• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (C) 2017-2018 Google, Inc.
3 // Copyright (C) 2017 LunarG, Inc.
4 //
5 // All rights reserved.
6 //
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions
9 // are met:
10 //
11 //    Redistributions of source code must retain the above copyright
12 //    notice, this list of conditions and the following disclaimer.
13 //
14 //    Redistributions in binary form must reproduce the above
15 //    copyright notice, this list of conditions and the following
16 //    disclaimer in the documentation and/or other materials provided
17 //    with the distribution.
18 //
19 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
20 //    contributors may be used to endorse or promote products derived
21 //    from this software without specific prior written permission.
22 //
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 // POSSIBILITY OF SUCH DAMAGE.
35 //
36 
37 #include "hlslParseHelper.h"
38 #include "hlslScanContext.h"
39 #include "hlslGrammar.h"
40 #include "hlslAttributes.h"
41 
42 #include "../Include/Common.h"
43 #include "../MachineIndependent/Scan.h"
44 #include "../MachineIndependent/preprocessor/PpContext.h"
45 
46 #include "../OSDependent/osinclude.h"
47 
48 #include <algorithm>
49 #include <functional>
50 #include <cctype>
51 #include <array>
52 #include <set>
53 
54 namespace glslang {
55 
HlslParseContext(TSymbolTable & symbolTable,TIntermediate & interm,bool parsingBuiltins,int version,EProfile profile,const SpvVersion & spvVersion,EShLanguage language,TInfoSink & infoSink,const TString sourceEntryPointName,bool forwardCompatible,EShMessages messages)56 HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
57                                    int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
58                                    TInfoSink& infoSink,
59                                    const TString sourceEntryPointName,
60                                    bool forwardCompatible, EShMessages messages) :
61     TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
62                       forwardCompatible, messages, &sourceEntryPointName),
63     annotationNestingLevel(0),
64     inputPatch(nullptr),
65     nextInLocation(0), nextOutLocation(0),
66     entryPointFunction(nullptr),
67     entryPointFunctionBody(nullptr),
68     gsStreamOutput(nullptr),
69     clipDistanceOutput(nullptr),
70     cullDistanceOutput(nullptr),
71     clipDistanceInput(nullptr),
72     cullDistanceInput(nullptr),
73     parsingEntrypointParameters(false)
74 {
75     globalUniformDefaults.clear();
76     globalUniformDefaults.layoutMatrix = ElmRowMajor;
77     globalUniformDefaults.layoutPacking = ElpStd140;
78 
79     globalBufferDefaults.clear();
80     globalBufferDefaults.layoutMatrix = ElmRowMajor;
81     globalBufferDefaults.layoutPacking = ElpStd430;
82 
83     globalInputDefaults.clear();
84     globalOutputDefaults.clear();
85 
86     clipSemanticNSizeIn.fill(0);
87     cullSemanticNSizeIn.fill(0);
88     clipSemanticNSizeOut.fill(0);
89     cullSemanticNSizeOut.fill(0);
90 
91     // "Shaders in the transform
92     // feedback capturing mode have an initial global default of
93     //     layout(xfb_buffer = 0) out;"
94     if (language == EShLangVertex ||
95         language == EShLangTessControl ||
96         language == EShLangTessEvaluation ||
97         language == EShLangGeometry)
98         globalOutputDefaults.layoutXfbBuffer = 0;
99 
100     if (language == EShLangGeometry)
101         globalOutputDefaults.layoutStream = 0;
102 }
103 
~HlslParseContext()104 HlslParseContext::~HlslParseContext()
105 {
106 }
107 
initializeExtensionBehavior()108 void HlslParseContext::initializeExtensionBehavior()
109 {
110     TParseContextBase::initializeExtensionBehavior();
111 
112     // HLSL allows #line by default.
113     extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
114 }
115 
setLimits(const TBuiltInResource & r)116 void HlslParseContext::setLimits(const TBuiltInResource& r)
117 {
118     resources = r;
119     intermediate.setLimits(resources);
120 }
121 
122 //
123 // Parse an array of strings using the parser in HlslRules.
124 //
125 // Returns true for successful acceptance of the shader, false if any errors.
126 //
parseShaderStrings(TPpContext & ppContext,TInputScanner & input,bool versionWillBeError)127 bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
128 {
129     currentScanner = &input;
130     ppContext.setInput(input, versionWillBeError);
131 
132     HlslScanContext scanContext(*this, ppContext);
133     HlslGrammar grammar(scanContext, *this);
134     if (!grammar.parse()) {
135         // Print a message formated such that if you click on the message it will take you right to
136         // the line through most UIs.
137         const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
138         infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
139                       << ", HLSL parsing failed.\n";
140         ++numErrors;
141         return false;
142     }
143 
144     finish();
145 
146     return numErrors == 0;
147 }
148 
149 //
150 // Return true if this l-value node should be converted in some manner.
151 // For instance: turning a load aggregate into a store in an l-value.
152 //
shouldConvertLValue(const TIntermNode * node) const153 bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
154 {
155     if (node == nullptr || node->getAsTyped() == nullptr)
156         return false;
157 
158     const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
159     const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
160 
161     // If it's a swizzled/indexed aggregate, look at the left node instead.
162     if (lhsAsBinary != nullptr &&
163         (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
164         lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
165     if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
166         return true;
167 
168     return false;
169 }
170 
growGlobalUniformBlock(const TSourceLoc & loc,TType & memberType,const TString & memberName,TTypeList * newTypeList)171 void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
172                                               TTypeList* newTypeList)
173 {
174     newTypeList = nullptr;
175     correctUniform(memberType.getQualifier());
176     if (memberType.isStruct()) {
177         auto it = ioTypeMap.find(memberType.getStruct());
178         if (it != ioTypeMap.end() && it->second.uniform)
179             newTypeList = it->second.uniform;
180     }
181     TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
182 }
183 
184 //
185 // Return a TLayoutFormat corresponding to the given texture type.
186 //
getLayoutFromTxType(const TSourceLoc & loc,const TType & txType)187 TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
188 {
189     if (txType.isStruct()) {
190         // TODO: implement.
191         error(loc, "unimplemented: structure type in image or buffer", "", "");
192         return ElfNone;
193     }
194 
195     const int components = txType.getVectorSize();
196     const TBasicType txBasicType = txType.getBasicType();
197 
198     const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
199         if (intermediate.getNoStorageFormat())
200             return ElfNone;
201 
202         return components == 1 ? v1 :
203                components == 2 ? v2 : v4;
204     };
205 
206     switch (txBasicType) {
207     case EbtFloat: return selectFormat(ElfR32f,  ElfRg32f,  ElfRgba32f);
208     case EbtInt:   return selectFormat(ElfR32i,  ElfRg32i,  ElfRgba32i);
209     case EbtUint:  return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
210     default:
211         error(loc, "unknown basic type in image format", "", "");
212         return ElfNone;
213     }
214 }
215 
216 //
217 // Both test and if necessary, spit out an error, to see if the node is really
218 // an l-value that can be operated on this way.
219 //
220 // Returns true if there was an error.
221 //
lValueErrorCheck(const TSourceLoc & loc,const char * op,TIntermTyped * node)222 bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
223 {
224     if (shouldConvertLValue(node)) {
225         // if we're writing to a texture, it must be an RW form.
226 
227         TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
228         TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
229 
230         if (!object->getType().getSampler().isImage()) {
231             error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
232             return true;
233         }
234     }
235 
236     // We tolerate samplers as l-values, even though they are nominally
237     // illegal, because we expect a later optimization to eliminate them.
238     if (node->getType().getBasicType() == EbtSampler) {
239         intermediate.setNeedsLegalization();
240         return false;
241     }
242 
243     // Let the base class check errors
244     return TParseContextBase::lValueErrorCheck(loc, op, node);
245 }
246 
247 //
248 // This function handles l-value conversions and verifications.  It uses, but is not synonymous
249 // with lValueErrorCheck.  That function accepts an l-value directly, while this one must be
250 // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
251 // series of other image operations.
252 //
253 // Most things are passed through unmodified, except for error checking.
254 //
handleLvalue(const TSourceLoc & loc,const char * op,TIntermTyped * & node)255 TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
256 {
257     if (node == nullptr)
258         return nullptr;
259 
260     TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
261     TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
262     TIntermAggregate* sequence = nullptr;
263 
264     TIntermTyped* lhs = nodeAsUnary  ? nodeAsUnary->getOperand() :
265                         nodeAsBinary ? nodeAsBinary->getLeft() :
266                         nullptr;
267 
268     // Early bail out if there is no conversion to apply
269     if (!shouldConvertLValue(lhs)) {
270         if (lhs != nullptr)
271             if (lValueErrorCheck(loc, op, lhs))
272                 return nullptr;
273         return node;
274     }
275 
276     // *** If we get here, we're going to apply some conversion to an l-value.
277 
278     // Helper to create a load.
279     const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
280         TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
281         loadOp->setLoc(loc);
282         loadOp->getSequence().push_back(object);
283         loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
284         loadOp->setType(derefType);
285 
286         sequence = intermediate.growAggregate(sequence,
287                                               intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
288                                               loc);
289     };
290 
291     // Helper to create a store.
292     const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
293         TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
294         storeOp->getSequence().push_back(object);
295         storeOp->getSequence().push_back(coord);
296         storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
297         storeOp->setLoc(loc);
298         storeOp->setType(TType(EbtVoid));
299 
300         sequence = intermediate.growAggregate(sequence, storeOp);
301     };
302 
303     // Helper to create an assign.
304     const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
305         sequence = intermediate.growAggregate(sequence,
306                                               intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
307                                               loc);
308     };
309 
310     // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
311     const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
312         // Add a trailing use of the temp, so the sequence returns the proper value.
313         sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
314         sequence->setOperator(EOpSequence);
315         sequence->setLoc(loc);
316         sequence->setType(derefType);
317 
318         return sequence;
319     };
320 
321     // Helper to add unary op
322     const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
323         sequence = intermediate.growAggregate(sequence,
324                                               intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
325                                                                         rhsTmp->getType()),
326                                               loc);
327     };
328 
329     // Return true if swizzle or index writes all components of the given variable.
330     const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
331         if (swizzle == nullptr)  // not a swizzle or index
332             return true;
333 
334         // Track which components are being set.
335         std::array<bool, 4> compIsSet;
336         compIsSet.fill(false);
337 
338         const TIntermConstantUnion* asConst     = swizzle->getRight()->getAsConstantUnion();
339         const TIntermAggregate*     asAggregate = swizzle->getRight()->getAsAggregate();
340 
341         // This could be either a direct index, or a swizzle.
342         if (asConst) {
343             compIsSet[asConst->getConstArray()[0].getIConst()] = true;
344         } else if (asAggregate) {
345             const TIntermSequence& seq = asAggregate->getSequence();
346             for (int comp=0; comp<int(seq.size()); ++comp)
347                 compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
348         } else {
349             assert(0);
350         }
351 
352         // Return true if all components are being set by the index or swizzle
353         return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
354                            [](bool isSet) { return isSet; } );
355     };
356 
357     // Create swizzle matching input swizzle
358     const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
359         if (swizzle)
360             return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
361         else
362             return var;
363     };
364 
365     TIntermBinary*    lhsAsBinary    = lhs->getAsBinaryNode();
366     TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
367     bool lhsIsSwizzle = false;
368 
369     // If it's a swizzled L-value, remember the swizzle, and use the LHS.
370     if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
371         lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
372         lhsIsSwizzle = true;
373     }
374 
375     TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
376     TIntermTyped* coord  = lhsAsAggregate->getSequence()[1]->getAsTyped();
377 
378     const TSampler& texSampler = object->getType().getSampler();
379 
380     TType objDerefType;
381     getTextureReturnType(texSampler, objDerefType);
382 
383     if (nodeAsBinary) {
384         TIntermTyped* rhs = nodeAsBinary->getRight();
385         const TOperator assignOp = nodeAsBinary->getOp();
386 
387         bool isModifyOp = false;
388 
389         switch (assignOp) {
390         case EOpAddAssign:
391         case EOpSubAssign:
392         case EOpMulAssign:
393         case EOpVectorTimesMatrixAssign:
394         case EOpVectorTimesScalarAssign:
395         case EOpMatrixTimesScalarAssign:
396         case EOpMatrixTimesMatrixAssign:
397         case EOpDivAssign:
398         case EOpModAssign:
399         case EOpAndAssign:
400         case EOpInclusiveOrAssign:
401         case EOpExclusiveOrAssign:
402         case EOpLeftShiftAssign:
403         case EOpRightShiftAssign:
404             isModifyOp = true;
405             // fall through...
406         case EOpAssign:
407             {
408                 // Since this is an lvalue, we'll convert an image load to a sequence like this
409                 // (to still provide the value):
410                 //   OpSequence
411                 //      OpImageStore(object, lhs, rhs)
412                 //      rhs
413                 // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
414                 // so we'll convert instead to this:
415                 //   OpSequence
416                 //      rhsTmp = rhs
417                 //      OpImageStore(object, coord, rhsTmp)
418                 //      rhsTmp
419                 // If this is a read-modify-write op, like +=, we issue:
420                 //   OpSequence
421                 //      coordtmp = load's param1
422                 //      rhsTmp = OpImageLoad(object, coordTmp)
423                 //      rhsTmp op= rhs
424                 //      OpImageStore(object, coordTmp, rhsTmp)
425                 //      rhsTmp
426                 //
427                 // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
428                 //    ...
429                 //    rhsTmp.some_swizzle = ...
430                 // For partial writes, an error is generated.
431 
432                 TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
433                 TIntermTyped* coordTmp = coord;
434 
435                 if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
436                     rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
437 
438                     // Partial updates not yet supported
439                     if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
440                         error(loc, "unimplemented: partial image updates", "", "");
441                     }
442 
443                     // Assign storeTemp = rhs
444                     if (isModifyOp) {
445                         // We have to make a temp var for the coordinate, to avoid evaluating it twice.
446                         coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
447                         makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
448                         makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
449                     }
450 
451                     // rhsTmp op= rhs.
452                     makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
453                 }
454 
455                 makeStore(object, coordTmp, rhsTmp);         // add a store
456                 return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
457             }
458 
459         default:
460             break;
461         }
462     }
463 
464     if (nodeAsUnary) {
465         const TOperator assignOp = nodeAsUnary->getOp();
466 
467         switch (assignOp) {
468         case EOpPreIncrement:
469         case EOpPreDecrement:
470             {
471                 // We turn this into:
472                 //   OpSequence
473                 //      coordtmp = load's param1
474                 //      rhsTmp = OpImageLoad(object, coordTmp)
475                 //      rhsTmp op
476                 //      OpImageStore(object, coordTmp, rhsTmp)
477                 //      rhsTmp
478 
479                 TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
480                 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
481 
482                 makeBinary(EOpAssign, coordTmp, coord);           // coordtmp = load[param1]
483                 makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
484                 makeUnary(assignOp, rhsTmp);                      // op rhsTmp
485                 makeStore(object, coordTmp, rhsTmp);              // OpImageStore(object, coordTmp, rhsTmp)
486                 return finishSequence(rhsTmp, objDerefType);      // return rhsTmp from sequence
487             }
488 
489         case EOpPostIncrement:
490         case EOpPostDecrement:
491             {
492                 // We turn this into:
493                 //   OpSequence
494                 //      coordtmp = load's param1
495                 //      rhsTmp1 = OpImageLoad(object, coordTmp)
496                 //      rhsTmp2 = rhsTmp1
497                 //      rhsTmp2 op
498                 //      OpImageStore(object, coordTmp, rhsTmp2)
499                 //      rhsTmp1 (pre-op value)
500                 TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre",  objDerefType);
501                 TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
502                 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
503 
504                 makeBinary(EOpAssign, coordTmp, coord);            // coordtmp = load[param1]
505                 makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
506                 makeBinary(EOpAssign, rhsTmp2, rhsTmp1);           // rhsTmp2 = rhsTmp1
507                 makeUnary(assignOp, rhsTmp2);                      // rhsTmp op
508                 makeStore(object, coordTmp, rhsTmp2);              // OpImageStore(object, coordTmp, rhsTmp2)
509                 return finishSequence(rhsTmp1, objDerefType);      // return rhsTmp from sequence
510             }
511 
512         default:
513             break;
514         }
515     }
516 
517     if (lhs)
518         if (lValueErrorCheck(loc, op, lhs))
519             return nullptr;
520 
521     return node;
522 }
523 
handlePragma(const TSourceLoc & loc,const TVector<TString> & tokens)524 void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
525 {
526     if (pragmaCallback)
527         pragmaCallback(loc.line, tokens);
528 
529     if (tokens.size() == 0)
530         return;
531 
532     // These pragmas are case insensitive in HLSL, so we'll compare in lower case.
533     TVector<TString> lowerTokens = tokens;
534 
535     for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
536         std::transform(it->begin(), it->end(), it->begin(), ::tolower);
537 
538     // Handle pack_matrix
539     if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
540         // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
541         // Row major becomes column major and vice versa.
542 
543         if (lowerTokens[2] == "row_major") {
544             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
545         } else if (lowerTokens[2] == "column_major") {
546             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
547         } else {
548             // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
549             warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
550             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
551         }
552         return;
553     }
554 
555     // Handle once
556     if (lowerTokens[0] == "once") {
557         warn(loc, "not implemented", "#pragma once", "");
558         return;
559     }
560 }
561 
562 //
563 // Look at a '.' matrix selector string and change it into components
564 // for a matrix. There are two types:
565 //
566 //   _21    second row, first column (one based)
567 //   _m21   third row, second column (zero based)
568 //
569 // Returns true if there is no error.
570 //
parseMatrixSwizzleSelector(const TSourceLoc & loc,const TString & fields,int cols,int rows,TSwizzleSelectors<TMatrixSelector> & components)571 bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
572                                                   TSwizzleSelectors<TMatrixSelector>& components)
573 {
574     int startPos[MaxSwizzleSelectors];
575     int numComps = 0;
576     TString compString = fields;
577 
578     // Find where each component starts,
579     // recording the first character position after the '_'.
580     for (size_t c = 0; c < compString.size(); ++c) {
581         if (compString[c] == '_') {
582             if (numComps >= MaxSwizzleSelectors) {
583                 error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
584                 return false;
585             }
586             if (c > compString.size() - 3 ||
587                     ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
588                 error(loc, "matrix component swizzle missing", compString.c_str(), "");
589                 return false;
590             }
591             startPos[numComps++] = (int)c + 1;
592         }
593     }
594 
595     // Process each component
596     for (int i = 0; i < numComps; ++i) {
597         int pos = startPos[i];
598         int bias = -1;
599         if (compString[pos] == 'm' || compString[pos] == 'M') {
600             bias = 0;
601             ++pos;
602         }
603         TMatrixSelector comp;
604         comp.coord1 = compString[pos+0] - '0' + bias;
605         comp.coord2 = compString[pos+1] - '0' + bias;
606         if (comp.coord1 < 0 || comp.coord1 >= cols) {
607             error(loc, "matrix row component out of range", compString.c_str(), "");
608             return false;
609         }
610         if (comp.coord2 < 0 || comp.coord2 >= rows) {
611             error(loc, "matrix column component out of range", compString.c_str(), "");
612             return false;
613         }
614         components.push_back(comp);
615     }
616 
617     return true;
618 }
619 
620 // If the 'comps' express a column of a matrix,
621 // return the column.  Column means the first coords all match.
622 //
623 // Otherwise, return -1.
624 //
getMatrixComponentsColumn(int rows,const TSwizzleSelectors<TMatrixSelector> & selector)625 int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
626 {
627     int col = -1;
628 
629     // right number of comps?
630     if (selector.size() != rows)
631         return -1;
632 
633     // all comps in the same column?
634     // rows in order?
635     col = selector[0].coord1;
636     for (int i = 0; i < rows; ++i) {
637         if (col != selector[i].coord1)
638             return -1;
639         if (i != selector[i].coord2)
640             return -1;
641     }
642 
643     return col;
644 }
645 
646 //
647 // Handle seeing a variable identifier in the grammar.
648 //
handleVariable(const TSourceLoc & loc,const TString * string)649 TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
650 {
651     int thisDepth;
652     TSymbol* symbol = symbolTable.find(*string, thisDepth);
653     if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
654         error(loc, "expected symbol, not user-defined type", string->c_str(), "");
655         return nullptr;
656     }
657 
658     const TVariable* variable = nullptr;
659     const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
660     TIntermTyped* node = nullptr;
661     if (anon) {
662         // It was a member of an anonymous container, which could be a 'this' structure.
663 
664         // Create a subtree for its dereference.
665         if (thisDepth > 0) {
666             variable = getImplicitThis(thisDepth);
667             if (variable == nullptr)
668                 error(loc, "cannot access member variables (static member function?)", "this", "");
669         }
670         if (variable == nullptr)
671             variable = anon->getAnonContainer().getAsVariable();
672 
673         TIntermTyped* container = intermediate.addSymbol(*variable, loc);
674         TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
675         node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
676 
677         node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
678         if (node->getType().hiddenMember())
679             error(loc, "member of nameless block was not redeclared", string->c_str(), "");
680     } else {
681         // Not a member of an anonymous container.
682 
683         // The symbol table search was done in the lexical phase.
684         // See if it was a variable.
