• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // The MATCHER* family of macros can be used in a namespace scope to
34 // define custom matchers easily.
35 //
36 // Basic Usage
37 // ===========
38 //
39 // The syntax
40 //
41 //   MATCHER(name, description_string) { statements; }
42 //
43 // defines a matcher with the given name that executes the statements,
44 // which must return a bool to indicate if the match succeeds.  Inside
45 // the statements, you can refer to the value being matched by 'arg',
46 // and refer to its type by 'arg_type'.
47 //
48 // The description string documents what the matcher does, and is used
49 // to generate the failure message when the match fails.  Since a
50 // MATCHER() is usually defined in a header file shared by multiple
51 // C++ source files, we require the description to be a C-string
52 // literal to avoid possible side effects.  It can be empty, in which
53 // case we'll use the sequence of words in the matcher name as the
54 // description.
55 //
56 // For example:
57 //
58 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
59 //
60 // allows you to write
61 //
62 //   // Expects mock_foo.Bar(n) to be called where n is even.
63 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
64 //
65 // or,
66 //
67 //   // Verifies that the value of some_expression is even.
68 //   EXPECT_THAT(some_expression, IsEven());
69 //
70 // If the above assertion fails, it will print something like:
71 //
72 //   Value of: some_expression
73 //   Expected: is even
74 //     Actual: 7
75 //
76 // where the description "is even" is automatically calculated from the
77 // matcher name IsEven.
78 //
79 // Argument Type
80 // =============
81 //
82 // Note that the type of the value being matched (arg_type) is
83 // determined by the context in which you use the matcher and is
84 // supplied to you by the compiler, so you don't need to worry about
85 // declaring it (nor can you).  This allows the matcher to be
86 // polymorphic.  For example, IsEven() can be used to match any type
87 // where the value of "(arg % 2) == 0" can be implicitly converted to
88 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
89 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
90 // 'arg_type' will be unsigned long; and so on.
91 //
92 // Parameterizing Matchers
93 // =======================
94 //
95 // Sometimes you'll want to parameterize the matcher.  For that you
96 // can use another macro:
97 //
98 //   MATCHER_P(name, param_name, description_string) { statements; }
99 //
100 // For example:
101 //
102 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
103 //
104 // will allow you to write:
105 //
106 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
107 //
108 // which may lead to this message (assuming n is 10):
109 //
110 //   Value of: Blah("a")
111 //   Expected: has absolute value 10
112 //     Actual: -9
113 //
114 // Note that both the matcher description and its parameter are
115 // printed, making the message human-friendly.
116 //
117 // In the matcher definition body, you can write 'foo_type' to
118 // reference the type of a parameter named 'foo'.  For example, in the
119 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
120 // 'value_type' to refer to the type of 'value'.
121 //
122 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
123 // support multi-parameter matchers.
124 //
125 // Describing Parameterized Matchers
126 // =================================
127 //
128 // The last argument to MATCHER*() is a string-typed expression.  The
129 // expression can reference all of the matcher's parameters and a
130 // special bool-typed variable named 'negation'.  When 'negation' is
131 // false, the expression should evaluate to the matcher's description;
132 // otherwise it should evaluate to the description of the negation of
133 // the matcher.  For example,
134 //
135 //   using testing::PrintToString;
136 //
137 //   MATCHER_P2(InClosedRange, low, hi,
138 //       std::string(negation ? "is not" : "is") + " in range [" +
139 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
140 //     return low <= arg && arg <= hi;
141 //   }
142 //   ...
143 //   EXPECT_THAT(3, InClosedRange(4, 6));
144 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
145 //
146 // would generate two failures that contain the text:
147 //
148 //   Expected: is in range [4, 6]
149 //   ...
150 //   Expected: is not in range [2, 4]
151 //
152 // If you specify "" as the description, the failure message will
153 // contain the sequence of words in the matcher name followed by the
154 // parameter values printed as a tuple.  For example,
155 //
156 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
157 //   ...
158 //   EXPECT_THAT(3, InClosedRange(4, 6));
159 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
160 //
161 // would generate two failures that contain the text:
162 //
163 //   Expected: in closed range (4, 6)
164 //   ...
165 //   Expected: not (in closed range (2, 4))
166 //
167 // Types of Matcher Parameters
168 // ===========================
169 //
170 // For the purpose of typing, you can view
171 //
172 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
173 //
174 // as shorthand for
175 //
176 //   template <typename p1_type, ..., typename pk_type>
177 //   FooMatcherPk<p1_type, ..., pk_type>
178 //   Foo(p1_type p1, ..., pk_type pk) { ... }
179 //
180 // When you write Foo(v1, ..., vk), the compiler infers the types of
181 // the parameters v1, ..., and vk for you.  If you are not happy with
182 // the result of the type inference, you can specify the types by
183 // explicitly instantiating the template, as in Foo<long, bool>(5,
184 // false).  As said earlier, you don't get to (or need to) specify
185 // 'arg_type' as that's determined by the context in which the matcher
186 // is used.  You can assign the result of expression Foo(p1, ..., pk)
187 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
188 // can be useful when composing matchers.
189 //
190 // While you can instantiate a matcher template with reference types,
191 // passing the parameters by pointer usually makes your code more
192 // readable.  If, however, you still want to pass a parameter by
193 // reference, be aware that in the failure message generated by the
194 // matcher you will see the value of the referenced object but not its
195 // address.
196 //
197 // Explaining Match Results
198 // ========================
199 //
200 // Sometimes the matcher description alone isn't enough to explain why
201 // the match has failed or succeeded.  For example, when expecting a
202 // long string, it can be very helpful to also print the diff between
203 // the expected string and the actual one.  To achieve that, you can
204 // optionally stream additional information to a special variable
205 // named result_listener, whose type is a pointer to class
206 // MatchResultListener:
207 //
208 //   MATCHER_P(EqualsLongString, str, "") {
209 //     if (arg == str) return true;
210 //
211 //     *result_listener << "the difference: "
212 ///                     << DiffStrings(str, arg);
213 //     return false;
214 //   }
215 //
216 // Overloading Matchers
217 // ====================
218 //
219 // You can overload matchers with different numbers of parameters:
220 //
221 //   MATCHER_P(Blah, a, description_string1) { ... }
222 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
223 //
224 // Caveats
225 // =======
226 //
227 // When defining a new matcher, you should also consider implementing
228 // MatcherInterface or using MakePolymorphicMatcher().  These
229 // approaches require more work than the MATCHER* macros, but also
230 // give you more control on the types of the value being matched and
231 // the matcher parameters, which may leads to better compiler error
232 // messages when the matcher is used wrong.  They also allow
233 // overloading matchers based on parameter types (as opposed to just
234 // based on the number of parameters).
235 //
236 // MATCHER*() can only be used in a namespace scope as templates cannot be
237 // declared inside of a local class.
238 //
239 // More Information
240 // ================
241 //
242 // To learn more about using these macros, please search for 'MATCHER'
243 // on
244 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
245 //
246 // This file also implements some commonly used argument matchers.  More
247 // matchers can be defined by the user implementing the
248 // MatcherInterface<T> interface if necessary.
249 //
250 // See googletest/include/gtest/gtest-matchers.h for the definition of class
251 // Matcher, class MatcherInterface, and others.
252 
253 // GOOGLETEST_CM0002 DO NOT DELETE
254 
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257 
258 #include <algorithm>
259 #include <cmath>
260 #include <initializer_list>
261 #include <iterator>
262 #include <limits>
263 #include <memory>
264 #include <ostream>  // NOLINT
265 #include <sstream>
266 #include <string>
267 #include <type_traits>
268 #include <utility>
269 #include <vector>
270 
271 #include "gmock/internal/gmock-internal-utils.h"
272 #include "gmock/internal/gmock-port.h"
273 #include "gmock/internal/gmock-pp.h"
274 #include "gtest/gtest.h"
275 
276 // MSVC warning C5046 is new as of VS2017 version 15.8.
277 #if defined(_MSC_VER) && _MSC_VER >= 1915
278 #define GMOCK_MAYBE_5046_ 5046
279 #else
280 #define GMOCK_MAYBE_5046_
281 #endif
282 
283 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
284     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
285                               clients of class B */
286     /* Symbol involving type with internal linkage not defined */)
287 
288 namespace testing {
289 
290 // To implement a matcher Foo for type T, define:
291 //   1. a class FooMatcherImpl that implements the
292 //      MatcherInterface<T> interface, and
293 //   2. a factory function that creates a Matcher<T> object from a
294 //      FooMatcherImpl*.
295 //
296 // The two-level delegation design makes it possible to allow a user
297 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
298 // is impossible if we pass matchers by pointers.  It also eases
299 // ownership management as Matcher objects can now be copied like
300 // plain values.
301 
302 // A match result listener that stores the explanation in a string.
303 class StringMatchResultListener : public MatchResultListener {
304  public:
StringMatchResultListener()305   StringMatchResultListener() : MatchResultListener(&ss_) {}
306 
307   // Returns the explanation accumulated so far.
str()308   std::string str() const { return ss_.str(); }
309 
310   // Clears the explanation accumulated so far.
Clear()311   void Clear() { ss_.str(""); }
312 
313  private:
314   ::std::stringstream ss_;
315 
316   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
317 };
318 
319 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
320 // and MUST NOT BE USED IN USER CODE!!!
321 namespace internal {
322 
323 // The MatcherCastImpl class template is a helper for implementing
324 // MatcherCast().  We need this helper in order to partially
325 // specialize the implementation of MatcherCast() (C++ allows
326 // class/struct templates to be partially specialized, but not
327 // function templates.).
328 
329 // This general version is used when MatcherCast()'s argument is a
330 // polymorphic matcher (i.e. something that can be converted to a
331 // Matcher but is not one yet; for example, Eq(value)) or a value (for
332 // example, "hello").
333 template <typename T, typename M>
334 class MatcherCastImpl {
335  public:
Cast(const M & polymorphic_matcher_or_value)336   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
337     // M can be a polymorphic matcher, in which case we want to use
338     // its conversion operator to create Matcher<T>.  Or it can be a value
339     // that should be passed to the Matcher<T>'s constructor.
340     //
341     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
342     // polymorphic matcher because it'll be ambiguous if T has an implicit
343     // constructor from M (this usually happens when T has an implicit
344     // constructor from any type).
345     //
346     // It won't work to unconditionally implicit_cast
347     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
348     // a user-defined conversion from M to T if one exists (assuming M is
349     // a value).
350     return CastImpl(polymorphic_matcher_or_value,
351                     std::is_convertible<M, Matcher<T>>{},
352                     std::is_convertible<M, T>{});
353   }
354 
355  private:
356   template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)357   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
358                              std::true_type /* convertible_to_matcher */,
359                              std::integral_constant<bool, Ignore>) {
360     // M is implicitly convertible to Matcher<T>, which means that either
361     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
362     // from M.  In both cases using the implicit conversion will produce a
363     // matcher.
364     //
365     // Even if T has an implicit constructor from M, it won't be called because
366     // creating Matcher<T> would require a chain of two user-defined conversions
367     // (first to create T from M and then to create Matcher<T> from T).
368     return polymorphic_matcher_or_value;
369   }
370 
371   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
372   // matcher. It's a value of a type implicitly convertible to T. Use direct
373   // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)374   static Matcher<T> CastImpl(const M& value,
375                              std::false_type /* convertible_to_matcher */,
376                              std::true_type /* convertible_to_T */) {
377     return Matcher<T>(ImplicitCast_<T>(value));
378   }
379 
380   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
381   // polymorphic matcher Eq(value) in this case.
382   //
383   // Note that we first attempt to perform an implicit cast on the value and
384   // only fall back to the polymorphic Eq() matcher afterwards because the
385   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
386   // which might be undefined even when Rhs is implicitly convertible to Lhs
387   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
388   //
389   // We don't define this method inline as we need the declaration of Eq().
390   static Matcher<T> CastImpl(const M& value,
391                              std::false_type /* convertible_to_matcher */,
392                              std::false_type /* convertible_to_T */);
393 };
394 
395 // This more specialized version is used when MatcherCast()'s argument
396 // is already a Matcher.  This only compiles when type T can be
397 // statically converted to type U.
398 template <typename T, typename U>
399 class MatcherCastImpl<T, Matcher<U> > {
400  public:
Cast(const Matcher<U> & source_matcher)401   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
402     return Matcher<T>(new Impl(source_matcher));
403   }
404 
405  private:
406   class Impl : public MatcherInterface<T> {
407    public:
Impl(const Matcher<U> & source_matcher)408     explicit Impl(const Matcher<U>& source_matcher)
409         : source_matcher_(source_matcher) {}
410 
411     // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)412     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
413       using FromType = typename std::remove_cv<typename std::remove_pointer<
414           typename std::remove_reference<T>::type>::type>::type;
415       using ToType = typename std::remove_cv<typename std::remove_pointer<
416           typename std::remove_reference<U>::type>::type>::type;
417       // Do not allow implicitly converting base*/& to derived*/&.
418       static_assert(
419           // Do not trigger if only one of them is a pointer. That implies a
420           // regular conversion and not a down_cast.
421           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
422            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
423               std::is_same<FromType, ToType>::value ||
424               !std::is_base_of<FromType, ToType>::value,
425           "Can't implicitly convert from <base> to <derived>");
426 
427       // Do the cast to `U` explicitly if necessary.
428       // Otherwise, let implicit conversions do the trick.
429       using CastType =
430           typename std::conditional<std::is_convertible<T&, const U&>::value,
431                                     T&, U>::type;
432 
433       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
434                                              listener);
435     }
436 
DescribeTo(::std::ostream * os)437     void DescribeTo(::std::ostream* os) const override {
438       source_matcher_.DescribeTo(os);
439     }
440 
DescribeNegationTo(::std::ostream * os)441     void DescribeNegationTo(::std::ostream* os) const override {
442       source_matcher_.DescribeNegationTo(os);
443     }
444 
445    private:
446     const Matcher<U> source_matcher_;
447   };
448 };
449 
450 // This even more specialized version is used for efficiently casting
451 // a matcher to its own type.
452 template <typename T>
453 class MatcherCastImpl<T, Matcher<T> > {
454  public:
Cast(const Matcher<T> & matcher)455   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
456 };
457 
458 // Template specialization for parameterless Matcher.
459 template <typename Derived>
460 class MatcherBaseImpl {
461  public:
462   MatcherBaseImpl() = default;
463 
464   template <typename T>
465   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
466     return ::testing::Matcher<T>(new
467                                  typename Derived::template gmock_Impl<T>());
468   }
469 };
470 
471 // Template specialization for Matcher with parameters.
472 template <template <typename...> class Derived, typename... Ts>
473 class MatcherBaseImpl<Derived<Ts...>> {
474  public:
475   // Mark the constructor explicit for single argument T to avoid implicit
476   // conversions.
477   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
478             typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)479   explicit MatcherBaseImpl(Ts... params)
480       : params_(std::forward<Ts>(params)...) {}
481   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
482             typename = typename E::type>
MatcherBaseImpl(Ts...params)483   MatcherBaseImpl(Ts... params)  // NOLINT
484       : params_(std::forward<Ts>(params)...) {}
485 
486   template <typename F>
487   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
488     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
489   }
490 
491  private:
492   template <typename F, std::size_t... tuple_ids>
Apply(IndexSequence<tuple_ids...>)493   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
494     return ::testing::Matcher<F>(
495         new typename Derived<Ts...>::template gmock_Impl<F>(
496             std::get<tuple_ids>(params_)...));
497   }
498 
499   const std::tuple<Ts...> params_;
500 };
501 
502 }  // namespace internal
503 
504 // In order to be safe and clear, casting between different matcher
505 // types is done explicitly via MatcherCast<T>(m), which takes a
506 // matcher m and returns a Matcher<T>.  It compiles only when T can be
507 // statically converted to the argument type of m.
508 template <typename T, typename M>
MatcherCast(const M & matcher)509 inline Matcher<T> MatcherCast(const M& matcher) {
510   return internal::MatcherCastImpl<T, M>::Cast(matcher);
511 }
512 
513 // This overload handles polymorphic matchers and values only since
514 // monomorphic matchers are handled by the next one.
515 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)516 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
517   return MatcherCast<T>(polymorphic_matcher_or_value);
518 }
519 
520 // This overload handles monomorphic matchers.
521 //
522 // In general, if type T can be implicitly converted to type U, we can
523 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
524 // contravariant): just keep a copy of the original Matcher<U>, convert the
525 // argument from type T to U, and then pass it to the underlying Matcher<U>.
526 // The only exception is when U is a reference and T is not, as the
527 // underlying Matcher<U> may be interested in the argument's address, which
528 // is not preserved in the conversion from T to U.
529 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)530 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
531   // Enforce that T can be implicitly converted to U.
532   static_assert(std::is_convertible<const T&, const U&>::value,
533                 "T must be implicitly convertible to U");
534   // Enforce that we are not converting a non-reference type T to a reference
535   // type U.
536   GTEST_COMPILE_ASSERT_(
537       std::is_reference<T>::value || !std::is_reference<U>::value,
538       cannot_convert_non_reference_arg_to_reference);
539   // In case both T and U are arithmetic types, enforce that the
540   // conversion is not lossy.
541   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
542   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
543   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
544   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
545   GTEST_COMPILE_ASSERT_(
546       kTIsOther || kUIsOther ||
547       (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
548       conversion_of_arithmetic_types_must_be_lossless);
549   return MatcherCast<T>(matcher);
550 }
551 
552 // A<T>() returns a matcher that matches any value of type T.
553 template <typename T>
554 Matcher<T> A();
555 
556 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
557 // and MUST NOT BE USED IN USER CODE!!!
558 namespace internal {
559 
560 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)561 inline void PrintIfNotEmpty(const std::string& explanation,
562                             ::std::ostream* os) {
563   if (explanation != "" && os != nullptr) {
564     *os << ", " << explanation;
565   }
566 }
567 
568 // Returns true if the given type name is easy to read by a human.
569 // This is used to decide whether printing the type of a value might
570 // be helpful.
IsReadableTypeName(const std::string & type_name)571 inline bool IsReadableTypeName(const std::string& type_name) {
572   // We consider a type name readable if it's short or doesn't contain
573   // a template or function type.
574   return (type_name.length() <= 20 ||
575           type_name.find_first_of("<(") == std::string::npos);
576 }
577 
578 // Matches the value against the given matcher, prints the value and explains
579 // the match result to the listener. Returns the match result.
580 // 'listener' must not be NULL.
581 // Value cannot be passed by const reference, because some matchers take a
582 // non-const argument.
583 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)584 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
585                           MatchResultListener* listener) {
586   if (!listener->IsInterested()) {
587     // If the listener is not interested, we do not need to construct the
588     // inner explanation.
589     return matcher.Matches(value);
590   }
591 
592   StringMatchResultListener inner_listener;
593   const bool match = matcher.MatchAndExplain(value, &inner_listener);
594 
595   UniversalPrint(value, listener->stream());
596 #if GTEST_HAS_RTTI
597   const std::string& type_name = GetTypeName<Value>();
598   if (IsReadableTypeName(type_name))
599     *listener->stream() << " (of type " << type_name << ")";
600 #endif
601   PrintIfNotEmpty(inner_listener.str(), listener->stream());
602 
603   return match;
604 }
605 
606 // An internal helper class for doing compile-time loop on a tuple's
607 // fields.
608 template <size_t N>
609 class TuplePrefix {
610  public:
611   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
612   // if and only if the first N fields of matcher_tuple matches
613   // the first N fields of value_tuple, respectively.
614   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)615   static bool Matches(const MatcherTuple& matcher_tuple,
616                       const ValueTuple& value_tuple) {
617     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
618            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
619   }
620 
621   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
622   // describes failures in matching the first N fields of matchers
623   // against the first N fields of values.  If there is no failure,
624   // nothing will be streamed to os.
625   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)626   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
627                                      const ValueTuple& values,
628                                      ::std::ostream* os) {
629     // First, describes failures in the first N - 1 fields.
630     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
631 
632     // Then describes the failure (if any) in the (N - 1)-th (0-based)
633     // field.
634     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
635         std::get<N - 1>(matchers);
636     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
637     const Value& value = std::get<N - 1>(values);
638     StringMatchResultListener listener;
639     if (!matcher.MatchAndExplain(value, &listener)) {
640       *os << "  Expected arg #" << N - 1 << ": ";
641       std::get<N - 1>(matchers).DescribeTo(os);
642       *os << "\n           Actual: ";
643       // We remove the reference in type Value to prevent the
644       // universal printer from printing the address of value, which
645       // isn't interesting to the user most of the time.  The
646       // matcher's MatchAndExplain() method handles the case when
647       // the address is interesting.
648       internal::UniversalPrint(value, os);
649       PrintIfNotEmpty(listener.str(), os);
650       *os << "\n";
651     }
652   }
653 };
654 
655 // The base case.
656 template <>
657 class TuplePrefix<0> {
658  public:
659   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)660   static bool Matches(const MatcherTuple& /* matcher_tuple */,
661                       const ValueTuple& /* value_tuple */) {
662     return true;
663   }
664 
665   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)666   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
667                                      const ValueTuple& /* values */,
668                                      ::std::ostream* /* os */) {}
669 };
670 
671 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
672 // all matchers in matcher_tuple match the corresponding fields in
673 // value_tuple.  It is a compiler error if matcher_tuple and
674 // value_tuple have different number of fields or incompatible field
675 // types.
676 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)677 bool TupleMatches(const MatcherTuple& matcher_tuple,
678                   const ValueTuple& value_tuple) {
679   // Makes sure that matcher_tuple and value_tuple have the same
680   // number of fields.
681   GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
682                             std::tuple_size<ValueTuple>::value,
683                         matcher_and_value_have_different_numbers_of_fields);
684   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
685                                                                   value_tuple);
686 }
687 
688 // Describes failures in matching matchers against values.  If there
689 // is no failure, nothing will be streamed to os.
