• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #![doc(test(attr(deny(warnings))))]
2 #![warn(missing_docs)]
3 #![allow(unknown_lints, renamed_and_remove_lints, bare_trait_objects)]
4 
5 //! Backend of the [signal-hook] crate.
6 //!
7 //! The [signal-hook] crate tries to provide an API to the unix signals, which are a global
8 //! resource. Therefore, it is desirable an application contains just one version of the crate
9 //! which manages this global resource. But that makes it impossible to make breaking changes in
10 //! the API.
11 //!
12 //! Therefore, this crate provides very minimal and low level API to the signals that is unlikely
13 //! to have to change, while there may be multiple versions of the [signal-hook] that all use this
14 //! low-level API to provide different versions of the high level APIs.
15 //!
16 //! It is also possible some other crates might want to build a completely different API. This
17 //! split allows these crates to still reuse the same low-level routines in this crate instead of
18 //! going to the (much more dangerous) unix calls.
19 //!
20 //! # What this crate provides
21 //!
22 //! The only thing this crate does is multiplexing the signals. An application or library can add
23 //! or remove callbacks and have multiple callbacks for the same signal.
24 //!
25 //! It handles dispatching the callbacks and managing them in a way that uses only the
26 //! [async-signal-safe] functions inside the signal handler. Note that the callbacks are still run
27 //! inside the signal handler, so it is up to the caller to ensure they are also
28 //! [async-signal-safe].
29 //!
30 //! # What this is for
31 //!
32 //! This is a building block for other libraries creating reasonable abstractions on top of
33 //! signals. The [signal-hook] is the generally preferred way if you need to handle signals in your
34 //! application and provides several safe patterns of doing so.
35 //!
36 //! # Rust version compatibility
37 //!
38 //! Currently builds on 1.26.0 an newer and this is very unlikely to change. However, tests
39 //! require dependencies that don't build there, so tests need newer Rust version (they are run on
40 //! stable).
41 //!
42 //! # Portability
43 //!
44 //! This crate includes a limited support for Windows, based on `signal`/`raise` in the CRT.
45 //! There are differences in both API and behavior:
46 //!
47 //! - Due to lack of `siginfo_t`, we don't provide `register_sigaction` or `register_unchecked`.
48 //! - Due to lack of signal blocking, there's a race condition.
49 //!   After the call to `signal`, there's a moment where we miss a signal.
50 //!   That means when you register a handler, there may be a signal which invokes
51 //!   neither the default handler or the handler you register.
52 //! - Handlers registered by `signal` in Windows are cleared on first signal.
53 //!   To match behavior in other platforms, we re-register the handler each time the handler is
54 //!   called, but there's a moment where we miss a handler.
55 //!   That means when you receive two signals in a row, there may be a signal which invokes
56 //!   the default handler, nevertheless you certainly have registered the handler.
57 //!
58 //! [signal-hook]: https://docs.rs/signal-hook
59 //! [async-signal-safe]: http://www.man7.org/linux/man-pages/man7/signal-safety.7.html
60 
61 extern crate libc;
62 
63 mod half_lock;
64 
65 use std::collections::hash_map::Entry;
66 use std::collections::{BTreeMap, HashMap};
67 use std::io::Error;
68 use std::mem;
69 #[cfg(not(windows))]
70 use std::ptr;
71 // Once::new is now a const-fn. But it is not stable in all the rustc versions we want to support
72 // yet.
73 #[allow(deprecated)]
74 use std::sync::ONCE_INIT;
75 use std::sync::{Arc, Once};
76 
77 #[cfg(not(windows))]
78 use libc::{c_int, c_void, sigaction, siginfo_t};
79 #[cfg(windows)]
80 use libc::{c_int, sighandler_t};
81 
82 #[cfg(not(windows))]
83 use libc::{SIGFPE, SIGILL, SIGKILL, SIGSEGV, SIGSTOP};
84 #[cfg(windows)]
85 use libc::{SIGFPE, SIGILL, SIGSEGV};
86 
87 use half_lock::HalfLock;
88 
89 // These constants are not defined in the current version of libc, but it actually
90 // exists in Windows CRT.