685         variable = symbol ? symbol->getAsVariable() : nullptr;
686         if (variable) {
687             if ((variable->getType().getBasicType() == EbtBlock ||
688                 variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
689                 error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
690                 variable = nullptr;
691             }
692         } else {
693             if (symbol)
694                 error(loc, "variable name expected", string->c_str(), "");
695         }
696 
697         // Recovery, if it wasn't found or was not a variable.
698         if (variable == nullptr) {
699             error(loc, "unknown variable", string->c_str(), "");
700             variable = new TVariable(string, TType(EbtVoid));
701         }
702 
703         if (variable->getType().getQualifier().isFrontEndConstant())
704             node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
705         else
706             node = intermediate.addSymbol(*variable, loc);
707     }
708 
709     if (variable->getType().getQualifier().isIo())
710         intermediate.addIoAccessed(*string);
711 
712     return node;
713 }
714 
715 //
716 // Handle operator[] on any objects it applies to.  Currently:
717 //    Textures
718 //    Buffers
719 //
handleBracketOperator(const TSourceLoc & loc,TIntermTyped * base,TIntermTyped * index)720 TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
721 {
722     // handle r-value operator[] on textures and images.  l-values will be processed later.
723     if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
724         const TSampler& sampler = base->getType().getSampler();
725         if (sampler.isImage() || sampler.isTexture()) {
726             if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
727                 // The first operator[] to a .mips[] sequence is the mip level.  We'll remember it.
728                 mipsOperatorMipArg.back().mipLevel = index;
729                 return base;  // next [] index is to the same base.
730             } else {
731                 TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
732 
733                 TType sampReturnType;
734                 getTextureReturnType(sampler, sampReturnType);
735 
736                 load->setType(sampReturnType);
737                 load->setLoc(loc);
738                 load->getSequence().push_back(base);
739                 load->getSequence().push_back(index);
740 
741                 // Textures need a MIP.  If we saw one go by, use it.  Otherwise, use zero.
742                 if (sampler.isTexture()) {
743                     if (! mipsOperatorMipArg.empty()) {
744                         load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
745                         mipsOperatorMipArg.pop_back();
746                     } else {
747                         load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
748                     }
749                 }
750 
751                 return load;
752             }
753         }
754     }
755 
756     // Handle operator[] on structured buffers: this indexes into the array element of the buffer.
757     // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
758     TIntermTyped* sbArray = indexStructBufferContent(loc, base);
759     if (sbArray != nullptr) {
760         // Now we'll apply the [] index to that array
761         const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
762 
763         TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
764         const TType derefType(sbArray->getType(), 0);
765         element->setType(derefType);
766         return element;
767     }
768 
769     return nullptr;
770 }
771 
772 //
773 // Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
makeIntegerIndex(TIntermTyped * index)774 TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
775 {
776     const TBasicType indexBasicType = index->getType().getBasicType();
777     const int vecSize = index->getType().getVectorSize();
778 
779     // We can use int types directly as the index
780     if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
781         indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
782         return index;
783 
784     // Cast index to unsigned integer if it isn't one.
785     return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
786 }
787 
788 //
789 // Handle seeing a base[index] dereference in the grammar.
790 //
handleBracketDereference(const TSourceLoc & loc,TIntermTyped * base,TIntermTyped * index)791 TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
792 {
793     index = makeIntegerIndex(index);
794 
795     if (index == nullptr) {
796         error(loc, " unknown index type ", "", "");
797         return nullptr;
798     }
799 
800     TIntermTyped* result = handleBracketOperator(loc, base, index);
801 
802     if (result != nullptr)
803         return result;  // it was handled as an operator[]
804 
805     bool flattened = false;
806     int indexValue = 0;
807     if (index->getQualifier().isFrontEndConstant())
808         indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
809 
810     variableCheck(base);
811     if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
812         if (base->getAsSymbolNode())
813             error(loc, " left of '[' is not of type array, matrix, or vector ",
814                   base->getAsSymbolNode()->getName().c_str(), "");
815         else
816             error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
817     } else if (base->getType().getQualifier().isFrontEndConstant() &&
818                index->getQualifier().isFrontEndConstant()) {
819         // both base and index are front-end constants
820         checkIndex(loc, base->getType(), indexValue);
821         return intermediate.foldDereference(base, indexValue, loc);
822     } else {
823         // at least one of base and index is variable...
824 
825         if (index->getQualifier().isFrontEndConstant())
826             checkIndex(loc, base->getType(), indexValue);
827 
828         if (base->getType().isScalarOrVec1())
829             result = base;
830         else if (base->getAsSymbolNode() && wasFlattened(base)) {
831             if (index->getQualifier().storage != EvqConst)
832                 error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
833 
834             result = flattenAccess(base, indexValue);
835             flattened = (result != base);
836         } else {
837             if (index->getQualifier().isFrontEndConstant()) {
838                 if (base->getType().isUnsizedArray())
839                     base->getWritableType().updateImplicitArraySize(indexValue + 1);
840                 else
841                     checkIndex(loc, base->getType(), indexValue);
842                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
843             } else
844                 result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
845         }
846     }
847 
848     if (result == nullptr) {
849         // Insert dummy error-recovery result
850         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
851     } else {
852         // If the array reference was flattened, it has the correct type.  E.g, if it was
853         // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
854         // In that case, we preserve the qualifiers.
855         if (!flattened) {
856             // Insert valid dereferenced result
857             TType newType(base->getType(), 0);  // dereferenced type
858             if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
859                 newType.getQualifier().storage = EvqConst;
860             else
861                 newType.getQualifier().storage = EvqTemporary;
862             result->setType(newType);
863         }
864     }
865 
866     return result;
867 }
868 
869 // Handle seeing a binary node with a math operation.
handleBinaryMath(const TSourceLoc & loc,const char * str,TOperator op,TIntermTyped * left,TIntermTyped * right)870 TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
871                                                  TIntermTyped* left, TIntermTyped* right)
872 {
873     TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
874     if (result == nullptr)
875         binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
876 
877     return result;
878 }
879 
880 // Handle seeing a unary node with a math operation.
handleUnaryMath(const TSourceLoc & loc,const char * str,TOperator op,TIntermTyped * childNode)881 TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
882                                                 TIntermTyped* childNode)
883 {
884     TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
885 
886     if (result)
887         return result;
888     else
889         unaryOpError(loc, str, childNode->getCompleteString());
890 
891     return childNode;
892 }
893 //
894 // Return true if the name is a struct buffer method
895 //
isStructBufferMethod(const TString & name) const896 bool HlslParseContext::isStructBufferMethod(const TString& name) const
897 {
898     return
899         name == "GetDimensions"              ||
900         name == "Load"                       ||
901         name == "Load2"                      ||
902         name == "Load3"                      ||
903         name == "Load4"                      ||
904         name == "Store"                      ||
905         name == "Store2"                     ||
906         name == "Store3"                     ||
907         name == "Store4"                     ||
908         name == "InterlockedAdd"             ||
909         name == "InterlockedAnd"             ||
910         name == "InterlockedCompareExchange" ||
911         name == "InterlockedCompareStore"    ||
912         name == "InterlockedExchange"        ||
913         name == "InterlockedMax"             ||
914         name == "InterlockedMin"             ||
915         name == "InterlockedOr"              ||
916         name == "InterlockedXor"             ||
917         name == "IncrementCounter"           ||
918         name == "DecrementCounter"           ||
919         name == "Append"                     ||
920         name == "Consume";
921 }
922 
923 //
924 // Handle seeing a base.field dereference in the grammar, where 'field' is a
925 // swizzle or member variable.
926 //
handleDotDereference(const TSourceLoc & loc,TIntermTyped * base,const TString & field)927 TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
928 {
929     variableCheck(base);
930 
931     if (base->isArray()) {
932         error(loc, "cannot apply to an array:", ".", field.c_str());
933         return base;
934     }
935 
936     TIntermTyped* result = base;
937 
938     if (base->getType().getBasicType() == EbtSampler) {
939         // Handle .mips[mipid][pos] operation on textures
940         const TSampler& sampler = base->getType().getSampler();
941         if (sampler.isTexture() && field == "mips") {
942             // Push a null to signify that we expect a mip level under operator[] next.
943             mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
944             // Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
945         } else {
946             if (field == "mips")
947                 error(loc, "unexpected texture type for .mips[][] operator:",
948                       base->getType().getCompleteString().c_str(), "");
949             else
950                 error(loc, "unexpected operator on texture type:", field.c_str(),
951                       base->getType().getCompleteString().c_str());
952         }
953     } else if (base->isVector() || base->isScalar()) {
954         TSwizzleSelectors<TVectorSelector> selectors;
955         parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
956 
957         if (base->isScalar()) {
958             if (selectors.size() == 1)
959                 return result;
960             else {
961                 TType type(base->getBasicType(), EvqTemporary, selectors.size());
962                 return addConstructor(loc, base, type);
963             }
964         }
965         if (base->getVectorSize() == 1) {
966             TType scalarType(base->getBasicType(), EvqTemporary, 1);
967             if (selectors.size() == 1)
968                 return addConstructor(loc, base, scalarType);
969             else {
970                 TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
971                 return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
972             }
973         }
974 
975         if (base->getType().getQualifier().isFrontEndConstant())
976             result = intermediate.foldSwizzle(base, selectors, loc);
977         else {
978             if (selectors.size() == 1) {
979                 TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
980                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
981                 result->setType(TType(base->getBasicType(), EvqTemporary));
982             } else {
983                 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
984                 result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
985                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
986                                 selectors.size()));
987             }
988         }
989     } else if (base->isMatrix()) {
990         TSwizzleSelectors<TMatrixSelector> selectors;
991         if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
992             return result;
993 
994         if (selectors.size() == 1) {
995             // Representable by m[c][r]
996             if (base->getType().getQualifier().isFrontEndConstant()) {
997                 result = intermediate.foldDereference(base, selectors[0].coord1, loc);
998                 result = intermediate.foldDereference(result, selectors[0].coord2, loc);
999             } else {
1000                 result = intermediate.addIndex(EOpIndexDirect, base,
1001                                                intermediate.addConstantUnion(selectors[0].coord1, loc),
1002                                                loc);
1003                 TType dereferencedCol(base->getType(), 0);
1004                 result->setType(dereferencedCol);
1005                 result = intermediate.addIndex(EOpIndexDirect, result,
1006                                                intermediate.addConstantUnion(selectors[0].coord2, loc),
1007                                                loc);
1008                 TType dereferenced(dereferencedCol, 0);
1009                 result->setType(dereferenced);
1010             }
1011         } else {
1012             int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
1013             if (column >= 0) {
1014                 // Representable by m[c]
1015                 if (base->getType().getQualifier().isFrontEndConstant())
1016                     result = intermediate.foldDereference(base, column, loc);
1017                 else {
1018                     result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
1019                                                    loc);
1020                     TType dereferenced(base->getType(), 0);
1021                     result->setType(dereferenced);
1022                 }
1023             } else {
1024                 // general case, not a column, not a single component
1025                 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
1026                 result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
1027                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
1028                                       selectors.size()));
1029            }
1030         }
1031     } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
1032         const TTypeList* fields = base->getType().getStruct();
1033         bool fieldFound = false;
1034         int member;
1035         for (member = 0; member < (int)fields->size(); ++member) {
1036             if ((*fields)[member].type->getFieldName() == field) {
1037                 fieldFound = true;
1038                 break;
1039             }
1040         }
1041         if (fieldFound) {
1042             if (base->getAsSymbolNode() && wasFlattened(base)) {
1043                 result = flattenAccess(base, member);
1044             } else {
1045                 if (base->getType().getQualifier().storage == EvqConst)
1046                     result = intermediate.foldDereference(base, member, loc);
1047                 else {
1048                     TIntermTyped* index = intermediate.addConstantUnion(member, loc);
1049                     result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
1050                     result->setType(*(*fields)[member].type);
1051                 }
1052             }
1053         } else
1054             error(loc, "no such field in structure", field.c_str(), "");
1055     } else
1056         error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
1057 
1058     return result;
1059 }
1060 
1061 //
1062 // Return true if the field should be treated as a built-in method.
1063 // Return false otherwise.
1064 //
isBuiltInMethod(const TSourceLoc &,TIntermTyped * base,const TString & field)1065 bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
1066 {
1067     if (base == nullptr)
1068         return false;
1069 
1070     variableCheck(base);
1071 
1072     if (base->getType().getBasicType() == EbtSampler) {
1073         return true;
1074     } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
1075         return true;
1076     } else if (field == "Append" ||
1077                field == "RestartStrip") {
1078         // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
1079         // the code is around in the shader source.
1080         return true;
1081     } else
1082         return false;
1083 }
1084 
1085 // Independently establish a built-in that is a member of a structure.
1086 // 'arraySizes' are what's desired for the independent built-in, whatever
1087 // the higher-level source/expression of them was.
splitBuiltIn(const TString & baseName,const TType & memberType,const TArraySizes * arraySizes,const TQualifier & outerQualifier)1088 void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
1089                                     const TQualifier& outerQualifier)
1090 {
1091     // Because of arrays of structs, we might be asked more than once,
1092     // but the arraySizes passed in should have captured the whole thing
1093     // the first time.
1094     // However, clip/cull rely on multiple updates.
1095     if (!isClipOrCullDistance(memberType))
1096         if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
1097             splitBuiltIns.end())
1098             return;
1099 
1100     TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
1101 
1102     if (arraySizes != nullptr && !memberType.isArray())
1103         ioVar->getWritableType().copyArraySizes(*arraySizes);
1104 
1105     splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
1106     if (!isClipOrCullDistance(ioVar->getType()))
1107         trackLinkage(*ioVar);
1108 
1109     // Merge qualifier from the user structure
1110     mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
1111 
1112     // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
1113     // shader declared them).  This is done after mergeQualifiers(), in case fixBuiltInIoType looks
1114     // at the qualifier to determine e.g, in or out qualifications.
1115     fixBuiltInIoType(ioVar->getWritableType());
1116 
1117     // But, not location, we're losing that
1118     ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
1119 }
1120 
1121 // Split a type into
1122 //   1. a struct of non-I/O members
1123 //   2. a collection of independent I/O variables
split(const TVariable & variable)1124 void HlslParseContext::split(const TVariable& variable)
1125 {
1126     // Create a new variable:
1127     const TType& clonedType = *variable.getType().clone();
1128     const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
1129     splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
1130 }
1131 
1132 // Recursive implementation of split().
1133 // Returns reference to the modified type.
split(const TType & type,const TString & name,const TQualifier & outerQualifier)1134 const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
1135 {
1136     if (type.isStruct()) {
1137         TTypeList* userStructure = type.getWritableStruct();
1138         for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
1139             if (ioType->type->isBuiltIn()) {
1140                 // move out the built-in
1141                 splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
1142                 ioType = userStructure->erase(ioType);
1143             } else {
1144                 split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
1145                 ++ioType;
1146             }
1147         }
1148     }
1149 
1150     return type;
1151 }
1152 
1153 // Is this an aggregate that should be flattened?
1154 // Can be applied to intermediate levels of type in a hierarchy.
1155 // Some things like flattening uniform arrays are only about the top level
1156 // of the aggregate, triggered on 'topLevel'.
shouldFlatten(const TType & type,TStorageQualifier qualifier,bool topLevel) const1157 bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
1158 {
1159     switch (qualifier) {
1160     case EvqVaryingIn:
1161     case EvqVaryingOut:
1162         return type.isStruct() || type.isArray();
1163     case EvqUniform:
1164         return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
1165                (type.isStruct() && type.containsOpaque());
1166     default:
1167         return false;
1168     };
1169 }
1170 
1171 // Top level variable flattening: construct data
flatten(const TVariable & variable,bool linkage,bool arrayed)1172 void HlslParseContext::flatten(const TVariable& variable, bool linkage, bool arrayed)
1173 {
1174     const TType& type = variable.getType();
1175 
1176     // If it's a standalone built-in, there is nothing to flatten
1177     if (type.isBuiltIn() && !type.isStruct())
1178         return;
1179 
1180     auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
1181                                                   TFlattenData(type.getQualifier().layoutBinding,
1182                                                                type.getQualifier().layoutLocation)));
1183 
1184     // if flattening arrayed io struct, array each member of dereferenced type
1185     if (arrayed) {
1186         const TType dereferencedType(type, 0);
1187         flatten(variable, dereferencedType, entry.first->second, variable.getName(), linkage,
1188                 type.getQualifier(), type.getArraySizes());
1189     } else {
1190         flatten(variable, type, entry.first->second, variable.getName(), linkage,
1191                 type.getQualifier(), nullptr);
1192     }
1193 }
1194 
1195 // Recursively flatten the given variable at the provided type, building the flattenData as we go.
1196 //
1197 // This is mutually recursive with flattenStruct and flattenArray.
1198 // We are going to flatten an arbitrarily nested composite structure into a linear sequence of
1199 // members, and later on, we want to turn a path through the tree structure into a final
1200 // location in this linear sequence.
1201 //
1202 // If the tree was N-ary, that can be directly calculated.  However, we are dealing with
1203 // arbitrary numbers - perhaps a struct of 7 members containing an array of 3.  Thus, we must
1204 // build a data structure to allow the sequence of bracket and dot operators on arrays and
1205 // structs to arrive at the proper member.
1206 //
1207 // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
1208 // The leaves are the indexes into the flattened member array.
1209 // Each level will have the next location for the Nth item stored sequentially, so for instance:
1210 //
1211 // struct { float2 a[2]; int b; float4 c[3] };
1212 //
1213 // This will produce the following flattened tree:
1214 // Pos: 0  1   2    3  4    5  6   7     8   9  10   11  12 13
1215 //     (3, 7,  8,   5, 6,   0, 1,  2,   11, 12, 13,   3,  4, 5}
1216 //
1217 // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
1218 //   (0+2) = 8  -->  (8+1) = 12 -->   12 = 4
1219 //
1220 // so the 4th flattened member in traversal order is ours.
1221 //
flatten(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1222 int HlslParseContext::flatten(const TVariable& variable, const TType& type,
1223                               TFlattenData& flattenData, TString name, bool linkage,
1224                               const TQualifier& outerQualifier,
1225                               const TArraySizes* builtInArraySizes)
1226 {
1227     // If something is an arrayed struct, the array flattener will recursively call flatten()
1228     // to then flatten the struct, so this is an "if else": we don't do both.
1229     if (type.isArray())
1230         return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
1231     else if (type.isStruct())
1232         return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
1233     else {
1234         assert(0); // should never happen
1235         return -1;
1236     }
1237 }
1238 
1239 // Add a single flattened member to the flattened data being tracked for the composite
1240 // Returns true for the final flattening level.
addFlattenedMember(const TVariable & variable,const TType & type,TFlattenData & flattenData,const TString & memberName,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1241 int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
1242                                          const TString& memberName, bool linkage,
1243                                          const TQualifier& outerQualifier,
1244                                          const TArraySizes* builtInArraySizes)
1245 {
1246     if (!shouldFlatten(type, outerQualifier.storage, false)) {
1247         // This is as far as we flatten.  Insert the variable.
1248         TVariable* memberVariable = makeInternalVariable(memberName, type);
1249         mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
1250 
1251         if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
1252             memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
1253 
1254         if (memberVariable->getType().isBuiltIn()) {
1255             // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
1256             memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
1257         } else {
1258             // inherited locations must be auto bumped, not replicated
1259             if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
1260                 memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
1261                 flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
1262                 nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
1263             }
1264         }
1265 
1266         // Only propagate arraysizes here for arrayed io
1267         if (variable.getType().getQualifier().isArrayedIo(language) && builtInArraySizes != nullptr)
1268             memberVariable->getWritableType().copyArraySizes(*builtInArraySizes);
1269 
1270         flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
1271         flattenData.members.push_back(memberVariable);
1272 
1273         if (linkage)
1274             trackLinkage(*memberVariable);
1275 
1276         return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
1277     } else {
1278         // Further recursion required
1279         return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
1280     }
1281 }
1282 
1283 // Figure out the mapping between an aggregate's top members and an
1284 // equivalent set of individual variables.
1285 //
1286 // Assumes shouldFlatten() or equivalent was called first.
flattenStruct(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1287 int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
1288                                     TFlattenData& flattenData, TString name, bool linkage,
1289                                     const TQualifier& outerQualifier,
1290                                     const TArraySizes* builtInArraySizes)
1291 {
1292     assert(type.isStruct());
1293 
1294     auto members = *type.getStruct();
1295 
1296     // Reserve space for this tree level.
1297     int start = static_cast<int>(flattenData.offsets.size());
1298     int pos = start;
1299     flattenData.offsets.resize(int(pos + members.size()), -1);
1300 
1301     for (int member = 0; member < (int)members.size(); ++member) {
1302         TType& dereferencedType = *members[member].type;
1303         if (dereferencedType.isBuiltIn())
1304             splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
1305         else {
1306             const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
1307                                                 name + "." + dereferencedType.getFieldName(),
1308                                                 linkage, outerQualifier,
1309                                                 builtInArraySizes == nullptr && dereferencedType.isArray()
1310                                                                        ? dereferencedType.getArraySizes()
1311                                                                        : builtInArraySizes);
1312             flattenData.offsets[pos++] = mpos;
1313         }
1314     }
1315 
1316     return start;
1317 }
1318 
1319 // Figure out mapping between an array's members and an
1320 // equivalent set of individual variables.