690 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)691 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
692                                 const ValueTuple& values,
693                                 ::std::ostream* os) {
694   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
695       matchers, values, os);
696 }
697 
698 // TransformTupleValues and its helper.
699 //
700 // TransformTupleValuesHelper hides the internal machinery that
701 // TransformTupleValues uses to implement a tuple traversal.
702 template <typename Tuple, typename Func, typename OutIter>
703 class TransformTupleValuesHelper {
704  private:
705   typedef ::std::tuple_size<Tuple> TupleSize;
706 
707  public:
708   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
709   // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)710   static OutIter Run(Func f, const Tuple& t, OutIter out) {
711     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
712   }
713 
714  private:
715   template <typename Tup, size_t kRemainingSize>
716   struct IterateOverTuple {
operatorIterateOverTuple717     OutIter operator() (Func f, const Tup& t, OutIter out) const {
718       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
719       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
720     }
721   };
722   template <typename Tup>
723   struct IterateOverTuple<Tup, 0> {
724     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
725       return out;
726     }
727   };
728 };
729 
730 // Successively invokes 'f(element)' on each element of the tuple 't',
731 // appending each result to the 'out' iterator. Returns the final value
732 // of 'out'.
733 template <typename Tuple, typename Func, typename OutIter>
734 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
735   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
736 }
737 
738 // Implements _, a matcher that matches any value of any
739 // type.  This is a polymorphic matcher, so we need a template type
740 // conversion operator to make it appearing as a Matcher<T> for any
741 // type T.
742 class AnythingMatcher {
743  public:
744   using is_gtest_matcher = void;
745 
746   template <typename T>
747   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
748     return true;
749   }
750   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
751   void DescribeNegationTo(::std::ostream* os) const {
752     // This is mostly for completeness' sake, as it's not very useful
753     // to write Not(A<bool>()).  However we cannot completely rule out
754     // such a possibility, and it doesn't hurt to be prepared.
755     *os << "never matches";
756   }
757 };
758 
759 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
760 // pointer that is NULL.
761 class IsNullMatcher {
762  public:
763   template <typename Pointer>
764   bool MatchAndExplain(const Pointer& p,
765                        MatchResultListener* /* listener */) const {
766     return p == nullptr;
767   }
768 
769   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
770   void DescribeNegationTo(::std::ostream* os) const {
771     *os << "isn't NULL";
772   }
773 };
774 
775 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
776 // pointer that is not NULL.
777 class NotNullMatcher {
778  public:
779   template <typename Pointer>
780   bool MatchAndExplain(const Pointer& p,
781                        MatchResultListener* /* listener */) const {
782     return p != nullptr;
783   }
784 
785   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
786   void DescribeNegationTo(::std::ostream* os) const {
787     *os << "is NULL";
788   }
789 };
790 
791 // Ref(variable) matches any argument that is a reference to
792 // 'variable'.  This matcher is polymorphic as it can match any
793 // super type of the type of 'variable'.
794 //
795 // The RefMatcher template class implements Ref(variable).  It can
796 // only be instantiated with a reference type.  This prevents a user
797 // from mistakenly using Ref(x) to match a non-reference function
798 // argument.  For example, the following will righteously cause a
799 // compiler error:
800 //
801 //   int n;
802 //   Matcher<int> m1 = Ref(n);   // This won't compile.
803 //   Matcher<int&> m2 = Ref(n);  // This will compile.
804 template <typename T>
805 class RefMatcher;
806 
807 template <typename T>
808 class RefMatcher<T&> {
809   // Google Mock is a generic framework and thus needs to support
810   // mocking any function types, including those that take non-const
811   // reference arguments.  Therefore the template parameter T (and
812   // Super below) can be instantiated to either a const type or a
813   // non-const type.
814  public:
815   // RefMatcher() takes a T& instead of const T&, as we want the
816   // compiler to catch using Ref(const_value) as a matcher for a
817   // non-const reference.
818   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
819 
820   template <typename Super>
821   operator Matcher<Super&>() const {
822     // By passing object_ (type T&) to Impl(), which expects a Super&,
823     // we make sure that Super is a super type of T.  In particular,
824     // this catches using Ref(const_value) as a matcher for a
825     // non-const reference, as you cannot implicitly convert a const
826     // reference to a non-const reference.
827     return MakeMatcher(new Impl<Super>(object_));
828   }
829 
830  private:
831   template <typename Super>
832   class Impl : public MatcherInterface<Super&> {
833    public:
834     explicit Impl(Super& x) : object_(x) {}  // NOLINT
835 
836     // MatchAndExplain() takes a Super& (as opposed to const Super&)
837     // in order to match the interface MatcherInterface<Super&>.
838     bool MatchAndExplain(Super& x,
839                          MatchResultListener* listener) const override {
840       *listener << "which is located @" << static_cast<const void*>(&x);
841       return &x == &object_;
842     }
843 
844     void DescribeTo(::std::ostream* os) const override {
845       *os << "references the variable ";
846       UniversalPrinter<Super&>::Print(object_, os);
847     }
848 
849     void DescribeNegationTo(::std::ostream* os) const override {
850       *os << "does not reference the variable ";
851       UniversalPrinter<Super&>::Print(object_, os);
852     }
853 
854    private:
855     const Super& object_;
856   };
857 
858   T& object_;
859 };
860 
861 // Polymorphic helper functions for narrow and wide string matchers.
862 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
863   return String::CaseInsensitiveCStringEquals(lhs, rhs);
864 }
865 
866 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
867                                          const wchar_t* rhs) {
868   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
869 }
870 
871 // String comparison for narrow or wide strings that can have embedded NUL
872 // characters.
873 template <typename StringType>
874 bool CaseInsensitiveStringEquals(const StringType& s1,
875                                  const StringType& s2) {
876   // Are the heads equal?
877   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
878     return false;
879   }
880 
881   // Skip the equal heads.
882   const typename StringType::value_type nul = 0;
883   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
884 
885   // Are we at the end of either s1 or s2?
886   if (i1 == StringType::npos || i2 == StringType::npos) {
887     return i1 == i2;
888   }
889 
890   // Are the tails equal?
891   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
892 }
893 
894 // String matchers.
895 
896 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
897 template <typename StringType>
898 class StrEqualityMatcher {
899  public:
900   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
901       : string_(std::move(str)),
902         expect_eq_(expect_eq),
903         case_sensitive_(case_sensitive) {}
904 
905 #if GTEST_INTERNAL_HAS_STRING_VIEW
906   bool MatchAndExplain(const internal::StringView& s,
907                        MatchResultListener* listener) const {
908     // This should fail to compile if StringView is used with wide
909     // strings.
910     const StringType& str = std::string(s);
911     return MatchAndExplain(str, listener);
912   }
913 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
914 
915   // Accepts pointer types, particularly:
916   //   const char*
917   //   char*
918   //   const wchar_t*
919   //   wchar_t*
920   template <typename CharType>
921   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
922     if (s == nullptr) {
923       return !expect_eq_;
924     }
925     return MatchAndExplain(StringType(s), listener);
926   }
927 
928   // Matches anything that can convert to StringType.
929   //
930   // This is a template, not just a plain function with const StringType&,
931   // because StringView has some interfering non-explicit constructors.
932   template <typename MatcheeStringType>
933   bool MatchAndExplain(const MatcheeStringType& s,
934                        MatchResultListener* /* listener */) const {
935     const StringType s2(s);
936     const bool eq = case_sensitive_ ? s2 == string_ :
937         CaseInsensitiveStringEquals(s2, string_);
938     return expect_eq_ == eq;
939   }
940 
941   void DescribeTo(::std::ostream* os) const {
942     DescribeToHelper(expect_eq_, os);
943   }
944 
945   void DescribeNegationTo(::std::ostream* os) const {
946     DescribeToHelper(!expect_eq_, os);
947   }
948 
949  private:
950   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
951     *os << (expect_eq ? "is " : "isn't ");
952     *os << "equal to ";
953     if (!case_sensitive_) {
954       *os << "(ignoring case) ";
955     }
956     UniversalPrint(string_, os);
957   }
958 
959   const StringType string_;
960   const bool expect_eq_;
961   const bool case_sensitive_;
962 };
963 
964 // Implements the polymorphic HasSubstr(substring) matcher, which
965 // can be used as a Matcher<T> as long as T can be converted to a
966 // string.
967 template <typename StringType>
968 class HasSubstrMatcher {
969  public:
970   explicit HasSubstrMatcher(const StringType& substring)
971       : substring_(substring) {}
972 
973 #if GTEST_INTERNAL_HAS_STRING_VIEW
974   bool MatchAndExplain(const internal::StringView& s,
975                        MatchResultListener* listener) const {
976     // This should fail to compile if StringView is used with wide
977     // strings.
978     const StringType& str = std::string(s);
979     return MatchAndExplain(str, listener);
980   }
981 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
982 
983   // Accepts pointer types, particularly:
984   //   const char*
985   //   char*
986   //   const wchar_t*
987   //   wchar_t*
988   template <typename CharType>
989   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
990     return s != nullptr && MatchAndExplain(StringType(s), listener);
991   }
992 
993   // Matches anything that can convert to StringType.
994   //
995   // This is a template, not just a plain function with const StringType&,
996   // because StringView has some interfering non-explicit constructors.
997   template <typename MatcheeStringType>
998   bool MatchAndExplain(const MatcheeStringType& s,
999                        MatchResultListener* /* listener */) const {
1000     return StringType(s).find(substring_) != StringType::npos;
1001   }
1002 
1003   // Describes what this matcher matches.
1004   void DescribeTo(::std::ostream* os) const {
1005     *os << "has substring ";
1006     UniversalPrint(substring_, os);
1007   }
1008 
1009   void DescribeNegationTo(::std::ostream* os) const {
1010     *os << "has no substring ";
1011     UniversalPrint(substring_, os);
1012   }
1013 
1014  private:
1015   const StringType substring_;
1016 };
1017 
1018 // Implements the polymorphic StartsWith(substring) matcher, which
1019 // can be used as a Matcher<T> as long as T can be converted to a
1020 // string.
1021 template <typename StringType>
1022 class StartsWithMatcher {
1023  public:
1024   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1025   }
1026 
1027 #if GTEST_INTERNAL_HAS_STRING_VIEW
1028   bool MatchAndExplain(const internal::StringView& s,
1029                        MatchResultListener* listener) const {
1030     // This should fail to compile if StringView is used with wide
1031     // strings.
1032     const StringType& str = std::string(s);
1033     return MatchAndExplain(str, listener);
1034   }
1035 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1036 
1037   // Accepts pointer types, particularly:
1038   //   const char*
1039   //   char*
1040   //   const wchar_t*
1041   //   wchar_t*
1042   template <typename CharType>
1043   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1044     return s != nullptr && MatchAndExplain(StringType(s), listener);
1045   }
1046 
1047   // Matches anything that can convert to StringType.
1048   //
1049   // This is a template, not just a plain function with const StringType&,
1050   // because StringView has some interfering non-explicit constructors.
1051   template <typename MatcheeStringType>
1052   bool MatchAndExplain(const MatcheeStringType& s,
1053                        MatchResultListener* /* listener */) const {
1054     const StringType& s2(s);
1055     return s2.length() >= prefix_.length() &&
1056         s2.substr(0, prefix_.length()) == prefix_;
1057   }
1058 
1059   void DescribeTo(::std::ostream* os) const {
1060     *os << "starts with ";
1061     UniversalPrint(prefix_, os);
1062   }
1063 
1064   void DescribeNegationTo(::std::ostream* os) const {
1065     *os << "doesn't start with ";
1066     UniversalPrint(prefix_, os);
1067   }
1068 
1069  private:
1070   const StringType prefix_;
1071 };
1072 
1073 // Implements the polymorphic EndsWith(substring) matcher, which
1074 // can be used as a Matcher<T> as long as T can be converted to a
1075 // string.
1076 template <typename StringType>
1077 class EndsWithMatcher {
1078  public:
1079   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1080 
1081 #if GTEST_INTERNAL_HAS_STRING_VIEW
1082   bool MatchAndExplain(const internal::StringView& s,
1083                        MatchResultListener* listener) const {
1084     // This should fail to compile if StringView is used with wide
1085     // strings.
1086     const StringType& str = std::string(s);
1087     return MatchAndExplain(str, listener);
1088   }
1089 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1090 
1091   // Accepts pointer types, particularly:
1092   //   const char*
1093   //   char*
1094   //   const wchar_t*
1095   //   wchar_t*
1096   template <typename CharType>
1097   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1098     return s != nullptr && MatchAndExplain(StringType(s), listener);
1099   }
1100 
1101   // Matches anything that can convert to StringType.
1102   //
1103   // This is a template, not just a plain function with const StringType&,
1104   // because StringView has some interfering non-explicit constructors.
1105   template <typename MatcheeStringType>
1106   bool MatchAndExplain(const MatcheeStringType& s,
1107                        MatchResultListener* /* listener */) const {
1108     const StringType& s2(s);
1109     return s2.length() >= suffix_.length() &&
1110         s2.substr(s2.length() - suffix_.length()) == suffix_;
1111   }
1112 
1113   void DescribeTo(::std::ostream* os) const {
1114     *os << "ends with ";
1115     UniversalPrint(suffix_, os);
1116   }
1117 
1118   void DescribeNegationTo(::std::ostream* os) const {
1119     *os << "doesn't end with ";
1120     UniversalPrint(suffix_, os);
1121   }
1122 
1123  private:
1124   const StringType suffix_;
1125 };
1126 
1127 // Implements a matcher that compares the two fields of a 2-tuple
1128 // using one of the ==, <=, <, etc, operators.  The two fields being
1129 // compared don't have to have the same type.
1130 //
1131 // The matcher defined here is polymorphic (for example, Eq() can be
1132 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1133 // etc).  Therefore we use a template type conversion operator in the
1134 // implementation.
1135 template <typename D, typename Op>
1136 class PairMatchBase {
1137  public:
1138   template <typename T1, typename T2>
1139   operator Matcher<::std::tuple<T1, T2>>() const {
1140     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1141   }
1142   template <typename T1, typename T2>
1143   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1144     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1145   }
1146 
1147  private:
1148   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1149     return os << D::Desc();
1150   }
1151 
1152   template <typename Tuple>
1153   class Impl : public MatcherInterface<Tuple> {
1154    public:
1155     bool MatchAndExplain(Tuple args,
1156                          MatchResultListener* /* listener */) const override {
1157       return Op()(::std::get<0>(args), ::std::get<1>(args));
1158     }
1159     void DescribeTo(::std::ostream* os) const override {
1160       *os << "are " << GetDesc;
1161     }
1162     void DescribeNegationTo(::std::ostream* os) const override {
1163       *os << "aren't " << GetDesc;
1164     }
1165   };
1166 };
1167 
1168 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1169  public:
1170   static const char* Desc() { return "an equal pair"; }
1171 };
1172 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1173  public:
1174   static const char* Desc() { return "an unequal pair"; }
1175 };
1176 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1177  public:
1178   static const char* Desc() { return "a pair where the first < the second"; }
1179 };
1180 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1181  public:
1182   static const char* Desc() { return "a pair where the first > the second"; }
1183 };
1184 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1185  public:
1186   static const char* Desc() { return "a pair where the first <= the second"; }
1187 };
1188 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1189  public:
1190   static const char* Desc() { return "a pair where the first >= the second"; }
1191 };
1192 
1193 // Implements the Not(...) matcher for a particular argument type T.
1194 // We do not nest it inside the NotMatcher class template, as that
1195 // will prevent different instantiations of NotMatcher from sharing
1196 // the same NotMatcherImpl<T> class.
1197 template <typename T>
1198 class NotMatcherImpl : public MatcherInterface<const T&> {
1199  public:
1200   explicit NotMatcherImpl(const Matcher<T>& matcher)
1201       : matcher_(matcher) {}
1202 
1203   bool MatchAndExplain(const T& x,
1204                        MatchResultListener* listener) const override {
1205     return !matcher_.MatchAndExplain(x, listener);
1206   }
1207 
1208   void DescribeTo(::std::ostream* os) const override {
1209     matcher_.DescribeNegationTo(os);
1210   }
1211 
1212   void DescribeNegationTo(::std::ostream* os) const override {
1213     matcher_.DescribeTo(os);
1214   }
1215 
1216  private:
1217   const Matcher<T> matcher_;
1218 };
1219 
1220 // Implements the Not(m) matcher, which matches a value that doesn't
1221 // match matcher m.
1222 template <typename InnerMatcher>
1223 class NotMatcher {
1224  public:
1225   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1226 
1227   // This template type conversion operator allows Not(m) to be used
1228   // to match any type m can match.
1229   template <typename T>
1230   operator Matcher<T>() const {
1231     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1232   }
1233 
1234  private:
1235   InnerMatcher matcher_;
1236 };
1237 
1238 // Implements the AllOf(m1, m2) matcher for a particular argument type
1239 // T. We do not nest it inside the BothOfMatcher class template, as
1240 // that will prevent different instantiations of BothOfMatcher from
1241 // sharing the same BothOfMatcherImpl<T> class.
1242 template <typename T>
1243 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1244  public:
1245   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
1246       : matchers_(std::move(matchers)) {}
1247 
1248   void DescribeTo(::std::ostream* os) const override {
1249     *os << "(";
1250     for (size_t i = 0; i < matchers_.size(); ++i) {
1251       if (i != 0) *os << ") and (";
1252       matchers_[i].DescribeTo(os);
1253     }
1254     *os << ")";
1255   }
1256 
1257   void DescribeNegationTo(::std::ostream* os) const override {
1258     *os << "(";
1259     for (size_t i = 0; i < matchers_.size(); ++i) {
1260       if (i != 0) *os << ") or (";
1261       matchers_[i].DescribeNegationTo(os);
1262     }
1263     *os << ")";
1264   }
1265 
1266   bool MatchAndExplain(const T& x,
1267                        MatchResultListener* listener) const override {
1268     // If either matcher1_ or matcher2_ doesn't match x, we only need
1269     // to explain why one of them fails.
1270     std::string all_match_result;
1271 
1272     for (size_t i = 0; i < matchers_.size(); ++i) {
1273       StringMatchResultListener slistener;
1274       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1275         if (all_match_result.empty()) {
1276           all_match_result = slistener.str();
1277         } else {
1278           std::string result = slistener.str();
1279           if (!result.empty()) {
1280             all_match_result += ", and ";
1281             all_match_result += result;
1282           }
1283         }
1284       } else {
1285         *listener << slistener.str();
1286         return false;
1287       }
1288     }
1289 
1290     // Otherwise we need to explain why *both* of them match.
1291     *listener << all_match_result;
1292     return true;
1293   }
1294 
1295  private:
1296   const std::vector<Matcher<T> > matchers_;
1297 };
1298 
1299 // VariadicMatcher is used for the variadic implementation of
1300 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1301 // CombiningMatcher<T> is used to recursively combine the provided matchers
1302 // (of type Args...).
1303 template <template <typename T> class CombiningMatcher, typename... Args>
1304 class VariadicMatcher {
1305  public:
1306   VariadicMatcher(const Args&... matchers)  // NOLINT
1307       : matchers_(matchers...) {
1308     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1309   }
1310 
1311   VariadicMatcher(const VariadicMatcher&) = default;
1312   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1313 
1314   // This template type conversion operator allows an
1315   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1316   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1317   template <typename T>
1318   operator Matcher<T>() const {
1319     std::vector<Matcher<T> > values;
1320     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1321     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1322   }
1323 
1324  private:
1325   template <typename T, size_t I>
1326   void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
1327                              std::integral_constant<size_t, I>) const {
1328     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1329     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1330   }
1331 
1332   template <typename T>
1333   void CreateVariadicMatcher(
1334       std::vector<Matcher<T> >*,
1335       std::integral_constant<size_t, sizeof...(Args)>) const {}
1336 
1337   std::tuple<Args...> matchers_;
1338 };
1339 
1340 template <typename... Args>
1341 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1342 
1343 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1344 // T.  We do not nest it inside the AnyOfMatcher class template, as
1345 // that will prevent different instantiations of AnyOfMatcher from
1346 // sharing the same EitherOfMatcherImpl<T> class.
1347 template <typename T>
1348 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1349  public:
1350   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
1351       : matchers_(std::move(matchers)) {}
1352 
1353   void DescribeTo(::std::ostream* os) const override {
1354     *os << "(";
1355     for (size_t i = 0; i < matchers_.size(); ++i) {
1356       if (i != 0) *os << ") or (";
1357       matchers_[i].DescribeTo(os);
1358     }
1359     *os << ")";
1360   }
1361 
1362   void DescribeNegationTo(::std::ostream* os) const override {
1363     *os << "(";
1364     for (size_t i = 0; i < matchers_.size(); ++i) {
1365       if (i != 0) *os << ") and (";
1366       matchers_[i].DescribeNegationTo(os);
1367     }
1368     *os << ")";
1369   }
1370 
1371   bool MatchAndExplain(const T& x,
1372                        MatchResultListener* listener) const override {
1373     std::string no_match_result;
1374 
1375     // If either matcher1_ or matcher2_ matches x, we just need to
1376     // explain why *one* of them matches.
1377     for (size_t i = 0; i < matchers_.size(); ++i) {
1378       StringMatchResultListener slistener;
1379       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1380         *listener << slistener.str();
1381         return true;
1382       } else {
1383         if (no_match_result.empty()) {
1384           no_match_result = slistener.str();
1385         } else {
1386           std::string result = slistener.str();
1387           if (!result.empty()) {
1388             no_match_result += ", and ";
1389             no_match_result += result;
1390           }
1391         }
1392       }
1393     }
1394 
1395     // Otherwise we need to explain why *both* of them fail.