91 #[cfg(windows)]
92 const SIG_DFL: sighandler_t = 0;
93 #[cfg(windows)]
94 const SIG_IGN: sighandler_t = 1;
95 #[cfg(windows)]
96 const SIG_GET: sighandler_t = 2;
97 #[cfg(windows)]
98 const SIG_ERR: sighandler_t = !0;
99 
100 // To simplify implementation. Not to be exposed.
101 #[cfg(windows)]
102 #[allow(non_camel_case_types)]
103 struct siginfo_t;
104 
105 // # Internal workings
106 //
107 // This uses a form of RCU. There's an atomic pointer to the current action descriptors (in the
108 // form of IndependentArcSwap, to be able to track what, if any, signal handlers still use the
109 // version). A signal handler takes a copy of the pointer and calls all the relevant actions.
110 //
111 // Modifications to that are protected by a mutex, to avoid juggling multiple signal handlers at
112 // once (eg. not calling sigaction concurrently). This should not be a problem, because modifying
113 // the signal actions should be initialization only anyway. To avoid all allocations and also
114 // deallocations inside the signal handler, after replacing the pointer, the modification routine
115 // needs to busy-wait for the reference count on the old pointer to drop to 1 and take ownership ‒
116 // that way the one deallocating is the modification routine, outside of the signal handler.
117 
118 #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
119 struct ActionId(u128);
120 
121 /// An ID of registered action.
122 ///
123 /// This is returned by all the registration routines and can be used to remove the action later on
124 /// with a call to [`unregister`].
125 #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
126 pub struct SigId {
127     signal: c_int,
128     action: ActionId,
129 }
130 
131 // This should be dyn Fn(...), but we want to support Rust 1.26.0 and that one doesn't allow dyn
132 // yet.
133 #[allow(unknown_lints, bare_trait_objects)]
134 type Action = Fn(&siginfo_t) + Send + Sync;
135 
136 #[derive(Clone)]
137 struct Slot {
138     prev: Prev,
139     // We use BTreeMap here, because we want to run the actions in the order they were inserted.
140     // This works, because the ActionIds are assigned in an increasing order.
141     actions: BTreeMap<ActionId, Arc<Action>>,
142 }
143 
144 impl Slot {
145     #[cfg(windows)]
new(signal: libc::c_int) -> Result<Self, Error>146     fn new(signal: libc::c_int) -> Result<Self, Error> {
147         let old = unsafe { libc::signal(signal, handler as sighandler_t) };
148         if old == SIG_ERR {
149             return Err(Error::last_os_error());
150         }
151         Ok(Slot {
152             prev: Prev { signal, info: old },
153             actions: BTreeMap::new(),
154         })
155     }
156 
157     #[cfg(not(windows))]
new(signal: libc::c_int) -> Result<Self, Error>158     fn new(signal: libc::c_int) -> Result<Self, Error> {
159         // C data structure, expected to be zeroed out.
160         let mut new: libc::sigaction = unsafe { mem::zeroed() };
161         #[cfg(not(target_os = "aix"))]
162         { new.sa_sigaction = handler as usize; }
163         #[cfg(target_os = "aix")]
164         { new.sa_union.__su_sigaction = handler; }
165         // Android is broken and uses different int types than the rest (and different depending on
166         // the pointer width). This converts the flags to the proper type no matter what it is on
167         // the given platform.
168         let flags = libc::SA_RESTART;
169         #[allow(unused_assignments)]
170         let mut siginfo = flags;
171         siginfo = libc::SA_SIGINFO as _;
172         let flags = flags | siginfo;
173         new.sa_flags = flags as _;
174         // C data structure, expected to be zeroed out.
175         let mut old: libc::sigaction = unsafe { mem::zeroed() };
176         // FFI ‒ pointers are valid, it doesn't take ownership.