1321 //
1322 // Assumes shouldFlatten() or equivalent was called first.
flattenArray(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier)1323 int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
1324                                    TFlattenData& flattenData, TString name, bool linkage,
1325                                    const TQualifier& outerQualifier)
1326 {
1327     assert(type.isSizedArray());
1328 
1329     const int size = type.getOuterArraySize();
1330     const TType dereferencedType(type, 0);
1331 
1332     if (name.empty())
1333         name = variable.getName();
1334 
1335     // Reserve space for this tree level.
1336     int start = static_cast<int>(flattenData.offsets.size());
1337     int pos   = start;
1338     flattenData.offsets.resize(int(pos + size), -1);
1339 
1340     for (int element=0; element < size; ++element) {
1341         char elementNumBuf[20];  // sufficient for MAXINT
1342         snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
1343         const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
1344                                             name + elementNumBuf, linkage, outerQualifier,
1345                                             type.getArraySizes());
1346 
1347         flattenData.offsets[pos++] = mpos;
1348     }
1349 
1350     return start;
1351 }
1352 
1353 // Return true if we have flattened this node.
wasFlattened(const TIntermTyped * node) const1354 bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
1355 {
1356     return node != nullptr && node->getAsSymbolNode() != nullptr &&
1357            wasFlattened(node->getAsSymbolNode()->getId());
1358 }
1359 
1360 // Return true if we have split this structure
wasSplit(const TIntermTyped * node) const1361 bool HlslParseContext::wasSplit(const TIntermTyped* node) const
1362 {
1363     return node != nullptr && node->getAsSymbolNode() != nullptr &&
1364            wasSplit(node->getAsSymbolNode()->getId());
1365 }
1366 
1367 // Turn an access into an aggregate that was flattened to instead be
1368 // an access to the individual variable the member was flattened to.
1369 // Assumes wasFlattened() or equivalent was called first.
flattenAccess(TIntermTyped * base,int member)1370 TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
1371 {
1372     const TType dereferencedType(base->getType(), member);  // dereferenced type
1373     const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
1374     TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
1375                                             dereferencedType, symbolNode.getFlattenSubset());
1376 
1377     return flattened ? flattened : base;
1378 }
flattenAccess(long long uniqueId,int member,TStorageQualifier outerStorage,const TType & dereferencedType,int subset)1379 TIntermTyped* HlslParseContext::flattenAccess(long long uniqueId, int member, TStorageQualifier outerStorage,
1380     const TType& dereferencedType, int subset)
1381 {
1382     const auto flattenData = flattenMap.find(uniqueId);
1383 
1384     if (flattenData == flattenMap.end())
1385         return nullptr;
1386 
1387     // Calculate new cumulative offset from the packed tree
1388     int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
1389 
1390     TIntermSymbol* subsetSymbol;
1391     if (!shouldFlatten(dereferencedType, outerStorage, false)) {
1392         // Finished flattening: create symbol for variable
1393         member = flattenData->second.offsets[newSubset];
1394         const TVariable* memberVariable = flattenData->second.members[member];
1395         subsetSymbol = intermediate.addSymbol(*memberVariable);
1396         subsetSymbol->setFlattenSubset(-1);
1397     } else {
1398 
1399         // If this is not the final flattening, accumulate the position and return
1400         // an object of the partially dereferenced type.
1401         subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
1402         subsetSymbol->setFlattenSubset(newSubset);
1403     }
1404 
1405     return subsetSymbol;
1406 }
1407 
1408 // For finding where the first leaf is in a subtree of a multi-level aggregate
1409 // that is just getting a subset assigned. Follows the same logic as flattenAccess,
1410 // but logically going down the "left-most" tree branch each step of the way.
1411 //
1412 // Returns the offset into the first leaf of the subset.
findSubtreeOffset(const TIntermNode & node) const1413 int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
1414 {
1415     const TIntermSymbol* sym = node.getAsSymbolNode();
1416     if (sym == nullptr)
1417         return 0;
1418     if (!sym->isArray() && !sym->isStruct())
1419         return 0;
1420     int subset = sym->getFlattenSubset();
1421     if (subset == -1)
1422         return 0;
1423 
1424     // Getting this far means a partial aggregate is identified by the flatten subset.
1425     // Find the first leaf of the subset.
1426 
1427     const auto flattenData = flattenMap.find(sym->getId());
1428     if (flattenData == flattenMap.end())
1429         return 0;
1430 
1431     return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
1432 
1433     do {
1434         subset = flattenData->second.offsets[subset];
1435     } while (true);
1436 }
1437 // Recursively do the desent
findSubtreeOffset(const TType & type,int subset,const TVector<int> & offsets) const1438 int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
1439 {
1440     if (!type.isArray() && !type.isStruct())
1441         return offsets[subset];
1442     TType derefType(type, 0);
1443     return findSubtreeOffset(derefType, offsets[subset], offsets);
1444 };
1445 
1446 // Find and return the split IO TVariable for id, or nullptr if none.
getSplitNonIoVar(long long id) const1447 TVariable* HlslParseContext::getSplitNonIoVar(long long id) const
1448 {
1449     const auto splitNonIoVar = splitNonIoVars.find(id);
1450     if (splitNonIoVar == splitNonIoVars.end())
1451         return nullptr;
1452 
1453     return splitNonIoVar->second;
1454 }
1455 
1456 // Pass through to base class after remembering built-in mappings.
trackLinkage(TSymbol & symbol)1457 void HlslParseContext::trackLinkage(TSymbol& symbol)
1458 {
1459     TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
1460 
1461     if (biType != EbvNone)
1462         builtInTessLinkageSymbols[biType] = symbol.clone();
1463 
1464     TParseContextBase::trackLinkage(symbol);
1465 }
1466 
1467 
1468 // Returns true if the built-in is a clip or cull distance variable.
isClipOrCullDistance(TBuiltInVariable builtIn)1469 bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
1470 {
1471     return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
1472 }
1473 
1474 // Some types require fixed array sizes in SPIR-V, but can be scalars or
1475 // arrays of sizes SPIR-V doesn't allow.  For example, tessellation factors.
1476 // This creates the right size.  A conversion is performed when the internal
1477 // type is copied to or from the external type.  This corrects the externally
1478 // facing input or output type to abide downstream semantics.
fixBuiltInIoType(TType & type)1479 void HlslParseContext::fixBuiltInIoType(TType& type)
1480 {
1481     int requiredArraySize = 0;
1482     int requiredVectorSize = 0;
1483 
1484     switch (type.getQualifier().builtIn) {
1485     case EbvTessLevelOuter: requiredArraySize = 4; break;
1486     case EbvTessLevelInner: requiredArraySize = 2; break;
1487 
1488     case EbvSampleMask:
1489         {
1490             // Promote scalar to array of size 1.  Leave existing arrays alone.
1491             if (!type.isArray())
1492                 requiredArraySize = 1;
1493             break;
1494         }
1495 
1496     case EbvWorkGroupId:        requiredVectorSize = 3; break;
1497     case EbvGlobalInvocationId: requiredVectorSize = 3; break;
1498     case EbvLocalInvocationId:  requiredVectorSize = 3; break;
1499     case EbvTessCoord:          requiredVectorSize = 3; break;
1500 
1501     default:
1502         if (isClipOrCullDistance(type)) {
1503             const int loc = type.getQualifier().layoutLocation;
1504 
1505             if (type.getQualifier().builtIn == EbvClipDistance) {
1506                 if (type.getQualifier().storage == EvqVaryingIn)
1507                     clipSemanticNSizeIn[loc] = type.getVectorSize();
1508                 else
1509                     clipSemanticNSizeOut[loc] = type.getVectorSize();
1510             } else {
1511                 if (type.getQualifier().storage == EvqVaryingIn)
1512                     cullSemanticNSizeIn[loc] = type.getVectorSize();
1513                 else
1514                     cullSemanticNSizeOut[loc] = type.getVectorSize();
1515             }
1516         }
1517 
1518         return;
1519     }
1520 
1521     // Alter or set vector size as needed.
1522     if (requiredVectorSize > 0) {
1523         TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
1524         newType.getQualifier() = type.getQualifier();
1525 
1526         type.shallowCopy(newType);
1527     }
1528 
1529     // Alter or set array size as needed.
1530     if (requiredArraySize > 0) {
1531         if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
1532             TArraySizes* arraySizes = new TArraySizes;
1533             arraySizes->addInnerSize(requiredArraySize);
1534             type.transferArraySizes(arraySizes);
1535         }
1536     }
1537 }
1538 
1539 // Variables that correspond to the user-interface in and out of a stage
1540 // (not the built-in interface) are
1541 //  - assigned locations
1542 //  - registered as a linkage node (part of the stage's external interface).
1543 // Assumes it is called in the order in which locations should be assigned.
assignToInterface(TVariable & variable)1544 void HlslParseContext::assignToInterface(TVariable& variable)
1545 {
1546     const auto assignLocation = [&](TVariable& variable) {
1547         TType& type = variable.getWritableType();
1548         if (!type.isStruct() || type.getStruct()->size() > 0) {
1549             TQualifier& qualifier = type.getQualifier();
1550             if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
1551                 if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
1552                     // Strip off the outer array dimension for those having an extra one.
1553                     int size;
1554                     if (type.isArray() && qualifier.isArrayedIo(language)) {
1555                         TType elementType(type, 0);
1556                         size = intermediate.computeTypeLocationSize(elementType, language);
1557                     } else
1558                         size = intermediate.computeTypeLocationSize(type, language);
1559 
1560                     if (qualifier.storage == EvqVaryingIn) {
1561                         variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
1562                         nextInLocation += size;
1563                     } else {
1564                         variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
1565                         nextOutLocation += size;
1566                     }
1567                 }
1568                 trackLinkage(variable);
1569             }
1570         }
1571     };
1572 
1573     if (wasFlattened(variable.getUniqueId())) {
1574         auto& memberList = flattenMap[variable.getUniqueId()].members;
1575         for (auto member = memberList.begin(); member != memberList.end(); ++member)
1576             assignLocation(**member);
1577     } else if (wasSplit(variable.getUniqueId())) {
1578         TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
1579         assignLocation(*splitIoVar);
1580     } else {
1581         assignLocation(variable);
1582     }
1583 }
1584 
1585 //
1586 // Handle seeing a function declarator in the grammar.  This is the precursor
1587 // to recognizing a function prototype or function definition.
1588 //
handleFunctionDeclarator(const TSourceLoc & loc,TFunction & function,bool prototype)1589 void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
1590 {
1591     //
1592     // Multiple declarations of the same function name are allowed.
1593     //
1594     // If this is a definition, the definition production code will check for redefinitions
1595     // (we don't know at this point if it's a definition or not).
1596     //
1597     bool builtIn;
1598     TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
1599     const TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
1600 
1601     if (prototype) {
1602         // All built-in functions are defined, even though they don't have a body.
1603         // Count their prototype as a definition instead.
1604         if (symbolTable.atBuiltInLevel())
1605             function.setDefined();
1606         else {
1607             if (prevDec && ! builtIn)
1608                 symbol->getAsFunction()->setPrototyped();  // need a writable one, but like having prevDec as a const
1609             function.setPrototyped();
1610         }
1611     }
1612 
1613     // This insert won't actually insert it if it's a duplicate signature, but it will still check for
1614     // other forms of name collisions.
1615     if (! symbolTable.insert(function))
1616         error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
1617 }
1618 
1619 // For struct buffers with counters, we must pass the counter buffer as hidden parameter.
1620 // This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
1621 // Otherwise, it's a no-op
addStructBufferHiddenCounterParam(const TSourceLoc & loc,TParameter & param,TIntermAggregate * & paramNodes)1622 void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
1623                                                          TIntermAggregate*& paramNodes)
1624 {
1625     if (! hasStructBuffCounter(*param.type))
1626         return;
1627 
1628     const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
1629 
1630     TType counterType;
1631     counterBufferType(loc, counterType);
1632     TVariable *variable = makeInternalVariable(counterBlockName, counterType);
1633 
1634     if (! symbolTable.insert(*variable))
1635         error(loc, "redefinition", variable->getName().c_str(), "");
1636 
1637     paramNodes = intermediate.growAggregate(paramNodes,
1638                                             intermediate.addSymbol(*variable, loc),
1639                                             loc);
1640 }
1641 
1642 //
1643 // Handle seeing the function prototype in front of a function definition in the grammar.
1644 // The body is handled after this function returns.
1645 //
1646 // Returns an aggregate of parameter-symbol nodes.
1647 //
handleFunctionDefinition(const TSourceLoc & loc,TFunction & function,const TAttributes & attributes,TIntermNode * & entryPointTree)1648 TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
1649                                                              const TAttributes& attributes,
1650                                                              TIntermNode*& entryPointTree)
1651 {
1652     currentCaller = function.getMangledName();
1653     TSymbol* symbol = symbolTable.find(function.getMangledName());
1654     TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
1655 
1656     if (prevDec == nullptr)
1657         error(loc, "can't find function", function.getName().c_str(), "");
1658     // Note:  'prevDec' could be 'function' if this is the first time we've seen function
1659     // as it would have just been put in the symbol table.  Otherwise, we're looking up
1660     // an earlier occurrence.
1661 
1662     if (prevDec && prevDec->isDefined()) {
1663         // Then this function already has a body.
1664         error(loc, "function already has a body", function.getName().c_str(), "");
1665     }
1666     if (prevDec && ! prevDec->isDefined()) {
1667         prevDec->setDefined();
1668 
1669         // Remember the return type for later checking for RETURN statements.
1670         currentFunctionType = &(prevDec->getType());
1671     } else
1672         currentFunctionType = new TType(EbtVoid);
1673     functionReturnsValue = false;
1674 
1675     // Entry points need different I/O and other handling, transform it so the
1676     // rest of this function doesn't care.
1677     entryPointTree = transformEntryPoint(loc, function, attributes);
1678 
1679     //
1680     // New symbol table scope for body of function plus its arguments
1681     //
1682     pushScope();
1683 
1684     //
1685     // Insert parameters into the symbol table.
1686     // If the parameter has no name, it's not an error, just don't insert it
1687     // (could be used for unused args).
1688     //
1689     // Also, accumulate the list of parameters into the AST, so lower level code
1690     // knows where to find parameters.
1691     //
1692     TIntermAggregate* paramNodes = new TIntermAggregate;
1693     for (int i = 0; i < function.getParamCount(); i++) {
1694         TParameter& param = function[i];
1695         if (param.name != nullptr) {
1696             TVariable *variable = new TVariable(param.name, *param.type);
1697 
1698             if (i == 0 && function.hasImplicitThis()) {
1699                 // Anonymous 'this' members are already in a symbol-table level,
1700                 // and we need to know what function parameter to map them to.
1701                 symbolTable.makeInternalVariable(*variable);
1702                 pushImplicitThis(variable);
1703             }
1704 
1705             // Insert the parameters with name in the symbol table.
1706             if (! symbolTable.insert(*variable))
1707                 error(loc, "redefinition", variable->getName().c_str(), "");
1708 
1709             // Add parameters to the AST list.
1710             if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
1711                 // Expand the AST parameter nodes (but not the name mangling or symbol table view)
1712                 // for structures that need to be flattened.
1713                 flatten(*variable, false);
1714                 const TTypeList* structure = variable->getType().getStruct();
1715                 for (int mem = 0; mem < (int)structure->size(); ++mem) {
1716                     paramNodes = intermediate.growAggregate(paramNodes,
1717                                                             flattenAccess(variable->getUniqueId(), mem,
1718                                                                           variable->getType().getQualifier().storage,
1719                                                                           *(*structure)[mem].type),
1720                                                             loc);
1721                 }
1722             } else {
1723                 // Add the parameter to the AST
1724                 paramNodes = intermediate.growAggregate(paramNodes,
1725                                                         intermediate.addSymbol(*variable, loc),
1726                                                         loc);
1727             }
1728 
1729             // Add hidden AST parameter for struct buffer counters, if needed.
1730             addStructBufferHiddenCounterParam(loc, param, paramNodes);
1731         } else
1732             paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
1733     }
1734     if (function.hasIllegalImplicitThis())
1735         pushImplicitThis(nullptr);
1736 
1737     intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
1738     loopNestingLevel = 0;
1739     controlFlowNestingLevel = 0;
1740     postEntryPointReturn = false;
1741 
1742     return paramNodes;
1743 }
1744 
1745 // Handle all [attrib] attribute for the shader entry point
handleEntryPointAttributes(const TSourceLoc & loc,const TAttributes & attributes)1746 void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
1747 {
1748     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
1749         switch (it->name) {
1750         case EatNumThreads:
1751         {
1752             const TIntermSequence& sequence = it->args->getSequence();
1753             for (int lid = 0; lid < int(sequence.size()); ++lid)
1754                 intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
1755             break;
1756         }
1757         case EatInstance:
1758         {
1759             int invocations;
1760 
1761             if (!it->getInt(invocations)) {
1762                 error(loc, "invalid instance", "", "");
1763             } else {
1764                 if (!intermediate.setInvocations(invocations))
1765                     error(loc, "cannot change previously set instance attribute", "", "");
1766             }
1767             break;
1768         }
1769         case EatMaxVertexCount:
1770         {
1771             int maxVertexCount;
1772 
1773             if (! it->getInt(maxVertexCount)) {
1774                 error(loc, "invalid maxvertexcount", "", "");
1775             } else {
1776                 if (! intermediate.setVertices(maxVertexCount))
1777                     error(loc, "cannot change previously set maxvertexcount attribute", "", "");
1778             }
1779             break;
1780         }
1781         case EatPatchConstantFunc:
1782         {
1783             TString pcfName;
1784             if (! it->getString(pcfName, 0, false)) {
1785                 error(loc, "invalid patch constant function", "", "");
1786             } else {
1787                 patchConstantFunctionName = pcfName;
1788             }
1789             break;
1790         }
1791         case EatDomain:
1792         {
1793             // Handle [domain("...")]
1794             TString domainStr;
1795             if (! it->getString(domainStr)) {
1796                 error(loc, "invalid domain", "", "");
1797             } else {
1798                 TLayoutGeometry domain = ElgNone;
1799 
1800                 if (domainStr == "tri") {
1801                     domain = ElgTriangles;
1802                 } else if (domainStr == "quad") {
1803                     domain = ElgQuads;
1804                 } else if (domainStr == "isoline") {
1805                     domain = ElgIsolines;
1806                 } else {
1807                     error(loc, "unsupported domain type", domainStr.c_str(), "");
1808                 }
1809 
1810                 if (language == EShLangTessEvaluation) {
1811                     if (! intermediate.setInputPrimitive(domain))
1812                         error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
1813                 } else {
1814                     if (! intermediate.setOutputPrimitive(domain))
1815                         error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
1816                 }
1817             }
1818             break;
1819         }
1820         case EatOutputTopology:
1821         {
1822             // Handle [outputtopology("...")]
1823             TString topologyStr;
1824             if (! it->getString(topologyStr)) {
1825                 error(loc, "invalid outputtopology", "", "");
1826             } else {
1827                 TVertexOrder vertexOrder = EvoNone;
1828                 TLayoutGeometry primitive = ElgNone;
1829 
1830                 if (topologyStr == "point") {
1831                     intermediate.setPointMode();
1832                 } else if (topologyStr == "line") {
1833                     primitive = ElgIsolines;
1834                 } else if (topologyStr == "triangle_cw") {
1835                     vertexOrder = EvoCw;
1836                     primitive = ElgTriangles;
1837                 } else if (topologyStr == "triangle_ccw") {
1838                     vertexOrder = EvoCcw;
1839                     primitive = ElgTriangles;
1840                 } else {
1841                     error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
1842                 }
1843 
1844                 if (vertexOrder != EvoNone) {
1845                     if (! intermediate.setVertexOrder(vertexOrder)) {
1846                         error(loc, "cannot change previously set outputtopology",
1847                               TQualifier::getVertexOrderString(vertexOrder), "");
1848                     }
1849                 }
1850                 if (primitive != ElgNone)
1851                     intermediate.setOutputPrimitive(primitive);
1852             }
1853             break;
1854         }
1855         case EatPartitioning:
1856         {
1857             // Handle [partitioning("...")]
1858             TString partitionStr;
1859             if (! it->getString(partitionStr)) {
1860                 error(loc, "invalid partitioning", "", "");
1861             } else {
1862                 TVertexSpacing partitioning = EvsNone;
1863 
1864                 if (partitionStr == "integer") {
1865                     partitioning = EvsEqual;
1866                 } else if (partitionStr == "fractional_even") {
1867                     partitioning = EvsFractionalEven;
1868                 } else if (partitionStr == "fractional_odd") {
1869                     partitioning = EvsFractionalOdd;
1870                     //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
1871                 } else {
1872                     error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
1873                 }
1874 
1875                 if (! intermediate.setVertexSpacing(partitioning))
1876                     error(loc, "cannot change previously set partitioning",
1877                           TQualifier::getVertexSpacingString(partitioning), "");
1878             }
1879             break;
1880         }
1881         case EatOutputControlPoints:
1882         {
1883             // Handle [outputcontrolpoints("...")]
