sch));
433 
434 	if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
435 		pr_notice("qfq: invalid max length %u\n", lmax);
436 		return -EINVAL;
437 	}
438 
439 	inv_w = ONE_FP / weight;
440 	weight = ONE_FP / inv_w;
441 
442 	if (cl != NULL &&
443 	    lmax == cl->agg->lmax &&
444 	    weight == cl->agg->class_weight)
445 		return 0; /* nothing to change */
446 
447 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
448 
449 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
450 		pr_notice("qfq: total weight out of range (%d + %u)\n",
451 			  delta_w, q->wsum);
452 		return -EINVAL;
453 	}
454 
455 	if (cl != NULL) { /* modify existing class */
456 		if (tca[TCA_RATE]) {
457 			err = gen_replace_estimator(&cl->bstats, NULL,
458 						    &cl->rate_est,
459 						    NULL,
460 						    qdisc_root_sleeping_running(sch),
461 						    tca[TCA_RATE]);
462 			if (err)
463 				return err;
464 		}
465 		existing = true;
466 		goto set_change_agg;
467 	}
468 
469 	/* create and init new class */
470 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
471 	if (cl == NULL)
472 		return -ENOBUFS;
473 
474 	cl->common.classid = classid;
475 	cl->deficit = lmax;
476 
477 	cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
478 				      classid, NULL);
479 	if (cl->qdisc == NULL)
480 		cl->qdisc = &noop_qdisc;
481 
482 	if (tca[TCA_RATE]) {
483 		err = gen_new_estimator(&cl->bstats, NULL,
484 					&cl->rate_est,
485 					NULL,
486 					qdisc_root_sleeping_running(sch),
487 					tca[TCA_RATE]);
488 		if (err)
489 			goto destroy_class;
490 	}
491 
492 	if (cl->qdisc != &noop_qdisc)
493 		qdisc_hash_add(cl->qdisc, true);
494 
495 set_change_agg:
496 	sch_tree_lock(sch);
497 	new_agg = qfq_find_agg(q, lmax, weight);
498 	if (new_agg == NULL) { /* create new aggregate */
499 		sch_tree_unlock(sch);
500 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
501 		if (new_agg == NULL) {
502 			err = -ENOBUFS;
503 			gen_kill_estimator(&cl->rate_est);
504 			goto destroy_class;
505 		}
506 		sch_tree_lock(sch);
507 		qfq_init_agg(q, new_agg, lmax, weight);
508 	}
509 	if (existing)
510 		qfq_deact_rm_from_agg(q, cl);
511 	else
512 		qdisc_class_hash_insert(&q->clhash, &cl->common);
513 	qfq_add_to_agg(q, new_agg, cl);
514 	sch_tree_unlock(sch);
515 	qdisc_class_hash_grow(sch, &q->clhash);
516 
517 	*arg = (unsigned long)cl;
518 	return 0;
519 
520 destroy_class:
521 	qdisc_put(cl->qdisc);
522 	kfree(cl);
523 	return err;
524 }
525 
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)526 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
527 {
528 	struct qfq_sched *q = qdisc_priv(sch);
529 
530 	qfq_rm_from_agg(q, cl);
531 	gen_kill_estimator(&cl->rate_est);
532 	qdisc_put(cl->qdisc);
533 	kfree(cl);
534 }
535 
qfq_delete_class(struct Qdisc * sch,unsigned long arg)536 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
537 {
538 	struct qfq_sched *q = qdisc_priv(sch);
539 	struct qfq_class *cl = (struct qfq_class *)arg;
540 
541 	if (cl->filter_cnt > 0)
542 		return -EBUSY;
543 
544 	sch_tree_lock(sch);
545 
546 	qdisc_purge_queue(cl->qdisc);
547 	qdisc_class_hash_remove(&q->clhash, &cl->common);
548 
549 	sch_tree_unlock(sch);
550 
551 	qfq_destroy_class(sch, cl);
552 	return 0;
553 }
554 
qfq_search_class(struct Qdisc * sch,u32 classid)555 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
556 {
557 	return (unsigned long)qfq_find_class(sch, classid);
558 }
559 
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)560 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
561 				       struct netlink_ext_ack *extack)
562 {
563 	struct qfq_sched *q = qdisc_priv(sch);
564 
565 	if (cl)
566 		return NULL;
567 
568 	return q->block;
569 }
570 
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)571 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
572 				  u32 classid)
573 {
574 	struct qfq_class *cl = qfq_find_class(sch, classid);
575 
576 	if (cl != NULL)
577 		cl->filter_cnt++;
578 
579 	return (unsigned long)cl;
580 }
581 
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)582 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
583 {
584 	struct qfq_class *cl = (struct qfq_class *)arg;
585 
586 	cl->filter_cnt--;
587 }
588 
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)589 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
590 			   struct Qdisc *new, struct Qdisc **old,
591 			   struct netlink_ext_ack *extack)
592 {
593 	struct qfq_class *cl = (struct qfq_class *)arg;
594 
595 	if (new == NULL) {
596 		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
597 					cl->common.classid, NULL);
598 		if (new == NULL)
599 			new = &noop_qdisc;
600 	}
601 