1396     *listener << no_match_result;
1397     return false;
1398   }
1399 
1400  private:
1401   const std::vector<Matcher<T> > matchers_;
1402 };
1403 
1404 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1405 template <typename... Args>
1406 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1407 
1408 // Wrapper for implementation of Any/AllOfArray().
1409 template <template <class> class MatcherImpl, typename T>
1410 class SomeOfArrayMatcher {
1411  public:
1412   // Constructs the matcher from a sequence of element values or
1413   // element matchers.
1414   template <typename Iter>
1415   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1416 
1417   template <typename U>
1418   operator Matcher<U>() const {  // NOLINT
1419     using RawU = typename std::decay<U>::type;
1420     std::vector<Matcher<RawU>> matchers;
1421     for (const auto& matcher : matchers_) {
1422       matchers.push_back(MatcherCast<RawU>(matcher));
1423     }
1424     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1425   }
1426 
1427  private:
1428   const ::std::vector<T> matchers_;
1429 };
1430 
1431 template <typename T>
1432 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1433 
1434 template <typename T>
1435 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1436 
1437 // Used for implementing Truly(pred), which turns a predicate into a
1438 // matcher.
1439 template <typename Predicate>
1440 class TrulyMatcher {
1441  public:
1442   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1443 
1444   // This method template allows Truly(pred) to be used as a matcher
1445   // for type T where T is the argument type of predicate 'pred'.  The
1446   // argument is passed by reference as the predicate may be
1447   // interested in the address of the argument.
1448   template <typename T>
1449   bool MatchAndExplain(T& x,  // NOLINT
1450                        MatchResultListener* listener) const {
1451     // Without the if-statement, MSVC sometimes warns about converting
1452     // a value to bool (warning 4800).
1453     //
1454     // We cannot write 'return !!predicate_(x);' as that doesn't work
1455     // when predicate_(x) returns a class convertible to bool but
1456     // having no operator!().
1457     if (predicate_(x))
1458       return true;
1459     *listener << "didn't satisfy the given predicate";
1460     return false;
1461   }
1462 
1463   void DescribeTo(::std::ostream* os) const {
1464     *os << "satisfies the given predicate";
1465   }
1466 
1467   void DescribeNegationTo(::std::ostream* os) const {
1468     *os << "doesn't satisfy the given predicate";
1469   }
1470 
1471  private:
1472   Predicate predicate_;
1473 };
1474 
1475 // Used for implementing Matches(matcher), which turns a matcher into
1476 // a predicate.
1477 template <typename M>
1478 class MatcherAsPredicate {
1479  public:
1480   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1481 
1482   // This template operator() allows Matches(m) to be used as a
1483   // predicate on type T where m is a matcher on type T.
1484   //
1485   // The argument x is passed by reference instead of by value, as
1486   // some matcher may be interested in its address (e.g. as in
1487   // Matches(Ref(n))(x)).
1488   template <typename T>
1489   bool operator()(const T& x) const {
1490     // We let matcher_ commit to a particular type here instead of
1491     // when the MatcherAsPredicate object was constructed.  This
1492     // allows us to write Matches(m) where m is a polymorphic matcher
1493     // (e.g. Eq(5)).
1494     //
1495     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1496     // compile when matcher_ has type Matcher<const T&>; if we write
1497     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1498     // when matcher_ has type Matcher<T>; if we just write
1499     // matcher_.Matches(x), it won't compile when matcher_ is
1500     // polymorphic, e.g. Eq(5).
1501     //
1502     // MatcherCast<const T&>() is necessary for making the code work
1503     // in all of the above situations.
1504     return MatcherCast<const T&>(matcher_).Matches(x);
1505   }
1506 
1507  private:
1508   M matcher_;
1509 };
1510 
1511 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1512 // argument M must be a type that can be converted to a matcher.
1513 template <typename M>
1514 class PredicateFormatterFromMatcher {
1515  public:
1516   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1517 
1518   // This template () operator allows a PredicateFormatterFromMatcher
1519   // object to act as a predicate-formatter suitable for using with
1520   // Google Test's EXPECT_PRED_FORMAT1() macro.
1521   template <typename T>
1522   AssertionResult operator()(const char* value_text, const T& x) const {
1523     // We convert matcher_ to a Matcher<const T&> *now* instead of
1524     // when the PredicateFormatterFromMatcher object was constructed,
1525     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1526     // know which type to instantiate it to until we actually see the
1527     // type of x here.
1528     //
1529     // We write SafeMatcherCast<const T&>(matcher_) instead of
1530     // Matcher<const T&>(matcher_), as the latter won't compile when
1531     // matcher_ has type Matcher<T> (e.g. An<int>()).
1532     // We don't write MatcherCast<const T&> either, as that allows
1533     // potentially unsafe downcasting of the matcher argument.
1534     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1535 
1536     // The expected path here is that the matcher should match (i.e. that most
1537     // tests pass) so optimize for this case.
1538     if (matcher.Matches(x)) {
1539       return AssertionSuccess();
1540     }
1541 
1542     ::std::stringstream ss;
1543     ss << "Value of: " << value_text << "\n"
1544        << "Expected: ";
1545     matcher.DescribeTo(&ss);
1546 
1547     // Rerun the matcher to "PrintAndExplain" the failure.
1548     StringMatchResultListener listener;
1549     if (MatchPrintAndExplain(x, matcher, &listener)) {
1550       ss << "\n  The matcher failed on the initial attempt; but passed when "
1551             "rerun to generate the explanation.";
1552     }
1553     ss << "\n  Actual: " << listener.str();
1554     return AssertionFailure() << ss.str();
1555   }
1556 
1557  private:
1558   const M matcher_;
1559 };
1560 
1561 // A helper function for converting a matcher to a predicate-formatter
1562 // without the user needing to explicitly write the type.  This is
1563 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1564 // Implementation detail: 'matcher' is received by-value to force decaying.
1565 template <typename M>
1566 inline PredicateFormatterFromMatcher<M>
1567 MakePredicateFormatterFromMatcher(M matcher) {
1568   return PredicateFormatterFromMatcher<M>(std::move(matcher));
1569 }
1570 
1571 // Implements the polymorphic IsNan() matcher, which matches any floating type
1572 // value that is Nan.
1573 class IsNanMatcher {
1574  public:
1575   template <typename FloatType>
1576   bool MatchAndExplain(const FloatType& f,
1577                        MatchResultListener* /* listener */) const {
1578     return (::std::isnan)(f);
1579   }
1580 
1581   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1582   void DescribeNegationTo(::std::ostream* os) const {
1583     *os << "isn't NaN";
1584   }
1585 };
1586 
1587 // Implements the polymorphic floating point equality matcher, which matches
1588 // two float values using ULP-based approximation or, optionally, a
1589 // user-specified epsilon.  The template is meant to be instantiated with
1590 // FloatType being either float or double.
1591 template <typename FloatType>
1592 class FloatingEqMatcher {
1593  public:
1594   // Constructor for FloatingEqMatcher.
1595   // The matcher's input will be compared with expected.  The matcher treats two
1596   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1597   // equality comparisons between NANs will always return false.  We specify a
1598   // negative max_abs_error_ term to indicate that ULP-based approximation will
1599   // be used for comparison.
1600   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
1601     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
1602   }
1603 
1604   // Constructor that supports a user-specified max_abs_error that will be used
1605   // for comparison instead of ULP-based approximation.  The max absolute
1606   // should be non-negative.
1607   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1608                     FloatType max_abs_error)
1609       : expected_(expected),
1610         nan_eq_nan_(nan_eq_nan),
1611         max_abs_error_(max_abs_error) {
1612     GTEST_CHECK_(max_abs_error >= 0)
1613         << ", where max_abs_error is" << max_abs_error;
1614   }
1615 
1616   // Implements floating point equality matcher as a Matcher<T>.
1617   template <typename T>
1618   class Impl : public MatcherInterface<T> {
1619    public:
1620     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1621         : expected_(expected),
1622           nan_eq_nan_(nan_eq_nan),
1623           max_abs_error_(max_abs_error) {}
1624 
1625     bool MatchAndExplain(T value,
1626                          MatchResultListener* listener) const override {
1627       const FloatingPoint<FloatType> actual(value), expected(expected_);
1628 
1629       // Compares NaNs first, if nan_eq_nan_ is true.
1630       if (actual.is_nan() || expected.is_nan()) {
1631         if (actual.is_nan() && expected.is_nan()) {
1632           return nan_eq_nan_;
1633         }
1634         // One is nan; the other is not nan.
1635         return false;
1636       }
1637       if (HasMaxAbsError()) {
1638         // We perform an equality check so that inf will match inf, regardless
1639         // of error bounds.  If the result of value - expected_ would result in
1640         // overflow or if either value is inf, the default result is infinity,
1641         // which should only match if max_abs_error_ is also infinity.
1642         if (value == expected_) {
1643           return true;
1644         }
1645 
1646         const FloatType diff = value - expected_;
1647         if (::std::fabs(diff) <= max_abs_error_) {
1648           return true;
1649         }
1650 
1651         if (listener->IsInterested()) {
1652           *listener << "which is " << diff << " from " << expected_;
1653         }
1654         return false;
1655       } else {
1656         return actual.AlmostEquals(expected);
1657       }
1658     }
1659 
1660     void DescribeTo(::std::ostream* os) const override {
1661       // os->precision() returns the previously set precision, which we
1662       // store to restore the ostream to its original configuration
1663       // after outputting.
1664       const ::std::streamsize old_precision = os->precision(
1665           ::std::numeric_limits<FloatType>::digits10 + 2);
1666       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1667         if (nan_eq_nan_) {
1668           *os << "is NaN";
1669         } else {
1670           *os << "never matches";
1671         }
1672       } else {
1673         *os << "is approximately " << expected_;
1674         if (HasMaxAbsError()) {
1675           *os << " (absolute error <= " << max_abs_error_ << ")";
1676         }
1677       }
1678       os->precision(old_precision);
1679     }
1680 
1681     void DescribeNegationTo(::std::ostream* os) const override {
1682       // As before, get original precision.
1683       const ::std::streamsize old_precision = os->precision(
1684           ::std::numeric_limits<FloatType>::digits10 + 2);
1685       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1686         if (nan_eq_nan_) {
1687           *os << "isn't NaN";
1688         } else {
1689           *os << "is anything";
1690         }
1691       } else {
1692         *os << "isn't approximately " << expected_;
1693         if (HasMaxAbsError()) {
1694           *os << " (absolute error > " << max_abs_error_ << ")";
1695         }
1696       }
1697       // Restore original precision.
1698       os->precision(old_precision);
1699     }
1700 
1701    private:
1702     bool HasMaxAbsError() const {
1703       return max_abs_error_ >= 0;
1704     }
1705 
1706     const FloatType expected_;
1707     const bool nan_eq_nan_;
1708     // max_abs_error will be used for value comparison when >= 0.
1709     const FloatType max_abs_error_;
1710   };
1711 
1712   // The following 3 type conversion operators allow FloatEq(expected) and
1713   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1714   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1715   operator Matcher<FloatType>() const {
1716     return MakeMatcher(
1717         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1718   }
1719 
1720   operator Matcher<const FloatType&>() const {
1721     return MakeMatcher(
1722         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1723   }
1724 
1725   operator Matcher<FloatType&>() const {
1726     return MakeMatcher(
1727         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1728   }
1729 
1730  private:
1731   const FloatType expected_;
1732   const bool nan_eq_nan_;
1733   // max_abs_error will be used for value comparison when >= 0.
1734   const FloatType max_abs_error_;
1735 };
1736 
1737 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1738 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1739 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1740 // against y. The former implements "Eq", the latter "Near". At present, there
1741 // is no version that compares NaNs as equal.
1742 template <typename FloatType>
1743 class FloatingEq2Matcher {
1744  public:
1745   FloatingEq2Matcher() { Init(-1, false); }
1746 
1747   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1748 
1749   explicit FloatingEq2Matcher(FloatType max_abs_error) {
1750     Init(max_abs_error, false);
1751   }
1752 
1753   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1754     Init(max_abs_error, nan_eq_nan);
1755   }
1756 
1757   template <typename T1, typename T2>
1758   operator Matcher<::std::tuple<T1, T2>>() const {
1759     return MakeMatcher(
1760         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1761   }
1762   template <typename T1, typename T2>
1763   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1764     return MakeMatcher(
1765         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1766   }
1767 
1768  private:
1769   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1770     return os << "an almost-equal pair";
1771   }
1772 
1773   template <typename Tuple>
1774   class Impl : public MatcherInterface<Tuple> {
1775    public:
1776     Impl(FloatType max_abs_error, bool nan_eq_nan) :
1777         max_abs_error_(max_abs_error),
1778         nan_eq_nan_(nan_eq_nan) {}
1779 
1780     bool MatchAndExplain(Tuple args,
1781                          MatchResultListener* listener) const override {
1782       if (max_abs_error_ == -1) {
1783         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1784         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1785             ::std::get<1>(args), listener);
1786       } else {
1787         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1788                                         max_abs_error_);
1789         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1790             ::std::get<1>(args), listener);
1791       }
1792     }
1793     void DescribeTo(::std::ostream* os) const override {
1794       *os << "are " << GetDesc;
1795     }
1796     void DescribeNegationTo(::std::ostream* os) const override {
1797       *os << "aren't " << GetDesc;
1798     }
1799 
1800    private:
1801     FloatType max_abs_error_;
1802     const bool nan_eq_nan_;
1803   };
1804 
1805   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1806     max_abs_error_ = max_abs_error_val;
1807     nan_eq_nan_ = nan_eq_nan_val;
1808   }
1809   FloatType max_abs_error_;
1810   bool nan_eq_nan_;
1811 };
1812 
1813 // Implements the Pointee(m) matcher for matching a pointer whose
1814 // pointee matches matcher m.  The pointer can be either raw or smart.
1815 template <typename InnerMatcher>
1816 class PointeeMatcher {
1817  public:
1818   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1819 
1820   // This type conversion operator template allows Pointee(m) to be
1821   // used as a matcher for any pointer type whose pointee type is
1822   // compatible with the inner matcher, where type Pointer can be
1823   // either a raw pointer or a smart pointer.
1824   //
1825   // The reason we do this instead of relying on
1826   // MakePolymorphicMatcher() is that the latter is not flexible
1827   // enough for implementing the DescribeTo() method of Pointee().
1828   template <typename Pointer>
1829   operator Matcher<Pointer>() const {
1830     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1831   }
1832 
1833  private:
1834   // The monomorphic implementation that works for a particular pointer type.
1835   template <typename Pointer>
1836   class Impl : public MatcherInterface<Pointer> {
1837    public:
1838     using Pointee =
1839         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1840             Pointer)>::element_type;
1841 
1842     explicit Impl(const InnerMatcher& matcher)
1843         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1844 
1845     void DescribeTo(::std::ostream* os) const override {
1846       *os << "points to a value that ";
1847       matcher_.DescribeTo(os);
1848     }
1849 
1850     void DescribeNegationTo(::std::ostream* os) const override {
1851       *os << "does not point to a value that ";
1852       matcher_.DescribeTo(os);
1853     }
1854 
1855     bool MatchAndExplain(Pointer pointer,
1856                          MatchResultListener* listener) const override {
1857       if (GetRawPointer(pointer) == nullptr) return false;
1858 
1859       *listener << "which points to ";
1860       return MatchPrintAndExplain(*pointer, matcher_, listener);
1861     }
1862 
1863    private:
1864     const Matcher<const Pointee&> matcher_;
1865   };
1866 
1867   const InnerMatcher matcher_;
1868 };
1869 
1870 // Implements the Pointer(m) matcher
1871 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1872 // m.  The pointer can be either raw or smart, and will match `m` against the
1873 // raw pointer.
1874 template <typename InnerMatcher>
1875 class PointerMatcher {
1876  public:
1877   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1878 
1879   // This type conversion operator template allows Pointer(m) to be
1880   // used as a matcher for any pointer type whose pointer type is
1881   // compatible with the inner matcher, where type PointerType can be
1882   // either a raw pointer or a smart pointer.
1883   //
1884   // The reason we do this instead of relying on
1885   // MakePolymorphicMatcher() is that the latter is not flexible
1886   // enough for implementing the DescribeTo() method of Pointer().
1887   template <typename PointerType>
1888   operator Matcher<PointerType>() const {  // NOLINT
1889     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1890   }
1891 
1892  private:
1893   // The monomorphic implementation that works for a particular pointer type.
1894   template <typename PointerType>
1895   class Impl : public MatcherInterface<PointerType> {
1896    public:
1897     using Pointer =
1898         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1899             PointerType)>::element_type*;
1900 
1901     explicit Impl(const InnerMatcher& matcher)
1902         : matcher_(MatcherCast<Pointer>(matcher)) {}
1903 
1904     void DescribeTo(::std::ostream* os) const override {
1905       *os << "is a pointer that ";
1906       matcher_.DescribeTo(os);
1907     }
1908 
1909     void DescribeNegationTo(::std::ostream* os) const override {
1910       *os << "is not a pointer that ";
1911       matcher_.DescribeTo(os);
1912     }
1913 
1914     bool MatchAndExplain(PointerType pointer,
1915                          MatchResultListener* listener) const override {
1916       *listener << "which is a pointer that ";
1917       Pointer p = GetRawPointer(pointer);
1918       return MatchPrintAndExplain(p, matcher_, listener);
1919     }
1920 
1921    private:
1922     Matcher<Pointer> matcher_;
1923   };
1924 
1925   const InnerMatcher matcher_;
1926 };
1927 
1928 #if GTEST_HAS_RTTI
1929 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1930 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1931 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1932 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
1933 // If To is a reference and the cast fails, this matcher returns false
1934 // immediately.
1935 template <typename To>
1936 class WhenDynamicCastToMatcherBase {
1937  public:
1938   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1939       : matcher_(matcher) {}
1940 
1941   void DescribeTo(::std::ostream* os) const {
1942     GetCastTypeDescription(os);
1943     matcher_.DescribeTo(os);
1944   }
1945 
1946   void DescribeNegationTo(::std::ostream* os) const {
1947     GetCastTypeDescription(os);
1948     matcher_.DescribeNegationTo(os);
1949   }
1950 
1951  protected:
1952   const Matcher<To> matcher_;
1953 
1954   static std::string GetToName() {
1955     return GetTypeName<To>();
1956   }
1957 
1958  private:
1959   static void GetCastTypeDescription(::std::ostream* os) {
1960     *os << "when dynamic_cast to " << GetToName() << ", ";
1961   }
1962 };
1963 
1964 // Primary template.
1965 // To is a pointer. Cast and forward the result.
1966 template <typename To>
1967 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
1968  public:
1969   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
1970       : WhenDynamicCastToMatcherBase<To>(matcher) {}
1971 
1972   template <typename From>
1973   bool MatchAndExplain(From from, MatchResultListener* listener) const {
1974     To to = dynamic_cast<To>(from);
1975     return MatchPrintAndExplain(to, this->matcher_, listener);
1976   }
1977 };
1978 
1979 // Specialize for references.
1980 // In this case we return false if the dynamic_cast fails.
1981 template <typename To>
1982 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
1983  public:
1984   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
1985       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
1986 
1987   template <typename From>
1988   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
1989     // We don't want an std::bad_cast here, so do the cast with pointers.
1990     To* to = dynamic_cast<To*>(&from);
1991     if (to == nullptr) {
1992       *listener << "which cannot be dynamic_cast to " << this->GetToName();
1993       return false;
1994     }
1995     return MatchPrintAndExplain(*to, this->matcher_, listener);
1996   }
1997 };
1998 #endif  // GTEST_HAS_RTTI
1999 
2000 // Implements the Field() matcher for matching a field (i.e. member
2001 // variable) of an object.
2002 template <typename Class, typename FieldType>
2003 class FieldMatcher {
2004  public:
2005   FieldMatcher(FieldType Class::*field,
2006                const Matcher<const FieldType&>& matcher)
2007       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2008 
2009   FieldMatcher(const std::string& field_name, FieldType Class::*field,
2010                const Matcher<const FieldType&>& matcher)
2011       : field_(field),
2012         matcher_(matcher),
2013         whose_field_("whose field `" + field_name + "` ") {}
2014 
2015   void DescribeTo(::std::ostream* os) const {
2016     *os << "is an object " << whose_field_;
2017     matcher_.DescribeTo(os);
2018   }
2019 
2020   void DescribeNegationTo(::std::ostream* os) const {
2021     *os << "is an object " << whose_field_;
2022     matcher_.DescribeNegationTo(os);
2023   }
2024 
2025   template <typename T>
2026   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2027     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2028     // a compiler bug, and can now be removed.
2029     return MatchAndExplainImpl(
2030         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2031         value, listener);
2032   }
2033 
2034  private:
2035   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2036                            const Class& obj,
2037                            MatchResultListener* listener) const {
2038     *listener << whose_field_ << "is ";
2039     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2040   }
2041 
2042   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2043                            MatchResultListener* listener) const {
2044     if (p == nullptr) return false;
2045 
2046     *listener << "which points to an object ";
2047     // Since *p has a field, it must be a class/struct/union type and
2048     // thus cannot be a pointer.  Therefore we pass false_type() as
2049     // the first argument.
2050     return MatchAndExplainImpl(std::false_type(), *p, listener);
2051   }
2052 
2053   const FieldType Class::*field_;
2054   const Matcher<const FieldType&> matcher_;
2055 
2056   // Contains either "whose given field " if the name of the field is unknown
2057   // or "whose field `name_of_field` " if the name is known.
2058   const std::string whose_field_;
2059 };
2060 
2061 // Implements the Property() matcher for matching a property
2062 // (i.e. return value of a getter method) of an object.
2063 //
2064 // Property is a const-qualified member function of Class returning
2065 // PropertyType.