1884             int ctrlPoints;
1885             if (! it->getInt(ctrlPoints)) {
1886                 error(loc, "invalid outputcontrolpoints", "", "");
1887             } else {
1888                 if (! intermediate.setVertices(ctrlPoints)) {
1889                     error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
1890                 }
1891             }
1892             break;
1893         }
1894         case EatEarlyDepthStencil:
1895             intermediate.setEarlyFragmentTests();
1896             break;
1897         case EatBuiltIn:
1898         case EatLocation:
1899             // tolerate these because of dual use of entrypoint and type attributes
1900             break;
1901         default:
1902             warn(loc, "attribute does not apply to entry point", "", "");
1903             break;
1904         }
1905     }
1906 }
1907 
1908 // Update the given type with any type-like attribute information in the
1909 // attributes.
transferTypeAttributes(const TSourceLoc & loc,const TAttributes & attributes,TType & type,bool allowEntry)1910 void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
1911     bool allowEntry)
1912 {
1913     if (attributes.size() == 0)
1914         return;
1915 
1916     int value;
1917     TString builtInString;
1918     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
1919         switch (it->name) {
1920         case EatLocation:
1921             // location
1922             if (it->getInt(value))
1923                 type.getQualifier().layoutLocation = value;
1924             else
1925                 error(loc, "needs a literal integer", "location", "");
1926             break;
1927         case EatBinding:
1928             // binding
1929             if (it->getInt(value)) {
1930                 type.getQualifier().layoutBinding = value;
1931                 type.getQualifier().layoutSet = 0;
1932             } else
1933                 error(loc, "needs a literal integer", "binding", "");
1934             // set
1935             if (it->getInt(value, 1))
1936                 type.getQualifier().layoutSet = value;
1937             break;
1938         case EatGlobalBinding:
1939             // global cbuffer binding
1940             if (it->getInt(value))
1941                 globalUniformBinding = value;
1942             else
1943                 error(loc, "needs a literal integer", "global binding", "");
1944             // global cbuffer set
1945             if (it->getInt(value, 1))
1946                 globalUniformSet = value;
1947             break;
1948         case EatInputAttachment:
1949             // input attachment
1950             if (it->getInt(value))
1951                 type.getQualifier().layoutAttachment = value;
1952             else
1953                 error(loc, "needs a literal integer", "input attachment", "");
1954             break;
1955         case EatBuiltIn:
1956             // PointSize built-in
1957             if (it->getString(builtInString, 0, false)) {
1958                 if (builtInString == "PointSize")
1959                     type.getQualifier().builtIn = EbvPointSize;
1960             }
1961             break;
1962         case EatPushConstant:
1963             // push_constant
1964             type.getQualifier().layoutPushConstant = true;
1965             break;
1966         case EatConstantId:
1967             // specialization constant
1968             if (type.getQualifier().storage != EvqConst) {
1969                 error(loc, "needs a const type", "constant_id", "");
1970                 break;
1971             }
1972             if (it->getInt(value)) {
1973                 TSourceLoc loc;
1974                 loc.init();
1975                 setSpecConstantId(loc, type.getQualifier(), value);
1976             }
1977             break;
1978 
1979         // image formats
1980         case EatFormatRgba32f:      type.getQualifier().layoutFormat = ElfRgba32f;      break;
1981         case EatFormatRgba16f:      type.getQualifier().layoutFormat = ElfRgba16f;      break;
1982         case EatFormatR32f:         type.getQualifier().layoutFormat = ElfR32f;         break;
1983         case EatFormatRgba8:        type.getQualifier().layoutFormat = ElfRgba8;        break;
1984         case EatFormatRgba8Snorm:   type.getQualifier().layoutFormat = ElfRgba8Snorm;   break;
1985         case EatFormatRg32f:        type.getQualifier().layoutFormat = ElfRg32f;        break;
1986         case EatFormatRg16f:        type.getQualifier().layoutFormat = ElfRg16f;        break;
1987         case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break;
1988         case EatFormatR16f:         type.getQualifier().layoutFormat = ElfR16f;         break;
1989         case EatFormatRgba16:       type.getQualifier().layoutFormat = ElfRgba16;       break;
1990         case EatFormatRgb10A2:      type.getQualifier().layoutFormat = ElfRgb10A2;      break;
1991         case EatFormatRg16:         type.getQualifier().layoutFormat = ElfRg16;         break;
1992         case EatFormatRg8:          type.getQualifier().layoutFormat = ElfRg8;          break;
1993         case EatFormatR16:          type.getQualifier().layoutFormat = ElfR16;          break;
1994         case EatFormatR8:           type.getQualifier().layoutFormat = ElfR8;           break;
1995         case EatFormatRgba16Snorm:  type.getQualifier().layoutFormat = ElfRgba16Snorm;  break;
1996         case EatFormatRg16Snorm:    type.getQualifier().layoutFormat = ElfRg16Snorm;    break;
1997         case EatFormatRg8Snorm:     type.getQualifier().layoutFormat = ElfRg8Snorm;     break;
1998         case EatFormatR16Snorm:     type.getQualifier().layoutFormat = ElfR16Snorm;     break;
1999         case EatFormatR8Snorm:      type.getQualifier().layoutFormat = ElfR8Snorm;      break;
2000         case EatFormatRgba32i:      type.getQualifier().layoutFormat = ElfRgba32i;      break;
2001         case EatFormatRgba16i:      type.getQualifier().layoutFormat = ElfRgba16i;      break;
2002         case EatFormatRgba8i:       type.getQualifier().layoutFormat = ElfRgba8i;       break;
2003         case EatFormatR32i:         type.getQualifier().layoutFormat = ElfR32i;         break;
2004         case EatFormatRg32i:        type.getQualifier().layoutFormat = ElfRg32i;        break;
2005         case EatFormatRg16i:        type.getQualifier().layoutFormat = ElfRg16i;        break;
2006         case EatFormatRg8i:         type.getQualifier().layoutFormat = ElfRg8i;         break;
2007         case EatFormatR16i:         type.getQualifier().layoutFormat = ElfR16i;         break;
2008         case EatFormatR8i:          type.getQualifier().layoutFormat = ElfR8i;          break;
2009         case EatFormatRgba32ui:     type.getQualifier().layoutFormat = ElfRgba32ui;     break;
2010         case EatFormatRgba16ui:     type.getQualifier().layoutFormat = ElfRgba16ui;     break;
2011         case EatFormatRgba8ui:      type.getQualifier().layoutFormat = ElfRgba8ui;      break;
2012         case EatFormatR32ui:        type.getQualifier().layoutFormat = ElfR32ui;        break;
2013         case EatFormatRgb10a2ui:    type.getQualifier().layoutFormat = ElfRgb10a2ui;    break;
2014         case EatFormatRg32ui:       type.getQualifier().layoutFormat = ElfRg32ui;       break;
2015         case EatFormatRg16ui:       type.getQualifier().layoutFormat = ElfRg16ui;       break;
2016         case EatFormatRg8ui:        type.getQualifier().layoutFormat = ElfRg8ui;        break;
2017         case EatFormatR16ui:        type.getQualifier().layoutFormat = ElfR16ui;        break;
2018         case EatFormatR8ui:         type.getQualifier().layoutFormat = ElfR8ui;         break;
2019         case EatFormatUnknown:      type.getQualifier().layoutFormat = ElfNone;         break;
2020 
2021         case EatNonWritable:  type.getQualifier().readonly = true;   break;
2022         case EatNonReadable:  type.getQualifier().writeonly = true;  break;
2023 
2024         default:
2025             if (! allowEntry)
2026                 warn(loc, "attribute does not apply to a type", "", "");
2027             break;
2028         }
2029     }
2030 }
2031 
2032 //
2033 // Do all special handling for the entry point, including wrapping
2034 // the shader's entry point with the official entry point that will call it.
2035 //
2036 // The following:
2037 //
2038 //    retType shaderEntryPoint(args...) // shader declared entry point
2039 //    { body }
2040 //
2041 // Becomes
2042 //
2043 //    out retType ret;
2044 //    in iargs<that are input>...;
2045 //    out oargs<that are output> ...;
2046 //
2047 //    void shaderEntryPoint()    // synthesized, but official, entry point
2048 //    {
2049 //        args<that are input> = iargs...;
2050 //        ret = @shaderEntryPoint(args...);
2051 //        oargs = args<that are output>...;
2052 //    }
2053 //    retType @shaderEntryPoint(args...)
2054 //    { body }
2055 //
2056 // The symbol table will still map the original entry point name to the
2057 // the modified function and its new name:
2058 //
2059 //    symbol table:  shaderEntryPoint  ->   @shaderEntryPoint
2060 //
2061 // Returns nullptr if no entry-point tree was built, otherwise, returns
2062 // a subtree that creates the entry point.
2063 //
transformEntryPoint(const TSourceLoc & loc,TFunction & userFunction,const TAttributes & attributes)2064 TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
2065                                                    const TAttributes& attributes)
2066 {
2067     // Return true if this is a tessellation patch constant function input to a domain shader.
2068     const auto isDsPcfInput = [this](const TType& type) {
2069         return language == EShLangTessEvaluation &&
2070         type.contains([](const TType* t) {
2071                 return t->getQualifier().builtIn == EbvTessLevelOuter ||
2072                        t->getQualifier().builtIn == EbvTessLevelInner;
2073             });
2074     };
2075 
2076     // if we aren't in the entry point, fix the IO as such and exit
2077     if (! isEntrypointName(userFunction.getName())) {
2078         remapNonEntryPointIO(userFunction);
2079         return nullptr;
2080     }
2081 
2082     entryPointFunction = &userFunction; // needed in finish()
2083 
2084     // Handle entry point attributes
2085     handleEntryPointAttributes(loc, attributes);
2086 
2087     // entry point logic...
2088 
2089     // Move parameters and return value to shader in/out
2090     TVariable* entryPointOutput; // gets created in remapEntryPointIO
2091     TVector<TVariable*> inputs;
2092     TVector<TVariable*> outputs;
2093     remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
2094 
2095     // Further this return/in/out transform by flattening, splitting, and assigning locations
2096     const auto makeVariableInOut = [&](TVariable& variable) {
2097         if (variable.getType().isStruct()) {
2098             bool arrayed = variable.getType().getQualifier().isArrayedIo(language);
2099             flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */, arrayed);
2100         }
2101         // TODO: flatten arrays too
2102         // TODO: flatten everything in I/O
2103         // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
2104 
2105         // For clip and cull distance, multiple output variables potentially get merged
2106         // into one in assignClipCullDistance.  That code in assignClipCullDistance
2107         // handles the interface logic, so we avoid it here in that case.
2108         if (!isClipOrCullDistance(variable.getType()))
2109             assignToInterface(variable);
2110     };
2111     if (entryPointOutput != nullptr)
2112         makeVariableInOut(*entryPointOutput);
2113     for (auto it = inputs.begin(); it != inputs.end(); ++it)
2114         if (!isDsPcfInput((*it)->getType()))  // wait until the end for PCF input (see comment below)
2115             makeVariableInOut(*(*it));
2116     for (auto it = outputs.begin(); it != outputs.end(); ++it)
2117         makeVariableInOut(*(*it));
2118 
2119     // In the domain shader, PCF input must be at the end of the linkage.  That's because in the
2120     // hull shader there is no ordering: the output comes from the separate PCF, which does not
2121     // participate in the argument list.  That is always put at the end of the HS linkage, so the
2122     // input side of the DS must match.  The argument may be in any position in the DS argument list
2123     // however, so this ensures the linkage is built in the correct order regardless of argument order.
2124     if (language == EShLangTessEvaluation) {
2125         for (auto it = inputs.begin(); it != inputs.end(); ++it)
2126             if (isDsPcfInput((*it)->getType()))
2127                 makeVariableInOut(*(*it));
2128     }
2129 
2130     // Add uniform parameters to the $Global uniform block.
2131     TVector<TVariable*> opaque_uniforms;
2132     for (int i = 0; i < userFunction.getParamCount(); i++) {
2133         TType& paramType = *userFunction[i].type;
2134         TString& paramName = *userFunction[i].name;
2135         if (paramType.getQualifier().storage == EvqUniform) {
2136             if (!paramType.containsOpaque()) {
2137                 // Add it to the global uniform block.
2138                 growGlobalUniformBlock(loc, paramType, paramName);
2139             } else {
2140                 // Declare it as a separate variable.
2141                 TVariable *var = makeInternalVariable(paramName.c_str(), paramType);
2142                 opaque_uniforms.push_back(var);
2143             }
2144         }
2145     }
2146 
2147     // Synthesize the call
2148 
2149     pushScope(); // matches the one in handleFunctionBody()
2150 
2151     // new signature
2152     TType voidType(EbtVoid);
2153     TFunction synthEntryPoint(&userFunction.getName(), voidType);
2154     TIntermAggregate* synthParams = new TIntermAggregate();
2155     intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
2156     intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
2157     intermediate.incrementEntryPointCount();
2158     TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
2159 
2160     // change original name
2161     userFunction.addPrefix("@");                         // change the name in the function, but not in the symbol table
2162 
2163     // Copy inputs (shader-in -> calling arg), while building up the call node
2164     TVector<TVariable*> argVars;
2165     TIntermAggregate* synthBody = new TIntermAggregate();
2166     auto inputIt = inputs.begin();
2167     auto opaqueUniformIt = opaque_uniforms.begin();
2168     TIntermTyped* callingArgs = nullptr;
2169 
2170     for (int i = 0; i < userFunction.getParamCount(); i++) {
2171         TParameter& param = userFunction[i];
2172         argVars.push_back(makeInternalVariable(*param.name, *param.type));
2173         argVars.back()->getWritableType().getQualifier().makeTemporary();
2174 
2175         // Track the input patch, which is the only non-builtin supported by hull shader PCF.
2176         if (param.getDeclaredBuiltIn() == EbvInputPatch)
2177             inputPatch = argVars.back();
2178 
2179         TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
2180         handleFunctionArgument(&callee, callingArgs, arg);
2181         if (param.type->getQualifier().isParamInput()) {
2182             TIntermTyped* input = intermediate.addSymbol(**inputIt);
2183             if (input->getType().getQualifier().builtIn == EbvFragCoord && intermediate.getDxPositionW()) {
2184                 // Replace FragCoord W with reciprocal
2185                 auto pos_xyz = handleDotDereference(loc, input, "xyz");
2186                 auto pos_w   = handleDotDereference(loc, input, "w");
2187                 auto one     = intermediate.addConstantUnion(1.0, EbtFloat, loc);
2188                 auto recip_w = intermediate.addBinaryMath(EOpDiv, one, pos_w, loc);
2189                 TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
2190                 dst->getSequence().push_back(pos_xyz);
2191                 dst->getSequence().push_back(recip_w);
2192                 dst->setType(TType(EbtFloat, EvqTemporary, 4));
2193                 dst->setLoc(loc);
2194                 input = dst;
2195             }
2196             intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, input));
2197             inputIt++;
2198         }
2199         if (param.type->getQualifier().storage == EvqUniform) {
2200             if (!param.type->containsOpaque()) {
2201                 // Look it up in the $Global uniform block.
2202                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
2203                                                                    handleVariable(loc, param.name)));
2204             } else {
2205                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
2206                                                                    intermediate.addSymbol(**opaqueUniformIt)));
2207                 ++opaqueUniformIt;
2208             }
2209         }
2210     }
2211 
2212     // Call
2213     currentCaller = synthEntryPoint.getMangledName();
2214     TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
2215     currentCaller = userFunction.getMangledName();
2216 
2217     // Return value
2218     if (entryPointOutput) {
2219         TIntermTyped* returnAssign;
2220 
2221         // For hull shaders, the wrapped entry point return value is written to
2222         // an array element as indexed by invocation ID, which we might have to make up.
2223         // This is required to match SPIR-V semantics.
2224         if (language == EShLangTessControl) {
2225             TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
2226 
2227             // If there is no user declared invocation ID, we must make one.
2228             if (invocationIdSym == nullptr) {
2229                 TType invocationIdType(EbtUint, EvqIn, 1);
2230                 TString* invocationIdName = NewPoolTString("InvocationId");
2231                 invocationIdType.getQualifier().builtIn = EbvInvocationId;
2232 
2233                 TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
2234 
2235                 globalQualifierFix(loc, variable->getWritableType().getQualifier());
2236                 trackLinkage(*variable);
2237 
2238                 invocationIdSym = intermediate.addSymbol(*variable);
2239             }
2240 
2241             TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
2242                                                           invocationIdSym, loc);
2243 
2244             // Set the type of the array element being dereferenced
2245             const TType derefElementType(entryPointOutput->getType(), 0);
2246             element->setType(derefElementType);
2247 
2248             returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
2249         } else {
2250             returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
2251         }
2252         intermediate.growAggregate(synthBody, returnAssign);
2253     } else
2254         intermediate.growAggregate(synthBody, callReturn);
2255 
2256     // Output copies
2257     auto outputIt = outputs.begin();
2258     for (int i = 0; i < userFunction.getParamCount(); i++) {
2259         TParameter& param = userFunction[i];
2260 
2261         // GS outputs are via emit, so we do not copy them here.
2262         if (param.type->getQualifier().isParamOutput()) {
2263             if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
2264                 // GS output stream does not assign outputs here: it's the Append() method
2265                 // which writes to the output, probably multiple times separated by Emit.
2266                 // We merely remember the output to use, here.
2267                 gsStreamOutput = *outputIt;
2268             } else {
2269                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
2270                                                                    intermediate.addSymbol(**outputIt),
2271                                                                    intermediate.addSymbol(*argVars[i])));
2272             }
2273 
2274             outputIt++;
2275         }
2276     }
2277 
2278     // Put the pieces together to form a full function subtree
2279     // for the synthesized entry point.
2280     synthBody->setOperator(EOpSequence);
2281     TIntermNode* synthFunctionDef = synthParams;
2282     handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
2283 
2284     entryPointFunctionBody = synthBody;
2285 
2286     return synthFunctionDef;
2287 }
2288 
handleFunctionBody(const TSourceLoc & loc,TFunction & function,TIntermNode * functionBody,TIntermNode * & node)2289 void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
2290                                           TIntermNode*& node)
2291 {
2292     node = intermediate.growAggregate(node, functionBody);
2293     intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
2294     node->getAsAggregate()->setName(function.getMangledName().c_str());
2295 
2296     popScope();
2297     if (function.hasImplicitThis())
2298         popImplicitThis();
2299 
2300     if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
2301         error(loc, "function does not return a value:", "", function.getName().c_str());
2302 }
2303 
2304 // AST I/O is done through shader globals declared in the 'in' or 'out'
2305 // storage class.  An HLSL entry point has a return value, input parameters
2306 // and output parameters.  These need to get remapped to the AST I/O.
remapEntryPointIO(TFunction & function,TVariable * & returnValue,TVector<TVariable * > & inputs,TVector<TVariable * > & outputs)2307 void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
2308     TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
2309 {
2310     // We might have in input structure type with no decorations that caused it
2311     // to look like an input type, yet it has (e.g.) interpolation types that
2312     // must be modified that turn it into an input type.
2313     // Hence, a missing ioTypeMap for 'input' might need to be synthesized.
2314     const auto synthesizeEditedInput = [this](TType& type) {
2315         // True if a type needs to be 'flat'
2316         const auto needsFlat = [](const TType& type) {
2317             return type.containsBasicType(EbtInt) ||
2318                     type.containsBasicType(EbtUint) ||
2319                     type.containsBasicType(EbtInt64) ||
2320                     type.containsBasicType(EbtUint64) ||
2321                     type.containsBasicType(EbtBool) ||
2322                     type.containsBasicType(EbtDouble);
2323         };
2324 
2325         if (language == EShLangFragment && needsFlat(type)) {
2326             if (type.isStruct()) {
2327                 TTypeList* finalList = nullptr;
2328                 auto it = ioTypeMap.find(type.getStruct());
2329                 if (it == ioTypeMap.end() || it->second.input == nullptr) {
2330                     // Getting here means we have no input struct, but we need one.
2331                     auto list = new TTypeList;
2332                     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
2333                         TType* newType = new TType;
2334                         newType->shallowCopy(*member->type);
2335                         TTypeLoc typeLoc = { newType, member->loc };
2336                         list->push_back(typeLoc);
2337                     }
2338                     // install the new input type
2339                     if (it == ioTypeMap.end()) {
2340                         tIoKinds newLists = { list, nullptr, nullptr };
2341                         ioTypeMap[type.getStruct()] = newLists;
2342                     } else
2343                         it->second.input = list;
2344                     finalList = list;
2345                 } else
2346                     finalList = it->second.input;
2347                 // edit for 'flat'
2348                 for (auto member = finalList->begin(); member != finalList->end(); ++member) {
2349                     if (needsFlat(*member->type)) {
2350                         member->type->getQualifier().clearInterpolation();
2351                         member->type->getQualifier().flat = true;
2352                     }
2353                 }
2354             } else {
2355                 type.getQualifier().clearInterpolation();
2356                 type.getQualifier().flat = true;
2357             }
2358         }
2359     };
2360 
2361     // Do the actual work to make a type be a shader input or output variable,
2362     // and clear the original to be non-IO (for use as a normal function parameter/return).
2363     const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
2364         TVariable* ioVariable = makeInternalVariable(name, type);
2365         clearUniformInputOutput(type.getQualifier());
2366         if (type.isStruct()) {
2367             auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
2368             if (newLists != ioTypeMap.end()) {
2369                 if (storage == EvqVaryingIn && newLists->second.input)
2370                     ioVariable->getWritableType().setStruct(newLists->second.input);
2371                 else if (storage == EvqVaryingOut && newLists->second.output)
2372                     ioVariable->getWritableType().setStruct(newLists->second.output);
2373             }
2374         }
2375         if (storage == EvqVaryingIn) {
2376             correctInput(ioVariable->getWritableType().getQualifier());
2377             if (language == EShLangTessEvaluation)
2378                 if (!ioVariable->getType().isArray())
2379                     ioVariable->getWritableType().getQualifier().patch = true;
2380         } else {
2381             correctOutput(ioVariable->getWritableType().getQualifier());
2382         }
2383         ioVariable->getWritableType().getQualifier().storage = storage;
2384 
2385         fixBuiltInIoType(ioVariable->getWritableType());
2386 
2387         return ioVariable;
2388     };
2389 
2390     // return value is actually a shader-scoped output (out)
2391     if (function.getType().getBasicType() == EbtVoid) {
2392         returnValue = nullptr;
2393     } else {
2394         if (language == EShLangTessControl) {
2395             // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
2396             // array in SPIR-V semantics.  We'll write to it indexed by invocation ID.