177         if unsafe { libc::sigaction(signal, &new, &mut old) } != 0 {
178             return Err(Error::last_os_error());
179         }
180         Ok(Slot {
181             prev: Prev { signal, info: old },
182             actions: BTreeMap::new(),
183         })
184     }
185 }
186 
187 #[derive(Clone)]
188 struct SignalData {
189     signals: HashMap<c_int, Slot>,
190     next_id: u128,
191 }
192 
193 #[derive(Clone)]
194 struct Prev {
195     signal: c_int,
196     #[cfg(windows)]
197     info: sighandler_t,
198     #[cfg(not(windows))]
199     info: sigaction,
200 }
201 
202 impl Prev {
203     #[cfg(windows)]
detect(signal: c_int) -> Result<Self, Error>204     fn detect(signal: c_int) -> Result<Self, Error> {
205         let old = unsafe { libc::signal(signal, SIG_GET) };
206         if old == SIG_ERR {
207             return Err(Error::last_os_error());
208         }
209         Ok(Prev { signal, info: old })
210     }
211 
212     #[cfg(not(windows))]
detect(signal: c_int) -> Result<Self, Error>213     fn detect(signal: c_int) -> Result<Self, Error> {
214         // C data structure, expected to be zeroed out.
215         let mut old: libc::sigaction = unsafe { mem::zeroed() };
216         // FFI ‒ pointers are valid, it doesn't take ownership.
217         if unsafe { libc::sigaction(signal, ptr::null(), &mut old) } != 0 {
218             return Err(Error::last_os_error());
219         }
220 
221         Ok(Prev { signal, info: old })
222     }
223 
224     #[cfg(windows)]
execute(&self, sig: c_int)225     fn execute(&self, sig: c_int) {
226         let fptr = self.info;
227         if fptr != 0 && fptr != SIG_DFL && fptr != SIG_IGN {
228             // FFI ‒ calling the original signal handler.
229             unsafe {
230                 let action = mem::transmute::<usize, extern "C" fn(c_int)>(fptr);
231                 action(sig);
232             }
233         }
234     }
235 
236     #[cfg(not(windows))]
execute(&self, sig: c_int, info: *mut siginfo_t, data: *mut c_void)237     unsafe fn execute(&self, sig: c_int, info: *mut siginfo_t, data: *mut c_void) {
238         #[cfg(not(target_os = "aix"))]
239         let fptr = self.info.sa_sigaction;
240         #[cfg(target_os = "aix")]
241         let fptr = self.info.sa_union.__su_sigaction as usize;
242         if fptr != 0 && fptr != libc::SIG_DFL && fptr != libc::SIG_IGN {
243             // Android is broken and uses different int types than the rest (and different
244             // depending on the pointer width). This converts the flags to the proper type no
245             // matter what it is on the given platform.
246             //
247             // The trick is to create the same-typed variable as the sa_flags first and then
248             // set it to the proper value (does Rust have a way to copy a type in a different
249             // way?)
250             #[allow(unused_assignments)]
251             let mut siginfo = self.info.sa_flags;
252             siginfo = libc::SA_SIGINFO as _;
253             if self.info.sa_flags & siginfo == 0 {
254                 let action = mem::transmute::<usize, extern "C" fn(c_int)>(fptr);
255                 action(sig);
256             } else {
257                 type SigAction = extern "C" fn(c_int, *mut siginfo_t, *mut c_void);
258                 let action = mem::transmute::<usize, SigAction>(fptr);
259                 action(sig, info, data);
260             }
261         }
262     }
263 }
264 
265 /// Lazy-initiated data structure with our global variables.
266 ///
267 /// Used inside a structure to cut down on boilerplate code to lazy-initialize stuff. We don't dare
268 /// use anything fancy like lazy-static or once-cell, since we are not sure they are
269 /// async-signal-safe in their access. Our code uses the [Once], but only on the write end outside
270 /// of signal handler. The handler assumes it has already been initialized.
271 struct GlobalData {
272     /// The data structure describing what needs to be run for each signal.
273     data: HalfLock<SignalData>,
274 
275     /// A fallback to fight/minimize a race condition during signal initialization.
276     ///
277     /// See the comment inside [`register_unchecked_impl`].