602 	*old = qdisc_replace(sch, new, &cl->qdisc);
603 	return 0;
604 }
605 
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)606 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
607 {
608 	struct qfq_class *cl = (struct qfq_class *)arg;
609 
610 	return cl->qdisc;
611 }
612 
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)613 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
614 			  struct sk_buff *skb, struct tcmsg *tcm)
615 {
616 	struct qfq_class *cl = (struct qfq_class *)arg;
617 	struct nlattr *nest;
618 
619 	tcm->tcm_parent	= TC_H_ROOT;
620 	tcm->tcm_handle	= cl->common.classid;
621 	tcm->tcm_info	= cl->qdisc->handle;
622 
623 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
624 	if (nest == NULL)
625 		goto nla_put_failure;
626 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
627 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
628 		goto nla_put_failure;
629 	return nla_nest_end(skb, nest);
630 
631 nla_put_failure:
632 	nla_nest_cancel(skb, nest);
633 	return -EMSGSIZE;
634 }
635 
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)636 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
637 				struct gnet_dump *d)
638 {
639 	struct qfq_class *cl = (struct qfq_class *)arg;
640 	struct tc_qfq_stats xstats;
641 
642 	memset(&xstats, 0, sizeof(xstats));
643 
644 	xstats.weight = cl->agg->class_weight;
645 	xstats.lmax = cl->agg->lmax;
646 
647 	if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
648 				  d, NULL, &cl->bstats) < 0 ||
649 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
650 	    qdisc_qstats_copy(d, cl->qdisc) < 0)
651 		return -1;
652 
653 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
654 }
655 
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)656 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
657 {
658 	struct qfq_sched *q = qdisc_priv(sch);
659 	struct qfq_class *cl;
660 	unsigned int i;
661 
662 	if (arg->stop)
663 		return;
664 
665 	for (i = 0; i < q->clhash.hashsize; i++) {
666 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
667 			if (arg->count < arg->skip) {
668 				arg->count++;
669 				continue;
670 			}
671 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
672 				arg->stop = 1;
673 				return;
674 			}
675 			arg->count++;
676 		}
677 	}
678 }
679 
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)680 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
681 				      int *qerr)
682 {
683 	struct qfq_sched *q = qdisc_priv(sch);
684 	struct qfq_class *cl;
685 	struct tcf_result res;
686 	struct tcf_proto *fl;
687 	int result;
688 
689 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
690 		pr_debug("qfq_classify: found %d\n", skb->priority);
691 		cl = qfq_find_class(sch, skb->priority);
692 		if (cl != NULL)
693 			return cl;
694 	}
695 
696 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
697 	fl = rcu_dereference_bh(q->filter_list);
698 	result = tcf_classify(skb, fl, &res, false);
699 	if (result >= 0) {
700 #ifdef CONFIG_NET_CLS_ACT
701 		switch (result) {
702 		case TC_ACT_QUEUED:
703 		case TC_ACT_STOLEN:
704 		case TC_ACT_TRAP:
705 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
706 			fallthrough;
707 		case TC_ACT_SHOT:
708 			return NULL;
709 		}
710 #endif
711 		cl = (struct qfq_class *)res.class;
712 		if (cl == NULL)
713 			cl = qfq_find_class(sch, res.classid);
714 		return cl;
715 	}
716 
717 	return NULL;
718 }
719 
720 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)721 static inline int qfq_gt(u64 a, u64 b)
722 {
723 	return (s64)(a - b) > 0;
724 }
725 
726 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)727 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
728 {
729 	return ts & ~((1ULL << shift) - 1);
730 }
731 
732 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)733 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
734 					unsigned long bitmap)
735 {
736 	int index = __ffs(bitmap);
737 	return &q->groups[index];
738 }
739 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)740 static inline unsigned long mask_from(unsigned long bitmap, int from)
741 {
742 	return bitmap & ~((1UL << from) - 1);
743 }
744 
745 /*
746  * The state computation relies on ER=0, IR=1, EB=2, IB=3
747  * First compute eligibility comparing grp->S, q->V,
748  * then check if someone is blocking us and possibly add EB
749  */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)750 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
751 {
752 	/* if S > V we are not eligible */
753 	unsigned int state = qfq_gt(grp->S, q->V);
754 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
755 	struct qfq_group *next;
756 
757 	if (mask) {