2397 
2398             returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
2399 
2400             TType outputType;
2401             outputType.shallowCopy(function.getType());
2402 
2403             // vertices has necessarily already been set when handling entry point attributes.
2404             TArraySizes* arraySizes = new TArraySizes;
2405             arraySizes->addInnerSize(intermediate.getVertices());
2406             outputType.transferArraySizes(arraySizes);
2407 
2408             clearUniformInputOutput(function.getWritableType().getQualifier());
2409             returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
2410         } else {
2411             returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
2412         }
2413     }
2414 
2415     // parameters are actually shader-scoped inputs and outputs (in or out)
2416     for (int i = 0; i < function.getParamCount(); i++) {
2417         TType& paramType = *function[i].type;
2418         if (paramType.getQualifier().isParamInput()) {
2419             synthesizeEditedInput(paramType);
2420             TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
2421             inputs.push_back(argAsGlobal);
2422         }
2423         if (paramType.getQualifier().isParamOutput()) {
2424             TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
2425             outputs.push_back(argAsGlobal);
2426         }
2427     }
2428 }
2429 
2430 // An HLSL function that looks like an entry point, but is not,
2431 // declares entry point IO built-ins, but these have to be undone.
remapNonEntryPointIO(TFunction & function)2432 void HlslParseContext::remapNonEntryPointIO(TFunction& function)
2433 {
2434     // return value
2435     if (function.getType().getBasicType() != EbtVoid)
2436         clearUniformInputOutput(function.getWritableType().getQualifier());
2437 
2438     // parameters.
2439     // References to structuredbuffer types are left unmodified
2440     for (int i = 0; i < function.getParamCount(); i++)
2441         if (!isReference(*function[i].type))
2442             clearUniformInputOutput(function[i].type->getQualifier());
2443 }
2444 
handleDeclare(const TSourceLoc & loc,TIntermTyped * var)2445 TIntermNode* HlslParseContext::handleDeclare(const TSourceLoc& loc, TIntermTyped* var)
2446 {
2447     return intermediate.addUnaryNode(EOpDeclare, var, loc, TType(EbtVoid));
2448 }
2449 
2450 // Handle function returns, including type conversions to the function return type
2451 // if necessary.
handleReturnValue(const TSourceLoc & loc,TIntermTyped * value)2452 TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
2453 {
2454     functionReturnsValue = true;
2455 
2456     if (currentFunctionType->getBasicType() == EbtVoid) {
2457         error(loc, "void function cannot return a value", "return", "");
2458         return intermediate.addBranch(EOpReturn, loc);
2459     } else if (*currentFunctionType != value->getType()) {
2460         value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
2461         if (value && *currentFunctionType != value->getType())
2462             value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
2463         if (value == nullptr || *currentFunctionType != value->getType()) {
2464             error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
2465             return value;
2466         }
2467     }
2468 
2469     return intermediate.addBranch(EOpReturn, value, loc);
2470 }
2471 
handleFunctionArgument(TFunction * function,TIntermTyped * & arguments,TIntermTyped * newArg)2472 void HlslParseContext::handleFunctionArgument(TFunction* function,
2473                                               TIntermTyped*& arguments, TIntermTyped* newArg)
2474 {
2475     TParameter param = { nullptr, new TType, nullptr };
2476     param.type->shallowCopy(newArg->getType());
2477 
2478     function->addParameter(param);
2479     if (arguments)
2480         arguments = intermediate.growAggregate(arguments, newArg);
2481     else
2482         arguments = newArg;
2483 }
2484 
2485 // FragCoord may require special loading: we can optionally reciprocate W.
assignFromFragCoord(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2486 TIntermTyped* HlslParseContext::assignFromFragCoord(const TSourceLoc& loc, TOperator op,
2487                                                     TIntermTyped* left, TIntermTyped* right)
2488 {
2489     // If we are not asked for reciprocal W, use a plain old assign.
2490     if (!intermediate.getDxPositionW())
2491         return intermediate.addAssign(op, left, right, loc);
2492 
2493     // If we get here, we should reciprocate W.
2494     TIntermAggregate* assignList = nullptr;
2495 
2496     // If this is a complex rvalue, we don't want to dereference it many times.  Create a temporary.
2497     TVariable* rhsTempVar = nullptr;
2498     rhsTempVar = makeInternalVariable("@fragcoord", right->getType());
2499     rhsTempVar->getWritableType().getQualifier().makeTemporary();
2500 
2501     {
2502         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2503         assignList = intermediate.growAggregate(assignList,
2504             intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
2505     }
2506 
2507     // tmp.w = 1.0 / tmp.w
2508     {
2509         const int W = 3;
2510 
2511         TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
2512         TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
2513         TIntermTyped* index = intermediate.addConstantUnion(W, loc);
2514 
2515         TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
2516         TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
2517 
2518         const TType derefType(right->getType(), 0);
2519 
2520         lhsElement->setType(derefType);
2521         rhsElement->setType(derefType);
2522 
2523         auto one     = intermediate.addConstantUnion(1.0, EbtFloat, loc);
2524         auto recip_w = intermediate.addBinaryMath(EOpDiv, one, rhsElement, loc);
2525 
2526         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, recip_w, loc));
2527     }
2528 
2529     // Assign the rhs temp (now with W reciprocal) to the final output
2530     {
2531         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2532         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
2533     }
2534 
2535     assert(assignList != nullptr);
2536     assignList->setOperator(EOpSequence);
2537 
2538     return assignList;
2539 }
2540 
2541 // Position may require special handling: we can optionally invert Y.
2542 // See: https://github.com/KhronosGroup/glslang/issues/1173
2543 //      https://github.com/KhronosGroup/glslang/issues/494
assignPosition(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2544 TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
2545                                                TIntermTyped* left, TIntermTyped* right)
2546 {
2547     // If we are not asked for Y inversion, use a plain old assign.
2548     if (!intermediate.getInvertY())
2549         return intermediate.addAssign(op, left, right, loc);
2550 
2551     // If we get here, we should invert Y.
2552     TIntermAggregate* assignList = nullptr;
2553 
2554     // If this is a complex rvalue, we don't want to dereference it many times.  Create a temporary.
2555     TVariable* rhsTempVar = nullptr;
2556     rhsTempVar = makeInternalVariable("@position", right->getType());
2557     rhsTempVar->getWritableType().getQualifier().makeTemporary();
2558 
2559     {
2560         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2561         assignList = intermediate.growAggregate(assignList,
2562                                                 intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
2563     }
2564 
2565     // pos.y = -pos.y
2566     {
2567         const int Y = 1;
2568 
2569         TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
2570         TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
2571         TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
2572 
2573         TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
2574         TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
2575 
2576         const TType derefType(right->getType(), 0);
2577 
2578         lhsElement->setType(derefType);
2579         rhsElement->setType(derefType);
2580 
2581         TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
2582 
2583         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
2584     }
2585 
2586     // Assign the rhs temp (now with Y inversion) to the final output
2587     {
2588         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2589         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
2590     }
2591 
2592     assert(assignList != nullptr);
2593     assignList->setOperator(EOpSequence);
2594 
2595     return assignList;
2596 }
2597 
2598 // Clip and cull distance require special handling due to a semantic mismatch.  In HLSL,
2599 // these can be float scalar, float vector, or arrays of float scalar or float vector.
2600 // In SPIR-V, they are arrays of scalar floats in all cases.  We must copy individual components
2601 // (e.g, both x and y components of a float2) out into the destination float array.
2602 //
2603 // The values are assigned to sequential members of the output array.  The inner dimension
2604 // is vector components.  The outer dimension is array elements.
assignClipCullDistance(const TSourceLoc & loc,TOperator op,int semanticId,TIntermTyped * left,TIntermTyped * right)2605 TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
2606                                                            TIntermTyped* left, TIntermTyped* right)
2607 {
2608     switch (language) {
2609     case EShLangFragment:
2610     case EShLangVertex:
2611     case EShLangGeometry:
2612         break;
2613     default:
2614         error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
2615         return nullptr;
2616     }
2617 
2618     TVariable** clipCullVar = nullptr;
2619 
2620     // Figure out if we are assigning to, or from, clip or cull distance.
2621     const bool isOutput = isClipOrCullDistance(left->getType());
2622 
2623     // This is the rvalue or lvalue holding the clip or cull distance.
2624     TIntermTyped* clipCullNode = isOutput ? left : right;
2625     // This is the value going into or out of the clip or cull distance.
2626     TIntermTyped* internalNode = isOutput ? right : left;
2627 
2628     const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
2629 
2630     decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
2631 
2632     // Refer to either the clip or the cull distance, depending on semantic.
2633     switch (builtInType) {
2634     case EbvClipDistance:
2635         clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
2636         semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
2637         break;
2638     case EbvCullDistance:
2639         clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
2640         semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
2641         break;
2642 
2643     // called invalidly: we expected a clip or a cull distance.
2644     // static compile time problem: should not happen.
2645     default: assert(0); return nullptr;
2646     }
2647 
2648     // This is the offset in the destination array of a given semantic's data
2649     std::array<int, maxClipCullRegs> semanticOffset;
2650 
2651     // Calculate offset of variable of semantic N in destination array
2652     int arrayLoc = 0;
2653     int vecItems = 0;
2654 
2655     for (int x = 0; x < maxClipCullRegs; ++x) {
2656         // See if we overflowed the vec4 packing
2657         if ((vecItems + (*semanticNSize)[x]) > 4) {
2658             arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
2659             vecItems = 0;
2660         }
2661 
2662         semanticOffset[x] = arrayLoc;
2663         vecItems += (*semanticNSize)[x];
2664         arrayLoc += (*semanticNSize)[x];
2665     }
2666 
2667 
2668     // It can have up to 2 array dimensions (in the case of geometry shader inputs)
2669     const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
2670     const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
2671     // vector sizes:
2672     const int internalVectorSize = internalNode->getType().getVectorSize();
2673     // array sizes, or 1 if it's not an array:
2674     const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
2675     const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
2676 
2677     // The created type may be an array of arrays, e.g, for geometry shader inputs.
2678     const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
2679 
2680     // If we haven't created the output already, create it now.
2681     if (*clipCullVar == nullptr) {
2682         // ClipDistance and CullDistance are handled specially in the entry point input/output copy
2683         // algorithm, because they may need to be unpacked from components of vectors (or a scalar)
2684         // into a float array, or vice versa.  Here, we make the array the right size and type,
2685         // which depends on the incoming data, which has several potential dimensions:
2686         //    * Semantic ID
2687         //    * vector size
2688         //    * array size
2689         // Of those, semantic ID and array size cannot appear simultaneously.
2690         //
2691         // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
2692         // array dimensions.  The shader's declaration may have one or two array dimensions.  One is always
2693         // the geometry's dimension.
2694 
2695         const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
2696 
2697         const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
2698         const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
2699 
2700         TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
2701         clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
2702 
2703         // Create required array dimension
2704         TArraySizes* arraySizes = new TArraySizes;
2705         if (isImplicitlyArrayed)
2706             arraySizes->addInnerSize(requiredOuterArraySize);
2707         arraySizes->addInnerSize(requiredInnerArraySize);
2708         clipCullType.transferArraySizes(arraySizes);
2709 
2710         // Obtain symbol name: we'll use that for the symbol we introduce.
2711         TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
2712         assert(sym != nullptr);
2713 
2714         // We are moving the semantic ID from the layout location, so it is no longer needed or
2715         // desired there.
2716         clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
2717 
2718         // Create variable and track its linkage
2719         *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
2720 
2721         trackLinkage(**clipCullVar);
2722     }
2723 
2724     // Create symbol for the clip or cull variable.
2725     TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
2726 
2727     // vector sizes:
2728     const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
2729 
2730     // array sizes, or 1 if it's not an array:
2731     const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
2732     const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
2733     const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
2734 
2735     // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
2736     // fixBuiltInIoType() should have handled that upstream.
2737     assert(clipCullSym->getType().isArray());
2738     assert(clipCullSym->getType().getVectorSize() == 1);
2739     assert(clipCullSym->getType().getBasicType() == EbtFloat);
2740 
2741     // We may be creating multiple sub-assignments.  This is an aggregate to hold them.
2742     // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
2743     TIntermAggregate* assignList = nullptr;
2744 
2745     // Holds individual component assignments as we make them.
2746     TIntermTyped* clipCullAssign = nullptr;
2747 
2748     // If the types are homomorphic, use a simple assign.  No need to mess about with
2749     // individual components.
2750     if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
2751         clipCullInnerArraySize == internalInnerArraySize &&
2752         clipCullOuterArraySize == internalOuterArraySize &&
2753         clipCullVectorSize == internalVectorSize) {
2754 
2755         if (isOutput)
2756             clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
2757         else
2758             clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
2759 
2760         assignList = intermediate.growAggregate(assignList, clipCullAssign);
2761         assignList->setOperator(EOpSequence);
2762 
2763         return assignList;
2764     }
2765 
2766     // We are going to copy each component of the internal (per array element if indicated) to sequential
2767     // array elements of the clipCullSym.  This tracks the lhs element we're writing to as we go along.
2768     // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
2769     int clipCullInnerArrayPos = semanticOffset[semanticId];
2770     int clipCullOuterArrayPos = 0;
2771 
2772     // Lambda to add an index to a node, set the type of the result, and return the new node.
2773     const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
2774         const TType derefType(node->getType(), 0);
2775         node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
2776         node->setType(derefType);
2777         return node;
2778     };
2779 
2780     // Loop through every component of every element of the internal, and copy to or from the matching external.
2781     for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
2782         for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
2783             for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
2784                 // clip/cull array member to read from / write to:
2785                 TIntermTyped* clipCullMember = clipCullSym;
2786 
2787                 // If implicitly arrayed, there is an outer array dimension involved
2788                 if (isImplicitlyArrayed)
2789                     clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
2790 
2791                 // Index into proper array position for clip cull member
2792                 clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
2793 
2794                 // if needed, start over with next outer array slice.
2795                 if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
2796                     clipCullInnerArrayPos = semanticOffset[semanticId];
2797                     ++clipCullOuterArrayPos;
2798                 }
2799 
2800                 // internal member to read from / write to:
2801                 TIntermTyped* internalMember = internalNode;
2802 
2803                 // If internal node has outer array dimension, index appropriately.
2804                 if (internalArrayDims > 1)
2805                     internalMember = addIndex(internalMember, internalOuterArrayPos);
2806 
2807                 // If internal node has inner array dimension, index appropriately.
2808                 if (internalArrayDims > 0)
2809                     internalMember = addIndex(internalMember, internalInnerArrayPos);
2810 
2811                 // If internal node is a vector, extract the component of interest.
2812                 if (internalNode->getType().isVector())
2813                     internalMember = addIndex(internalMember, internalComponent);
2814 
2815                 // Create an assignment: output from internal to clip cull, or input from clip cull to internal.
2816                 if (isOutput)
2817                     clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
2818                 else
2819                     clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
2820 
2821                 // Track assignment in the sequence.
2822                 assignList = intermediate.growAggregate(assignList, clipCullAssign);
2823             }
2824         }
2825     }
2826 
2827     assert(assignList != nullptr);
2828     assignList->setOperator(EOpSequence);
2829 
2830     return assignList;
2831 }
2832 
2833 // Some simple source assignments need to be flattened to a sequence
2834 // of AST assignments. Catch these and flatten, otherwise, pass through
2835 // to intermediate.addAssign().
2836 //
2837 // Also, assignment to matrix swizzles requires multiple component assignments,
2838 // intercept those as well.
handleAssign(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2839 TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
2840                                              TIntermTyped* right)
2841 {
2842     if (left == nullptr || right == nullptr)
2843         return nullptr;
2844 
2845     // writing to opaques will require fixing transforms
2846     if (left->getType().containsOpaque())
2847         intermediate.setNeedsLegalization();
2848 
2849     if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
2850         return handleAssignToMatrixSwizzle(loc, op, left, right);
2851 
2852     // Return true if the given node is an index operation into a split variable.
2853     const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
2854         const TIntermBinary* binaryNode = node->getAsBinaryNode();
2855 
2856         if (binaryNode == nullptr)
2857             return false;
2858 
2859         return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) &&
2860                wasSplit(binaryNode->getLeft());
2861     };
2862 
2863     // Return symbol if node is symbol or index ref
2864     const auto getSymbol = [](const TIntermTyped* node) -> const TIntermSymbol* {
2865         const TIntermSymbol* symbolNode = node->getAsSymbolNode();
2866         if (symbolNode != nullptr)
2867             return symbolNode;
2868 
2869         const TIntermBinary* binaryNode = node->getAsBinaryNode();
2870         if (binaryNode != nullptr && (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect))
2871             return binaryNode->getLeft()->getAsSymbolNode();
2872 
2873         return nullptr;
2874     };
2875 
2876     // Return true if this stage assigns clip position with potentially inverted Y
2877     const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
2878         return node->getType().getQualifier().builtIn == EbvPosition &&
2879                (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
2880     };
2881 
2882     const TIntermSymbol* leftSymbol = getSymbol(left);
2883     const TIntermSymbol* rightSymbol = getSymbol(right);
2884 
2885     const bool isSplitLeft    = wasSplit(left) || indexesSplit(left);
2886     const bool isSplitRight   = wasSplit(right) || indexesSplit(right);
2887 
2888     const bool isFlattenLeft  = wasFlattened(leftSymbol);
2889     const bool isFlattenRight = wasFlattened(rightSymbol);
2890 
2891     // OK to do a single assign if neither side is split or flattened.  Otherwise,
2892     // fall through to a member-wise copy.
2893     if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
2894         // Clip and cull distance requires more processing.  See comment above assignClipCullDistance.
2895         if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
2896             const bool isOutput = isClipOrCullDistance(left->getType());
2897 
2898             const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
2899             return assignClipCullDistance(loc, op, semanticId, left, right);
2900         } else if (assignsClipPos(left)) {
2901             // Position can require special handling: see comment above assignPosition
2902             return assignPosition(loc, op, left, right);
2903         } else if (left->getQualifier().builtIn == EbvSampleMask) {
2904             // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
2905             // in the shader.  Copy the scalar RHS into the LHS array element zero, if that happens.
2906             if (left->isArray() && !right->isArray()) {
2907                 const TType derefType(left->getType(), 0);
2908                 left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
2909                 left->setType(derefType);
2910                 // Fall through to add assign.
2911             }
2912         }
2913 
2914         return intermediate.addAssign(op, left, right, loc);
2915     }
2916 
2917     TIntermAggregate* assignList = nullptr;
2918     const TVector<TVariable*>* leftVariables = nullptr;
2919     const TVector<TVariable*>* rightVariables = nullptr;
2920 
2921     // A temporary to store the right node's value, so we don't keep indirecting into it
2922     // if it's not a simple symbol.
2923     TVariable* rhsTempVar = nullptr;
2924 
2925     // If the RHS is a simple symbol node, we'll copy it for each member.
2926     TIntermSymbol* cloneSymNode = nullptr;
2927 
2928     int memberCount = 0;
2929 
2930     // Track how many items there are to copy.
2931     if (left->getType().isStruct())
2932         memberCount = (int)left->getType().getStruct()->size();
2933     if (left->getType().isArray())
2934         memberCount = left->getType().getCumulativeArraySize();
2935 
2936     if (isFlattenLeft)
2937         leftVariables = &flattenMap.find(leftSymbol->getId())->second.members;
2938 
2939     if (isFlattenRight) {
2940         rightVariables = &flattenMap.find(rightSymbol->getId())->second.members;
2941     } else {
2942         // The RHS is not flattened.  There are several cases:
2943         // 1. 1 item to copy:  Use the RHS directly.
2944         // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
2945         // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
2946 
2947         if (memberCount <= 1) {
2948             // case 1: we'll use the symbol directly below.  Nothing to do.
2949         } else {
2950             if (right->getAsSymbolNode() != nullptr) {
2951                 // case 2: we'll copy the symbol per iteration below.
2952                 cloneSymNode = right->getAsSymbolNode();
2953             } else {
2954                 // case 3: assign to a temp, and indirect into that.
2955                 rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
2956                 rhsTempVar->getWritableType().getQualifier().makeTemporary();
2957                 TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
2958 
2959                 // Add this to the aggregate being built.
2960                 assignList = intermediate.growAggregate(assignList,
2961                                                         intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
2962             }
2963         }
2964     }
2965 
2966     // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
2967     // variables, which is awkward when copying between split and unsplit structures.  This variable tracks
2968     // array indirections so they can be percolated from outer structs to inner variables.