278     race_fallback: HalfLock<Option<Prev>>,
279 }
280 
281 static mut GLOBAL_DATA: Option<GlobalData> = None;
282 #[allow(deprecated)]
283 static GLOBAL_INIT: Once = ONCE_INIT;
284 
285 impl GlobalData {
get() -> &'static Self286     fn get() -> &'static Self {
287         unsafe { GLOBAL_DATA.as_ref().unwrap() }
288     }
ensure() -> &'static Self289     fn ensure() -> &'static Self {
290         GLOBAL_INIT.call_once(|| unsafe {
291             GLOBAL_DATA = Some(GlobalData {
292                 data: HalfLock::new(SignalData {
293                     signals: HashMap::new(),
294                     next_id: 1,
295                 }),
296                 race_fallback: HalfLock::new(None),
297             });
298         });
299         Self::get()
300     }
301 }
302 
303 #[cfg(windows)]
handler(sig: c_int)304 extern "C" fn handler(sig: c_int) {
305     if sig != SIGFPE {
306         // Windows CRT `signal` resets handler every time, unless for SIGFPE.
307         // Reregister the handler to retain maximal compatibility.
308         // Problems:
309         // - It's racy. But this is inevitably racy in Windows.
310         // - Interacts poorly with handlers outside signal-hook-registry.
311         let old = unsafe { libc::signal(sig, handler as sighandler_t) };
312         if old == SIG_ERR {
313             // MSDN doesn't describe which errors might occur,
314             // but we can tell from the Linux manpage that
315             // EINVAL (invalid signal number) is mostly the only case.
316             // Therefore, this branch must not occur.
317             // In any case we can do nothing useful in the signal handler,
318             // so we're going to abort silently.
319             unsafe {
320                 libc::abort();
321             }
322         }
323     }
324 
325     let globals = GlobalData::get();
326     let fallback = globals.race_fallback.read();
327     let sigdata = globals.data.read();
328 
329     if let Some(ref slot) = sigdata.signals.get(&sig) {
330         slot.prev.execute(sig);
331 
332         for action in slot.actions.values() {
333             action(&siginfo_t);
334         }
335     } else if let Some(prev) = fallback.as_ref() {
336         // In case we get called but don't have the slot for this signal set up yet, we are under
337         // the race condition. We may have the old signal handler stored in the fallback
338         // temporarily.
339         if sig == prev.signal {
340             prev.execute(sig);
341         }
342         // else -> probably should not happen, but races with other threads are possible so
343         // better safe
344     }
345 }
346 
347 #[cfg(not(windows))]
handler(sig: c_int, info: *mut siginfo_t, data: *mut c_void)348 extern "C" fn handler(sig: c_int, info: *mut siginfo_t, data: *mut c_void) {
349     let globals = GlobalData::get();
350     let fallback = globals.race_fallback.read();
351     let sigdata = globals.data.read();
352 
353     if let Some(slot) = sigdata.signals.get(&sig) {
354         unsafe { slot.prev.execute(sig, info, data) };
355 
356         let info = unsafe { info.as_ref() };
357         let info = info.unwrap_or_else(|| {
358             // The info being null seems to be illegal according to POSIX, but has been observed on
359             // some probably broken platform. We can't do anything about that, that is just broken,
360             // but we are not allowed to panic in a signal handler, so we are left only with simply
361             // aborting. We try to write a message what happens, but using the libc stuff
362             // (`eprintln` is not guaranteed to be async-signal-safe).
363             unsafe {
364                 const MSG: &[u8] =
365                     b"Platform broken, got NULL as siginfo to signal handler. Aborting";
366                 libc::write(2, MSG.as_ptr() as *const _, MSG.len());
367                 libc::abort();
368             }
369         });
370 
371         for action in slot.actions.values() {
372             action(info);
373         }
374     } else if let Some(prev) = fallback.as_ref() {
375         // In case we get called but don't have the slot for this signal set up yet, we are under
376         // the race condition. We may have the old signal handler stored in the fallback
377         // temporarily.
378         if prev.signal == sig {
379             unsafe { prev.execute(sig, info, data) };
380         }
381         // else -> probably should not happen, but races with other threads are possible so
382         // better safe
383     }
384 }
385 
386 /// List of forbidden signals.
387 ///
388 /// Some signals are impossible to replace according to POSIX and some are so special that this
389 /// library refuses to handle them (eg. SIGSEGV). The routines panic in case registering one of
390 /// these signals is attempted.