758 		next = qfq_ffs(q, mask);
759 		if (qfq_gt(grp->F, next->F))
760 			state |= EB;
761 	}
762 
763 	return state;
764 }
765 
766 
767 /*
768  * In principle
769  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
770  *	q->bitmaps[src] &= ~mask;
771  * but we should make sure that src != dst
772  */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)773 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
774 				   int src, int dst)
775 {
776 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
777 	q->bitmaps[src] &= ~mask;
778 }
779 
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)780 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
781 {
782 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
783 	struct qfq_group *next;
784 
785 	if (mask) {
786 		next = qfq_ffs(q, mask);
787 		if (!qfq_gt(next->F, old_F))
788 			return;
789 	}
790 
791 	mask = (1UL << index) - 1;
792 	qfq_move_groups(q, mask, EB, ER);
793 	qfq_move_groups(q, mask, IB, IR);
794 }
795 
796 /*
797  * perhaps
798  *
799 	old_V ^= q->V;
800 	old_V >>= q->min_slot_shift;
801 	if (old_V) {
802 		...
803 	}
804  *
805  */
qfq_make_eligible(struct qfq_sched * q)806 static void qfq_make_eligible(struct qfq_sched *q)
807 {
808 	unsigned long vslot = q->V >> q->min_slot_shift;
809 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
810 
811 	if (vslot != old_vslot) {
812 		unsigned long mask;
813 		int last_flip_pos = fls(vslot ^ old_vslot);
814 
815 		if (last_flip_pos > 31) /* higher than the number of groups */
816 			mask = ~0UL;    /* make all groups eligible */
817 		else
818 			mask = (1UL << last_flip_pos) - 1;
819 
820 		qfq_move_groups(q, mask, IR, ER);
821 		qfq_move_groups(q, mask, IB, EB);
822 	}
823 }
824 
825 /*
826  * The index of the slot in which the input aggregate agg is to be
827  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
828  * and not a '-1' because the start time of the group may be moved
829  * backward by one slot after the aggregate has been inserted, and
830  * this would cause non-empty slots to be right-shifted by one
831  * position.
832  *
833  * QFQ+ fully satisfies this bound to the slot index if the parameters
834  * of the classes are not changed dynamically, and if QFQ+ never
835  * happens to postpone the service of agg unjustly, i.e., it never
836  * happens that the aggregate becomes backlogged and eligible, or just
837  * eligible, while an aggregate with a higher approximated finish time
838  * is being served. In particular, in this case QFQ+ guarantees that
839  * the timestamps of agg are low enough that the slot index is never
840  * higher than 2. Unfortunately, QFQ+ cannot provide the same
841  * guarantee if it happens to unjustly postpone the service of agg, or
842  * if the parameters of some class are changed.
843  *
844  * As for the first event, i.e., an out-of-order service, the
845  * upper bound to the slot index guaranteed by QFQ+ grows to
846  * 2 +
847  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
848  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
849  *
850  * The following function deals with this problem by backward-shifting
851  * the timestamps of agg, if needed, so as to guarantee that the slot
852  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
853  * cause the service of other aggregates to be postponed, yet the
854  * worst-case guarantees of these aggregates are not violated.  In
855  * fact, in case of no out-of-order service, the timestamps of agg
856  * would have been even lower than they are after the backward shift,
857  * because QFQ+ would have guaranteed a maximum value equal to 2 for
858  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
859  * service is postponed because of the backward-shift would have
860  * however waited for the service of agg before being served.
861  *
862  * The other event that may cause the slot index to be higher than 2
863  * for agg is a recent change of the parameters of some class. If the
864  * weight of a class is increased or the lmax (max_pkt_size) of the
865  * class is decreased, then a new aggregate with smaller slot size
866  * than the original parent aggregate of the class may happen to be
867  * activated. The activation of this aggregate should be properly
868  * delayed to when the service of the class has finished in the ideal
869  * system tracked by QFQ+. If the activation of the aggregate is not
870  * delayed to this reference time instant, then this aggregate may be
871  * unjustly served before other aggregates waiting for service. This
872  * may cause the above bound to the slot index to be violated for some
873  * of these unlucky aggregates.