2969     std::vector <int> arrayElement;
2970 
2971     TStorageQualifier leftStorage = left->getType().getQualifier().storage;
2972     TStorageQualifier rightStorage = right->getType().getQualifier().storage;
2973 
2974     int leftOffsetStart = findSubtreeOffset(*left);
2975     int rightOffsetStart = findSubtreeOffset(*right);
2976     int leftOffset = leftOffsetStart;
2977     int rightOffset = rightOffsetStart;
2978 
2979     const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
2980                                bool flattened)
2981                            -> TIntermTyped * {
2982         const bool split     = isLeft ? isSplitLeft   : isSplitRight;
2983 
2984         TIntermTyped* subTree;
2985         const TType derefType(type, member);
2986         const TVariable* builtInVar = nullptr;
2987         if ((flattened || split) && derefType.isBuiltIn()) {
2988             auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
2989                                                    derefType.getQualifier().builtIn,
2990                                                    isLeft ? leftStorage : rightStorage));
2991             if (splitPair != splitBuiltIns.end())
2992                 builtInVar = splitPair->second;
2993         }
2994         if (builtInVar != nullptr) {
2995             // copy from interstage IO built-in if needed
2996             subTree = intermediate.addSymbol(*builtInVar);
2997 
2998             if (subTree->getType().isArray()) {
2999                 // Arrayness of builtIn symbols isn't handled by the normal recursion:
3000                 // it's been extracted and moved to the built-in.
3001                 if (!arrayElement.empty()) {
3002                     const TType splitDerefType(subTree->getType(), arrayElement.back());
3003                     subTree = intermediate.addIndex(EOpIndexDirect, subTree,
3004                                                     intermediate.addConstantUnion(arrayElement.back(), loc), loc);
3005                     subTree->setType(splitDerefType);
3006                 } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
3007                     // This might also be a stage with arrayed outputs, in which case there's an index
3008                     // operation we should transfer to the output builtin.
3009 
3010                     const TType splitDerefType(subTree->getType(), 0);
3011                     subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
3012                                                     splitNode->getAsBinaryNode()->getRight(), loc);
3013                     subTree->setType(splitDerefType);
3014                 }
3015             }
3016         } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
3017             if (isLeft) {
3018                 // offset will cycle through variables for arrayed io
3019                 if (leftOffset >= static_cast<int>(leftVariables->size()))
3020                     leftOffset = leftOffsetStart;
3021                 subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
3022             } else {
3023                 // offset will cycle through variables for arrayed io
3024                 if (rightOffset >= static_cast<int>(rightVariables->size()))
3025                     rightOffset = rightOffsetStart;
3026                 subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
3027             }
3028 
3029             // arrayed io
3030             if (subTree->getType().isArray()) {
3031                 if (!arrayElement.empty()) {
3032                     const TType derefType(subTree->getType(), arrayElement.front());
3033                     subTree = intermediate.addIndex(EOpIndexDirect, subTree,
3034                                                     intermediate.addConstantUnion(arrayElement.front(), loc), loc);
3035                     subTree->setType(derefType);
3036                 } else {
3037                     // There's an index operation we should transfer to the output builtin.
3038                     assert(splitNode->getAsOperator() != nullptr &&
3039                            splitNode->getAsOperator()->getOp() == EOpIndexIndirect);
3040                     const TType splitDerefType(subTree->getType(), 0);
3041                     subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
3042                                                     splitNode->getAsBinaryNode()->getRight(), loc);
3043                     subTree->setType(splitDerefType);
3044                 }
3045             }
3046         } else {
3047             // Index operator if it's an aggregate, else EOpNull
3048             const TOperator accessOp = type.isArray()  ? EOpIndexDirect
3049                                      : type.isStruct() ? EOpIndexDirectStruct
3050                                      : EOpNull;
3051             if (accessOp == EOpNull) {
3052                 subTree = splitNode;
3053             } else {
3054                 subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
3055                                                 loc);
3056                 const TType splitDerefType(splitNode->getType(), splitMember);
3057                 subTree->setType(splitDerefType);
3058             }
3059         }
3060 
3061         return subTree;
3062     };
3063 
3064     // Use the proper RHS node: a new symbol from a TVariable, copy
3065     // of an TIntermSymbol node, or sometimes the right node directly.
3066     right = rhsTempVar != nullptr   ? intermediate.addSymbol(*rhsTempVar, loc) :
3067             cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
3068             right;
3069 
3070     // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
3071     // whole thing.  So, we'll resort to an explicit type via std::function.
3072     const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
3073                              bool topLevel)>
3074     traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
3075                    bool topLevel) -> void {
3076         // If we get here, we are assigning to or from a whole array or struct that must be
3077         // flattened, so have to do member-by-member assignment:
3078 
3079         bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
3080         bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
3081 
3082         if ((left->getType().isArray() || right->getType().isArray()) &&
3083               (shouldFlattenSubsetLeft  || isSplitLeft ||
3084                shouldFlattenSubsetRight || isSplitRight)) {
3085             const int elementsL = left->getType().isArray()  ? left->getType().getOuterArraySize()  : 1;
3086             const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
3087 
3088             // The arrays might not be the same size,
3089             // e.g., if the size has been forced for EbvTessLevelInner/Outer.
3090             const int elementsToCopy = std::min(elementsL, elementsR);
3091 
3092             // array case
3093             for (int element = 0; element < elementsToCopy; ++element) {
3094                 arrayElement.push_back(element);
3095 
3096                 // Add a new AST symbol node if we have a temp variable holding a complex RHS.
3097                 TIntermTyped* subLeft  = getMember(true,  left->getType(),  element, left, element,
3098                                                    shouldFlattenSubsetLeft);
3099                 TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
3100                                                    shouldFlattenSubsetRight);
3101 
3102                 TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left->getType(),  element, splitLeft,
3103                                                                        element, shouldFlattenSubsetLeft)
3104                                                            : subLeft;
3105                 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
3106                                                                        element, shouldFlattenSubsetRight)
3107                                                            : subRight;
3108 
3109                 traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
3110 
3111                 arrayElement.pop_back();
3112             }
3113         } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft  || isSplitLeft ||
3114                                                   shouldFlattenSubsetRight || isSplitRight)) {
3115             // struct case
3116             const auto& membersL = *left->getType().getStruct();
3117             const auto& membersR = *right->getType().getStruct();
3118 
3119             // These track the members in the split structures corresponding to the same in the unsplit structures,
3120             // which we traverse in parallel.
3121             int memberL = 0;
3122             int memberR = 0;
3123 
3124             // Handle empty structure assignment
3125             if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
3126                 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
3127 
3128             for (int member = 0; member < int(membersL.size()); ++member) {
3129                 const TType& typeL = *membersL[member].type;
3130                 const TType& typeR = *membersR[member].type;
3131 
3132                 TIntermTyped* subLeft  = getMember(true,  left->getType(), member, left, member,
3133                                                    shouldFlattenSubsetLeft);
3134                 TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
3135                                                    shouldFlattenSubsetRight);
3136 
3137                 // If there is no splitting, use the same values to avoid inefficiency.
3138                 TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left->getType(),  member, splitLeft,
3139                                                                        memberL, shouldFlattenSubsetLeft)
3140                                                            : subLeft;
3141                 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
3142                                                                        memberR, shouldFlattenSubsetRight)
3143                                                            : subRight;
3144 
3145                 if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
3146                     // Clip and cull distance built-in assignment is complex in its own right, and is handled in
3147                     // a separate function dedicated to that task.  See comment above assignClipCullDistance;
3148 
3149                     const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
3150 
3151                     // Since all clip/cull semantics boil down to the same built-in type, we need to get the
3152                     // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
3153                     const TType derefType((isOutput ? left : right)->getType(), member);
3154                     const int semanticId = derefType.getQualifier().layoutLocation;
3155 
3156                     TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
3157                                                                               subSplitLeft, subSplitRight);
3158 
3159                     assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
3160                 } else if (subSplitRight->getType().getQualifier().builtIn == EbvFragCoord) {
3161                     // FragCoord can require special handling: see comment above assignFromFragCoord
3162                     TIntermTyped* fragCoordAssign = assignFromFragCoord(loc, op, subSplitLeft, subSplitRight);
3163                     assignList = intermediate.growAggregate(assignList, fragCoordAssign, loc);
3164                 } else if (assignsClipPos(subSplitLeft)) {
3165                     // Position can require special handling: see comment above assignPosition
3166                     TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
3167                     assignList = intermediate.growAggregate(assignList, positionAssign, loc);
3168                 } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
3169                            !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
3170                     // If this is the final flattening (no nested types below to flatten)
3171                     // we'll copy the member, else recurse into the type hierarchy.
3172                     // However, if splitting the struct, that means we can copy a whole
3173                     // subtree here IFF it does not itself contain any interstage built-in
3174                     // IO variables, so we only have to recurse into it if there's something
3175                     // for splitting to do.  That can save a lot of AST verbosity for
3176                     // a bunch of memberwise copies.
3177 
3178                     assignList = intermediate.growAggregate(assignList,
3179                                                             intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
3180                                                             loc);
3181                 } else {
3182                     traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
3183                 }
3184 
3185                 memberL += (typeL.isBuiltIn() ? 0 : 1);
3186                 memberR += (typeR.isBuiltIn() ? 0 : 1);
3187             }
3188         } else {
3189             // Member copy
3190             assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
3191         }
3192 
3193     };
3194 
3195     TIntermTyped* splitLeft  = left;
3196     TIntermTyped* splitRight = right;
3197 
3198     // If either left or right was a split structure, we must read or write it, but still have to
3199     // parallel-recurse through the unsplit structure to identify the built-in IO vars.
3200     // The left can be either a symbol, or an index into a symbol (e.g, array reference)
3201     if (isSplitLeft) {
3202         if (indexesSplit(left)) {
3203             // Index case: Refer to the indexed symbol, if the left is an index operator.
3204             const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
3205 
3206             TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
3207 
3208             splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
3209                                               left->getAsBinaryNode()->getRight(), loc);
3210 
3211             const TType derefType(splitLeftNonIo->getType(), 0);
3212             splitLeft->setType(derefType);
3213         } else {
3214             // Symbol case: otherwise, if not indexed, we have the symbol directly.
3215             const TIntermSymbol* symNode = left->getAsSymbolNode();
3216             splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
3217         }
3218     }
3219 
3220     if (isSplitRight)
3221         splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
3222 
3223     // This makes the whole assignment, recursing through subtypes as needed.
3224     traverse(left, right, splitLeft, splitRight, true);
3225 
3226     assert(assignList != nullptr);
3227     assignList->setOperator(EOpSequence);
3228 
3229     return assignList;
3230 }
3231 
3232 // An assignment to matrix swizzle must be decomposed into individual assignments.
3233 // These must be selected component-wise from the RHS and stored component-wise
3234 // into the LHS.
handleAssignToMatrixSwizzle(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)3235 TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
3236                                                             TIntermTyped* right)
3237 {
3238     assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
3239 
3240     if (op != EOpAssign)
3241         error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
3242 
3243     // isolate the matrix and swizzle nodes
3244     TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
3245     const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
3246 
3247     // if the RHS isn't already a simple vector, let's store into one
3248     TIntermSymbol* vector = right->getAsSymbolNode();
3249     TIntermTyped* vectorAssign = nullptr;
3250     if (vector == nullptr) {
3251         // create a new intermediate vector variable to assign to
3252         TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
3253         vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
3254 
3255         // assign the right to the new vector
3256         vectorAssign = handleAssign(loc, op, vector, right);
3257     }
3258 
3259     // Assign the vector components to the matrix components.
3260     // Store this as a sequence, so a single aggregate node represents this
3261     // entire operation.
3262     TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
3263     TType columnType(matrix->getType(), 0);
3264     TType componentType(columnType, 0);
3265     TType indexType(EbtInt);
3266     for (int i = 0; i < (int)swizzle.size(); i += 2) {
3267         // the right component, single index into the RHS vector
3268         TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
3269                                     intermediate.addConstantUnion(i/2, loc), loc);
3270 
3271         // the left component, double index into the LHS matrix
3272         TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
3273                                     intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
3274                                                                   indexType, loc),
3275                                     loc);
3276         leftComp->setType(columnType);
3277         leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
3278                                     intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
3279                                                                   indexType, loc),
3280                                     loc);
3281         leftComp->setType(componentType);
3282 
3283         // Add the assignment to the aggregate
3284         result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
3285     }
3286 
3287     result->setOp(EOpSequence);
3288 
3289     return result;
3290 }
3291 
3292 //
3293 // HLSL atomic operations have slightly different arguments than
3294 // GLSL/AST/SPIRV.  The semantics are converted below in decomposeIntrinsic.
3295 // This provides the post-decomposition equivalent opcode.
3296 //
mapAtomicOp(const TSourceLoc & loc,TOperator op,bool isImage)3297 TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
3298 {
3299     switch (op) {
3300     case EOpInterlockedAdd:             return isImage ? EOpImageAtomicAdd      : EOpAtomicAdd;
3301     case EOpInterlockedAnd:             return isImage ? EOpImageAtomicAnd      : EOpAtomicAnd;
3302     case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
3303     case EOpInterlockedMax:             return isImage ? EOpImageAtomicMax      : EOpAtomicMax;
3304     case EOpInterlockedMin:             return isImage ? EOpImageAtomicMin      : EOpAtomicMin;
3305     case EOpInterlockedOr:              return isImage ? EOpImageAtomicOr       : EOpAtomicOr;
3306     case EOpInterlockedXor:             return isImage ? EOpImageAtomicXor      : EOpAtomicXor;
3307     case EOpInterlockedExchange:        return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
3308     case EOpInterlockedCompareStore:  // TODO: ...
3309     default:
3310         error(loc, "unknown atomic operation", "unknown op", "");
3311         return EOpNull;
3312     }
3313 }
3314 
3315 //
3316 // Create a combined sampler/texture from separate sampler and texture.
3317 //
handleSamplerTextureCombine(const TSourceLoc & loc,TIntermTyped * argTex,TIntermTyped * argSampler)3318 TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
3319                                                                 TIntermTyped* argSampler)
3320 {
3321     TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
3322 
3323     txcombine->getSequence().push_back(argTex);
3324     txcombine->getSequence().push_back(argSampler);
3325 
3326     TSampler samplerType = argTex->getType().getSampler();
3327     samplerType.combined = true;
3328 
3329     // TODO:
3330     // This block exists until the spec no longer requires shadow modes on texture objects.
3331     // It can be deleted after that, along with the shadowTextureVariant member.
3332     {
3333         const bool shadowMode = argSampler->getType().getSampler().shadow;
3334 
3335         TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
3336 
3337         if (texSymbol == nullptr)
3338             texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
3339 
3340         if (texSymbol == nullptr) {
3341             error(loc, "unable to find texture symbol", "", "");
3342             return nullptr;
3343         }
3344 
3345         // This forces the texture's shadow state to be the sampler's
3346         // shadow state.  This depends on downstream optimization to
3347         // DCE one variant in [shadow, nonshadow] if both are present,
3348         // or the SPIR-V module would be invalid.
3349         long long newId = texSymbol->getId();
3350 
3351         // Check to see if this texture has been given a shadow mode already.
3352         // If so, look up the one we already have.
3353         const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
3354 
3355         if (textureShadowEntry != textureShadowVariant.end())
3356             newId = textureShadowEntry->second->get(shadowMode);
3357         else
3358             textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
3359 
3360         // Sometimes we have to create another symbol (if this texture has been seen before,
3361         // and we haven't created the form for this shadow mode).
3362         if (newId == -1) {
3363             TType texType;
3364             texType.shallowCopy(argTex->getType());
3365             texType.getSampler().shadow = shadowMode;  // set appropriate shadow mode.
3366             globalQualifierFix(loc, texType.getQualifier());
3367 
3368             TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
3369 
3370             trackLinkage(*newTexture);
3371 
3372             newId = newTexture->getUniqueId();
3373         }
3374 
3375         assert(newId != -1);
3376 
3377         if (textureShadowVariant.find(newId) == textureShadowVariant.end())
3378             textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
3379 
3380         textureShadowVariant[newId]->set(shadowMode, newId);
3381 
3382         // Remember this shadow mode in the texture and the merged type.
3383         argTex->getWritableType().getSampler().shadow = shadowMode;
3384         samplerType.shadow = shadowMode;
3385 
3386         texSymbol->switchId(newId);
3387     }
3388 
3389     txcombine->setType(TType(samplerType, EvqTemporary));
3390     txcombine->setLoc(loc);
3391 
3392     return txcombine;
3393 }
3394 
3395 // Return true if this a buffer type that has an associated counter buffer.
hasStructBuffCounter(const TType & type) const3396 bool HlslParseContext::hasStructBuffCounter(const TType& type) const
3397 {
3398     switch (type.getQualifier().declaredBuiltIn) {
3399     case EbvAppendConsume:       // fall through...
3400     case EbvRWStructuredBuffer:  // ...
3401         return true;
3402     default:
3403         return false; // the other structuredbuffer types do not have a counter.
3404     }
3405 }
3406 
counterBufferType(const TSourceLoc & loc,TType & type)3407 void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
3408 {
3409     // Counter type
3410     TType* counterType = new TType(EbtUint, EvqBuffer);
3411     counterType->setFieldName(intermediate.implicitCounterName);
3412 
3413     TTypeList* blockStruct = new TTypeList;
3414     TTypeLoc  member = { counterType, loc };
3415     blockStruct->push_back(member);
3416 
3417     TType blockType(blockStruct, "", counterType->getQualifier());
3418     blockType.getQualifier().storage = EvqBuffer;
3419 
3420     type.shallowCopy(blockType);
3421     shareStructBufferType(type);
3422 }
3423 
3424 // declare counter for a structured buffer type
declareStructBufferCounter(const TSourceLoc & loc,const TType & bufferType,const TString & name)3425 void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
3426 {
3427     // Bail out if not a struct buffer
3428     if (! isStructBufferType(bufferType))
3429         return;
3430 
3431     if (! hasStructBuffCounter(bufferType))
3432         return;
3433 
3434     TType blockType;
3435     counterBufferType(loc, blockType);
3436 
3437     TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
3438 
3439     // Counter buffer is not yet in use
3440     structBufferCounter[*blockName] = false;
3441 
3442     shareStructBufferType(blockType);
3443     declareBlock(loc, blockType, blockName);
3444 }
3445 
3446 // return the counter that goes with a given structuredbuffer
getStructBufferCounter(const TSourceLoc & loc,TIntermTyped * buffer)3447 TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
3448 {
3449     // Bail out if not a struct buffer
3450     if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
3451         return nullptr;
3452 
3453     const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
3454 
3455     // Mark the counter as being used
3456     structBufferCounter[counterBlockName] = true;
3457 
3458     TIntermTyped* counterVar = handleVariable(loc, &counterBlockName);  // find the block structure
3459     TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
3460 
3461     TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
3462     counterMember->setType(TType(EbtUint));
3463     return counterMember;
3464 }
3465 
3466 //
3467 // Decompose structure buffer methods into AST
3468 //
decomposeStructBufferMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)3469 void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
3470 {
3471     if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
3472         return;
3473 
3474     const TOperator op  = node->getAsOperator()->getOp();
3475     TIntermAggregate* argAggregate = arguments->getAsAggregate();
3476 
3477     // Buffer is the object upon which method is called, so always arg 0
3478     TIntermTyped* bufferObj = nullptr;
3479 
3480     // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
3481     if (argAggregate) {
3482         if (argAggregate->getSequence().empty())
3483             return;
3484         if (argAggregate->getSequence()[0])
3485             bufferObj = argAggregate->getSequence()[0]->getAsTyped();
3486     } else {
3487         bufferObj = arguments->getAsSymbolNode();
3488     }
3489 
3490     if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
3491         return;
3492 
3493     // Some methods require a hidden internal counter, obtained via getStructBufferCounter().
3494     // This lambda adds something to it and returns the old value.
3495     const auto incDecCounter = [&](int incval) -> TIntermTyped* {
3496         TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
3497         TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
3498 
3499         if (counter == nullptr)
3500             return nullptr;
3501 
3502         TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
3503         counterIncrement->setType(TType(EbtUint, EvqTemporary));
3504         counterIncrement->setLoc(loc);
3505         counterIncrement->getSequence().push_back(counter);
3506         counterIncrement->getSequence().push_back(incrementValue);
3507 
3508         return counterIncrement;
3509     };
3510 
3511     // Index to obtain the runtime sized array out of the buffer.
3512     TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
3513     if (argArray == nullptr)
3514         return;  // It might not be a struct buffer method.
3515 
3516     switch (op) {
3517     case EOpMethodLoad:
3518         {
3519             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
3520 
3521             const TType& bufferType = bufferObj->getType();
3522 
3523             const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
3524 
3525             // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
3526             // buffer then, but that's what it calls itself.
3527             const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer   ||
3528                                               builtInType == EbvRWByteAddressBuffer);
3529 
3530 
3531             if (isByteAddressBuffer)
3532                 argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
3533                                                       intermediate.addConstantUnion(2, loc, true),
3534                                                       loc, TType(EbtInt));
3535 
3536             // Index into the array to find the item being loaded.
3537             const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
3538 
3539             node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
3540 
3541             const TType derefType(argArray->getType(), 0);
3542             node->setType(derefType);
3543         }
3544 
3545         break;
3546 
3547     case EOpMethodLoad2:
3548     case EOpMethodLoad3:
3549     case EOpMethodLoad4:
3550         {
3551             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
3552 
3553             TOperator constructOp = EOpNull;
3554             int size = 0;
3555 
3556             switch (op) {
3557             case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
3558             case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
3559             case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
3560             default: assert(0);
3561             }
3562 
3563             TIntermTyped* body = nullptr;
3564 
3565             // First, we'll store the address in a variable to avoid multiple shifts
3566             // (we must convert the byte address to an item address)
3567             TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
3568                                                                    intermediate.addConstantUnion(2, loc, true),
3569                                                                    loc, TType(EbtInt));
3570 
3571             TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
3572             TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
3573 
3574             body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
3575 
3576             TIntermTyped* vec = nullptr;
3577 
3578             // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
3579             // address conversion.