391 ///
392 /// See [`register`].
393 pub const FORBIDDEN: &[c_int] = FORBIDDEN_IMPL;
394 
395 #[cfg(windows)]
396 const FORBIDDEN_IMPL: &[c_int] = &[SIGILL, SIGFPE, SIGSEGV];
397 #[cfg(not(windows))]
398 const FORBIDDEN_IMPL: &[c_int] = &[SIGKILL, SIGSTOP, SIGILL, SIGFPE, SIGSEGV];
399 
400 /// Registers an arbitrary action for the given signal.
401 ///
402 /// This makes sure there's a signal handler for the given signal. It then adds the action to the
403 /// ones called each time the signal is delivered. If multiple actions are set for the same signal,
404 /// all are called, in the order of registration.
405 ///
406 /// If there was a previous signal handler for the given signal, it is chained ‒ it will be called
407 /// as part of this library's signal handler, before any actions set through this function.
408 ///
409 /// On success, the function returns an ID that can be used to remove the action again with
410 /// [`unregister`].
411 ///
412 /// # Panics
413 ///
414 /// If the signal is one of (see [`FORBIDDEN`]):
415 ///
416 /// * `SIGKILL`
417 /// * `SIGSTOP`
418 /// * `SIGILL`
419 /// * `SIGFPE`
420 /// * `SIGSEGV`
421 ///
422 /// The first two are not possible to override (and the underlying C functions simply ignore all
423 /// requests to do so, which smells of possible bugs, or return errors). The rest can be set, but
424 /// generally needs very special handling to do so correctly (direct manipulation of the
425 /// application's address space, `longjmp` and similar). Unless you know very well what you're
426 /// doing, you'll shoot yourself into the foot and this library won't help you with that.
427 ///
428 /// # Errors
429 ///
430 /// Since the library manipulates signals using the low-level C functions, all these can return
431 /// errors. Generally, the errors mean something like the specified signal does not exist on the
432 /// given platform ‒ after a program is debugged and tested on a given OS, it should never return
433 /// an error.
434 ///
435 /// However, if an error *is* returned, there are no guarantees if the given action was registered
436 /// or not.
437 ///
438 /// # Safety
439 ///
440 /// This function is unsafe, because the `action` is run inside a signal handler. The set of
441 /// functions allowed to be called from within is very limited (they are called async-signal-safe
442 /// functions by POSIX). These specifically do *not* contain mutexes and memory
443 /// allocation/deallocation. They *do* contain routines to terminate the program, to further
444 /// manipulate signals (by the low-level functions, not by this library) and to read and write file
445 /// descriptors. Calling program's own functions consisting only of these is OK, as is manipulating
446 /// program's variables ‒ however, as the action can be called on any thread that does not have the
447 /// given signal masked (by default no signal is masked on any thread), and mutexes are a no-go,
448 /// this is harder than it looks like at first.
449 ///
450 /// As panicking from within a signal handler would be a panic across FFI boundary (which is
451 /// undefined behavior), the passed handler must not panic.
452 ///
453 /// If you find these limitations hard to satisfy, choose from the helper functions in the
454 /// [signal-hook](https://docs.rs/signal-hook) crate ‒ these provide safe interface to use some
455 /// common signal handling patters.
456 ///
457 /// # Race condition
458 ///
459 /// Upon registering the first hook for a given signal into this library, there's a short race
460 /// condition under the following circumstances:
461 ///
462 /// * The program already has a signal handler installed for this particular signal (through some
463 ///   other library, possibly).
464 /// * Concurrently, some other thread installs a different signal handler while it is being
465 ///   installed by this library.
466 /// * At the same time, the signal is delivered.
467 ///
468 /// Under such conditions signal-hook might wrongly "chain" to the older signal handler for a short
469 /// while (until the registration is fully complete).
470 ///
471 /// Note that the exact conditions of the race condition might change in future versions of the
472 /// library. The recommended way to avoid it is to register signals before starting any additional
473 /// threads, or at least not to register signals concurrently.
474 ///
475 /// Alternatively, make sure all signals are handled through this library.