874  *
875  * Instead of delaying the activation of the new aggregate, which is
876  * quite complex, the above-discussed capping of the slot index is
877  * used to handle also the consequences of a change of the parameters
878  * of a class.
879  */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)880 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
881 			    u64 roundedS)
882 {
883 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
884 	unsigned int i; /* slot index in the bucket list */
885 
886 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
887 		u64 deltaS = roundedS - grp->S -
888 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
889 		agg->S -= deltaS;
890 		agg->F -= deltaS;
891 		slot = QFQ_MAX_SLOTS - 2;
892 	}
893 
894 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
895 
896 	hlist_add_head(&agg->next, &grp->slots[i]);
897 	__set_bit(slot, &grp->full_slots);
898 }
899 
900 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)901 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
902 {
903 	return hlist_entry(grp->slots[grp->front].first,
904 			   struct qfq_aggregate, next);
905 }
906 
907 /*
908  * remove the entry from the slot
909  */
qfq_front_slot_remove(struct qfq_group * grp)910 static void qfq_front_slot_remove(struct qfq_group *grp)
911 {
912 	struct qfq_aggregate *agg = qfq_slot_head(grp);
913 
914 	BUG_ON(!agg);
915 	hlist_del(&agg->next);
916 	if (hlist_empty(&grp->slots[grp->front]))
917 		__clear_bit(0, &grp->full_slots);
918 }
919 
920 /*
921  * Returns the first aggregate in the first non-empty bucket of the
922  * group. As a side effect, adjusts the bucket list so the first
923  * non-empty bucket is at position 0 in full_slots.
924  */
qfq_slot_scan(struct qfq_group * grp)925 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
926 {
927 	unsigned int i;
928 
929 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
930 		 grp->index, grp->full_slots);
931 
932 	if (grp->full_slots == 0)
933 		return NULL;
934 
935 	i = __ffs(grp->full_slots);  /* zero based */
936 	if (i > 0) {
937 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
938 		grp->full_slots >>= i;
939 	}
940 
941 	return qfq_slot_head(grp);
942 }
943 
944 /*
945  * adjust the bucket list. When the start time of a group decreases,
946  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
947  * move the objects. The mask of occupied slots must be shifted
948  * because we use ffs() to find the first non-empty slot.
949  * This covers decreases in the group's start time, but what about
950  * increases of the start time ?
951  * Here too we should make sure that i is less than 32
952  */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)953 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
954 {
955 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
956 
957 	grp->full_slots <<= i;
958 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
959 }
960 
qfq_update_eligible(struct qfq_sched * q)961 static void qfq_update_eligible(struct qfq_sched *q)
962 {
963 	struct qfq_group *grp;
964 	unsigned long ineligible;
965 
966 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
967 	if (ineligible) {
968 		if (!q->bitmaps[ER]) {
969 			grp = qfq_ffs(q, ineligible);
970 			if (qfq_gt(grp->S, q->V))
971 				q->V = grp->S;
972 		}
973 		qfq_make_eligible(q);
974 	}
975 }
976 
977 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)978 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
979 				   struct qfq_class *cl, unsigned int len)
980 {
981 	struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
982 
983 	if (!skb)
984 		return NULL;
985 
986 	cl->deficit -= (int) len;
987 
988 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
989 		list_del(&cl->alist);
990 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
991 		cl->deficit += agg->lmax;
992 		list_move_tail(&cl->alist, &agg->active);
993 	}
994 
995 	return skb;
996 }
997 
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)998 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
999 					   struct qfq_class **cl,
1000 					   unsigned int *len)
1001 {
1002 	struct sk_buff *skb;
1003 
1004 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1005 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1006 	if (skb == NULL)
1007 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1008 	else
1009 		*len = qdisc_pkt_len(skb);
1010 
1011 	return skb;
1012 }
1013 
1014 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1015 static inline void charge_actual_service(struct qfq_aggregate *agg)
1016 {
1017 	/* Compute the service received by the aggregate, taking into
1018 	 * account that, after decreasing the number of classes in
1019 	 * agg, it may happen that
1020 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1021 	 */
1022 	u32 service_received = min(agg->budgetmax,
1023 				   agg->initial_budget - agg->budget);
1024 
1025 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1026 }
1027 
1028 /* Assign a reasonable start time for a new aggregate in group i.
1029  * Admissible values for \hat(F) are multiples of \sigma_i
1030  * no greater than V+\sigma_i . Larger values mean that
1031  * we had a wraparound so we consider the timestamp to be stale.