3580             for (int idx=0; idx<size; ++idx) {
3581                 TIntermTyped* offsetIdx = byteAddrIdxVar;
3582 
3583                 // add index offset
3584                 if (idx != 0)
3585                     offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
3586                                                            intermediate.addConstantUnion(idx, loc, true),
3587                                                            loc, TType(EbtInt));
3588 
3589                 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
3590                                                                                         : EOpIndexIndirect;
3591 
3592                 TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
3593 
3594                 TType derefType(argArray->getType(), 0);
3595                 derefType.getQualifier().makeTemporary();
3596                 indexVal->setType(derefType);
3597 
3598                 vec = intermediate.growAggregate(vec, indexVal);
3599             }
3600 
3601             vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
3602             vec->getAsAggregate()->setOperator(constructOp);
3603 
3604             body = intermediate.growAggregate(body, vec);
3605             body->setType(vec->getType());
3606             body->getAsAggregate()->setOperator(EOpSequence);
3607 
3608             node = body;
3609         }
3610 
3611         break;
3612 
3613     case EOpMethodStore:
3614     case EOpMethodStore2:
3615     case EOpMethodStore3:
3616     case EOpMethodStore4:
3617         {
3618             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
3619             TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped();  // value
3620 
3621             // Index into the array to find the item being loaded.
3622             // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
3623             // buffer then, but that's what it calls itself).
3624 
3625             int size = 0;
3626 
3627             switch (op) {
3628             case EOpMethodStore:  size = 1; break;
3629             case EOpMethodStore2: size = 2; break;
3630             case EOpMethodStore3: size = 3; break;
3631             case EOpMethodStore4: size = 4; break;
3632             default: assert(0);
3633             }
3634 
3635             TIntermAggregate* body = nullptr;
3636 
3637             // First, we'll store the address in a variable to avoid multiple shifts
3638             // (we must convert the byte address to an item address)
3639             TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
3640                                                                    intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
3641 
3642             TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
3643             TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
3644 
3645             body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
3646 
3647             for (int idx=0; idx<size; ++idx) {
3648                 TIntermTyped* offsetIdx = byteAddrIdxVar;
3649                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
3650 
3651                 // add index offset
3652                 if (idx != 0)
3653                     offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
3654 
3655                 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
3656                                                                                         : EOpIndexIndirect;
3657 
3658                 TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
3659                 const TType derefType(argArray->getType(), 0);
3660                 lValue->setType(derefType);
3661 
3662                 TIntermTyped* rValue;
3663                 if (size == 1) {
3664                     rValue = argValue;
3665                 } else {
3666                     rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
3667                     const TType indexType(argValue->getType(), 0);
3668                     rValue->setType(indexType);
3669                 }
3670 
3671                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
3672 
3673                 body = intermediate.growAggregate(body, assign);
3674             }
3675 
3676             body->setOperator(EOpSequence);
3677             node = body;
3678         }
3679 
3680         break;
3681 
3682     case EOpMethodGetDimensions:
3683         {
3684             const int numArgs = (int)argAggregate->getSequence().size();
3685             TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped();  // out num items
3686             TIntermTyped* argStride   = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr;  // out stride
3687 
3688             TIntermAggregate* body = nullptr;
3689 
3690             // Length output:
3691             if (argArray->getType().isSizedArray()) {
3692                 const int length = argArray->getType().getOuterArraySize();
3693                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
3694                                                               intermediate.addConstantUnion(length, loc, true), loc);
3695                 body = intermediate.growAggregate(body, assign, loc);
3696             } else {
3697                 TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
3698                                                                                argNumItems->getType());
3699                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
3700                 body = intermediate.growAggregate(body, assign, loc);
3701             }
3702 
3703             // Stride output:
3704             if (argStride != nullptr) {
3705                 int size;
3706                 int stride;
3707                 intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
3708                                                 argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
3709 
3710                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
3711                                                               intermediate.addConstantUnion(stride, loc, true), loc);
3712 
3713                 body = intermediate.growAggregate(body, assign);
3714             }
3715 
3716             body->setOperator(EOpSequence);
3717             node = body;
3718         }
3719 
3720         break;
3721 
3722     case EOpInterlockedAdd:
3723     case EOpInterlockedAnd:
3724     case EOpInterlockedExchange:
3725     case EOpInterlockedMax:
3726     case EOpInterlockedMin:
3727     case EOpInterlockedOr:
3728     case EOpInterlockedXor:
3729     case EOpInterlockedCompareExchange:
3730     case EOpInterlockedCompareStore:
3731         {
3732             // We'll replace the first argument with the block dereference, and let
3733             // downstream decomposition handle the rest.
3734 
3735             TIntermSequence& sequence = argAggregate->getSequence();
3736 
3737             TIntermTyped* argIndex     = makeIntegerIndex(sequence[1]->getAsTyped());  // index
3738             argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
3739                                                   loc, TType(EbtInt));
3740 
3741             const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
3742             TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
3743 
3744             const TType derefType(argArray->getType(), 0);
3745             element->setType(derefType);
3746 
3747             // Replace the numeric byte offset parameter with array reference.
3748             sequence[1] = element;
3749             sequence.erase(sequence.begin(), sequence.begin()+1);
3750         }
3751         break;
3752 
3753     case EOpMethodIncrementCounter:
3754         {
3755             node = incDecCounter(1);
3756             break;
3757         }
3758 
3759     case EOpMethodDecrementCounter:
3760         {
3761             TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
3762             node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
3763                                               preIncValue->getType());
3764             break;
3765         }
3766 
3767     case EOpMethodAppend:
3768         {
3769             TIntermTyped* oldCounter = incDecCounter(1);
3770 
3771             TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
3772             TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
3773 
3774             const TType derefType(argArray->getType(), 0);
3775             lValue->setType(derefType);
3776 
3777             node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
3778 
3779             break;
3780         }
3781 
3782     case EOpMethodConsume:
3783         {
3784             TIntermTyped* oldCounter = incDecCounter(-1);
3785 
3786             TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
3787                                                                   intermediate.addConstantUnion(-1, loc, true), loc,
3788                                                                   oldCounter->getType());
3789 
3790             node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
3791 
3792             const TType derefType(argArray->getType(), 0);
3793             node->setType(derefType);
3794 
3795             break;
3796         }
3797 
3798     default:
3799         break; // most pass through unchanged
3800     }
3801 }
3802 
3803 // Create array of standard sample positions for given sample count.
3804 // TODO: remove when a real method to query sample pos exists in SPIR-V.
getSamplePosArray(int count)3805 TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
3806 {
3807     struct tSamplePos { float x, y; };
3808 
3809     static const tSamplePos pos1[] = {
3810         { 0.0/16.0,  0.0/16.0 },
3811     };
3812 
3813     // standard sample positions for 2, 4, 8, and 16 samples.
3814     static const tSamplePos pos2[] = {
3815         { 4.0/16.0,  4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
3816     };
3817 
3818     static const tSamplePos pos4[] = {
3819         {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0,  2.0/16.0 }, { 2.0/16.0,  6.0/16.0 },
3820     };
3821 
3822     static const tSamplePos pos8[] = {
3823         { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0,  3.0/16.0 }, { 5.0/16.0,  1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
3824         {-5.0/16.0,  5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0,  7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
3825     };
3826 
3827     static const tSamplePos pos16[] = {
3828         { 1.0/16.0,  1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0,  2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
3829         {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0,  5.0/16.0 }, { 5.0/16.0,  3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
3830         {-2.0/16.0,  6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0,  4.0/16.0 },
3831         {-8.0/16.0,  0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0,  7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
3832     };
3833 
3834     const tSamplePos* sampleLoc = nullptr;
3835     int numSamples = count;
3836 
3837     switch (count) {
3838     case 2:  sampleLoc = pos2;  break;
3839     case 4:  sampleLoc = pos4;  break;
3840     case 8:  sampleLoc = pos8;  break;
3841     case 16: sampleLoc = pos16; break;
3842     default:
3843         sampleLoc = pos1;
3844         numSamples = 1;
3845     }
3846 
3847     TConstUnionArray* values = new TConstUnionArray(numSamples*2);
3848 
3849     for (int pos=0; pos<count; ++pos) {
3850         TConstUnion x, y;
3851         x.setDConst(sampleLoc[pos].x);
3852         y.setDConst(sampleLoc[pos].y);
3853 
3854         (*values)[pos*2+0] = x;
3855         (*values)[pos*2+1] = y;
3856     }
3857 
3858     TType retType(EbtFloat, EvqConst, 2);
3859 
3860     if (numSamples != 1) {
3861         TArraySizes* arraySizes = new TArraySizes;
3862         arraySizes->addInnerSize(numSamples);
3863         retType.transferArraySizes(arraySizes);
3864     }
3865 
3866     return new TIntermConstantUnion(*values, retType);
3867 }
3868 
3869 //
3870 // Decompose DX9 and DX10 sample intrinsics & object methods into AST
3871 //
decomposeSampleMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)3872 void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
3873 {
3874     if (node == nullptr || !node->getAsOperator())
3875         return;
3876 
3877     // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
3878     const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
3879         result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
3880 
3881         TIntermTyped* convertedResult = nullptr;
3882 
3883         TType retType;
3884         getTextureReturnType(sampler, retType);
3885 
3886         if (retType.isStruct()) {
3887             // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
3888             TIntermAggregate* conversionAggregate = new TIntermAggregate;
3889             convertedResult = conversionAggregate;
3890 
3891             // Convert vector output to return structure.  We will need a temp symbol to copy the results to.
3892             TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
3893 
3894             // We also need a temp symbol to hold the result of the texture.  We don't want to re-fetch the
3895             // sample each time we'll index into the result, so we'll copy to this, and index into the copy.
3896             TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
3897 
3898             // Initial copy from texture to our sample result shadow.
3899             TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
3900                                                               result, loc);
3901 
3902             conversionAggregate->getSequence().push_back(shadowCopy);
3903 
3904             unsigned vec4Pos = 0;
3905 
3906             for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
3907                 const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
3908 
3909                 // Check for bad struct members.  This should have been caught upstream.  Complain, because
3910                 // wwe don't know what to do with it.  This algorithm could be generalized to handle
3911                 // other things, e.g, sub-structures, but HLSL doesn't allow them.
3912                 if (!memberType.isVector() && !memberType.isScalar()) {
3913                     error(loc, "expected: scalar or vector type in texture structure", "", "");
3914                     return nullptr;
3915                 }
3916 
3917                 // Index into the struct variable to find the member to assign.
3918                 TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
3919                                                                    intermediate.addSymbol(*structVar, loc),
3920                                                                    intermediate.addConstantUnion(m, loc), loc);
3921 
3922                 structMember->setType(memberType);
3923 
3924                 // Assign each component of (possible) vector in struct member.
3925                 for (int component = 0; component < memberType.getVectorSize(); ++component) {
3926                     TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
3927                                                                      intermediate.addSymbol(*sampleShadow, loc),
3928                                                                      intermediate.addConstantUnion(vec4Pos++, loc), loc);
3929                     vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
3930 
3931                     TIntermTyped* memberAssign = nullptr;
3932 
3933                     if (memberType.isVector()) {
3934                         // Vector member: we need to create an access chain to the vector component.
3935 
3936                         TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
3937                                                                                  intermediate.addConstantUnion(component, loc), loc);
3938 
3939                         memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
3940                     } else {
3941                         // Scalar member: we can assign to it directly.
3942                         memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
3943                     }
3944 
3945 
3946                     conversionAggregate->getSequence().push_back(memberAssign);
3947                 }
3948             }
3949 
3950             // Add completed variable so the expression results in the whole struct value we just built.
3951             conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
3952 
3953             // Make it a sequence.
3954             intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
3955         } else {
3956             // vector clamp the output if template vector type is smaller than sample result.
3957             if (retType.getVectorSize() < node->getVectorSize()) {
3958                 // Too many components.  Construct shorter vector from it.
3959                 const TOperator op = intermediate.mapTypeToConstructorOp(retType);
3960 
3961                 convertedResult = constructBuiltIn(retType, op, result, loc, false);
3962             } else {
3963                 // Enough components.  Use directly.
3964                 convertedResult = result;
3965             }
3966         }
3967 
3968         convertedResult->setLoc(loc);
3969         return convertedResult;
3970     };
3971 
3972     const TOperator op  = node->getAsOperator()->getOp();
3973     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
3974 
3975     // Bail out if not a sampler method.
3976     // Note though this is odd to do before checking the op, because the op
3977     // could be something that takes the arguments, and the function in question
3978     // takes the result of the op.  So, this is not the final word.
3979     if (arguments != nullptr) {
3980         if (argAggregate == nullptr) {
3981             if (arguments->getAsTyped()->getBasicType() != EbtSampler)
3982                 return;
3983         } else {
3984             if (argAggregate->getSequence().size() == 0 ||
3985                 argAggregate->getSequence()[0] == nullptr ||
3986                 argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
3987                 return;
3988         }
3989     }
3990 
3991     switch (op) {
3992     // **** DX9 intrinsics: ****
3993     case EOpTexture:
3994         {
3995             // Texture with ddx & ddy is really gradient form in HLSL
3996             if (argAggregate->getSequence().size() == 4)
3997                 node->getAsAggregate()->setOperator(EOpTextureGrad);
3998 
3999             break;
4000         }
4001     case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
4002         {
4003             TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped();   // sampler
4004             TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped();  // coord
4005 
4006             assert(argCoord->getVectorSize() == 4);
4007             TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
4008             TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
4009 
4010             TOperator constructOp = EOpNull;
4011             const TSampler &sampler = argSamp->getType().getSampler();
4012             int coordSize = 0;
4013 
4014             switch (sampler.dim)
4015             {
4016             case Esd1D:   constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
4017             case Esd2D:   constructOp = EOpConstructVec2;  coordSize = 2; break; // 2D
4018             case Esd3D:   constructOp = EOpConstructVec3;  coordSize = 3; break; // 3D
4019             case EsdCube: constructOp = EOpConstructVec3;  coordSize = 3; break; // also 3D
4020             default:
4021                 error(loc, "unhandled DX9 texture LoD dimension", "", "");
4022                 break;
4023             }
4024 
4025             TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
4026             constructCoord->getSequence().push_back(argCoord);
4027             constructCoord->setLoc(loc);
4028             constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
4029 
4030             TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
4031             tex->getSequence().push_back(argSamp);        // sampler
4032             tex->getSequence().push_back(constructCoord); // coordinate
4033             tex->getSequence().push_back(argLod);         // lod
4034 
4035             node = convertReturn(tex, sampler);
4036 
4037             break;
4038         }
4039 
4040     case EOpTextureBias:
4041         {
4042             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // sampler
4043             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // coord
4044 
4045             // HLSL puts bias in W component of coordinate.  We extract it and add it to
4046             // the argument list, instead
4047             TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
4048             TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
4049 
4050             TOperator constructOp = EOpNull;
4051             const TSampler& sampler = arg0->getType().getSampler();
4052 
4053             switch (sampler.dim) {
4054             case Esd1D:   constructOp = EOpConstructFloat; break; // 1D
4055             case Esd2D:   constructOp = EOpConstructVec2;  break; // 2D
4056             case Esd3D:   constructOp = EOpConstructVec3;  break; // 3D
4057             case EsdCube: constructOp = EOpConstructVec3;  break; // also 3D
4058             default:
4059                 error(loc, "unhandled DX9 texture bias dimension", "", "");
4060                 break;
4061             }
4062 
4063             TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
4064             constructCoord->getSequence().push_back(arg1);
4065             constructCoord->setLoc(loc);
4066 
4067             // The input vector should never be less than 2, since there's always a bias.
4068             // The max is for safety, and should be a no-op.
4069             constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
4070 
4071             TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
4072             tex->getSequence().push_back(arg0);           // sampler
4073             tex->getSequence().push_back(constructCoord); // coordinate
4074             tex->getSequence().push_back(bias);           // bias
4075 
4076             node = convertReturn(tex, sampler);
4077 
4078             break;
4079         }
4080 
4081     // **** DX10 methods: ****
4082     case EOpMethodSample:     // fall through
4083     case EOpMethodSampleBias: // ...
4084         {
4085             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4086             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4087             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4088             TIntermTyped* argBias   = nullptr;
4089             TIntermTyped* argOffset = nullptr;
4090             const TSampler& sampler = argTex->getType().getSampler();
4091 
4092             int nextArg = 3;
4093 
4094             if (op == EOpMethodSampleBias)  // SampleBias has a bias arg
4095                 argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
4096 
4097             TOperator textureOp = EOpTexture;
4098 
4099             if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
4100                 textureOp = EOpTextureOffset;
4101                 argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
4102             }
4103 
4104             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4105 
4106             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4107             txsample->getSequence().push_back(txcombine);
4108             txsample->getSequence().push_back(argCoord);
4109 
4110             if (argOffset != nullptr)
4111                 txsample->getSequence().push_back(argOffset);
4112 
4113             if (argBias != nullptr)
4114               txsample->getSequence().push_back(argBias);
4115 
4116             node = convertReturn(txsample, sampler);
4117 
4118             break;
4119         }
4120 
4121     case EOpMethodSampleGrad: // ...
4122         {
4123             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4124             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4125             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4126             TIntermTyped* argDDX    = argAggregate->getSequence()[3]->getAsTyped();
4127             TIntermTyped* argDDY    = argAggregate->getSequence()[4]->getAsTyped();
4128             TIntermTyped* argOffset = nullptr;
4129             const TSampler& sampler = argTex->getType().getSampler();
4130 
4131             TOperator textureOp = EOpTextureGrad;
4132 
4133             if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
4134                 textureOp = EOpTextureGradOffset;
4135                 argOffset = argAggregate->getSequence()[5]->getAsTyped();
4136             }
4137 
4138             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4139 
4140             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4141             txsample->getSequence().push_back(txcombine);
4142             txsample->getSequence().push_back(argCoord);
4143             txsample->getSequence().push_back(argDDX);
4144             txsample->getSequence().push_back(argDDY);
4145 
4146             if (argOffset != nullptr)
4147                 txsample->getSequence().push_back(argOffset);
4148 
4149             node = convertReturn(txsample, sampler);
4150 
4151             break;
4152         }
4153 
4154     case EOpMethodGetDimensions:
4155         {
4156             // AST returns a vector of results, which we break apart component-wise into
4157             // separate values to assign to the HLSL method's outputs, ala:
4158             //  tx . GetDimensions(width, height);
4159             //      float2 sizeQueryTemp = EOpTextureQuerySize
4160             //      width = sizeQueryTemp.X;
4161             //      height = sizeQueryTemp.Y;
4162 
4163             TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4164             const TType& texType = argTex->getType();
4165 
4166             assert(texType.getBasicType() == EbtSampler);
4167 
4168             const TSampler& sampler = texType.getSampler();
4169             const TSamplerDim dim = sampler.dim;
4170             const bool isImage = sampler.isImage();
4171             const bool isMs = sampler.isMultiSample();
4172             const int numArgs = (int)argAggregate->getSequence().size();
4173 
4174             int numDims = 0;
4175 
4176             switch (dim) {
4177             case Esd1D:     numDims = 1; break; // W
4178             case Esd2D:     numDims = 2; break; // W, H
4179             case Esd3D:     numDims = 3; break; // W, H, D
4180             case EsdCube:   numDims = 2; break; // W, H (cube)
4181             case EsdBuffer: numDims = 1; break; // W (buffers)
4182             case EsdRect:   numDims = 2; break; // W, H (rect)
4183             default:
4184                 error(loc, "unhandled DX10 MethodGet dimension", "", "");
4185                 break;
4186             }
4187 
4188             // Arrayed adds another dimension for the number of array elements
4189             if (sampler.isArrayed())
4190                 ++numDims;
4191 
4192             // Establish whether the method itself is querying mip levels.  This can be false even
4193             // if the underlying query requires a MIP level, due to the available HLSL method overloads.
4194             const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
4195 
4196             // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
4197             // True if:
4198             //   1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
4199             // or,
4200             //   2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
4201             const bool mipRequired =
4202                 ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
4203                 mipQuery; // 2...
4204 
4205             // AST assumes integer return.  Will be converted to float if required.
4206             TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
4207             sizeQuery->getSequence().push_back(argTex);
4208 
4209             // If we're building an LOD query, add the LOD.
4210             if (mipRequired) {
4211                 // If the base HLSL query had no MIP level given, use level 0.