476 ///
477 /// # Performance
478 ///
479 /// Even when it is possible to repeatedly install and remove actions during the lifetime of a
480 /// program, the installation and removal is considered a slow operation and should not be done
481 /// very often. Also, there's limited (though huge) amount of distinct IDs (they are `u128`).
482 ///
483 /// # Examples
484 ///
485 /// ```rust
486 /// extern crate signal_hook_registry;
487 ///
488 /// use std::io::Error;
489 /// use std::process;
490 ///
491 /// fn main() -> Result<(), Error> {
492 ///     let signal = unsafe {
493 ///         signal_hook_registry::register(signal_hook::consts::SIGTERM, || process::abort())
494 ///     }?;
495 ///     // Stuff here...
496 ///     signal_hook_registry::unregister(signal); // Not really necessary.
497 ///     Ok(())
498 /// }
499 /// ```
register<F>(signal: c_int, action: F) -> Result<SigId, Error> where F: Fn() + Sync + Send + 'static,500 pub unsafe fn register<F>(signal: c_int, action: F) -> Result<SigId, Error>
501 where
502     F: Fn() + Sync + Send + 'static,
503 {
504     register_sigaction_impl(signal, move |_: &_| action())
505 }
506 
507 /// Register a signal action.
508 ///
509 /// This acts in the same way as [`register`], including the drawbacks, panics and performance
510 /// characteristics. The only difference is the provided action accepts a [`siginfo_t`] argument,
511 /// providing information about the received signal.
512 ///
513 /// # Safety
514 ///
515 /// See the details of [`register`].
516 #[cfg(not(windows))]
register_sigaction<F>(signal: c_int, action: F) -> Result<SigId, Error> where F: Fn(&siginfo_t) + Sync + Send + 'static,517 pub unsafe fn register_sigaction<F>(signal: c_int, action: F) -> Result<SigId, Error>
518 where
519     F: Fn(&siginfo_t) + Sync + Send + 'static,
520 {
521     register_sigaction_impl(signal, action)
522 }
523 
register_sigaction_impl<F>(signal: c_int, action: F) -> Result<SigId, Error> where F: Fn(&siginfo_t) + Sync + Send + 'static,524 unsafe fn register_sigaction_impl<F>(signal: c_int, action: F) -> Result<SigId, Error>
525 where
526     F: Fn(&siginfo_t) + Sync + Send + 'static,
527 {
528     assert!(
529         !FORBIDDEN.contains(&signal),
530         "Attempted to register forbidden signal {}",
531         signal,
532     );
533     register_unchecked_impl(signal, action)
534 }
535 
536 /// Register a signal action without checking for forbidden signals.
537 ///
538 /// This acts in the same way as [`register_unchecked`], including the drawbacks, panics and
539 /// performance characteristics. The only difference is the provided action doesn't accept a
540 /// [`siginfo_t`] argument.
541 ///
542 /// # Safety
543 ///
544 /// See the details of [`register`].
register_signal_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error> where F: Fn() + Sync + Send + 'static,545 pub unsafe fn register_signal_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error>
546 where
547     F: Fn() + Sync + Send + 'static,
548 {
549     register_unchecked_impl(signal, move |_: &_| action())
550 }
551 
552 /// Register a signal action without checking for forbidden signals.
553 ///
554 /// This acts the same way as [`register_sigaction`], but without checking for the [`FORBIDDEN`]
555 /// signals. All the signals passed are registered and it is up to the caller to make some sense of
556 /// them.
557 ///
558 /// Note that you really need to know what you're doing if you change eg. the `SIGSEGV` signal
559 /// handler. Generally, you don't want to do that. But unlike the other functions here, this
560 /// function still allows you to do it.
561 ///
562 /// # Safety
563 ///
564 /// See the details of [`register`].