2066 template <typename Class, typename PropertyType, typename Property>
2067 class PropertyMatcher {
2068  public:
2069   typedef const PropertyType& RefToConstProperty;
2070 
2071   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2072       : property_(property),
2073         matcher_(matcher),
2074         whose_property_("whose given property ") {}
2075 
2076   PropertyMatcher(const std::string& property_name, Property property,
2077                   const Matcher<RefToConstProperty>& matcher)
2078       : property_(property),
2079         matcher_(matcher),
2080         whose_property_("whose property `" + property_name + "` ") {}
2081 
2082   void DescribeTo(::std::ostream* os) const {
2083     *os << "is an object " << whose_property_;
2084     matcher_.DescribeTo(os);
2085   }
2086 
2087   void DescribeNegationTo(::std::ostream* os) const {
2088     *os << "is an object " << whose_property_;
2089     matcher_.DescribeNegationTo(os);
2090   }
2091 
2092   template <typename T>
2093   bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
2094     return MatchAndExplainImpl(
2095         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2096         value, listener);
2097   }
2098 
2099  private:
2100   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2101                            const Class& obj,
2102                            MatchResultListener* listener) const {
2103     *listener << whose_property_ << "is ";
2104     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2105     // which takes a non-const reference as argument.
2106     RefToConstProperty result = (obj.*property_)();
2107     return MatchPrintAndExplain(result, matcher_, listener);
2108   }
2109 
2110   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2111                            MatchResultListener* listener) const {
2112     if (p == nullptr) return false;
2113 
2114     *listener << "which points to an object ";
2115     // Since *p has a property method, it must be a class/struct/union
2116     // type and thus cannot be a pointer.  Therefore we pass
2117     // false_type() as the first argument.
2118     return MatchAndExplainImpl(std::false_type(), *p, listener);
2119   }
2120 
2121   Property property_;
2122   const Matcher<RefToConstProperty> matcher_;
2123 
2124   // Contains either "whose given property " if the name of the property is
2125   // unknown or "whose property `name_of_property` " if the name is known.
2126   const std::string whose_property_;
2127 };
2128 
2129 // Type traits specifying various features of different functors for ResultOf.
2130 // The default template specifies features for functor objects.
2131 template <typename Functor>
2132 struct CallableTraits {
2133   typedef Functor StorageType;
2134 
2135   static void CheckIsValid(Functor /* functor */) {}
2136 
2137   template <typename T>
2138   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2139     return f(arg);
2140   }
2141 };
2142 
2143 // Specialization for function pointers.
2144 template <typename ArgType, typename ResType>
2145 struct CallableTraits<ResType(*)(ArgType)> {
2146   typedef ResType ResultType;
2147   typedef ResType(*StorageType)(ArgType);
2148 
2149   static void CheckIsValid(ResType(*f)(ArgType)) {
2150     GTEST_CHECK_(f != nullptr)
2151         << "NULL function pointer is passed into ResultOf().";
2152   }
2153   template <typename T>
2154   static ResType Invoke(ResType(*f)(ArgType), T arg) {
2155     return (*f)(arg);
2156   }
2157 };
2158 
2159 // Implements the ResultOf() matcher for matching a return value of a
2160 // unary function of an object.
2161 template <typename Callable, typename InnerMatcher>
2162 class ResultOfMatcher {
2163  public:
2164   ResultOfMatcher(Callable callable, InnerMatcher matcher)
2165       : callable_(std::move(callable)), matcher_(std::move(matcher)) {
2166     CallableTraits<Callable>::CheckIsValid(callable_);
2167   }
2168 
2169   template <typename T>
2170   operator Matcher<T>() const {
2171     return Matcher<T>(new Impl<const T&>(callable_, matcher_));
2172   }
2173 
2174  private:
2175   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2176 
2177   template <typename T>
2178   class Impl : public MatcherInterface<T> {
2179     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2180         std::declval<CallableStorageType>(), std::declval<T>()));
2181 
2182    public:
2183     template <typename M>
2184     Impl(const CallableStorageType& callable, const M& matcher)
2185         : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
2186 
2187     void DescribeTo(::std::ostream* os) const override {
2188       *os << "is mapped by the given callable to a value that ";
2189       matcher_.DescribeTo(os);
2190     }
2191 
2192     void DescribeNegationTo(::std::ostream* os) const override {
2193       *os << "is mapped by the given callable to a value that ";
2194       matcher_.DescribeNegationTo(os);
2195     }
2196 
2197     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2198       *listener << "which is mapped by the given callable to ";
2199       // Cannot pass the return value directly to MatchPrintAndExplain, which
2200       // takes a non-const reference as argument.
2201       // Also, specifying template argument explicitly is needed because T could
2202       // be a non-const reference (e.g. Matcher<Uncopyable&>).
2203       ResultType result =
2204           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2205       return MatchPrintAndExplain(result, matcher_, listener);
2206     }
2207 
2208    private:
2209     // Functors often define operator() as non-const method even though
2210     // they are actually stateless. But we need to use them even when
2211     // 'this' is a const pointer. It's the user's responsibility not to
2212     // use stateful callables with ResultOf(), which doesn't guarantee
2213     // how many times the callable will be invoked.
2214     mutable CallableStorageType callable_;
2215     const Matcher<ResultType> matcher_;
2216   };  // class Impl
2217 
2218   const CallableStorageType callable_;
2219   const InnerMatcher matcher_;
2220 };
2221 
2222 // Implements a matcher that checks the size of an STL-style container.
2223 template <typename SizeMatcher>
2224 class SizeIsMatcher {
2225  public:
2226   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2227        : size_matcher_(size_matcher) {
2228   }
2229 
2230   template <typename Container>
2231   operator Matcher<Container>() const {
2232     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2233   }
2234 
2235   template <typename Container>
2236   class Impl : public MatcherInterface<Container> {
2237    public:
2238     using SizeType = decltype(std::declval<Container>().size());
2239     explicit Impl(const SizeMatcher& size_matcher)
2240         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2241 
2242     void DescribeTo(::std::ostream* os) const override {
2243       *os << "size ";
2244       size_matcher_.DescribeTo(os);
2245     }
2246     void DescribeNegationTo(::std::ostream* os) const override {
2247       *os << "size ";
2248       size_matcher_.DescribeNegationTo(os);
2249     }
2250 
2251     bool MatchAndExplain(Container container,
2252                          MatchResultListener* listener) const override {
2253       SizeType size = container.size();
2254       StringMatchResultListener size_listener;
2255       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2256       *listener
2257           << "whose size " << size << (result ? " matches" : " doesn't match");
2258       PrintIfNotEmpty(size_listener.str(), listener->stream());
2259       return result;
2260     }
2261 
2262    private:
2263     const Matcher<SizeType> size_matcher_;
2264   };
2265 
2266  private:
2267   const SizeMatcher size_matcher_;
2268 };
2269 
2270 // Implements a matcher that checks the begin()..end() distance of an STL-style
2271 // container.
2272 template <typename DistanceMatcher>
2273 class BeginEndDistanceIsMatcher {
2274  public:
2275   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2276       : distance_matcher_(distance_matcher) {}
2277 
2278   template <typename Container>
2279   operator Matcher<Container>() const {
2280     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2281   }
2282 
2283   template <typename Container>
2284   class Impl : public MatcherInterface<Container> {
2285    public:
2286     typedef internal::StlContainerView<
2287         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2288     typedef typename std::iterator_traits<
2289         typename ContainerView::type::const_iterator>::difference_type
2290         DistanceType;
2291     explicit Impl(const DistanceMatcher& distance_matcher)
2292         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2293 
2294     void DescribeTo(::std::ostream* os) const override {
2295       *os << "distance between begin() and end() ";
2296       distance_matcher_.DescribeTo(os);
2297     }
2298     void DescribeNegationTo(::std::ostream* os) const override {
2299       *os << "distance between begin() and end() ";
2300       distance_matcher_.DescribeNegationTo(os);
2301     }
2302 
2303     bool MatchAndExplain(Container container,
2304                          MatchResultListener* listener) const override {
2305       using std::begin;
2306       using std::end;
2307       DistanceType distance = std::distance(begin(container), end(container));
2308       StringMatchResultListener distance_listener;
2309       const bool result =
2310           distance_matcher_.MatchAndExplain(distance, &distance_listener);
2311       *listener << "whose distance between begin() and end() " << distance
2312                 << (result ? " matches" : " doesn't match");
2313       PrintIfNotEmpty(distance_listener.str(), listener->stream());
2314       return result;
2315     }
2316 
2317    private:
2318     const Matcher<DistanceType> distance_matcher_;
2319   };
2320 
2321  private:
2322   const DistanceMatcher distance_matcher_;
2323 };
2324 
2325 // Implements an equality matcher for any STL-style container whose elements
2326 // support ==. This matcher is like Eq(), but its failure explanations provide
2327 // more detailed information that is useful when the container is used as a set.
2328 // The failure message reports elements that are in one of the operands but not
2329 // the other. The failure messages do not report duplicate or out-of-order
2330 // elements in the containers (which don't properly matter to sets, but can
2331 // occur if the containers are vectors or lists, for example).
2332 //
2333 // Uses the container's const_iterator, value_type, operator ==,
2334 // begin(), and end().
2335 template <typename Container>
2336 class ContainerEqMatcher {
2337  public:
2338   typedef internal::StlContainerView<Container> View;
2339   typedef typename View::type StlContainer;
2340   typedef typename View::const_reference StlContainerReference;
2341 
2342   static_assert(!std::is_const<Container>::value,
2343                 "Container type must not be const");
2344   static_assert(!std::is_reference<Container>::value,
2345                 "Container type must not be a reference");
2346 
2347   // We make a copy of expected in case the elements in it are modified
2348   // after this matcher is created.
2349   explicit ContainerEqMatcher(const Container& expected)
2350       : expected_(View::Copy(expected)) {}
2351 
2352   void DescribeTo(::std::ostream* os) const {
2353     *os << "equals ";
2354     UniversalPrint(expected_, os);
2355   }
2356   void DescribeNegationTo(::std::ostream* os) const {
2357     *os << "does not equal ";
2358     UniversalPrint(expected_, os);
2359   }
2360 
2361   template <typename LhsContainer>
2362   bool MatchAndExplain(const LhsContainer& lhs,
2363                        MatchResultListener* listener) const {
2364     typedef internal::StlContainerView<
2365         typename std::remove_const<LhsContainer>::type>
2366         LhsView;
2367     typedef typename LhsView::type LhsStlContainer;
2368     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2369     if (lhs_stl_container == expected_)
2370       return true;
2371 
2372     ::std::ostream* const os = listener->stream();
2373     if (os != nullptr) {
2374       // Something is different. Check for extra values first.
2375       bool printed_header = false;
2376       for (typename LhsStlContainer::const_iterator it =
2377                lhs_stl_container.begin();
2378            it != lhs_stl_container.end(); ++it) {
2379         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2380             expected_.end()) {
2381           if (printed_header) {
2382             *os << ", ";
2383           } else {
2384             *os << "which has these unexpected elements: ";
2385             printed_header = true;
2386           }
2387           UniversalPrint(*it, os);
2388         }
2389       }
2390 
2391       // Now check for missing values.
2392       bool printed_header2 = false;
2393       for (typename StlContainer::const_iterator it = expected_.begin();
2394            it != expected_.end(); ++it) {
2395         if (internal::ArrayAwareFind(
2396                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
2397             lhs_stl_container.end()) {
2398           if (printed_header2) {
2399             *os << ", ";
2400           } else {
2401             *os << (printed_header ? ",\nand" : "which")
2402                 << " doesn't have these expected elements: ";
2403             printed_header2 = true;
2404           }
2405           UniversalPrint(*it, os);
2406         }
2407       }
2408     }
2409 
2410     return false;
2411   }
2412 
2413  private:
2414   const StlContainer expected_;
2415 };
2416 
2417 // A comparator functor that uses the < operator to compare two values.
2418 struct LessComparator {
2419   template <typename T, typename U>
2420   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2421 };
2422 
2423 // Implements WhenSortedBy(comparator, container_matcher).
2424 template <typename Comparator, typename ContainerMatcher>
2425 class WhenSortedByMatcher {
2426  public:
2427   WhenSortedByMatcher(const Comparator& comparator,
2428                       const ContainerMatcher& matcher)
2429       : comparator_(comparator), matcher_(matcher) {}
2430 
2431   template <typename LhsContainer>
2432   operator Matcher<LhsContainer>() const {
2433     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2434   }
2435 
2436   template <typename LhsContainer>
2437   class Impl : public MatcherInterface<LhsContainer> {
2438    public:
2439     typedef internal::StlContainerView<
2440          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2441     typedef typename LhsView::type LhsStlContainer;
2442     typedef typename LhsView::const_reference LhsStlContainerReference;
2443     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2444     // so that we can match associative containers.
2445     typedef typename RemoveConstFromKey<
2446         typename LhsStlContainer::value_type>::type LhsValue;
2447 
2448     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2449         : comparator_(comparator), matcher_(matcher) {}
2450 
2451     void DescribeTo(::std::ostream* os) const override {
2452       *os << "(when sorted) ";
2453       matcher_.DescribeTo(os);
2454     }
2455 
2456     void DescribeNegationTo(::std::ostream* os) const override {
2457       *os << "(when sorted) ";
2458       matcher_.DescribeNegationTo(os);
2459     }
2460 
2461     bool MatchAndExplain(LhsContainer lhs,
2462                          MatchResultListener* listener) const override {
2463       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2464       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2465                                                lhs_stl_container.end());
2466       ::std::sort(
2467            sorted_container.begin(), sorted_container.end(), comparator_);
2468 
2469       if (!listener->IsInterested()) {
2470         // If the listener is not interested, we do not need to
2471         // construct the inner explanation.
2472         return matcher_.Matches(sorted_container);
2473       }
2474 
2475       *listener << "which is ";
2476       UniversalPrint(sorted_container, listener->stream());
2477       *listener << " when sorted";
2478 
2479       StringMatchResultListener inner_listener;
2480       const bool match = matcher_.MatchAndExplain(sorted_container,
2481                                                   &inner_listener);
2482       PrintIfNotEmpty(inner_listener.str(), listener->stream());
2483       return match;
2484     }
2485 
2486    private:
2487     const Comparator comparator_;
2488     const Matcher<const ::std::vector<LhsValue>&> matcher_;
2489 
2490     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2491   };
2492 
2493  private:
2494   const Comparator comparator_;
2495   const ContainerMatcher matcher_;
2496 };
2497 
2498 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2499 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2500 // T2&> >, where T1 and T2 are the types of elements in the LHS
2501 // container and the RHS container respectively.
2502 template <typename TupleMatcher, typename RhsContainer>
2503 class PointwiseMatcher {
2504   GTEST_COMPILE_ASSERT_(
2505       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2506       use_UnorderedPointwise_with_hash_tables);
2507 
2508  public:
2509   typedef internal::StlContainerView<RhsContainer> RhsView;
2510   typedef typename RhsView::type RhsStlContainer;
2511   typedef typename RhsStlContainer::value_type RhsValue;
2512 
2513   static_assert(!std::is_const<RhsContainer>::value,
2514                 "RhsContainer type must not be const");
2515   static_assert(!std::is_reference<RhsContainer>::value,
2516                 "RhsContainer type must not be a reference");
2517 
2518   // Like ContainerEq, we make a copy of rhs in case the elements in
2519   // it are modified after this matcher is created.
2520   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2521       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2522 
2523   template <typename LhsContainer>
2524   operator Matcher<LhsContainer>() const {
2525     GTEST_COMPILE_ASSERT_(
2526         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2527         use_UnorderedPointwise_with_hash_tables);
2528 
2529     return Matcher<LhsContainer>(
2530         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2531   }
2532 
2533   template <typename LhsContainer>
2534   class Impl : public MatcherInterface<LhsContainer> {
2535    public:
2536     typedef internal::StlContainerView<
2537          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2538     typedef typename LhsView::type LhsStlContainer;
2539     typedef typename LhsView::const_reference LhsStlContainerReference;
2540     typedef typename LhsStlContainer::value_type LhsValue;
2541     // We pass the LHS value and the RHS value to the inner matcher by
2542     // reference, as they may be expensive to copy.  We must use tuple
2543     // instead of pair here, as a pair cannot hold references (C++ 98,
2544     // 20.2.2 [lib.pairs]).
2545     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2546 
2547     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2548         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2549         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2550           rhs_(rhs) {}
2551 
2552     void DescribeTo(::std::ostream* os) const override {
2553       *os << "contains " << rhs_.size()
2554           << " values, where each value and its corresponding value in ";
2555       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2556       *os << " ";
2557       mono_tuple_matcher_.DescribeTo(os);
2558     }
2559     void DescribeNegationTo(::std::ostream* os) const override {
2560       *os << "doesn't contain exactly " << rhs_.size()
2561           << " values, or contains a value x at some index i"
2562           << " where x and the i-th value of ";
2563       UniversalPrint(rhs_, os);
2564       *os << " ";
2565       mono_tuple_matcher_.DescribeNegationTo(os);
2566     }
2567 
2568     bool MatchAndExplain(LhsContainer lhs,
2569                          MatchResultListener* listener) const override {
2570       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2571       const size_t actual_size = lhs_stl_container.size();
2572       if (actual_size != rhs_.size()) {
2573         *listener << "which contains " << actual_size << " values";
2574         return false;
2575       }
2576 
2577       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2578       typename RhsStlContainer::const_iterator right = rhs_.begin();
2579       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2580         if (listener->IsInterested()) {
2581           StringMatchResultListener inner_listener;
2582           // Create InnerMatcherArg as a temporarily object to avoid it outlives
2583           // *left and *right. Dereference or the conversion to `const T&` may
2584           // return temp objects, e.g for vector<bool>.
2585           if (!mono_tuple_matcher_.MatchAndExplain(
2586                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2587                                   ImplicitCast_<const RhsValue&>(*right)),
2588                   &inner_listener)) {
2589             *listener << "where the value pair (";
2590             UniversalPrint(*left, listener->stream());
2591             *listener << ", ";
2592             UniversalPrint(*right, listener->stream());
2593             *listener << ") at index #" << i << " don't match";
2594             PrintIfNotEmpty(inner_listener.str(), listener->stream());
2595             return false;
2596           }
2597         } else {
2598           if (!mono_tuple_matcher_.Matches(
2599                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2600                                   ImplicitCast_<const RhsValue&>(*right))))
2601             return false;
2602         }
2603       }
2604 
2605       return true;
2606     }
2607 
2608    private:
2609     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2610     const RhsStlContainer rhs_;
2611   };
2612 
2613  private:
2614   const TupleMatcher tuple_matcher_;
2615   const RhsStlContainer rhs_;
2616 };
2617 
2618 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2619 template <typename Container>
2620 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2621  public:
2622   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2623   typedef StlContainerView<RawContainer> View;
2624   typedef typename View::type StlContainer;
2625   typedef typename View::const_reference StlContainerReference;
2626   typedef typename StlContainer::value_type Element;
2627 
2628   template <typename InnerMatcher>
2629   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2630       : inner_matcher_(
2631            testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2632 
2633   // Checks whether:
2634   // * All elements in the container match, if all_elements_should_match.
2635   // * Any element in the container matches, if !all_elements_should_match.
2636   bool MatchAndExplainImpl(bool all_elements_should_match,
2637                            Container container,
2638                            MatchResultListener* listener) const {
2639     StlContainerReference stl_container = View::ConstReference(container);
2640     size_t i = 0;
2641     for (typename StlContainer::const_iterator it = stl_container.begin();
2642          it != stl_container.end(); ++it, ++i) {
2643       StringMatchResultListener inner_listener;
2644       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2645 
2646       if (matches != all_elements_should_match) {
2647         *listener << "whose element #" << i
2648                   << (matches ? " matches" : " doesn't match");
2649         PrintIfNotEmpty(inner_listener.str(), listener->stream());
2650         return !all_elements_should_match;
2651       }
2652     }
2653     return all_elements_should_match;
2654   }
2655 
2656  protected:
2657   const Matcher<const Element&> inner_matcher_;
2658 };
2659 
2660 // Implements Contains(element_matcher) for the given argument type Container.
2661 // Symmetric to EachMatcherImpl.
2662 template <typename Container>
2663 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2664  public:
2665   template <typename InnerMatcher>
2666   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2667       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2668 
2669   // Describes what this matcher does.
2670   void DescribeTo(::std::ostream* os) const override {
2671     *os << "contains at least one element that ";
2672     this->inner_matcher_.DescribeTo(os);
2673   }
2674 
2675   void DescribeNegationTo(::std::ostream* os) const override {
2676     *os << "doesn't contain any element that ";
2677     this->inner_matcher_.DescribeTo(os);
2678   }
2679 
2680   bool MatchAndExplain(Container container,
2681                        MatchResultListener* listener) const override {
2682     return this->MatchAndExplainImpl(false, container, listener);
2683   }
2684 };
2685 
2686 // Implements Each(element_matcher) for the given argument type Container.
2687 // Symmetric to ContainsMatcherImpl.
2688 template <typename Container>
2689 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2690  public:
2691   template <typename InnerMatcher>
2692   explicit EachMatcherImpl(InnerMatcher inner_matcher)
2693       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2694 
2695   // Describes what this matcher does.
2696   void DescribeTo(::std::ostream* os) const override {
2697     *os << "only contains elements that ";
2698     this->inner_matcher_.DescribeTo(os);
2699   }
2700 
2701   void DescribeNegationTo(::std::ostream* os) const override {
2702     *os << "contains some element that ";
2703     this->inner_matcher_.DescribeNegationTo(os);
2704   }
2705 
2706   bool MatchAndExplain(Container container,
2707                        MatchResultListener* listener) const override {
2708     return this->MatchAndExplainImpl(true, container, listener);
2709   }
2710 };
2711 
2712 // Implements polymorphic Contains(element_matcher).
2713 template <typename M>
2714 class ContainsMatcher {
2715  public:
2716   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2717 
2718   template <typename Container>
2719   operator Matcher<Container>() const {
2720     return Matcher<Container>(
2721         new ContainsMatcherImpl<const Container&>(inner_matcher_));
2722   }
2723 
2724  private:
2725   const M inner_matcher_;
2726 };
2727 
2728 // Implements polymorphic Each(element_matcher).