1032  *
1033  * If F is not stale and F >= V then we set S = F.
1034  * Otherwise we should assign S = V, but this may violate
1035  * the ordering in EB (see [2]). So, if we have groups in ER,
1036  * set S to the F_j of the first group j which would be blocking us.
1037  * We are guaranteed not to move S backward because
1038  * otherwise our group i would still be blocked.
1039  */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1040 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1041 {
1042 	unsigned long mask;
1043 	u64 limit, roundedF;
1044 	int slot_shift = agg->grp->slot_shift;
1045 
1046 	roundedF = qfq_round_down(agg->F, slot_shift);
1047 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1048 
1049 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1050 		/* timestamp was stale */
1051 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1052 		if (mask) {
1053 			struct qfq_group *next = qfq_ffs(q, mask);
1054 			if (qfq_gt(roundedF, next->F)) {
1055 				if (qfq_gt(limit, next->F))
1056 					agg->S = next->F;
1057 				else /* preserve timestamp correctness */
1058 					agg->S = limit;
1059 				return;
1060 			}
1061 		}
1062 		agg->S = q->V;
1063 	} else  /* timestamp is not stale */
1064 		agg->S = agg->F;
1065 }
1066 
1067 /* Update the timestamps of agg before scheduling/rescheduling it for
1068  * service.  In particular, assign to agg->F its maximum possible
1069  * value, i.e., the virtual finish time with which the aggregate
1070  * should be labeled if it used all its budget once in service.
1071  */
1072 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1073 qfq_update_agg_ts(struct qfq_sched *q,
1074 		    struct qfq_aggregate *agg, enum update_reason reason)
1075 {
1076 	if (reason != requeue)
1077 		qfq_update_start(q, agg);
1078 	else /* just charge agg for the service received */
1079 		agg->S = agg->F;
1080 
1081 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1082 }
1083 
1084 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1085 
qfq_dequeue(struct Qdisc * sch)1086 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1087 {
1088 	struct qfq_sched *q = qdisc_priv(sch);
1089 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1090 	struct qfq_class *cl;
1091 	struct sk_buff *skb = NULL;
1092 	/* next-packet len, 0 means no more active classes in in-service agg */
1093 	unsigned int len = 0;
1094 
1095 	if (in_serv_agg == NULL)
1096 		return NULL;
1097 
1098 	if (!list_empty(&in_serv_agg->active))
1099 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1100 
1101 	/*
1102 	 * If there are no active classes in the in-service aggregate,
1103 	 * or if the aggregate has not enough budget to serve its next
1104 	 * class, then choose the next aggregate to serve.
1105 	 */
1106 	if (len == 0 || in_serv_agg->budget < len) {
1107 		charge_actual_service(in_serv_agg);
1108 
1109 		/* recharge the budget of the aggregate */
1110 		in_serv_agg->initial_budget = in_serv_agg->budget =
1111 			in_serv_agg->budgetmax;
1112 
1113 		if (!list_empty(&in_serv_agg->active)) {
1114 			/*
1115 			 * Still active: reschedule for
1116 			 * service. Possible optimization: if no other
1117 			 * aggregate is active, then there is no point
1118 			 * in rescheduling this aggregate, and we can
1119 			 * just keep it as the in-service one. This
1120 			 * should be however a corner case, and to
1121 			 * handle it, we would need to maintain an
1122 			 * extra num_active_aggs field.
1123 			*/
1124 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1125 			qfq_schedule_agg(q, in_serv_agg);
1126 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1127 			q->in_serv_agg = NULL;
1128 			return NULL;
1129 		}
1130 
1131 		/*
1132 		 * If we get here, there are other aggregates queued:
1133 		 * choose the new aggregate to serve.
1134 		 */
1135 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1136 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1137 	}
1138 	if (!skb)
1139 		return NULL;
1140 
1141 	sch->q.qlen--;
1142 
1143 	skb = agg_dequeue(in_serv_agg, cl, len);
1144 
1145 	if (!skb) {
1146 		sch->q.qlen++;
1147 		return NULL;
1148 	}
1149 
1150 	qdisc_qstats_backlog_dec(sch, skb);
1151 	qdisc_bstats_update(sch, skb);
1152 
1153 	/* If lmax is lowered, through qfq_change_class, for a class
1154 	 * owning pending packets with larger size than the new value
1155 	 * of lmax, then the following condition may hold.