565 #[cfg(not(windows))]
register_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error> where F: Fn(&siginfo_t) + Sync + Send + 'static,566 pub unsafe fn register_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error>
567 where
568     F: Fn(&siginfo_t) + Sync + Send + 'static,
569 {
570     register_unchecked_impl(signal, action)
571 }
572 
register_unchecked_impl<F>(signal: c_int, action: F) -> Result<SigId, Error> where F: Fn(&siginfo_t) + Sync + Send + 'static,573 unsafe fn register_unchecked_impl<F>(signal: c_int, action: F) -> Result<SigId, Error>
574 where
575     F: Fn(&siginfo_t) + Sync + Send + 'static,
576 {
577     let globals = GlobalData::ensure();
578     let action = Arc::from(action);
579 
580     let mut lock = globals.data.write();
581 
582     let mut sigdata = SignalData::clone(&lock);
583     let id = ActionId(sigdata.next_id);
584     sigdata.next_id += 1;
585 
586     match sigdata.signals.entry(signal) {
587         Entry::Occupied(mut occupied) => {
588             assert!(occupied.get_mut().actions.insert(id, action).is_none());
589         }
590         Entry::Vacant(place) => {
591             // While the sigaction/signal exchanges the old one atomically, we are not able to
592             // atomically store it somewhere a signal handler could read it. That poses a race
593             // condition where we could lose some signals delivered in between changing it and
594             // storing it.
595             //
596             // Therefore we first store the old one in the fallback storage. The fallback only
597             // covers the cases where the slot is not yet active and becomes "inert" after that,
598             // even if not removed (it may get overwritten by some other signal, but for that the
599             // mutex in globals.data must be unlocked here - and by that time we already stored the
600             // slot.
601             //
602             // And yes, this still leaves a short race condition when some other thread could
603             // replace the signal handler and we would be calling the outdated one for a short
604             // time, until we install the slot.
605             globals
606                 .race_fallback
607                 .write()
608                 .store(Some(Prev::detect(signal)?));
609 
610             let mut slot = Slot::new(signal)?;
611             slot.actions.insert(id, action);
612             place.insert(slot);
613         }
614     }
615 
616     lock.store(sigdata);
617 
618     Ok(SigId { signal, action: id })
619 }
620 
621 /// Removes a previously installed action.
622 ///
623 /// This function does nothing if the action was already removed. It returns true if it was removed
624 /// and false if the action wasn't found.
625 ///
626 /// It can unregister all the actions installed by [`register`] as well as the ones from downstream
627 /// crates (like [`signal-hook`](https://docs.rs/signal-hook)).
628 ///
629 /// # Warning
630 ///
631 /// This does *not* currently return the default/previous signal handler if the last action for a
632 /// signal was just unregistered. That means that if you replaced for example `SIGTERM` and then
633 /// removed the action, the program will effectively ignore `SIGTERM` signals from now on, not
634 /// terminate on them as is the default action. This is OK if you remove it as part of a shutdown,
635 /// but it is not recommended to remove termination actions during the normal runtime of
636 /// application (unless the desired effect is to create something that can be terminated only by
637 /// SIGKILL).
unregister(id: SigId) -> bool638 pub fn unregister(id: SigId) -> bool {
639     let globals = GlobalData::ensure();
640     let mut replace = false;
641     let mut lock = globals.data.write();
642     let mut sigdata = SignalData::clone(&lock);
643     if let Some(slot) = sigdata.signals.get_mut(&id.signal) {
644         replace = slot.actions.remove(&id.action).is_some();
645     }
646     if replace {
647         lock.store(sigdata);
648     }
649     replace
650 }
651 
652 // We keep this one here for strict backwards compatibility, but the API is kind of bad. One can
653 // delete actions that don't belong to them, which is kind of against the whole idea of not
654 // breaking stuff for others.