2729 template <typename M>
2730 class EachMatcher {
2731  public:
2732   explicit EachMatcher(M m) : inner_matcher_(m) {}
2733 
2734   template <typename Container>
2735   operator Matcher<Container>() const {
2736     return Matcher<Container>(
2737         new EachMatcherImpl<const Container&>(inner_matcher_));
2738   }
2739 
2740  private:
2741   const M inner_matcher_;
2742 };
2743 
2744 struct Rank1 {};
2745 struct Rank0 : Rank1 {};
2746 
2747 namespace pair_getters {
2748 using std::get;
2749 template <typename T>
2750 auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
2751   return get<0>(x);
2752 }
2753 template <typename T>
2754 auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
2755   return x.first;
2756 }
2757 
2758 template <typename T>
2759 auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
2760   return get<1>(x);
2761 }
2762 template <typename T>
2763 auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
2764   return x.second;
2765 }
2766 }  // namespace pair_getters
2767 
2768 // Implements Key(inner_matcher) for the given argument pair type.
2769 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2770 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2771 // std::map that contains at least one element whose key is >= 5.
2772 template <typename PairType>
2773 class KeyMatcherImpl : public MatcherInterface<PairType> {
2774  public:
2775   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2776   typedef typename RawPairType::first_type KeyType;
2777 
2778   template <typename InnerMatcher>
2779   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2780       : inner_matcher_(
2781           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2782   }
2783 
2784   // Returns true if and only if 'key_value.first' (the key) matches the inner
2785   // matcher.
2786   bool MatchAndExplain(PairType key_value,
2787                        MatchResultListener* listener) const override {
2788     StringMatchResultListener inner_listener;
2789     const bool match = inner_matcher_.MatchAndExplain(
2790         pair_getters::First(key_value, Rank0()), &inner_listener);
2791     const std::string explanation = inner_listener.str();
2792     if (explanation != "") {
2793       *listener << "whose first field is a value " << explanation;
2794     }
2795     return match;
2796   }
2797 
2798   // Describes what this matcher does.
2799   void DescribeTo(::std::ostream* os) const override {
2800     *os << "has a key that ";
2801     inner_matcher_.DescribeTo(os);
2802   }
2803 
2804   // Describes what the negation of this matcher does.
2805   void DescribeNegationTo(::std::ostream* os) const override {
2806     *os << "doesn't have a key that ";
2807     inner_matcher_.DescribeTo(os);
2808   }
2809 
2810  private:
2811   const Matcher<const KeyType&> inner_matcher_;
2812 };
2813 
2814 // Implements polymorphic Key(matcher_for_key).
2815 template <typename M>
2816 class KeyMatcher {
2817  public:
2818   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2819 
2820   template <typename PairType>
2821   operator Matcher<PairType>() const {
2822     return Matcher<PairType>(
2823         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
2824   }
2825 
2826  private:
2827   const M matcher_for_key_;
2828 };
2829 
2830 // Implements polymorphic Address(matcher_for_address).
2831 template <typename InnerMatcher>
2832 class AddressMatcher {
2833  public:
2834   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
2835 
2836   template <typename Type>
2837   operator Matcher<Type>() const {  // NOLINT
2838     return Matcher<Type>(new Impl<const Type&>(matcher_));
2839   }
2840 
2841  private:
2842   // The monomorphic implementation that works for a particular object type.
2843   template <typename Type>
2844   class Impl : public MatcherInterface<Type> {
2845    public:
2846     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
2847     explicit Impl(const InnerMatcher& matcher)
2848         : matcher_(MatcherCast<Address>(matcher)) {}
2849 
2850     void DescribeTo(::std::ostream* os) const override {
2851       *os << "has address that ";
2852       matcher_.DescribeTo(os);
2853     }
2854 
2855     void DescribeNegationTo(::std::ostream* os) const override {
2856       *os << "does not have address that ";
2857       matcher_.DescribeTo(os);
2858     }
2859 
2860     bool MatchAndExplain(Type object,
2861                          MatchResultListener* listener) const override {
2862       *listener << "which has address ";
2863       Address address = std::addressof(object);
2864       return MatchPrintAndExplain(address, matcher_, listener);
2865     }
2866 
2867    private:
2868     const Matcher<Address> matcher_;
2869   };
2870   const InnerMatcher matcher_;
2871 };
2872 
2873 // Implements Pair(first_matcher, second_matcher) for the given argument pair
2874 // type with its two matchers. See Pair() function below.
2875 template <typename PairType>
2876 class PairMatcherImpl : public MatcherInterface<PairType> {
2877  public:
2878   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2879   typedef typename RawPairType::first_type FirstType;
2880   typedef typename RawPairType::second_type SecondType;
2881 
2882   template <typename FirstMatcher, typename SecondMatcher>
2883   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2884       : first_matcher_(
2885             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2886         second_matcher_(
2887             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2888   }
2889 
2890   // Describes what this matcher does.
2891   void DescribeTo(::std::ostream* os) const override {
2892     *os << "has a first field that ";
2893     first_matcher_.DescribeTo(os);
2894     *os << ", and has a second field that ";
2895     second_matcher_.DescribeTo(os);
2896   }
2897 
2898   // Describes what the negation of this matcher does.
2899   void DescribeNegationTo(::std::ostream* os) const override {
2900     *os << "has a first field that ";
2901     first_matcher_.DescribeNegationTo(os);
2902     *os << ", or has a second field that ";
2903     second_matcher_.DescribeNegationTo(os);
2904   }
2905 
2906   // Returns true if and only if 'a_pair.first' matches first_matcher and
2907   // 'a_pair.second' matches second_matcher.
2908   bool MatchAndExplain(PairType a_pair,
2909                        MatchResultListener* listener) const override {
2910     if (!listener->IsInterested()) {
2911       // If the listener is not interested, we don't need to construct the
2912       // explanation.
2913       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
2914              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
2915     }
2916     StringMatchResultListener first_inner_listener;
2917     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
2918                                         &first_inner_listener)) {
2919       *listener << "whose first field does not match";
2920       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2921       return false;
2922     }
2923     StringMatchResultListener second_inner_listener;
2924     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
2925                                          &second_inner_listener)) {
2926       *listener << "whose second field does not match";
2927       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2928       return false;
2929     }
2930     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2931                    listener);
2932     return true;
2933   }
2934 
2935  private:
2936   void ExplainSuccess(const std::string& first_explanation,
2937                       const std::string& second_explanation,
2938                       MatchResultListener* listener) const {
2939     *listener << "whose both fields match";
2940     if (first_explanation != "") {
2941       *listener << ", where the first field is a value " << first_explanation;
2942     }
2943     if (second_explanation != "") {
2944       *listener << ", ";
2945       if (first_explanation != "") {
2946         *listener << "and ";
2947       } else {
2948         *listener << "where ";
2949       }
2950       *listener << "the second field is a value " << second_explanation;
2951     }
2952   }
2953 
2954   const Matcher<const FirstType&> first_matcher_;
2955   const Matcher<const SecondType&> second_matcher_;
2956 };
2957 
2958 // Implements polymorphic Pair(first_matcher, second_matcher).
2959 template <typename FirstMatcher, typename SecondMatcher>
2960 class PairMatcher {
2961  public:
2962   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2963       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2964 
2965   template <typename PairType>
2966   operator Matcher<PairType> () const {
2967     return Matcher<PairType>(
2968         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
2969   }
2970 
2971  private:
2972   const FirstMatcher first_matcher_;
2973   const SecondMatcher second_matcher_;
2974 };
2975 
2976 template <typename T, size_t... I>
2977 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
2978     -> decltype(std::tie(get<I>(t)...)) {
2979   static_assert(std::tuple_size<T>::value == sizeof...(I),
2980                 "Number of arguments doesn't match the number of fields.");
2981   return std::tie(get<I>(t)...);
2982 }
2983 
2984 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
2985 template <typename T>
2986 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
2987   const auto& [a] = t;
2988   return std::tie(a);
2989 }
2990 template <typename T>
2991 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
2992   const auto& [a, b] = t;
2993   return std::tie(a, b);
2994 }
2995 template <typename T>
2996 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
2997   const auto& [a, b, c] = t;
2998   return std::tie(a, b, c);
2999 }
3000 template <typename T>
3001 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3002   const auto& [a, b, c, d] = t;
3003   return std::tie(a, b, c, d);
3004 }
3005 template <typename T>
3006 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3007   const auto& [a, b, c, d, e] = t;
3008   return std::tie(a, b, c, d, e);
3009 }
3010 template <typename T>
3011 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3012   const auto& [a, b, c, d, e, f] = t;
3013   return std::tie(a, b, c, d, e, f);
3014 }
3015 template <typename T>
3016 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3017   const auto& [a, b, c, d, e, f, g] = t;
3018   return std::tie(a, b, c, d, e, f, g);
3019 }
3020 template <typename T>
3021 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3022   const auto& [a, b, c, d, e, f, g, h] = t;
3023   return std::tie(a, b, c, d, e, f, g, h);
3024 }
3025 template <typename T>
3026 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3027   const auto& [a, b, c, d, e, f, g, h, i] = t;
3028   return std::tie(a, b, c, d, e, f, g, h, i);
3029 }
3030 template <typename T>
3031 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3032   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3033   return std::tie(a, b, c, d, e, f, g, h, i, j);
3034 }
3035 template <typename T>
3036 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3037   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3038   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3039 }
3040 template <typename T>
3041 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3042   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3043   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3044 }
3045 template <typename T>
3046 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3047   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3048   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3049 }
3050 template <typename T>
3051 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3052   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3053   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3054 }
3055 template <typename T>
3056 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3057   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3058   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3059 }
3060 template <typename T>
3061 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3062   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3063   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3064 }
3065 #endif  // defined(__cpp_structured_bindings)
3066 
3067 template <size_t I, typename T>
3068 auto UnpackStruct(const T& t)
3069     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3070   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3071 }
3072 
3073 // Helper function to do comma folding in C++11.
3074 // The array ensures left-to-right order of evaluation.
3075 // Usage: VariadicExpand({expr...});
3076 template <typename T, size_t N>
3077 void VariadicExpand(const T (&)[N]) {}
3078 
3079 template <typename Struct, typename StructSize>
3080 class FieldsAreMatcherImpl;
3081 
3082 template <typename Struct, size_t... I>
3083 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3084     : public MatcherInterface<Struct> {
3085   using UnpackedType =
3086       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3087   using MatchersType = std::tuple<
3088       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3089 
3090  public:
3091   template <typename Inner>
3092   explicit FieldsAreMatcherImpl(const Inner& matchers)
3093       : matchers_(testing::SafeMatcherCast<
3094                   const typename std::tuple_element<I, UnpackedType>::type&>(
3095             std::get<I>(matchers))...) {}
3096 
3097   void DescribeTo(::std::ostream* os) const override {
3098     const char* separator = "";
3099     VariadicExpand(
3100         {(*os << separator << "has field #" << I << " that ",
3101           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3102   }
3103 
3104   void DescribeNegationTo(::std::ostream* os) const override {
3105     const char* separator = "";
3106     VariadicExpand({(*os << separator << "has field #" << I << " that ",
3107                      std::get<I>(matchers_).DescribeNegationTo(os),
3108                      separator = ", or ")...});
3109   }
3110 
3111   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3112     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3113   }
3114 
3115  private:
3116   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3117     if (!listener->IsInterested()) {
3118       // If the listener is not interested, we don't need to construct the
3119       // explanation.
3120       bool good = true;
3121       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3122                                          std::get<I>(tuple))...});
3123       return good;
3124     }
3125 
3126     size_t failed_pos = ~size_t{};
3127 
3128     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3129 
3130     VariadicExpand(
3131         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3132                                         std::get<I>(tuple), &inner_listener[I])
3133              ? failed_pos = I
3134              : 0 ...});
3135     if (failed_pos != ~size_t{}) {
3136       *listener << "whose field #" << failed_pos << " does not match";
3137       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3138       return false;
3139     }
3140 
3141     *listener << "whose all elements match";
3142     const char* separator = ", where";
3143     for (size_t index = 0; index < sizeof...(I); ++index) {
3144       const std::string str = inner_listener[index].str();
3145       if (!str.empty()) {
3146         *listener << separator << " field #" << index << " is a value " << str;
3147         separator = ", and";
3148       }
3149     }
3150 
3151     return true;
3152   }
3153 
3154   MatchersType matchers_;
3155 };
3156 
3157 template <typename... Inner>
3158 class FieldsAreMatcher {
3159  public:
3160   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3161 
3162   template <typename Struct>
3163   operator Matcher<Struct>() const {  // NOLINT
3164     return Matcher<Struct>(
3165         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3166             matchers_));
3167   }
3168 
3169  private:
3170   std::tuple<Inner...> matchers_;
3171 };
3172 
3173 // Implements ElementsAre() and ElementsAreArray().
3174 template <typename Container>
3175 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3176  public:
3177   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3178   typedef internal::StlContainerView<RawContainer> View;
3179   typedef typename View::type StlContainer;
3180   typedef typename View::const_reference StlContainerReference;
3181   typedef typename StlContainer::value_type Element;
3182 
3183   // Constructs the matcher from a sequence of element values or
3184   // element matchers.
3185   template <typename InputIter>
3186   ElementsAreMatcherImpl(InputIter first, InputIter last) {
3187     while (first != last) {
3188       matchers_.push_back(MatcherCast<const Element&>(*first++));
3189     }
3190   }
3191 
3192   // Describes what this matcher does.
3193   void DescribeTo(::std::ostream* os) const override {
3194     if (count() == 0) {
3195       *os << "is empty";
3196     } else if (count() == 1) {
3197       *os << "has 1 element that ";
3198       matchers_[0].DescribeTo(os);
3199     } else {
3200       *os << "has " << Elements(count()) << " where\n";
3201       for (size_t i = 0; i != count(); ++i) {
3202         *os << "element #" << i << " ";
3203         matchers_[i].DescribeTo(os);
3204         if (i + 1 < count()) {
3205           *os << ",\n";
3206         }
3207       }
3208     }
3209   }
3210 
3211   // Describes what the negation of this matcher does.
3212   void DescribeNegationTo(::std::ostream* os) const override {
3213     if (count() == 0) {
3214       *os << "isn't empty";
3215       return;
3216     }
3217 
3218     *os << "doesn't have " << Elements(count()) << ", or\n";
3219     for (size_t i = 0; i != count(); ++i) {
3220       *os << "element #" << i << " ";
3221       matchers_[i].DescribeNegationTo(os);
3222       if (i + 1 < count()) {
3223         *os << ", or\n";
3224       }
3225     }
3226   }
3227 
3228   bool MatchAndExplain(Container container,
3229                        MatchResultListener* listener) const override {
3230     // To work with stream-like "containers", we must only walk
3231     // through the elements in one pass.
3232 
3233     const bool listener_interested = listener->IsInterested();
3234 
3235     // explanations[i] is the explanation of the element at index i.
3236     ::std::vector<std::string> explanations(count());
3237     StlContainerReference stl_container = View::ConstReference(container);
3238     typename StlContainer::const_iterator it = stl_container.begin();
3239     size_t exam_pos = 0;
3240     bool mismatch_found = false;  // Have we found a mismatched element yet?
3241 
3242     // Go through the elements and matchers in pairs, until we reach
3243     // the end of either the elements or the matchers, or until we find a
3244     // mismatch.
3245     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3246       bool match;  // Does the current element match the current matcher?
3247       if (listener_interested) {
3248         StringMatchResultListener s;
3249         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3250         explanations[exam_pos] = s.str();
3251       } else {
3252         match = matchers_[exam_pos].Matches(*it);
3253       }
3254 
3255       if (!match) {
3256         mismatch_found = true;
3257         break;
3258       }
3259     }
3260     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3261 
3262     // Find how many elements the actual container has.  We avoid
3263     // calling size() s.t. this code works for stream-like "containers"
3264     // that don't define size().
3265     size_t actual_count = exam_pos;
3266     for (; it != stl_container.end(); ++it) {
3267       ++actual_count;
3268     }
3269 
3270     if (actual_count != count()) {
3271       // The element count doesn't match.  If the container is empty,
3272       // there's no need to explain anything as Google Mock already
3273       // prints the empty container.  Otherwise we just need to show
3274       // how many elements there actually are.
3275       if (listener_interested && (actual_count != 0)) {
3276         *listener << "which has " << Elements(actual_count);
3277       }
3278       return false;
3279     }
3280 
3281     if (mismatch_found) {
3282       // The element count matches, but the exam_pos-th element doesn't match.
3283       if (listener_interested) {
3284         *listener << "whose element #" << exam_pos << " doesn't match";
3285         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3286       }
3287       return false;
3288     }
3289 
3290     // Every element matches its expectation.  We need to explain why
3291     // (the obvious ones can be skipped).
3292     if (listener_interested) {
3293       bool reason_printed = false;
3294       for (size_t i = 0; i != count(); ++i) {
3295         const std::string& s = explanations[i];
3296         if (!s.empty()) {
3297           if (reason_printed) {
3298             *listener << ",\nand ";
3299           }
3300           *listener << "whose element #" << i << " matches, " << s;
3301           reason_printed = true;
3302         }
3303       }
3304     }
3305     return true;
3306   }
3307 
3308  private:
3309   static Message Elements(size_t count) {
3310     return Message() << count << (count == 1 ? " element" : " elements");
3311   }
3312 
3313   size_t count() const { return matchers_.size(); }
3314 
3315   ::std::vector<Matcher<const Element&> > matchers_;
3316 };
3317 
3318 // Connectivity matrix of (elements X matchers), in element-major order.
3319 // Initially, there are no edges.
3320 // Use NextGraph() to iterate over all possible edge configurations.
3321 // Use Randomize() to generate a random edge configuration.
3322 class GTEST_API_ MatchMatrix {
3323  public:
3324   MatchMatrix(size_t num_elements, size_t num_matchers)
3325       : num_elements_(num_elements),
3326         num_matchers_(num_matchers),
3327         matched_(num_elements_* num_matchers_, 0) {
3328   }
3329 
3330   size_t LhsSize() const { return num_elements_; }
3331   size_t RhsSize() const { return num_matchers_; }
3332   bool HasEdge(size_t ilhs, size_t irhs) const {
3333     return matched_[SpaceIndex(ilhs, irhs)] == 1;
3334   }
3335   void SetEdge(size_t ilhs, size_t irhs, bool b) {
3336     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3337   }
3338 
3339   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3340   // adds 1 to that number; returns false if incrementing the graph left it
3341   // empty.
3342   bool NextGraph();
3343 
3344   void Randomize();
3345 
3346   std::string DebugString() const;
3347 
3348  private:
3349   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3350     return ilhs * num_matchers_ + irhs;
3351   }
3352 
3353   size_t num_elements_;
3354   size_t num_matchers_;
3355 
3356   // Each element is a char interpreted as bool. They are stored as a
3357   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3358   // a (ilhs, irhs) matrix coordinate into an offset.
3359   ::std::vector<char> matched_;
3360 };
3361 
3362 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3363 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3364 
3365 // Returns a maximum bipartite matching for the specified graph 'g'.
3366 // The matching is represented as a vector of {element, matcher} pairs.
3367 GTEST_API_ ElementMatcherPairs
3368 FindMaxBipartiteMatching(const MatchMatrix& g);
3369 
3370 struct UnorderedMatcherRequire {
3371   enum Flags {
3372     Superset = 1 << 0,
3373     Subset = 1 << 1,
3374     ExactMatch = Superset | Subset,
3375   };
3376 };
3377 
3378 // Untyped base class for implementing UnorderedElementsAre.  By
3379 // putting logic that's not specific to the element type here, we
3380 // reduce binary bloat and increase compilation speed.
3381 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3382  protected:
3383   explicit UnorderedElementsAreMatcherImplBase(
3384       UnorderedMatcherRequire::Flags matcher_flags)
3385       : match_flags_(matcher_flags) {}
3386 
3387   // A vector of matcher describers, one for each element matcher.
3388   // Does not own the describers (and thus can be used only when the
3389   // element matchers are alive).
3390   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3391 
3392   // Describes this UnorderedElementsAre matcher.
3393   void DescribeToImpl(::std::ostream* os) const;
3394 
3395   // Describes the negation of this UnorderedElementsAre matcher.
3396   void DescribeNegationToImpl(::std::ostream* os) const;
3397 
3398   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3399                          const MatchMatrix& matrix,
3400                          MatchResultListener* listener) const;
3401 
3402   bool FindPairing(const MatchMatrix& matrix,
3403                    MatchResultListener* listener) const;
3404 
3405   MatcherDescriberVec& matcher_describers() {
3406     return matcher_describers_;
3407   }
3408 
3409   static Message Elements(size_t n) {
3410     return Message() << n << " element" << (n == 1 ? "" : "s");
3411   }
3412 
3413   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3414 
3415  private:
3416   UnorderedMatcherRequire::Flags match_flags_;
3417   MatcherDescriberVec matcher_describers_;
3418 };
3419 
3420 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3421 // IsSupersetOf.
3422 template <typename Container>
3423 class UnorderedElementsAreMatcherImpl
3424     : public MatcherInterface<Container>,
3425       public UnorderedElementsAreMatcherImplBase {
3426  public:
3427   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3428   typedef internal::StlContainerView<RawContainer> View;
3429   typedef typename View::type StlContainer;
3430   typedef typename View::const_reference StlContainerReference;
3431   typedef typename StlContainer::const_iterator StlContainerConstIterator;
3432   typedef typename StlContainer::value_type Element;
3433 
3434   template <typename InputIter>
3435   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3436                                   InputIter first, InputIter last)
3437       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3438     for (; first != last; ++first) {
3439       matchers_.push_back(MatcherCast<const Element&>(*first));
3440     }
3441     for (const auto& m : matchers_) {
3442       matcher_describers().push_back(m.GetDescriber());
3443     }
3444   }
3445 
3446   // Describes what this matcher does.