1156 	 */
1157 	if (unlikely(in_serv_agg->budget < len))
1158 		in_serv_agg->budget = 0;
1159 	else
1160 		in_serv_agg->budget -= len;
1161 
1162 	q->V += (u64)len * q->iwsum;
1163 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1164 		 len, (unsigned long long) in_serv_agg->F,
1165 		 (unsigned long long) q->V);
1166 
1167 	return skb;
1168 }
1169 
qfq_choose_next_agg(struct qfq_sched * q)1170 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1171 {
1172 	struct qfq_group *grp;
1173 	struct qfq_aggregate *agg, *new_front_agg;
1174 	u64 old_F;
1175 
1176 	qfq_update_eligible(q);
1177 	q->oldV = q->V;
1178 
1179 	if (!q->bitmaps[ER])
1180 		return NULL;
1181 
1182 	grp = qfq_ffs(q, q->bitmaps[ER]);
1183 	old_F = grp->F;
1184 
1185 	agg = qfq_slot_head(grp);
1186 
1187 	/* agg starts to be served, remove it from schedule */
1188 	qfq_front_slot_remove(grp);
1189 
1190 	new_front_agg = qfq_slot_scan(grp);
1191 
1192 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1193 		__clear_bit(grp->index, &q->bitmaps[ER]);
1194 	else {
1195 		u64 roundedS = qfq_round_down(new_front_agg->S,
1196 					      grp->slot_shift);
1197 		unsigned int s;
1198 
1199 		if (grp->S == roundedS)
1200 			return agg;
1201 		grp->S = roundedS;
1202 		grp->F = roundedS + (2ULL << grp->slot_shift);
1203 		__clear_bit(grp->index, &q->bitmaps[ER]);
1204 		s = qfq_calc_state(q, grp);
1205 		__set_bit(grp->index, &q->bitmaps[s]);
1206 	}
1207 
1208 	qfq_unblock_groups(q, grp->index, old_F);
1209 
1210 	return agg;
1211 }
1212 
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1213 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1214 		       struct sk_buff **to_free)
1215 {
1216 	unsigned int len = qdisc_pkt_len(skb), gso_segs;
1217 	struct qfq_sched *q = qdisc_priv(sch);
1218 	struct qfq_class *cl;
1219 	struct qfq_aggregate *agg;
1220 	int err = 0;
1221 	bool first;
1222 
1223 	cl = qfq_classify(skb, sch, &err);
1224 	if (cl == NULL) {
1225 		if (err & __NET_XMIT_BYPASS)
1226 			qdisc_qstats_drop(sch);
1227 		__qdisc_drop(skb, to_free);
1228 		return err;
1229 	}
1230 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1231 
1232 	if (unlikely(cl->agg->lmax < len)) {
1233 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1234 			 cl->agg->lmax, len, cl->common.classid);
1235 		err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1236 		if (err) {
1237 			cl->qstats.drops++;
1238 			return qdisc_drop(skb, sch, to_free);
1239 		}
1240 	}
1241 
1242 	gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1243 	first = !cl->qdisc->q.qlen;
1244 	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1245 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 		if (net_xmit_drop_count(err)) {
1248 			cl->qstats.drops++;
1249 			qdisc_qstats_drop(sch);
1250 		}
1251 		return err;
1252 	}
1253 
1254 	cl->bstats.bytes += len;
1255 	cl->bstats.packets += gso_segs;
1256 	sch->qstats.backlog += len;
1257 	++sch->q.qlen;
1258 
1259 	agg = cl->agg;
1260 	/* if the queue was not empty, then done here */
1261 	if (!first) {
1262 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1263 		    list_first_entry(&agg->active, struct qfq_class, alist)
1264 		    == cl && cl->deficit < len)
1265 			list_move_tail(&cl->alist, &agg->active);
1266 
1267 		return err;
1268 	}
1269 
1270 	/* schedule class for service within the aggregate */
1271 	cl->deficit = agg->lmax;
1272 	list_add_tail(&cl->alist, &agg->active);
1273 
1274 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1275 	    q->in_serv_agg == agg)
1276 		return err; /* non-empty or in service, nothing else to do */
1277 
1278 	qfq_activate_agg(q, agg, enqueue);
1279 
1280 	return err;
1281 }
1282 
1283 /*
1284  * Schedule aggregate according to its timestamps.
1285  */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1286 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1287 {
1288 	struct qfq_group *grp = agg->grp;
1289 	u64 roundedS;
1290 	int s;
1291 
1292 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1293 
1294 	/*
1295 	 * Insert agg in the correct bucket.