655 #[deprecated(
656     since = "1.3.0",
657     note = "Don't use. Can influence unrelated parts of program / unknown actions"
658 )]
659 #[doc(hidden)]
unregister_signal(signal: c_int) -> bool660 pub fn unregister_signal(signal: c_int) -> bool {
661     let globals = GlobalData::ensure();
662     let mut replace = false;
663     let mut lock = globals.data.write();
664     let mut sigdata = SignalData::clone(&lock);
665     if let Some(slot) = sigdata.signals.get_mut(&signal) {
666         if !slot.actions.is_empty() {
667             slot.actions.clear();
668             replace = true;
669         }
670     }
671     if replace {
672         lock.store(sigdata);
673     }
674     replace
675 }
676 
677 #[cfg(test)]
678 mod tests {
679     use std::sync::atomic::{AtomicUsize, Ordering};
680     use std::sync::Arc;
681     use std::thread;
682     use std::time::Duration;
683 
684     #[cfg(not(windows))]
685     use libc::{pid_t, SIGUSR1, SIGUSR2};
686 
687     #[cfg(windows)]
688     use libc::SIGTERM as SIGUSR1;
689     #[cfg(windows)]
690     use libc::SIGTERM as SIGUSR2;
691 
692     use super::*;
693 
694     #[test]
695     #[should_panic]
panic_forbidden()696     fn panic_forbidden() {
697         let _ = unsafe { register(SIGILL, || ()) };
698     }
699 
700     /// Registering the forbidden signals is allowed in the _unchecked version.
701     #[test]
702     #[allow(clippy::redundant_closure)] // Clippy, you're wrong. Because it changes the return value.
forbidden_raw()703     fn forbidden_raw() {
704         unsafe { register_signal_unchecked(SIGFPE, || std::process::abort()).unwrap() };
705     }
706 
707     #[test]
signal_without_pid()708     fn signal_without_pid() {
709         let status = Arc::new(AtomicUsize::new(0));
710         let action = {
711             let status = Arc::clone(&status);
712             move || {
713                 status.store(1, Ordering::Relaxed);
714             }
715         };
716         unsafe {
717             register(SIGUSR2, action).unwrap();
718             libc::raise(SIGUSR2);
719         }
720         for _ in 0..10 {
721             thread::sleep(Duration::from_millis(100));
722             let current = status.load(Ordering::Relaxed);
723             match current {
724                 // Not yet
725                 0 => continue,
726                 // Good, we are done with the correct result
727                 _ if current == 1 => return,
728                 _ => panic!("Wrong result value {}", current),
729             }
730         }
731         panic!("Timed out waiting for the signal");
732     }
733 
734     #[test]
735     #[cfg(not(windows))]
signal_with_pid()736     fn signal_with_pid() {
737         let status = Arc::new(AtomicUsize::new(0));
738         let action = {
739             let status = Arc::clone(&status);
740             move |siginfo: &siginfo_t| {
741                 // Hack: currently, libc exposes only the first 3 fields of siginfo_t. The pid
742                 // comes somewhat later on. Therefore, we do a Really Ugly Hack and define our
743                 // own structure (and hope it is correct on all platforms). But hey, this is
744                 // only the tests, so we are going to get away with this.
745                 #[repr(C)]
746                 struct SigInfo {
747                     _fields: [c_int; 3],
748                     #[cfg(all(target_pointer_width = "64", target_os = "linux"))]
749                     _pad: c_int,
750                     pid: pid_t,
751                 }
752                 let s: &SigInfo = unsafe {
753                     (siginfo as *const _ as usize as *const SigInfo)
754                         .as_ref()
755                         .unwrap()
756                 };
757                 status.store(s.pid as usize, Ordering::Relaxed);
758             }
759         };
760         let pid;
761         unsafe {
762             pid = libc::getpid();
763             register_sigaction(SIGUSR2, action).unwrap();
764             libc::raise(SIGUSR2);
765         }
766         for _ in 0..10 {
767             thread::sleep(Duration::from_millis(100));
768             let current = status.load(Ordering::Relaxed);
769             match current {
770                 // Not yet (PID == 0 doesn't happen)
771                 0 => continue,
772                 // Good, we are done with the correct result
773                 _ if current == pid as usize => return,
774                 _ => panic!("Wrong status value {}", current),
775             }
776         }
777         panic!("Timed out waiting for the signal");
778     }
779 
780     /// Check that registration works as expected and that unregister tells if it did or not.
781     #[test]
register_unregister()782     fn register_unregister() {
783         let signal = unsafe { register(SIGUSR1, || ()).unwrap() };
784         // It was there now, so we can unregister
785         assert!(unregister(signal));
786         // The next time unregistering does nothing and tells us so.
787         assert!(!unregister(signal));
788     }
789 }
790