3447   void DescribeTo(::std::ostream* os) const override {
3448     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3449   }
3450 
3451   // Describes what the negation of this matcher does.
3452   void DescribeNegationTo(::std::ostream* os) const override {
3453     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3454   }
3455 
3456   bool MatchAndExplain(Container container,
3457                        MatchResultListener* listener) const override {
3458     StlContainerReference stl_container = View::ConstReference(container);
3459     ::std::vector<std::string> element_printouts;
3460     MatchMatrix matrix =
3461         AnalyzeElements(stl_container.begin(), stl_container.end(),
3462                         &element_printouts, listener);
3463 
3464     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
3465       return true;
3466     }
3467 
3468     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
3469       if (matrix.LhsSize() != matrix.RhsSize()) {
3470         // The element count doesn't match.  If the container is empty,
3471         // there's no need to explain anything as Google Mock already
3472         // prints the empty container. Otherwise we just need to show
3473         // how many elements there actually are.
3474         if (matrix.LhsSize() != 0 && listener->IsInterested()) {
3475           *listener << "which has " << Elements(matrix.LhsSize());
3476         }
3477         return false;
3478       }
3479     }
3480 
3481     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3482            FindPairing(matrix, listener);
3483   }
3484 
3485  private:
3486   template <typename ElementIter>
3487   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3488                               ::std::vector<std::string>* element_printouts,
3489                               MatchResultListener* listener) const {
3490     element_printouts->clear();
3491     ::std::vector<char> did_match;
3492     size_t num_elements = 0;
3493     DummyMatchResultListener dummy;
3494     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3495       if (listener->IsInterested()) {
3496         element_printouts->push_back(PrintToString(*elem_first));
3497       }
3498       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3499         did_match.push_back(
3500             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3501       }
3502     }
3503 
3504     MatchMatrix matrix(num_elements, matchers_.size());
3505     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3506     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3507       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3508         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3509       }
3510     }
3511     return matrix;
3512   }
3513 
3514   ::std::vector<Matcher<const Element&> > matchers_;
3515 };
3516 
3517 // Functor for use in TransformTuple.
3518 // Performs MatcherCast<Target> on an input argument of any type.
3519 template <typename Target>
3520 struct CastAndAppendTransform {
3521   template <typename Arg>
3522   Matcher<Target> operator()(const Arg& a) const {
3523     return MatcherCast<Target>(a);
3524   }
3525 };
3526 
3527 // Implements UnorderedElementsAre.
3528 template <typename MatcherTuple>
3529 class UnorderedElementsAreMatcher {
3530  public:
3531   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3532       : matchers_(args) {}
3533 
3534   template <typename Container>
3535   operator Matcher<Container>() const {
3536     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3537     typedef typename internal::StlContainerView<RawContainer>::type View;
3538     typedef typename View::value_type Element;
3539     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3540     MatcherVec matchers;
3541     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3542     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3543                          ::std::back_inserter(matchers));
3544     return Matcher<Container>(
3545         new UnorderedElementsAreMatcherImpl<const Container&>(
3546             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3547             matchers.end()));
3548   }
3549 
3550  private:
3551   const MatcherTuple matchers_;
3552 };
3553 
3554 // Implements ElementsAre.
3555 template <typename MatcherTuple>
3556 class ElementsAreMatcher {
3557  public:
3558   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3559 
3560   template <typename Container>
3561   operator Matcher<Container>() const {
3562     GTEST_COMPILE_ASSERT_(
3563         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3564             ::std::tuple_size<MatcherTuple>::value < 2,
3565         use_UnorderedElementsAre_with_hash_tables);
3566 
3567     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3568     typedef typename internal::StlContainerView<RawContainer>::type View;
3569     typedef typename View::value_type Element;
3570     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3571     MatcherVec matchers;
3572     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3573     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3574                          ::std::back_inserter(matchers));
3575     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3576         matchers.begin(), matchers.end()));
3577   }
3578 
3579  private:
3580   const MatcherTuple matchers_;
3581 };
3582 
3583 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3584 template <typename T>
3585 class UnorderedElementsAreArrayMatcher {
3586  public:
3587   template <typename Iter>
3588   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3589                                    Iter first, Iter last)
3590       : match_flags_(match_flags), matchers_(first, last) {}
3591 
3592   template <typename Container>
3593   operator Matcher<Container>() const {
3594     return Matcher<Container>(
3595         new UnorderedElementsAreMatcherImpl<const Container&>(
3596             match_flags_, matchers_.begin(), matchers_.end()));
3597   }
3598 
3599  private:
3600   UnorderedMatcherRequire::Flags match_flags_;
3601   ::std::vector<T> matchers_;
3602 };
3603 
3604 // Implements ElementsAreArray().
3605 template <typename T>
3606 class ElementsAreArrayMatcher {
3607  public:
3608   template <typename Iter>
3609   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3610 
3611   template <typename Container>
3612   operator Matcher<Container>() const {
3613     GTEST_COMPILE_ASSERT_(
3614         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3615         use_UnorderedElementsAreArray_with_hash_tables);
3616 
3617     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3618         matchers_.begin(), matchers_.end()));
3619   }
3620 
3621  private:
3622   const ::std::vector<T> matchers_;
3623 };
3624 
3625 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3626 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3627 // second) is a polymorphic matcher that matches a value x if and only if
3628 // tm matches tuple (x, second).  Useful for implementing
3629 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3630 //
3631 // BoundSecondMatcher is copyable and assignable, as we need to put
3632 // instances of this class in a vector when implementing
3633 // UnorderedPointwise().
3634 template <typename Tuple2Matcher, typename Second>
3635 class BoundSecondMatcher {
3636  public:
3637   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3638       : tuple2_matcher_(tm), second_value_(second) {}
3639 
3640   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3641 
3642   template <typename T>
3643   operator Matcher<T>() const {
3644     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3645   }
3646 
3647   // We have to define this for UnorderedPointwise() to compile in
3648   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3649   // which requires the elements to be assignable in C++98.  The
3650   // compiler cannot generate the operator= for us, as Tuple2Matcher
3651   // and Second may not be assignable.
3652   //
3653   // However, this should never be called, so the implementation just
3654   // need to assert.
3655   void operator=(const BoundSecondMatcher& /*rhs*/) {
3656     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3657   }
3658 
3659  private:
3660   template <typename T>
3661   class Impl : public MatcherInterface<T> {
3662    public:
3663     typedef ::std::tuple<T, Second> ArgTuple;
3664 
3665     Impl(const Tuple2Matcher& tm, const Second& second)
3666         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3667           second_value_(second) {}
3668 
3669     void DescribeTo(::std::ostream* os) const override {
3670       *os << "and ";
3671       UniversalPrint(second_value_, os);
3672       *os << " ";
3673       mono_tuple2_matcher_.DescribeTo(os);
3674     }
3675 
3676     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3677       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3678                                                   listener);
3679     }
3680 
3681    private:
3682     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3683     const Second second_value_;
3684   };
3685 
3686   const Tuple2Matcher tuple2_matcher_;
3687   const Second second_value_;
3688 };
3689 
3690 // Given a 2-tuple matcher tm and a value second,
3691 // MatcherBindSecond(tm, second) returns a matcher that matches a
3692 // value x if and only if tm matches tuple (x, second).  Useful for
3693 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3694 template <typename Tuple2Matcher, typename Second>
3695 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3696     const Tuple2Matcher& tm, const Second& second) {
3697   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3698 }
3699 
3700 // Returns the description for a matcher defined using the MATCHER*()
3701 // macro where the user-supplied description string is "", if
3702 // 'negation' is false; otherwise returns the description of the
3703 // negation of the matcher.  'param_values' contains a list of strings
3704 // that are the print-out of the matcher's parameters.
3705 GTEST_API_ std::string FormatMatcherDescription(bool negation,
3706                                                 const char* matcher_name,
3707                                                 const Strings& param_values);
3708 
3709 // Implements a matcher that checks the value of a optional<> type variable.
3710 template <typename ValueMatcher>
3711 class OptionalMatcher {
3712  public:
3713   explicit OptionalMatcher(const ValueMatcher& value_matcher)
3714       : value_matcher_(value_matcher) {}
3715 
3716   template <typename Optional>
3717   operator Matcher<Optional>() const {
3718     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3719   }
3720 
3721   template <typename Optional>
3722   class Impl : public MatcherInterface<Optional> {
3723    public:
3724     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3725     typedef typename OptionalView::value_type ValueType;
3726     explicit Impl(const ValueMatcher& value_matcher)
3727         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3728 
3729     void DescribeTo(::std::ostream* os) const override {
3730       *os << "value ";
3731       value_matcher_.DescribeTo(os);
3732     }
3733 
3734     void DescribeNegationTo(::std::ostream* os) const override {
3735       *os << "value ";
3736       value_matcher_.DescribeNegationTo(os);
3737     }
3738 
3739     bool MatchAndExplain(Optional optional,
3740                          MatchResultListener* listener) const override {
3741       if (!optional) {
3742         *listener << "which is not engaged";
3743         return false;
3744       }
3745       const ValueType& value = *optional;
3746       StringMatchResultListener value_listener;
3747       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3748       *listener << "whose value " << PrintToString(value)
3749                 << (match ? " matches" : " doesn't match");
3750       PrintIfNotEmpty(value_listener.str(), listener->stream());
3751       return match;
3752     }
3753 
3754    private:
3755     const Matcher<ValueType> value_matcher_;
3756   };
3757 
3758  private:
3759   const ValueMatcher value_matcher_;
3760 };
3761 
3762 namespace variant_matcher {
3763 // Overloads to allow VariantMatcher to do proper ADL lookup.
3764 template <typename T>
3765 void holds_alternative() {}
3766 template <typename T>
3767 void get() {}
3768 
3769 // Implements a matcher that checks the value of a variant<> type variable.
3770 template <typename T>
3771 class VariantMatcher {
3772  public:
3773   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3774       : matcher_(std::move(matcher)) {}
3775 
3776   template <typename Variant>
3777   bool MatchAndExplain(const Variant& value,
3778                        ::testing::MatchResultListener* listener) const {
3779     using std::get;
3780     if (!listener->IsInterested()) {
3781       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3782     }
3783 
3784     if (!holds_alternative<T>(value)) {
3785       *listener << "whose value is not of type '" << GetTypeName() << "'";
3786       return false;
3787     }
3788 
3789     const T& elem = get<T>(value);
3790     StringMatchResultListener elem_listener;
3791     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3792     *listener << "whose value " << PrintToString(elem)
3793               << (match ? " matches" : " doesn't match");
3794     PrintIfNotEmpty(elem_listener.str(), listener->stream());
3795     return match;
3796   }
3797 
3798   void DescribeTo(std::ostream* os) const {
3799     *os << "is a variant<> with value of type '" << GetTypeName()
3800         << "' and the value ";
3801     matcher_.DescribeTo(os);
3802   }
3803 
3804   void DescribeNegationTo(std::ostream* os) const {
3805     *os << "is a variant<> with value of type other than '" << GetTypeName()
3806         << "' or the value ";
3807     matcher_.DescribeNegationTo(os);
3808   }
3809 
3810  private:
3811   static std::string GetTypeName() {
3812 #if GTEST_HAS_RTTI
3813     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3814         return internal::GetTypeName<T>());
3815 #endif
3816     return "the element type";
3817   }
3818 
3819   const ::testing::Matcher<const T&> matcher_;
3820 };
3821 
3822 }  // namespace variant_matcher
3823 
3824 namespace any_cast_matcher {
3825 
3826 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
3827 template <typename T>
3828 void any_cast() {}
3829 
3830 // Implements a matcher that any_casts the value.
3831 template <typename T>
3832 class AnyCastMatcher {
3833  public:
3834   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
3835       : matcher_(matcher) {}
3836 
3837   template <typename AnyType>
3838   bool MatchAndExplain(const AnyType& value,
3839                        ::testing::MatchResultListener* listener) const {
3840     if (!listener->IsInterested()) {
3841       const T* ptr = any_cast<T>(&value);
3842       return ptr != nullptr && matcher_.Matches(*ptr);
3843     }
3844 
3845     const T* elem = any_cast<T>(&value);
3846     if (elem == nullptr) {
3847       *listener << "whose value is not of type '" << GetTypeName() << "'";
3848       return false;
3849     }
3850 
3851     StringMatchResultListener elem_listener;
3852     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
3853     *listener << "whose value " << PrintToString(*elem)
3854               << (match ? " matches" : " doesn't match");
3855     PrintIfNotEmpty(elem_listener.str(), listener->stream());
3856     return match;
3857   }
3858 
3859   void DescribeTo(std::ostream* os) const {
3860     *os << "is an 'any' type with value of type '" << GetTypeName()
3861         << "' and the value ";
3862     matcher_.DescribeTo(os);
3863   }
3864 
3865   void DescribeNegationTo(std::ostream* os) const {
3866     *os << "is an 'any' type with value of type other than '" << GetTypeName()
3867         << "' or the value ";
3868     matcher_.DescribeNegationTo(os);
3869   }
3870 
3871  private:
3872   static std::string GetTypeName() {
3873 #if GTEST_HAS_RTTI
3874     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3875         return internal::GetTypeName<T>());
3876 #endif
3877     return "the element type";
3878   }
3879 
3880   const ::testing::Matcher<const T&> matcher_;
3881 };
3882 
3883 }  // namespace any_cast_matcher
3884 
3885 // Implements the Args() matcher.
3886 template <class ArgsTuple, size_t... k>
3887 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
3888  public:
3889   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
3890   using SelectedArgs =
3891       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
3892   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
3893 
3894   template <typename InnerMatcher>
3895   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
3896       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
3897 
3898   bool MatchAndExplain(ArgsTuple args,
3899                        MatchResultListener* listener) const override {
3900     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
3901     (void)args;
3902     const SelectedArgs& selected_args =
3903         std::forward_as_tuple(std::get<k>(args)...);
3904     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
3905 
3906     PrintIndices(listener->stream());
3907     *listener << "are " << PrintToString(selected_args);
3908 
3909     StringMatchResultListener inner_listener;
3910     const bool match =
3911         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
3912     PrintIfNotEmpty(inner_listener.str(), listener->stream());
3913     return match;
3914   }
3915 
3916   void DescribeTo(::std::ostream* os) const override {
3917     *os << "are a tuple ";
3918     PrintIndices(os);
3919     inner_matcher_.DescribeTo(os);
3920   }
3921 
3922   void DescribeNegationTo(::std::ostream* os) const override {
3923     *os << "are a tuple ";
3924     PrintIndices(os);
3925     inner_matcher_.DescribeNegationTo(os);
3926   }
3927 
3928  private:
3929   // Prints the indices of the selected fields.
3930   static void PrintIndices(::std::ostream* os) {
3931     *os << "whose fields (";
3932     const char* sep = "";
3933     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
3934     (void)sep;
3935     const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
3936     (void)dummy;
3937     *os << ") ";
3938   }
3939 
3940   MonomorphicInnerMatcher inner_matcher_;
3941 };
3942 
3943 template <class InnerMatcher, size_t... k>
3944 class ArgsMatcher {
3945  public:
3946   explicit ArgsMatcher(InnerMatcher inner_matcher)
3947       : inner_matcher_(std::move(inner_matcher)) {}
3948 
3949   template <typename ArgsTuple>
3950   operator Matcher<ArgsTuple>() const {  // NOLINT
3951     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
3952   }
3953 
3954  private:
3955   InnerMatcher inner_matcher_;
3956 };
3957 
3958 }  // namespace internal
3959 
3960 // ElementsAreArray(iterator_first, iterator_last)
3961 // ElementsAreArray(pointer, count)
3962 // ElementsAreArray(array)
3963 // ElementsAreArray(container)
3964 // ElementsAreArray({ e1, e2, ..., en })
3965 //
3966 // The ElementsAreArray() functions are like ElementsAre(...), except
3967 // that they are given a homogeneous sequence rather than taking each
3968 // element as a function argument. The sequence can be specified as an
3969 // array, a pointer and count, a vector, an initializer list, or an
3970 // STL iterator range. In each of these cases, the underlying sequence
3971 // can be either a sequence of values or a sequence of matchers.
3972 //
3973 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
3974 
3975 template <typename Iter>
3976 inline internal::ElementsAreArrayMatcher<
3977     typename ::std::iterator_traits<Iter>::value_type>
3978 ElementsAreArray(Iter first, Iter last) {
3979   typedef typename ::std::iterator_traits<Iter>::value_type T;
3980   return internal::ElementsAreArrayMatcher<T>(first, last);
3981 }
3982 
3983 template <typename T>
3984 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3985     const T* pointer, size_t count) {
3986   return ElementsAreArray(pointer, pointer + count);
3987 }
3988 
3989 template <typename T, size_t N>
3990 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3991     const T (&array)[N]) {
3992   return ElementsAreArray(array, N);
3993 }
3994 
3995 template <typename Container>
3996 inline internal::ElementsAreArrayMatcher<typename Container::value_type>
3997 ElementsAreArray(const Container& container) {
3998   return ElementsAreArray(container.begin(), container.end());
3999 }
4000 
4001 template <typename T>
4002 inline internal::ElementsAreArrayMatcher<T>
4003 ElementsAreArray(::std::initializer_list<T> xs) {
4004   return ElementsAreArray(xs.begin(), xs.end());
4005 }
4006 
4007 // UnorderedElementsAreArray(iterator_first, iterator_last)
4008 // UnorderedElementsAreArray(pointer, count)
4009 // UnorderedElementsAreArray(array)
4010 // UnorderedElementsAreArray(container)
4011 // UnorderedElementsAreArray({ e1, e2, ..., en })
4012 //
4013 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4014 // collection of matchers exists.
4015 //
4016 // The matchers can be specified as an array, a pointer and count, a container,
4017 // an initializer list, or an STL iterator range. In each of these cases, the
4018 // underlying matchers can be either values or matchers.
4019 
4020 template <typename Iter>
4021 inline internal::UnorderedElementsAreArrayMatcher<
4022     typename ::std::iterator_traits<Iter>::value_type>
4023 UnorderedElementsAreArray(Iter first, Iter last) {
4024   typedef typename ::std::iterator_traits<Iter>::value_type T;
4025   return internal::UnorderedElementsAreArrayMatcher<T>(
4026       internal::UnorderedMatcherRequire::ExactMatch, first, last);
4027 }
4028 
4029 template <typename T>
4030 inline internal::UnorderedElementsAreArrayMatcher<T>
4031 UnorderedElementsAreArray(const T* pointer, size_t count) {
4032   return UnorderedElementsAreArray(pointer, pointer + count);
4033 }
4034 
4035 template <typename T, size_t N>
4036 inline internal::UnorderedElementsAreArrayMatcher<T>
4037 UnorderedElementsAreArray(const T (&array)[N]) {
4038   return UnorderedElementsAreArray(array, N);
4039 }
4040 
4041 template <typename Container>
4042 inline internal::UnorderedElementsAreArrayMatcher<
4043     typename Container::value_type>
4044 UnorderedElementsAreArray(const Container& container) {
4045   return UnorderedElementsAreArray(container.begin(), container.end());
4046 }
4047 
4048 template <typename T>
4049 inline internal::UnorderedElementsAreArrayMatcher<T>
4050 UnorderedElementsAreArray(::std::initializer_list<T> xs) {
4051   return UnorderedElementsAreArray(xs.begin(), xs.end());
4052 }
4053 
4054 // _ is a matcher that matches anything of any type.
4055 //
4056 // This definition is fine as:
4057 //
4058 //   1. The C++ standard permits using the name _ in a namespace that
4059 //      is not the global namespace or ::std.
4060 //   2. The AnythingMatcher class has no data member or constructor,
4061 //      so it's OK to create global variables of this type.
4062 //   3. c-style has approved of using _ in this case.
4063 const internal::AnythingMatcher _ = {};
4064 // Creates a matcher that matches any value of the given type T.
4065 template <typename T>
4066 inline Matcher<T> A() {
4067   return _;
4068 }
4069 
4070 // Creates a matcher that matches any value of the given type T.
4071 template <typename T>
4072 inline Matcher<T> An() {
4073   return _;
4074 }
4075 
4076 template <typename T, typename M>
4077 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4078     const M& value, std::false_type /* convertible_to_matcher */,
4079     std::false_type /* convertible_to_T */) {
4080   return Eq(value);
4081 }
4082 
4083 // Creates a polymorphic matcher that matches any NULL pointer.
4084 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
4085   return MakePolymorphicMatcher(internal::IsNullMatcher());
4086 }
4087 
4088 // Creates a polymorphic matcher that matches any non-NULL pointer.
4089 // This is convenient as Not(NULL) doesn't compile (the compiler
4090 // thinks that that expression is comparing a pointer with an integer).
4091 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
4092   return MakePolymorphicMatcher(internal::NotNullMatcher());
4093 }
4094 
4095 // Creates a polymorphic matcher that matches any argument that
4096 // references variable x.
4097 template <typename T>
4098 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
4099   return internal::RefMatcher<T&>(x);
4100 }
4101 
4102 // Creates a polymorphic matcher that matches any NaN floating point.
4103 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4104   return MakePolymorphicMatcher(internal::IsNanMatcher());
4105 }
4106 
4107 // Creates a matcher that matches any double argument approximately
4108 // equal to rhs, where two NANs are considered unequal.
4109 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4110   return internal::FloatingEqMatcher<double>(rhs, false);
4111 }
4112 
4113 // Creates a matcher that matches any double argument approximately
4114 // equal to rhs, including NaN values when rhs is NaN.