1296 	 * If agg->S >= grp->S we don't need to adjust the
1297 	 * bucket list and simply go to the insertion phase.
1298 	 * Otherwise grp->S is decreasing, we must make room
1299 	 * in the bucket list, and also recompute the group state.
1300 	 * Finally, if there were no flows in this group and nobody
1301 	 * was in ER make sure to adjust V.
1302 	 */
1303 	if (grp->full_slots) {
1304 		if (!qfq_gt(grp->S, agg->S))
1305 			goto skip_update;
1306 
1307 		/* create a slot for this agg->S */
1308 		qfq_slot_rotate(grp, roundedS);
1309 		/* group was surely ineligible, remove */
1310 		__clear_bit(grp->index, &q->bitmaps[IR]);
1311 		__clear_bit(grp->index, &q->bitmaps[IB]);
1312 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1313 		   q->in_serv_agg == NULL)
1314 		q->V = roundedS;
1315 
1316 	grp->S = roundedS;
1317 	grp->F = roundedS + (2ULL << grp->slot_shift);
1318 	s = qfq_calc_state(q, grp);
1319 	__set_bit(grp->index, &q->bitmaps[s]);
1320 
1321 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1322 		 s, q->bitmaps[s],
1323 		 (unsigned long long) agg->S,
1324 		 (unsigned long long) agg->F,
1325 		 (unsigned long long) q->V);
1326 
1327 skip_update:
1328 	qfq_slot_insert(grp, agg, roundedS);
1329 }
1330 
1331 
1332 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1333 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1334 			     enum update_reason reason)
1335 {
1336 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1337 
1338 	qfq_update_agg_ts(q, agg, reason);
1339 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1340 		q->in_serv_agg = agg; /* start serving this aggregate */
1341 		 /* update V: to be in service, agg must be eligible */
1342 		q->oldV = q->V = agg->S;
1343 	} else if (agg != q->in_serv_agg)
1344 		qfq_schedule_agg(q, agg);
1345 }
1346 
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1347 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1348 			    struct qfq_aggregate *agg)
1349 {
1350 	unsigned int i, offset;
1351 	u64 roundedS;
1352 
1353 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1354 	offset = (roundedS - grp->S) >> grp->slot_shift;
1355 
1356 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1357 
1358 	hlist_del(&agg->next);
1359 	if (hlist_empty(&grp->slots[i]))
1360 		__clear_bit(offset, &grp->full_slots);
1361 }
1362 
1363 /*
1364  * Called to forcibly deschedule an aggregate.  If the aggregate is
1365  * not in the front bucket, or if the latter has other aggregates in
1366  * the front bucket, we can simply remove the aggregate with no other
1367  * side effects.
1368  * Otherwise we must propagate the event up.
1369  */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1370 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1371 {
1372 	struct qfq_group *grp = agg->grp;
1373 	unsigned long mask;
1374 	u64 roundedS;
1375 	int s;
1376 
1377 	if (agg == q->in_serv_agg) {
1378 		charge_actual_service(agg);
1379 		q->in_serv_agg = qfq_choose_next_agg(q);
1380 		return;
1381 	}
1382 
1383 	agg->F = agg->S;
1384 	qfq_slot_remove(q, grp, agg);
1385 
1386 	if (!grp->full_slots) {
1387 		__clear_bit(grp->index, &q->bitmaps[IR]);
1388 		__clear_bit(grp->index, &q->bitmaps[EB]);
1389 		__clear_bit(grp->index, &q->bitmaps[IB]);
1390 
1391 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1392 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1393 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1394 			if (mask)
1395 				mask = ~((1UL << __fls(mask)) - 1);
1396 			else
1397 				mask = ~0UL;
1398 			qfq_move_groups(q, mask, EB, ER);
1399 			qfq_move_groups(q, mask, IB, IR);
1400 		}
1401 		__clear_bit(grp->index, &q->bitmaps[ER]);
1402 	} else if (hlist_empty(&grp->slots[grp->front])) {
1403 		agg = qfq_slot_scan(grp);
1404 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1405 		if (grp->S != roundedS) {
1406 			__clear_bit(grp->index, &q->bitmaps[ER]);
1407 			__clear_bit(grp->index, &q->bitmaps[IR]);