4115 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4116   return internal::FloatingEqMatcher<double>(rhs, true);
4117 }
4118 
4119 // Creates a matcher that matches any double argument approximately equal to
4120 // rhs, up to the specified max absolute error bound, where two NANs are
4121 // considered unequal.  The max absolute error bound must be non-negative.
4122 inline internal::FloatingEqMatcher<double> DoubleNear(
4123     double rhs, double max_abs_error) {
4124   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4125 }
4126 
4127 // Creates a matcher that matches any double argument approximately equal to
4128 // rhs, up to the specified max absolute error bound, including NaN values when
4129 // rhs is NaN.  The max absolute error bound must be non-negative.
4130 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4131     double rhs, double max_abs_error) {
4132   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4133 }
4134 
4135 // Creates a matcher that matches any float argument approximately
4136 // equal to rhs, where two NANs are considered unequal.
4137 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4138   return internal::FloatingEqMatcher<float>(rhs, false);
4139 }
4140 
4141 // Creates a matcher that matches any float argument approximately
4142 // equal to rhs, including NaN values when rhs is NaN.
4143 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4144   return internal::FloatingEqMatcher<float>(rhs, true);
4145 }
4146 
4147 // Creates a matcher that matches any float argument approximately equal to
4148 // rhs, up to the specified max absolute error bound, where two NANs are
4149 // considered unequal.  The max absolute error bound must be non-negative.
4150 inline internal::FloatingEqMatcher<float> FloatNear(
4151     float rhs, float max_abs_error) {
4152   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4153 }
4154 
4155 // Creates a matcher that matches any float argument approximately equal to
4156 // rhs, up to the specified max absolute error bound, including NaN values when
4157 // rhs is NaN.  The max absolute error bound must be non-negative.
4158 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4159     float rhs, float max_abs_error) {
4160   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4161 }
4162 
4163 // Creates a matcher that matches a pointer (raw or smart) that points
4164 // to a value that matches inner_matcher.
4165 template <typename InnerMatcher>
4166 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4167     const InnerMatcher& inner_matcher) {
4168   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4169 }
4170 
4171 #if GTEST_HAS_RTTI
4172 // Creates a matcher that matches a pointer or reference that matches
4173 // inner_matcher when dynamic_cast<To> is applied.
4174 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4175 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4176 // If To is a reference and the cast fails, this matcher returns false
4177 // immediately.
4178 template <typename To>
4179 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
4180 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4181   return MakePolymorphicMatcher(
4182       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4183 }
4184 #endif  // GTEST_HAS_RTTI
4185 
4186 // Creates a matcher that matches an object whose given field matches
4187 // 'matcher'.  For example,
4188 //   Field(&Foo::number, Ge(5))
4189 // matches a Foo object x if and only if x.number >= 5.
4190 template <typename Class, typename FieldType, typename FieldMatcher>
4191 inline PolymorphicMatcher<
4192   internal::FieldMatcher<Class, FieldType> > Field(
4193     FieldType Class::*field, const FieldMatcher& matcher) {
4194   return MakePolymorphicMatcher(
4195       internal::FieldMatcher<Class, FieldType>(
4196           field, MatcherCast<const FieldType&>(matcher)));
4197   // The call to MatcherCast() is required for supporting inner
4198   // matchers of compatible types.  For example, it allows
4199   //   Field(&Foo::bar, m)
4200   // to compile where bar is an int32 and m is a matcher for int64.
4201 }
4202 
4203 // Same as Field() but also takes the name of the field to provide better error
4204 // messages.
4205 template <typename Class, typename FieldType, typename FieldMatcher>
4206 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
4207     const std::string& field_name, FieldType Class::*field,
4208     const FieldMatcher& matcher) {
4209   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4210       field_name, field, MatcherCast<const FieldType&>(matcher)));
4211 }
4212 
4213 // Creates a matcher that matches an object whose given property
4214 // matches 'matcher'.  For example,
4215 //   Property(&Foo::str, StartsWith("hi"))
4216 // matches a Foo object x if and only if x.str() starts with "hi".
4217 template <typename Class, typename PropertyType, typename PropertyMatcher>
4218 inline PolymorphicMatcher<internal::PropertyMatcher<
4219     Class, PropertyType, PropertyType (Class::*)() const> >
4220 Property(PropertyType (Class::*property)() const,
4221          const PropertyMatcher& matcher) {
4222   return MakePolymorphicMatcher(
4223       internal::PropertyMatcher<Class, PropertyType,
4224                                 PropertyType (Class::*)() const>(
4225           property, MatcherCast<const PropertyType&>(matcher)));
4226   // The call to MatcherCast() is required for supporting inner
4227   // matchers of compatible types.  For example, it allows
4228   //   Property(&Foo::bar, m)
4229   // to compile where bar() returns an int32 and m is a matcher for int64.
4230 }
4231 
4232 // Same as Property() above, but also takes the name of the property to provide
4233 // better error messages.
4234 template <typename Class, typename PropertyType, typename PropertyMatcher>
4235 inline PolymorphicMatcher<internal::PropertyMatcher<
4236     Class, PropertyType, PropertyType (Class::*)() const> >
4237 Property(const std::string& property_name,
4238          PropertyType (Class::*property)() const,
4239          const PropertyMatcher& matcher) {
4240   return MakePolymorphicMatcher(
4241       internal::PropertyMatcher<Class, PropertyType,
4242                                 PropertyType (Class::*)() const>(
4243           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4244 }
4245 
4246 // The same as above but for reference-qualified member functions.
4247 template <typename Class, typename PropertyType, typename PropertyMatcher>
4248 inline PolymorphicMatcher<internal::PropertyMatcher<
4249     Class, PropertyType, PropertyType (Class::*)() const &> >
4250 Property(PropertyType (Class::*property)() const &,
4251          const PropertyMatcher& matcher) {
4252   return MakePolymorphicMatcher(
4253       internal::PropertyMatcher<Class, PropertyType,
4254                                 PropertyType (Class::*)() const&>(
4255           property, MatcherCast<const PropertyType&>(matcher)));
4256 }
4257 
4258 // Three-argument form for reference-qualified member functions.
4259 template <typename Class, typename PropertyType, typename PropertyMatcher>
4260 inline PolymorphicMatcher<internal::PropertyMatcher<
4261     Class, PropertyType, PropertyType (Class::*)() const &> >
4262 Property(const std::string& property_name,
4263          PropertyType (Class::*property)() const &,
4264          const PropertyMatcher& matcher) {
4265   return MakePolymorphicMatcher(
4266       internal::PropertyMatcher<Class, PropertyType,
4267                                 PropertyType (Class::*)() const&>(
4268           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4269 }
4270 
4271 // Creates a matcher that matches an object if and only if the result of
4272 // applying a callable to x matches 'matcher'. For example,
4273 //   ResultOf(f, StartsWith("hi"))
4274 // matches a Foo object x if and only if f(x) starts with "hi".
4275 // `callable` parameter can be a function, function pointer, or a functor. It is
4276 // required to keep no state affecting the results of the calls on it and make
4277 // no assumptions about how many calls will be made. Any state it keeps must be
4278 // protected from the concurrent access.
4279 template <typename Callable, typename InnerMatcher>
4280 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4281     Callable callable, InnerMatcher matcher) {
4282   return internal::ResultOfMatcher<Callable, InnerMatcher>(
4283       std::move(callable), std::move(matcher));
4284 }
4285 
4286 // String matchers.
4287 
4288 // Matches a string equal to str.
4289 template <typename T = std::string>
4290 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
4291     const internal::StringLike<T>& str) {
4292   return MakePolymorphicMatcher(
4293       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4294 }
4295 
4296 // Matches a string not equal to str.
4297 template <typename T = std::string>
4298 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
4299     const internal::StringLike<T>& str) {
4300   return MakePolymorphicMatcher(
4301       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4302 }
4303 
4304 // Matches a string equal to str, ignoring case.
4305 template <typename T = std::string>
4306 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
4307     const internal::StringLike<T>& str) {
4308   return MakePolymorphicMatcher(
4309       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4310 }
4311 
4312 // Matches a string not equal to str, ignoring case.
4313 template <typename T = std::string>
4314 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
4315     const internal::StringLike<T>& str) {
4316   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4317       std::string(str), false, false));
4318 }
4319 
4320 // Creates a matcher that matches any string, std::string, or C string
4321 // that contains the given substring.
4322 template <typename T = std::string>
4323 PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
4324     const internal::StringLike<T>& substring) {
4325   return MakePolymorphicMatcher(
4326       internal::HasSubstrMatcher<std::string>(std::string(substring)));
4327 }
4328 
4329 // Matches a string that starts with 'prefix' (case-sensitive).
4330 template <typename T = std::string>
4331 PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
4332     const internal::StringLike<T>& prefix) {
4333   return MakePolymorphicMatcher(
4334       internal::StartsWithMatcher<std::string>(std::string(prefix)));
4335 }
4336 
4337 // Matches a string that ends with 'suffix' (case-sensitive).
4338 template <typename T = std::string>
4339 PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
4340     const internal::StringLike<T>& suffix) {
4341   return MakePolymorphicMatcher(
4342       internal::EndsWithMatcher<std::string>(std::string(suffix)));
4343 }
4344 
4345 #if GTEST_HAS_STD_WSTRING
4346 // Wide string matchers.
4347 
4348 // Matches a string equal to str.
4349 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
4350     const std::wstring& str) {
4351   return MakePolymorphicMatcher(
4352       internal::StrEqualityMatcher<std::wstring>(str, true, true));
4353 }
4354 
4355 // Matches a string not equal to str.
4356 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
4357     const std::wstring& str) {
4358   return MakePolymorphicMatcher(
4359       internal::StrEqualityMatcher<std::wstring>(str, false, true));
4360 }
4361 
4362 // Matches a string equal to str, ignoring case.
4363 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4364 StrCaseEq(const std::wstring& str) {
4365   return MakePolymorphicMatcher(
4366       internal::StrEqualityMatcher<std::wstring>(str, true, false));
4367 }
4368 
4369 // Matches a string not equal to str, ignoring case.
4370 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4371 StrCaseNe(const std::wstring& str) {
4372   return MakePolymorphicMatcher(
4373       internal::StrEqualityMatcher<std::wstring>(str, false, false));
4374 }
4375 
4376 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4377 // that contains the given substring.
4378 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
4379     const std::wstring& substring) {
4380   return MakePolymorphicMatcher(
4381       internal::HasSubstrMatcher<std::wstring>(substring));
4382 }
4383 
4384 // Matches a string that starts with 'prefix' (case-sensitive).
4385 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
4386 StartsWith(const std::wstring& prefix) {
4387   return MakePolymorphicMatcher(
4388       internal::StartsWithMatcher<std::wstring>(prefix));
4389 }
4390 
4391 // Matches a string that ends with 'suffix' (case-sensitive).
4392 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
4393     const std::wstring& suffix) {
4394   return MakePolymorphicMatcher(
4395       internal::EndsWithMatcher<std::wstring>(suffix));
4396 }
4397 
4398 #endif  // GTEST_HAS_STD_WSTRING
4399 
4400 // Creates a polymorphic matcher that matches a 2-tuple where the
4401 // first field == the second field.
4402 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4403 
4404 // Creates a polymorphic matcher that matches a 2-tuple where the
4405 // first field >= the second field.
4406 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4407 
4408 // Creates a polymorphic matcher that matches a 2-tuple where the
4409 // first field > the second field.
4410 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4411 
4412 // Creates a polymorphic matcher that matches a 2-tuple where the
4413 // first field <= the second field.
4414 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4415 
4416 // Creates a polymorphic matcher that matches a 2-tuple where the
4417 // first field < the second field.
4418 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4419 
4420 // Creates a polymorphic matcher that matches a 2-tuple where the
4421 // first field != the second field.
4422 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4423 
4424 // Creates a polymorphic matcher that matches a 2-tuple where
4425 // FloatEq(first field) matches the second field.
4426 inline internal::FloatingEq2Matcher<float> FloatEq() {
4427   return internal::FloatingEq2Matcher<float>();
4428 }
4429 
4430 // Creates a polymorphic matcher that matches a 2-tuple where
4431 // DoubleEq(first field) matches the second field.
4432 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4433   return internal::FloatingEq2Matcher<double>();
4434 }
4435 
4436 // Creates a polymorphic matcher that matches a 2-tuple where
4437 // FloatEq(first field) matches the second field with NaN equality.
4438 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4439   return internal::FloatingEq2Matcher<float>(true);
4440 }
4441 
4442 // Creates a polymorphic matcher that matches a 2-tuple where
4443 // DoubleEq(first field) matches the second field with NaN equality.
4444 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4445   return internal::FloatingEq2Matcher<double>(true);
4446 }
4447 
4448 // Creates a polymorphic matcher that matches a 2-tuple where
4449 // FloatNear(first field, max_abs_error) matches the second field.
4450 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4451   return internal::FloatingEq2Matcher<float>(max_abs_error);
4452 }
4453 
4454 // Creates a polymorphic matcher that matches a 2-tuple where
4455 // DoubleNear(first field, max_abs_error) matches the second field.
4456 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4457   return internal::FloatingEq2Matcher<double>(max_abs_error);
4458 }
4459 
4460 // Creates a polymorphic matcher that matches a 2-tuple where
4461 // FloatNear(first field, max_abs_error) matches the second field with NaN
4462 // equality.
4463 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4464     float max_abs_error) {
4465   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4466 }
4467 
4468 // Creates a polymorphic matcher that matches a 2-tuple where
4469 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4470 // equality.
4471 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4472     double max_abs_error) {
4473   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4474 }
4475 
4476 // Creates a matcher that matches any value of type T that m doesn't
4477 // match.
4478 template <typename InnerMatcher>
4479 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4480   return internal::NotMatcher<InnerMatcher>(m);
4481 }
4482 
4483 // Returns a matcher that matches anything that satisfies the given
4484 // predicate.  The predicate can be any unary function or functor
4485 // whose return type can be implicitly converted to bool.
4486 template <typename Predicate>
4487 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
4488 Truly(Predicate pred) {
4489   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4490 }
4491 
4492 // Returns a matcher that matches the container size. The container must
4493 // support both size() and size_type which all STL-like containers provide.
4494 // Note that the parameter 'size' can be a value of type size_type as well as
4495 // matcher. For instance:
4496 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4497 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4498 template <typename SizeMatcher>
4499 inline internal::SizeIsMatcher<SizeMatcher>
4500 SizeIs(const SizeMatcher& size_matcher) {
4501   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4502 }
4503 
4504 // Returns a matcher that matches the distance between the container's begin()
4505 // iterator and its end() iterator, i.e. the size of the container. This matcher
4506 // can be used instead of SizeIs with containers such as std::forward_list which
4507 // do not implement size(). The container must provide const_iterator (with
4508 // valid iterator_traits), begin() and end().
4509 template <typename DistanceMatcher>
4510 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
4511 BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
4512   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4513 }
4514 
4515 // Returns a matcher that matches an equal container.
4516 // This matcher behaves like Eq(), but in the event of mismatch lists the
4517 // values that are included in one container but not the other. (Duplicate
4518 // values and order differences are not explained.)
4519 template <typename Container>
4520 inline PolymorphicMatcher<internal::ContainerEqMatcher<
4521     typename std::remove_const<Container>::type>>
4522 ContainerEq(const Container& rhs) {
4523   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4524 }
4525 
4526 // Returns a matcher that matches a container that, when sorted using
4527 // the given comparator, matches container_matcher.
4528 template <typename Comparator, typename ContainerMatcher>
4529 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
4530 WhenSortedBy(const Comparator& comparator,
4531              const ContainerMatcher& container_matcher) {
4532   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4533       comparator, container_matcher);
4534 }
4535 
4536 // Returns a matcher that matches a container that, when sorted using
4537 // the < operator, matches container_matcher.
4538 template <typename ContainerMatcher>
4539 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4540 WhenSorted(const ContainerMatcher& container_matcher) {
4541   return
4542       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
4543           internal::LessComparator(), container_matcher);
4544 }
4545 
4546 // Matches an STL-style container or a native array that contains the
4547 // same number of elements as in rhs, where its i-th element and rhs's
4548 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4549 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4550 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4551 // LHS container and the RHS container respectively.
4552 template <typename TupleMatcher, typename Container>
4553 inline internal::PointwiseMatcher<TupleMatcher,
4554                                   typename std::remove_const<Container>::type>
4555 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4556   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4557                                                              rhs);
4558 }
4559 
4560 
4561 // Supports the Pointwise(m, {a, b, c}) syntax.
4562 template <typename TupleMatcher, typename T>
4563 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
4564     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4565   return Pointwise(tuple_matcher, std::vector<T>(rhs));
4566 }
4567 
4568 
4569 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4570 // container or a native array that contains the same number of
4571 // elements as in rhs, where in some permutation of the container, its
4572 // i-th element and rhs's i-th element (as a pair) satisfy the given
4573 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
4574 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4575 // the types of elements in the LHS container and the RHS container
4576 // respectively.
4577 //
4578 // This is like Pointwise(pair_matcher, rhs), except that the element
4579 // order doesn't matter.
4580 template <typename Tuple2Matcher, typename RhsContainer>
4581 inline internal::UnorderedElementsAreArrayMatcher<
4582     typename internal::BoundSecondMatcher<
4583         Tuple2Matcher,
4584         typename internal::StlContainerView<
4585             typename std::remove_const<RhsContainer>::type>::type::value_type>>
4586 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4587                    const RhsContainer& rhs_container) {
4588   // RhsView allows the same code to handle RhsContainer being a
4589   // STL-style container and it being a native C-style array.
4590   typedef typename internal::StlContainerView<RhsContainer> RhsView;
4591   typedef typename RhsView::type RhsStlContainer;
4592   typedef typename RhsStlContainer::value_type Second;
4593   const RhsStlContainer& rhs_stl_container =
4594       RhsView::ConstReference(rhs_container);
4595 
4596   // Create a matcher for each element in rhs_container.
4597   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
4598   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
4599        it != rhs_stl_container.end(); ++it) {
4600     matchers.push_back(
4601         internal::MatcherBindSecond(tuple2_matcher, *it));
4602   }
4603 
4604   // Delegate the work to UnorderedElementsAreArray().
4605   return UnorderedElementsAreArray(matchers);
4606 }
4607 
4608 
4609 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4610 template <typename Tuple2Matcher, typename T>
4611 inline internal::UnorderedElementsAreArrayMatcher<
4612     typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
4613 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4614                    std::initializer_list<T> rhs) {
4615   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4616 }
4617 
4618 
4619 // Matches an STL-style container or a native array that contains at
4620 // least one element matching the given value or matcher.
4621 //
4622 // Examples:
4623 //   ::std::set<int> page_ids;
4624 //   page_ids.insert(3);
4625 //   page_ids.insert(1);
4626 //   EXPECT_THAT(page_ids, Contains(1));
4627 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
4628 //   EXPECT_THAT(page_ids, Not(Contains(4)));
4629 //
4630 //   ::std::map<int, size_t> page_lengths;
4631 //   page_lengths[1] = 100;
4632 //   EXPECT_THAT(page_lengths,
4633 //               Contains(::std::pair<const int, size_t>(1, 100)));
4634 //
4635 //   const char* user_ids[] = { "joe", "mike", "tom" };
4636 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4637 template <typename M>
4638 inline internal::ContainsMatcher<M> Contains(M matcher) {
4639   return internal::ContainsMatcher<M>(matcher);
4640 }
4641 
4642 // IsSupersetOf(iterator_first, iterator_last)
4643 // IsSupersetOf(pointer, count)
4644 // IsSupersetOf(array)
4645 // IsSupersetOf(container)
4646 // IsSupersetOf({e1, e2, ..., en})
4647 //
4648 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4649 // of matchers exists. In other words, a container matches
4650 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4651 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4652 // ..., and yn matches en. Obviously, the size of the container must be >= n
4653 // in order to have a match. Examples:
4654 //
4655 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4656 //   1 matches Ne(0).
4657 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4658 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
4659 //   for elements in different slots of the container.
4660 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4661 //   Eq(1) and (the second) 1 matches Lt(2).
4662 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4663 //   Gt(1) and 3 matches (the second) Gt(1).
4664 //
4665 // The matchers can be specified as an array, a pointer and count, a container,
4666 // an initializer list, or an STL iterator range. In each of these cases, the
4667 // underlying matchers can be either values or matchers.
4668 
4669 template <typename Iter>
4670 inline internal::UnorderedElementsAreArrayMatcher<
4671     typename ::std::iterator_traits<Iter>::value_type>
4672 IsSupersetOf(Iter first, Iter last) {
4673   typedef typename ::std::iterator_traits<Iter>::value_type T;
4674   return internal::UnorderedElementsAreArrayMatcher<T>(
4675       internal::UnorderedMatcherRequire::Superset, first, last);
4676 }
4677 
4678 template <typename T>
4679 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4680     const T* pointer, size_t count) {
4681   return IsSupersetOf(pointer, pointer + count);
4682 }
4683 
4684 template <typename T, size_t N>
4685 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4686     const T (&array)[N]) {
4687   return IsSupersetOf(array, N);
4688 }
4689 
4690 template <typename Container>
4691 inline internal::UnorderedElementsAreArrayMatcher<
4692     typename Container::value_type>
4693 IsSupersetOf(const Container& container) {
4694   return IsSupersetOf(container.begin(), container.end());
4695 }
4696 
4697 template <typename T>
4698 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4699     ::std::initializer_list<T> xs) {
4700   return IsSupersetOf(xs.begin(), xs.end());
4701 }
4702 
4703 // IsSubsetOf(iterator_first, iterator_last)
4704 // IsSubsetOf(pointer, count)
4705 // IsSubsetOf(array)
4706 // IsSubsetOf(container)
4707 // IsSubsetOf({e1, e2, ..., en})
4708 //
4709 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4710 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4711 // only if there is a subset of matchers {m1, ..., mk} which would match the
4712 // container using UnorderedElementsAre.  Obviously, the size of the container
4713 // must be <= n in order to have a match. Examples:
4714 //
4715 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4716 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4717 //   matches Lt(0).