1408 			__clear_bit(grp->index, &q->bitmaps[EB]);
1409 			__clear_bit(grp->index, &q->bitmaps[IB]);
1410 			grp->S = roundedS;
1411 			grp->F = roundedS + (2ULL << grp->slot_shift);
1412 			s = qfq_calc_state(q, grp);
1413 			__set_bit(grp->index, &q->bitmaps[s]);
1414 		}
1415 	}
1416 }
1417 
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1418 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1419 {
1420 	struct qfq_sched *q = qdisc_priv(sch);
1421 	struct qfq_class *cl = (struct qfq_class *)arg;
1422 
1423 	qfq_deactivate_class(q, cl);
1424 }
1425 
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1426 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1427 			  struct netlink_ext_ack *extack)
1428 {
1429 	struct qfq_sched *q = qdisc_priv(sch);
1430 	struct qfq_group *grp;
1431 	int i, j, err;
1432 	u32 max_cl_shift, maxbudg_shift, max_classes;
1433 
1434 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1435 	if (err)
1436 		return err;
1437 
1438 	err = qdisc_class_hash_init(&q->clhash);
1439 	if (err < 0)
1440 		return err;
1441 
1442 	max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1443 			    QFQ_MAX_AGG_CLASSES);
1444 	/* max_cl_shift = floor(log_2(max_classes)) */
1445 	max_cl_shift = __fls(max_classes);
1446 	q->max_agg_classes = 1<<max_cl_shift;
1447 
1448 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1449 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1450 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1451 
1452 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1453 		grp = &q->groups[i];
1454 		grp->index = i;
1455 		grp->slot_shift = q->min_slot_shift + i;
1456 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1457 			INIT_HLIST_HEAD(&grp->slots[j]);
1458 	}
1459 
1460 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1461 
1462 	return 0;
1463 }
1464 
qfq_reset_qdisc(struct Qdisc * sch)1465 static void qfq_reset_qdisc(struct Qdisc *sch)
1466 {
1467 	struct qfq_sched *q = qdisc_priv(sch);
1468 	struct qfq_class *cl;
1469 	unsigned int i;
1470 
1471 	for (i = 0; i < q->clhash.hashsize; i++) {
1472 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1473 			if (cl->qdisc->q.qlen > 0)
1474 				qfq_deactivate_class(q, cl);
1475 
1476 			qdisc_reset(cl->qdisc);
1477 		}
1478 	}
1479 }
1480 
qfq_destroy_qdisc(struct Qdisc * sch)1481 static void qfq_destroy_qdisc(struct Qdisc *sch)
1482 {
1483 	struct qfq_sched *q = qdisc_priv(sch);
1484 	struct qfq_class *cl;
1485 	struct hlist_node *next;
1486 	unsigned int i;
1487 
1488 	tcf_block_put(q->block);
1489 
1490 	for (i = 0; i < q->clhash.hashsize; i++) {
1491 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1492 					  common.hnode) {
1493 			qfq_destroy_class(sch, cl);
1494 		}
1495 	}
1496 	qdisc_class_hash_destroy(&q->clhash);
1497 }
1498 
1499 static const struct Qdisc_class_ops qfq_class_ops = {
1500 	.change		= qfq_change_class,
1501 	.delete		= qfq_delete_class,
1502 	.find		= qfq_search_class,
1503 	.tcf_block	= qfq_tcf_block,
1504 	.bind_tcf	= qfq_bind_tcf,
1505 	.unbind_tcf	= qfq_unbind_tcf,
1506 	.graft		= qfq_graft_class,
1507 	.leaf		= qfq_class_leaf,
1508 	.qlen_notify	= qfq_qlen_notify,
1509 	.dump		= qfq_dump_class,
1510 	.dump_stats	= qfq_dump_class_stats,
1511 	.walk		= qfq_walk,
1512 };
1513 
1514 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1515 	.cl_ops		= &qfq_class_ops,
1516 	.id		= "qfq",
1517 	.priv_size	= sizeof(struct qfq_sched),
1518 	.enqueue	= qfq_enqueue,
1519 	.dequeue	= qfq_dequeue,
1520 	.peek		= qdisc_peek_dequeued,
1521 	.init		= qfq_init_qdisc,
1522 	.reset		= qfq_reset_qdisc,
1523 	.destroy	= qfq_destroy_qdisc,
1524 	.owner		= THIS_MODULE,
1525 };
1526 
qfq_init(void)1527 static int __init qfq_init(void)
1528 {
1529 	return register_qdisc(&qfq_qdisc_ops);
1530 }
1531 
qfq_exit(void)1532 static void __exit qfq_exit(void)
1533 {
1534 	unregister_qdisc(&qfq_qdisc_ops);
1535 }
1536 
1537 module_init(qfq_init);
1538 module_exit(qfq_exit);
1539 MODULE_LICENSE("GPL");
1540