4718 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4719 //   match Gt(0). The reason is that different matchers must be used for
4720 //   elements in different slots of the container.
4721 //
4722 // The matchers can be specified as an array, a pointer and count, a container,
4723 // an initializer list, or an STL iterator range. In each of these cases, the
4724 // underlying matchers can be either values or matchers.
4725 
4726 template <typename Iter>
4727 inline internal::UnorderedElementsAreArrayMatcher<
4728     typename ::std::iterator_traits<Iter>::value_type>
4729 IsSubsetOf(Iter first, Iter last) {
4730   typedef typename ::std::iterator_traits<Iter>::value_type T;
4731   return internal::UnorderedElementsAreArrayMatcher<T>(
4732       internal::UnorderedMatcherRequire::Subset, first, last);
4733 }
4734 
4735 template <typename T>
4736 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4737     const T* pointer, size_t count) {
4738   return IsSubsetOf(pointer, pointer + count);
4739 }
4740 
4741 template <typename T, size_t N>
4742 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4743     const T (&array)[N]) {
4744   return IsSubsetOf(array, N);
4745 }
4746 
4747 template <typename Container>
4748 inline internal::UnorderedElementsAreArrayMatcher<
4749     typename Container::value_type>
4750 IsSubsetOf(const Container& container) {
4751   return IsSubsetOf(container.begin(), container.end());
4752 }
4753 
4754 template <typename T>
4755 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4756     ::std::initializer_list<T> xs) {
4757   return IsSubsetOf(xs.begin(), xs.end());
4758 }
4759 
4760 // Matches an STL-style container or a native array that contains only
4761 // elements matching the given value or matcher.
4762 //
4763 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
4764 // the messages are different.
4765 //
4766 // Examples:
4767 //   ::std::set<int> page_ids;
4768 //   // Each(m) matches an empty container, regardless of what m is.
4769 //   EXPECT_THAT(page_ids, Each(Eq(1)));
4770 //   EXPECT_THAT(page_ids, Each(Eq(77)));
4771 //
4772 //   page_ids.insert(3);
4773 //   EXPECT_THAT(page_ids, Each(Gt(0)));
4774 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4775 //   page_ids.insert(1);
4776 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4777 //
4778 //   ::std::map<int, size_t> page_lengths;
4779 //   page_lengths[1] = 100;
4780 //   page_lengths[2] = 200;
4781 //   page_lengths[3] = 300;
4782 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4783 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4784 //
4785 //   const char* user_ids[] = { "joe", "mike", "tom" };
4786 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4787 template <typename M>
4788 inline internal::EachMatcher<M> Each(M matcher) {
4789   return internal::EachMatcher<M>(matcher);
4790 }
4791 
4792 // Key(inner_matcher) matches an std::pair whose 'first' field matches
4793 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
4794 // std::map that contains at least one element whose key is >= 5.
4795 template <typename M>
4796 inline internal::KeyMatcher<M> Key(M inner_matcher) {
4797   return internal::KeyMatcher<M>(inner_matcher);
4798 }
4799 
4800 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4801 // matches first_matcher and whose 'second' field matches second_matcher.  For
4802 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4803 // to match a std::map<int, string> that contains exactly one element whose key
4804 // is >= 5 and whose value equals "foo".
4805 template <typename FirstMatcher, typename SecondMatcher>
4806 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
4807 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
4808   return internal::PairMatcher<FirstMatcher, SecondMatcher>(
4809       first_matcher, second_matcher);
4810 }
4811 
4812 namespace no_adl {
4813 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
4814 // These include those that support `get<I>(obj)`, and when structured bindings
4815 // are enabled any class that supports them.
4816 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
4817 template <typename... M>
4818 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
4819     M&&... matchers) {
4820   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
4821       std::forward<M>(matchers)...);
4822 }
4823 
4824 // Creates a matcher that matches a pointer (raw or smart) that matches
4825 // inner_matcher.
4826 template <typename InnerMatcher>
4827 inline internal::PointerMatcher<InnerMatcher> Pointer(
4828     const InnerMatcher& inner_matcher) {
4829   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
4830 }
4831 
4832 // Creates a matcher that matches an object that has an address that matches
4833 // inner_matcher.
4834 template <typename InnerMatcher>
4835 inline internal::AddressMatcher<InnerMatcher> Address(
4836     const InnerMatcher& inner_matcher) {
4837   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
4838 }
4839 }  // namespace no_adl
4840 
4841 // Returns a predicate that is satisfied by anything that matches the
4842 // given matcher.
4843 template <typename M>
4844 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
4845   return internal::MatcherAsPredicate<M>(matcher);
4846 }
4847 
4848 // Returns true if and only if the value matches the matcher.
4849 template <typename T, typename M>
4850 inline bool Value(const T& value, M matcher) {
4851   return testing::Matches(matcher)(value);
4852 }
4853 
4854 // Matches the value against the given matcher and explains the match
4855 // result to listener.
4856 template <typename T, typename M>
4857 inline bool ExplainMatchResult(
4858     M matcher, const T& value, MatchResultListener* listener) {
4859   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
4860 }
4861 
4862 // Returns a string representation of the given matcher.  Useful for description
4863 // strings of matchers defined using MATCHER_P* macros that accept matchers as
4864 // their arguments.  For example:
4865 //
4866 // MATCHER_P(XAndYThat, matcher,
4867 //           "X that " + DescribeMatcher<int>(matcher, negation) +
4868 //               " and Y that " + DescribeMatcher<double>(matcher, negation)) {
4869 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
4870 //          ExplainMatchResult(matcher, arg.y(), result_listener);
4871 // }
4872 template <typename T, typename M>
4873 std::string DescribeMatcher(const M& matcher, bool negation = false) {
4874   ::std::stringstream ss;
4875   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
4876   if (negation) {
4877     monomorphic_matcher.DescribeNegationTo(&ss);
4878   } else {
4879     monomorphic_matcher.DescribeTo(&ss);
4880   }
4881   return ss.str();
4882 }
4883 
4884 template <typename... Args>
4885 internal::ElementsAreMatcher<
4886     std::tuple<typename std::decay<const Args&>::type...>>
4887 ElementsAre(const Args&... matchers) {
4888   return internal::ElementsAreMatcher<
4889       std::tuple<typename std::decay<const Args&>::type...>>(
4890       std::make_tuple(matchers...));
4891 }
4892 
4893 template <typename... Args>
4894 internal::UnorderedElementsAreMatcher<
4895     std::tuple<typename std::decay<const Args&>::type...>>
4896 UnorderedElementsAre(const Args&... matchers) {
4897   return internal::UnorderedElementsAreMatcher<
4898       std::tuple<typename std::decay<const Args&>::type...>>(
4899       std::make_tuple(matchers...));
4900 }
4901 
4902 // Define variadic matcher versions.
4903 template <typename... Args>
4904 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
4905     const Args&... matchers) {
4906   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
4907       matchers...);
4908 }
4909 
4910 template <typename... Args>
4911 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
4912     const Args&... matchers) {
4913   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
4914       matchers...);
4915 }
4916 
4917 // AnyOfArray(array)
4918 // AnyOfArray(pointer, count)
4919 // AnyOfArray(container)
4920 // AnyOfArray({ e1, e2, ..., en })
4921 // AnyOfArray(iterator_first, iterator_last)
4922 //
4923 // AnyOfArray() verifies whether a given value matches any member of a
4924 // collection of matchers.
4925 //
4926 // AllOfArray(array)
4927 // AllOfArray(pointer, count)
4928 // AllOfArray(container)
4929 // AllOfArray({ e1, e2, ..., en })
4930 // AllOfArray(iterator_first, iterator_last)
4931 //
4932 // AllOfArray() verifies whether a given value matches all members of a
4933 // collection of matchers.
4934 //
4935 // The matchers can be specified as an array, a pointer and count, a container,
4936 // an initializer list, or an STL iterator range. In each of these cases, the
4937 // underlying matchers can be either values or matchers.
4938 
4939 template <typename Iter>
4940 inline internal::AnyOfArrayMatcher<
4941     typename ::std::iterator_traits<Iter>::value_type>
4942 AnyOfArray(Iter first, Iter last) {
4943   return internal::AnyOfArrayMatcher<
4944       typename ::std::iterator_traits<Iter>::value_type>(first, last);
4945 }
4946 
4947 template <typename Iter>
4948 inline internal::AllOfArrayMatcher<
4949     typename ::std::iterator_traits<Iter>::value_type>
4950 AllOfArray(Iter first, Iter last) {
4951   return internal::AllOfArrayMatcher<
4952       typename ::std::iterator_traits<Iter>::value_type>(first, last);
4953 }
4954 
4955 template <typename T>
4956 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
4957   return AnyOfArray(ptr, ptr + count);
4958 }
4959 
4960 template <typename T>
4961 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
4962   return AllOfArray(ptr, ptr + count);
4963 }
4964 
4965 template <typename T, size_t N>
4966 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
4967   return AnyOfArray(array, N);
4968 }
4969 
4970 template <typename T, size_t N>
4971 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
4972   return AllOfArray(array, N);
4973 }
4974 
4975 template <typename Container>
4976 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
4977     const Container& container) {
4978   return AnyOfArray(container.begin(), container.end());
4979 }
4980 
4981 template <typename Container>
4982 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
4983     const Container& container) {
4984   return AllOfArray(container.begin(), container.end());
4985 }
4986 
4987 template <typename T>
4988 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
4989     ::std::initializer_list<T> xs) {
4990   return AnyOfArray(xs.begin(), xs.end());
4991 }
4992 
4993 template <typename T>
4994 inline internal::AllOfArrayMatcher<T> AllOfArray(
4995     ::std::initializer_list<T> xs) {
4996   return AllOfArray(xs.begin(), xs.end());
4997 }
4998 
4999 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5000 // fields of it matches a_matcher.  C++ doesn't support default
5001 // arguments for function templates, so we have to overload it.
5002 template <size_t... k, typename InnerMatcher>
5003 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5004     InnerMatcher&& matcher) {
5005   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5006       std::forward<InnerMatcher>(matcher));
5007 }
5008 
5009 // AllArgs(m) is a synonym of m.  This is useful in
5010 //
5011 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5012 //
5013 // which is easier to read than
5014 //
5015 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5016 template <typename InnerMatcher>
5017 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
5018 
5019 // Returns a matcher that matches the value of an optional<> type variable.
5020 // The matcher implementation only uses '!arg' and requires that the optional<>
5021 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5022 // and is printable using 'PrintToString'. It is compatible with
5023 // std::optional/std::experimental::optional.
5024 // Note that to compare an optional type variable against nullopt you should
5025 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5026 // optional value contains an optional itself.
5027 template <typename ValueMatcher>
5028 inline internal::OptionalMatcher<ValueMatcher> Optional(
5029     const ValueMatcher& value_matcher) {
5030   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5031 }
5032 
5033 // Returns a matcher that matches the value of a absl::any type variable.
5034 template <typename T>
5035 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
5036     const Matcher<const T&>& matcher) {
5037   return MakePolymorphicMatcher(
5038       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5039 }
5040 
5041 // Returns a matcher that matches the value of a variant<> type variable.
5042 // The matcher implementation uses ADL to find the holds_alternative and get
5043 // functions.
5044 // It is compatible with std::variant.
5045 template <typename T>
5046 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
5047     const Matcher<const T&>& matcher) {
5048   return MakePolymorphicMatcher(
5049       internal::variant_matcher::VariantMatcher<T>(matcher));
5050 }
5051 
5052 #if GTEST_HAS_EXCEPTIONS
5053 
5054 // Anything inside the `internal` namespace is internal to the implementation
5055 // and must not be used in user code!
5056 namespace internal {
5057 
5058 class WithWhatMatcherImpl {
5059  public:
5060   WithWhatMatcherImpl(Matcher<std::string> matcher)
5061       : matcher_(std::move(matcher)) {}
5062 
5063   void DescribeTo(std::ostream* os) const {
5064     *os << "contains .what() that ";
5065     matcher_.DescribeTo(os);
5066   }
5067 
5068   void DescribeNegationTo(std::ostream* os) const {
5069     *os << "contains .what() that does not ";
5070     matcher_.DescribeTo(os);
5071   }
5072 
5073   template <typename Err>
5074   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5075     *listener << "which contains .what() that ";
5076     return matcher_.MatchAndExplain(err.what(), listener);
5077   }
5078 
5079  private:
5080   const Matcher<std::string> matcher_;
5081 };
5082 
5083 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5084     Matcher<std::string> m) {
5085   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5086 }
5087 
5088 template <typename Err>
5089 class ExceptionMatcherImpl {
5090   class NeverThrown {
5091    public:
5092     const char* what() const noexcept {
5093       return "this exception should never be thrown";
5094     }
5095   };
5096 
5097   // If the matchee raises an exception of a wrong type, we'd like to
5098   // catch it and print its message and type. To do that, we add an additional
5099   // catch clause:
5100   //
5101   //     try { ... }
5102   //     catch (const Err&) { /* an expected exception */ }
5103   //     catch (const std::exception&) { /* exception of a wrong type */ }
5104   //
5105   // However, if the `Err` itself is `std::exception`, we'd end up with two
5106   // identical `catch` clauses:
5107   //
5108   //     try { ... }
5109   //     catch (const std::exception&) { /* an expected exception */ }
5110   //     catch (const std::exception&) { /* exception of a wrong type */ }
5111   //
5112   // This can cause a warning or an error in some compilers. To resolve
5113   // the issue, we use a fake error type whenever `Err` is `std::exception`:
5114   //
5115   //     try { ... }
5116   //     catch (const std::exception&) { /* an expected exception */ }
5117   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
5118   using DefaultExceptionType = typename std::conditional<
5119       std::is_same<typename std::remove_cv<
5120                        typename std::remove_reference<Err>::type>::type,
5121                    std::exception>::value,
5122       const NeverThrown&, const std::exception&>::type;
5123 
5124  public:
5125   ExceptionMatcherImpl(Matcher<const Err&> matcher)
5126       : matcher_(std::move(matcher)) {}
5127 
5128   void DescribeTo(std::ostream* os) const {
5129     *os << "throws an exception which is a " << GetTypeName<Err>();
5130     *os << " which ";
5131     matcher_.DescribeTo(os);
5132   }
5133 
5134   void DescribeNegationTo(std::ostream* os) const {
5135     *os << "throws an exception which is not a " << GetTypeName<Err>();
5136     *os << " which ";
5137     matcher_.DescribeNegationTo(os);
5138   }
5139 
5140   template <typename T>
5141   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5142     try {
5143       (void)(std::forward<T>(x)());
5144     } catch (const Err& err) {
5145       *listener << "throws an exception which is a " << GetTypeName<Err>();
5146       *listener << " ";
5147       return matcher_.MatchAndExplain(err, listener);
5148     } catch (DefaultExceptionType err) {
5149 #if GTEST_HAS_RTTI
5150       *listener << "throws an exception of type " << GetTypeName(typeid(err));
5151       *listener << " ";
5152 #else
5153       *listener << "throws an std::exception-derived type ";
5154 #endif
5155       *listener << "with description \"" << err.what() << "\"";
5156       return false;
5157     } catch (...) {
5158       *listener << "throws an exception of an unknown type";
5159       return false;
5160     }
5161 
5162     *listener << "does not throw any exception";
5163     return false;
5164   }
5165 
5166  private:
5167   const Matcher<const Err&> matcher_;
5168 };
5169 
5170 }  // namespace internal
5171 
5172 // Throws()
5173 // Throws(exceptionMatcher)
5174 // ThrowsMessage(messageMatcher)
5175 //
5176 // This matcher accepts a callable and verifies that when invoked, it throws
5177 // an exception with the given type and properties.
5178 //
5179 // Examples:
5180 //
5181 //   EXPECT_THAT(
5182 //       []() { throw std::runtime_error("message"); },
5183 //       Throws<std::runtime_error>());
5184 //
5185 //   EXPECT_THAT(
5186 //       []() { throw std::runtime_error("message"); },
5187 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5188 //
5189 //   EXPECT_THAT(
5190 //       []() { throw std::runtime_error("message"); },
5191 //       Throws<std::runtime_error>(
5192 //           Property(&std::runtime_error::what, HasSubstr("message"))));
5193 
5194 template <typename Err>
5195 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5196   return MakePolymorphicMatcher(
5197       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5198 }
5199 
5200 template <typename Err, typename ExceptionMatcher>
5201 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5202     const ExceptionMatcher& exception_matcher) {
5203   // Using matcher cast allows users to pass a matcher of a more broad type.
5204   // For example user may want to pass Matcher<std::exception>
5205   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5206   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5207       SafeMatcherCast<const Err&>(exception_matcher)));
5208 }
5209 
5210 template <typename Err, typename MessageMatcher>
5211 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5212     MessageMatcher&& message_matcher) {
5213   static_assert(std::is_base_of<std::exception, Err>::value,
5214                 "expected an std::exception-derived type");
5215   return Throws<Err>(internal::WithWhat(
5216       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5217 }
5218 
5219 #endif  // GTEST_HAS_EXCEPTIONS
5220 
5221 // These macros allow using matchers to check values in Google Test
5222 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5223 // succeed if and only if the value matches the matcher.  If the assertion
5224 // fails, the value and the description of the matcher will be printed.
5225 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
5226     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5227 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
5228     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5229 
5230 // MATCHER* macroses itself are listed below.
5231 #define MATCHER(name, description)                                             \
5232   class name##Matcher                                                          \
5233       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
5234    public:                                                                     \
5235     template <typename arg_type>                                               \
5236     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5237      public:                                                                   \
5238       gmock_Impl() {}                                                          \
5239       bool MatchAndExplain(                                                    \
5240           const arg_type& arg,                                                 \
5241           ::testing::MatchResultListener* result_listener) const override;     \
5242       void DescribeTo(::std::ostream* gmock_os) const override {               \
5243         *gmock_os << FormatDescription(false);                                 \
5244       }                                                                        \
5245       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5246         *gmock_os << FormatDescription(true);                                  \
5247       }                                                                        \
5248                                                                                \
5249      private:                                                                  \
5250       ::std::string FormatDescription(bool negation) const {                   \
5251         ::std::string gmock_description = (description);                       \
5252         if (!gmock_description.empty()) {                                      \
5253           return gmock_description;                                            \
5254         }                                                                      \
5255         return ::testing::internal::FormatMatcherDescription(negation, #name,  \
5256                                                              {});              \
5257       }                                                                        \
5258     };                                                                         \
5259   };                                                                           \
5260   GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \
5261   template <typename arg_type>                                                 \
5262   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
5263       const arg_type& arg,                                                     \
5264       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5265       const
5266 
5267 #define MATCHER_P(name, p0, description) \
5268   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
5269 #define MATCHER_P2(name, p0, p1, description) \
5270   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
5271 #define MATCHER_P3(name, p0, p1, p2, description) \
5272   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
5273 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
5274   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
5275 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
5276   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5277                          (p0, p1, p2, p3, p4))
5278 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5279   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
5280                          (p0, p1, p2, p3, p4, p5))
5281 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5282   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
5283                          (p0, p1, p2, p3, p4, p5, p6))
5284 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5285   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
5286                          (p0, p1, p2, p3, p4, p5, p6, p7))
5287 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5288   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
5289                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5290 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5291   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
5292                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5293 
5294 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args)             \
5295   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5296   class full_name : public ::testing::internal::MatcherBaseImpl<               \
5297                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5298    public:                                                                     \
5299     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
5300     template <typename arg_type>                                               \
5301     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5302      public:                                                                   \
5303       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
5304           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
5305       bool MatchAndExplain(                                                    \
5306           const arg_type& arg,                                                 \
5307           ::testing::MatchResultListener* result_listener) const override;     \
5308       void DescribeTo(::std::ostream* gmock_os) const override {               \
5309         *gmock_os << FormatDescription(false);                                 \
5310       }                                                                        \
5311       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5312         *gmock_os << FormatDescription(true);                                  \
5313       }                                                                        \
5314       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
5315                                                                                \
5316      private:                                                                  \
5317       ::std::string FormatDescription(bool negation) const {                   \
5318         ::std::string gmock_description = (description);                       \
5319         if (!gmock_description.empty()) {                                      \
5320           return gmock_description;                                            \
5321         }                                                                      \
5322         return ::testing::internal::FormatMatcherDescription(                  \
5323             negation, #name,                                                   \
5324             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
5325                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
5326                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
5327       }                                                                        \
5328     };                                                                         \
5329   };                                                                           \
5330   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5331   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
5332       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
5333     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
5334         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
5335   }                                                                            \
5336   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5337   template <typename arg_type>                                                 \
5338   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
5339       arg_type>::MatchAndExplain(const arg_type& arg,                          \
5340                                  ::testing::MatchResultListener*               \
5341                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \
5342       const
5343 
5344 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5345   GMOCK_PP_TAIL(                                     \
5346       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5347 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5348   , typename arg##_type
5349 
5350 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5351   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5352 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5353   , arg##_type
5354 
5355 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5356   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
5357       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5358 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5359   , arg##_type gmock_p##i
5360 
5361 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5362   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5363 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5364   , arg(::std::forward<arg##_type>(gmock_p##i))
5365 
5366 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5367   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5368 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5369   const arg##_type arg;
5370 
5371 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5372   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5373 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5374 
5375 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5376   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5377 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5378   , gmock_p##i
5379 
5380 // To prevent ADL on certain functions we put them on a separate namespace.
5381 using namespace no_adl;  // NOLINT
5382 
5383 }  // namespace testing
5384 
5385 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
5386 
5387 // Include any custom callback matchers added by the local installation.
5388 // We must include this header at the end to make sure it can use the
5389 // declarations from this file.
5390 #include "gmock/internal/custom/gmock-matchers.h"
5391 
5392 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5393