4212                 TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
4213                     intermediate.addConstantUnion(0, loc, true);
4214                 sizeQuery->getSequence().push_back(queryLod);
4215             }
4216 
4217             sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
4218             sizeQuery->setLoc(loc);
4219 
4220             // Return value from size query
4221             TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
4222             tempArg->getWritableType().getQualifier().makeTemporary();
4223             TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
4224                                                                    intermediate.addSymbol(*tempArg, loc),
4225                                                                    sizeQuery, loc);
4226 
4227             // Compound statement for assigning outputs
4228             TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
4229             // Index of first output parameter
4230             const int outParamBase = mipQuery ? 2 : 1;
4231 
4232             for (int compNum = 0; compNum < numDims; ++compNum) {
4233                 TIntermTyped* indexedOut = nullptr;
4234                 TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
4235 
4236                 if (numDims > 1) {
4237                     TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
4238                     indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
4239                     indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
4240                     indexedOut->setLoc(loc);
4241                 } else {
4242                     indexedOut = sizeQueryReturn;
4243                 }
4244 
4245                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
4246                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
4247 
4248                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4249             }
4250 
4251             // handle mip level parameter
4252             if (mipQuery) {
4253                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
4254 
4255                 TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
4256                 levelsQuery->getSequence().push_back(argTex);
4257                 levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
4258                 levelsQuery->setLoc(loc);
4259 
4260                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
4261                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4262             }
4263 
4264             // 2DMS formats query # samples, which needs a different query op
4265             if (sampler.isMultiSample()) {
4266                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
4267 
4268                 TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
4269                 samplesQuery->getSequence().push_back(argTex);
4270                 samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
4271                 samplesQuery->setLoc(loc);
4272 
4273                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
4274                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4275             }
4276 
4277             compoundStatement->setOperator(EOpSequence);
4278             compoundStatement->setLoc(loc);
4279             compoundStatement->setType(TType(EbtVoid));
4280 
4281             node = compoundStatement;
4282 
4283             break;
4284         }
4285 
4286     case EOpMethodSampleCmp:  // fall through...
4287     case EOpMethodSampleCmpLevelZero:
4288         {
4289             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4290             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4291             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4292             TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
4293             TIntermTyped* argOffset = nullptr;
4294 
4295             // Sampler argument should be a sampler.
4296             if (argSamp->getType().getBasicType() != EbtSampler) {
4297                 error(loc, "expected: sampler type", "", "");
4298                 return;
4299             }
4300 
4301             // Sampler should be a SamplerComparisonState
4302             if (! argSamp->getType().getSampler().isShadow()) {
4303                 error(loc, "expected: SamplerComparisonState", "", "");
4304                 return;
4305             }
4306 
4307             // optional offset value
4308             if (argAggregate->getSequence().size() > 4)
4309                 argOffset = argAggregate->getSequence()[4]->getAsTyped();
4310 
4311             const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
4312 
4313             // AST wants comparison value as one of the texture coordinates
4314             TOperator constructOp = EOpNull;
4315             switch (coordDimWithCmpVal) {
4316             // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
4317             case 2: constructOp = EOpConstructVec2;  break;
4318             case 3: constructOp = EOpConstructVec3;  break;
4319             case 4: constructOp = EOpConstructVec4;  break;
4320             case 5: constructOp = EOpConstructVec4;  break; // cubeArrayShadow, cmp value is separate arg.
4321             default:
4322                 error(loc, "unhandled DX10 MethodSample dimension", "", "");
4323                 break;
4324             }
4325 
4326             TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
4327             coordWithCmp->getSequence().push_back(argCoord);
4328             if (coordDimWithCmpVal != 5) // cube array shadow is special.
4329                 coordWithCmp->getSequence().push_back(argCmpVal);
4330             coordWithCmp->setLoc(loc);
4331             coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
4332 
4333             TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
4334             if (argOffset != nullptr)
4335                 textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
4336 
4337             // Create combined sampler & texture op
4338             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4339             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4340             txsample->getSequence().push_back(txcombine);
4341             txsample->getSequence().push_back(coordWithCmp);
4342 
4343             if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
4344                 txsample->getSequence().push_back(argCmpVal);
4345 
4346             // the LevelZero form uses 0 as an explicit LOD
4347             if (op == EOpMethodSampleCmpLevelZero)
4348                 txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
4349 
4350             // Add offset if present
4351             if (argOffset != nullptr)
4352                 txsample->getSequence().push_back(argOffset);
4353 
4354             txsample->setType(node->getType());
4355             txsample->setLoc(loc);
4356             node = txsample;
4357 
4358             break;
4359         }
4360 
4361     case EOpMethodLoad:
4362         {
4363             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4364             TIntermTyped* argCoord  = argAggregate->getSequence()[1]->getAsTyped();
4365             TIntermTyped* argOffset = nullptr;
4366             TIntermTyped* lodComponent = nullptr;
4367             TIntermTyped* coordSwizzle = nullptr;
4368 
4369             const TSampler& sampler = argTex->getType().getSampler();
4370             const bool isMS = sampler.isMultiSample();
4371             const bool isBuffer = sampler.dim == EsdBuffer;
4372             const bool isImage = sampler.isImage();
4373             const TBasicType coordBaseType = argCoord->getType().getBasicType();
4374 
4375             // Last component of coordinate is the mip level, for non-MS.  we separate them here:
4376             if (isMS || isBuffer || isImage) {
4377                 // MS, Buffer, and Image have no LOD
4378                 coordSwizzle = argCoord;
4379             } else {
4380                 // Extract coordinate
4381                 int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
4382                 TSwizzleSelectors<TVectorSelector> coordFields;
4383                 for (int i = 0; i < swizzleSize; ++i)
4384                     coordFields.push_back(i);
4385                 TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
4386                 coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
4387                 coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
4388 
4389                 // Extract LOD
4390                 TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
4391                 lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
4392                 lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
4393             }
4394 
4395             const int numArgs    = (int)argAggregate->getSequence().size();
4396             const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
4397 
4398             // Create texel fetch
4399             const TOperator fetchOp = (isImage   ? EOpImageLoad :
4400                                        hasOffset ? EOpTextureFetchOffset :
4401                                        EOpTextureFetch);
4402             TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
4403 
4404             // Build up the fetch
4405             txfetch->getSequence().push_back(argTex);
4406             txfetch->getSequence().push_back(coordSwizzle);
4407 
4408             if (isMS) {
4409                 // add 2DMS sample index
4410                 TIntermTyped* argSampleIdx  = argAggregate->getSequence()[2]->getAsTyped();
4411                 txfetch->getSequence().push_back(argSampleIdx);
4412             } else if (isBuffer) {
4413                 // Nothing else to do for buffers.
4414             } else if (isImage) {
4415                 // Nothing else to do for images.
4416             } else {
4417                 // 2DMS and buffer have no LOD, but everything else does.
4418                 txfetch->getSequence().push_back(lodComponent);
4419             }
4420 
4421             // Obtain offset arg, if there is one.
4422             if (hasOffset) {
4423                 const int offsetPos  = (isMS ? 3 : 2);
4424                 argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
4425                 txfetch->getSequence().push_back(argOffset);
4426             }
4427 
4428             node = convertReturn(txfetch, sampler);
4429 
4430             break;
4431         }
4432 
4433     case EOpMethodSampleLevel:
4434         {
4435             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4436             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4437             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4438             TIntermTyped* argLod    = argAggregate->getSequence()[3]->getAsTyped();
4439             TIntermTyped* argOffset = nullptr;
4440             const TSampler& sampler = argTex->getType().getSampler();
4441 
4442             const int  numArgs = (int)argAggregate->getSequence().size();
4443 
4444             if (numArgs == 5) // offset, if present
4445                 argOffset = argAggregate->getSequence()[4]->getAsTyped();
4446 
4447             const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
4448             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4449 
4450             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4451 
4452             txsample->getSequence().push_back(txcombine);
4453             txsample->getSequence().push_back(argCoord);
4454             txsample->getSequence().push_back(argLod);
4455 
4456             if (argOffset != nullptr)
4457                 txsample->getSequence().push_back(argOffset);
4458 
4459             node = convertReturn(txsample, sampler);
4460 
4461             break;
4462         }
4463 
4464     case EOpMethodGather:
4465         {
4466             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4467             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4468             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4469             TIntermTyped* argOffset = nullptr;
4470 
4471             // Offset is optional
4472             if (argAggregate->getSequence().size() > 3)
4473                 argOffset = argAggregate->getSequence()[3]->getAsTyped();
4474 
4475             const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
4476             TIntermAggregate* txgather = new TIntermAggregate(textureOp);
4477 
4478             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4479 
4480             txgather->getSequence().push_back(txcombine);
4481             txgather->getSequence().push_back(argCoord);
4482             // Offset if not given is implicitly channel 0 (red)
4483 
4484             if (argOffset != nullptr)
4485                 txgather->getSequence().push_back(argOffset);
4486 
4487             txgather->setType(node->getType());
4488             txgather->setLoc(loc);
4489             node = txgather;
4490 
4491             break;
4492         }
4493 
4494     case EOpMethodGatherRed:      // fall through...
4495     case EOpMethodGatherGreen:    // ...
4496     case EOpMethodGatherBlue:     // ...
4497     case EOpMethodGatherAlpha:    // ...
4498     case EOpMethodGatherCmpRed:   // ...
4499     case EOpMethodGatherCmpGreen: // ...
4500     case EOpMethodGatherCmpBlue:  // ...
4501     case EOpMethodGatherCmpAlpha: // ...
4502         {
4503             int channel = 0;    // the channel we are gathering
4504             int cmpValues = 0;  // 1 if there is a compare value (handier than a bool below)
4505 
4506             switch (op) {
4507             case EOpMethodGatherCmpRed:   cmpValues = 1;  // fall through
4508             case EOpMethodGatherRed:      channel = 0; break;
4509             case EOpMethodGatherCmpGreen: cmpValues = 1;  // fall through
4510             case EOpMethodGatherGreen:    channel = 1; break;
4511             case EOpMethodGatherCmpBlue:  cmpValues = 1;  // fall through
4512             case EOpMethodGatherBlue:     channel = 2; break;
4513             case EOpMethodGatherCmpAlpha: cmpValues = 1;  // fall through
4514             case EOpMethodGatherAlpha:    channel = 3; break;
4515             default:                      assert(0);   break;
4516             }
4517 
4518             // For now, we have nothing to map the component-wise comparison forms
4519             // to, because neither GLSL nor SPIR-V has such an opcode.  Issue an
4520             // unimplemented error instead.  Most of the machinery is here if that
4521             // should ever become available.  However, red can be passed through
4522             // to OpImageDrefGather.  G/B/A cannot, because that opcode does not
4523             // accept a component.
4524             if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
4525                 error(loc, "unimplemented: component-level gather compare", "", "");
4526                 return;
4527             }
4528 
4529             int arg = 0;
4530 
4531             TIntermTyped* argTex        = argAggregate->getSequence()[arg++]->getAsTyped();
4532             TIntermTyped* argSamp       = argAggregate->getSequence()[arg++]->getAsTyped();
4533             TIntermTyped* argCoord      = argAggregate->getSequence()[arg++]->getAsTyped();
4534             TIntermTyped* argOffset     = nullptr;
4535             TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
4536             // TIntermTyped* argStatus     = nullptr; // TODO: residency
4537             TIntermTyped* argCmp        = nullptr;
4538 
4539             const TSamplerDim dim = argTex->getType().getSampler().dim;
4540 
4541             const int  argSize = (int)argAggregate->getSequence().size();
4542             bool hasStatus     = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
4543             bool hasOffset1    = false;
4544             bool hasOffset4    = false;
4545 
4546             // Sampler argument should be a sampler.
4547             if (argSamp->getType().getBasicType() != EbtSampler) {
4548                 error(loc, "expected: sampler type", "", "");
4549                 return;
4550             }
4551 
4552             // Cmp forms require SamplerComparisonState
4553             if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
4554                 error(loc, "expected: SamplerComparisonState", "", "");
4555                 return;
4556             }
4557 
4558             // Only 2D forms can have offsets.  Discover if we have 0, 1 or 4 offsets.
4559             if (dim == Esd2D) {
4560                 hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
4561                 hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
4562             }
4563 
4564             assert(!(hasOffset1 && hasOffset4));
4565 
4566             TOperator textureOp = EOpTextureGather;
4567 
4568             // Compare forms have compare value
4569             if (cmpValues != 0)
4570                 argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
4571 
4572             // Some forms have single offset
4573             if (hasOffset1) {
4574                 textureOp = EOpTextureGatherOffset;   // single offset form
4575                 argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
4576             }
4577 
4578             // Some forms have 4 gather offsets
4579             if (hasOffset4) {
4580                 textureOp = EOpTextureGatherOffsets;  // note plural, for 4 offset form
4581                 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
4582                     argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
4583             }
4584 
4585             // Residency status
4586             if (hasStatus) {
4587                 // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
4588                 error(loc, "unimplemented: residency status", "", "");
4589                 return;
4590             }
4591 
4592             TIntermAggregate* txgather = new TIntermAggregate(textureOp);
4593             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4594 
4595             TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
4596 
4597             txgather->getSequence().push_back(txcombine);
4598             txgather->getSequence().push_back(argCoord);
4599 
4600             // AST wants an array of 4 offsets, where HLSL has separate args.  Here
4601             // we construct an array from the separate args.
4602             if (hasOffset4) {
4603                 TType arrayType(EbtInt, EvqTemporary, 2);
4604                 TArraySizes* arraySizes = new TArraySizes;
4605                 arraySizes->addInnerSize(4);
4606                 arrayType.transferArraySizes(arraySizes);
4607 
4608                 TIntermAggregate* initList = new TIntermAggregate(EOpNull);
4609 
4610                 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
4611                     initList->getSequence().push_back(argOffsets[offsetNum]);
4612 
4613                 argOffset = addConstructor(loc, initList, arrayType);
4614             }
4615 
4616             // Add comparison value if we have one
4617             if (argCmp != nullptr)
4618                 txgather->getSequence().push_back(argCmp);
4619 
4620             // Add offset (either 1, or an array of 4) if we have one
4621             if (argOffset != nullptr)
4622                 txgather->getSequence().push_back(argOffset);
4623 
4624             // Add channel value if the sampler is not shadow
4625             if (! argSamp->getType().getSampler().isShadow())
4626                 txgather->getSequence().push_back(argChannel);
4627 
4628             txgather->setType(node->getType());
4629             txgather->setLoc(loc);
4630             node = txgather;
4631 
4632             break;
4633         }
4634 
4635     case EOpMethodCalculateLevelOfDetail:
4636     case EOpMethodCalculateLevelOfDetailUnclamped:
4637         {
4638             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4639             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4640             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4641 
4642             TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
4643 
4644             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4645             txquerylod->getSequence().push_back(txcombine);
4646             txquerylod->getSequence().push_back(argCoord);
4647 
4648             TIntermTyped* lodComponent = intermediate.addConstantUnion(
4649                 op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
4650                 loc, true);
4651             TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
4652             lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
4653             node = lodComponentIdx;
4654 
4655             break;
4656         }
4657 
4658     case EOpMethodGetSamplePosition:
4659         {
4660             // TODO: this entire decomposition exists because there is not yet a way to query
4661             // the sample position directly through SPIR-V.  Instead, we return fixed sample
4662             // positions for common cases.  *** If the sample positions are set differently,
4663             // this will be wrong. ***
4664 
4665             TIntermTyped* argTex     = argAggregate->getSequence()[0]->getAsTyped();
4666             TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
4667 
4668             TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
4669             samplesQuery->getSequence().push_back(argTex);
4670             samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
4671             samplesQuery->setLoc(loc);
4672 
4673             TIntermAggregate* compoundStatement = nullptr;
4674 
4675             TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
4676             outSampleCount->getWritableType().getQualifier().makeTemporary();
4677             TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
4678                                                               samplesQuery, loc);
4679             compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4680 
4681             TIntermTyped* idxtest[4];
4682 
4683             // Create tests against 2, 4, 8, and 16 sample values
4684             int count = 0;
4685             for (int val = 2; val <= 16; val *= 2)
4686                 idxtest[count++] =
4687                     intermediate.addBinaryNode(EOpEqual,
4688                                                intermediate.addSymbol(*outSampleCount, loc),
4689                                                intermediate.addConstantUnion(val, loc),
4690                                                loc, TType(EbtBool));
4691 
4692             const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
4693 
4694             // Create index ops into position arrays given sample index.
4695             // TODO: should it be clamped?
4696             TIntermTyped* index[4];
4697             count = 0;
4698             for (int val = 2; val <= 16; val *= 2) {
4699                 index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
4700                 index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
4701             }
4702 
4703             // Create expression as:
4704             // (sampleCount == 2)  ? pos2[idx] :
4705             // (sampleCount == 4)  ? pos4[idx] :
4706             // (sampleCount == 8)  ? pos8[idx] :
4707             // (sampleCount == 16) ? pos16[idx] : float2(0,0);
4708             TIntermTyped* test =
4709                 intermediate.addSelection(idxtest[0], index[0],
4710                     intermediate.addSelection(idxtest[1], index[1],
4711                         intermediate.addSelection(idxtest[2], index[2],
4712                             intermediate.addSelection(idxtest[3], index[3],
4713                                                       getSamplePosArray(1), loc), loc), loc), loc);
4714 
4715             compoundStatement = intermediate.growAggregate(compoundStatement, test);
4716             compoundStatement->setOperator(EOpSequence);
4717             compoundStatement->setLoc(loc);
4718             compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
4719 
4720             node = compoundStatement;
4721 
4722             break;
4723         }
4724 
4725     case EOpSubpassLoad:
4726         {
4727             const TIntermTyped* argSubpass =
4728                 argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
4729                 arguments->getAsTyped();
4730 
4731             const TSampler& sampler = argSubpass->getType().getSampler();
4732 
4733             // subpass load: the multisample form is overloaded.  Here, we convert that to
4734             // the EOpSubpassLoadMS opcode.
4735             if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
4736                 node->getAsOperator()->setOp(EOpSubpassLoadMS);
4737 
4738             node = convertReturn(node, sampler);
4739 
4740             break;
4741         }
4742 
4743 
4744     default:
4745         break; // most pass through unchanged
4746     }
4747 }
4748 
4749 //
4750 // Decompose geometry shader methods
4751 //
decomposeGeometryMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)4752 void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
4753 {
4754     if (node == nullptr || !node->getAsOperator())
4755         return;
4756 
4757     const TOperator op  = node->getAsOperator()->getOp();
4758     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
4759 
4760     switch (op) {
4761     case EOpMethodAppend:
4762         if (argAggregate) {
4763             // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
4764             if (language != EShLangGeometry) {
4765                 node = nullptr;
4766                 return;
4767             }
4768 
4769             TIntermAggregate* sequence = nullptr;
4770             TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
4771 
4772             emit->setLoc(loc);
4773             emit->setType(TType(EbtVoid));
4774 
4775             TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
4776 
4777             // This will be patched in finalization during finalizeAppendMethods()
4778             sequence = intermediate.growAggregate(sequence, data, loc);
4779             sequence = intermediate.growAggregate(sequence, emit);
4780 
4781             sequence->setOperator(EOpSequence);
4782             sequence->setLoc(loc);
4783             sequence->setType(TType(EbtVoid));
4784 
4785             gsAppends.push_back({sequence, loc});
4786 
4787             node = sequence;
4788         }
4789         break;
4790 
4791     case EOpMethodRestartStrip:
4792         {
4793             // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
4794             if (language != EShLangGeometry) {
4795                 node = nullptr;
4796                 return;
4797             }
4798 
4799             TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
4800             cut->setLoc(loc);
4801             cut->setType(TType(EbtVoid));
4802             node = cut;
4803         }
4804         break;
4805 
4806     default:
4807         break; // most pass through unchanged
4808     }
4809 }
4810 
4811 //
4812 // Optionally decompose intrinsics to AST opcodes.
4813 //
decomposeIntrinsic(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)4814 void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
4815 {
4816     // Helper to find image data for image atomics:
4817     // OpImageLoad(image[idx])
4818     // We take the image load apart and add its params to the atomic op aggregate node
4819     const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
4820         TIntermAggregate* loadOp = load->getAsAggregate();
4821         if (loadOp == nullptr) {
4822             error(loc, "unknown image type in atomic operation", "", "");
4823             node = nullptr;
4824             return;
4825         }
4826 
4827         atomic->getSequence().push_back(loadOp->getSequence()[0]);
4828         atomic->getSequence().push_back(loadOp->getSequence()[1]);
4829     };
4830 
4831     // Return true if this is an imageLoad, which we will change to an image atomic.
4832     const auto isImageParam = [](TIntermTyped* image) -> bool {
4833         TIntermAggregate* imageAggregate = image->getAsAggregate();
4834         return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
4835     };
4836 
4837     const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
4838         TSymbol* symbol = symbolTable.find(name);
4839         if (nullptr == symbol) {
4840             type.getQualifier().builtIn = builtin;
4841 
4842             TVariable* variable = new TVariable(NewPoolTString(name), type);
4843 
4844             symbolTable.insert(*variable);
4845 
4846             symbol = symbolTable.find(name);
4847             assert(symbol && "Inserted symbol could not be found!");
4848         }
4849 
4850         return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
4851     };
4852 
4853     // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
4854     // opcodes for compatibility with existing software stacks.
4855     static const bool decomposeHlslIntrinsics = true;
4856 
4857     if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
4858         return;
4859 
4860     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
4861     TIntermUnary* fnUnary = node->getAsUnaryNode();
4862     const TOperator op  = node->getAsOperator()->getOp();
4863 
4864     switch (op) {
4865     case EOpGenMul:
4866         {
4867             // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
4868             // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
4869             // we must reverse the operand order here.  Hence, arg0 gets sequence[1], etc.
4870             TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
4871             TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
4872 
4873             if (arg0->isVector() && arg1->isVector()) {  // vec * vec
4874                 node->getAsAggregate()->setOperator(EOpDot);
4875             } else {
4876                 node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
4877             }
4878 
4879             break;
4880         }
4881 
4882     case EOpRcp:
4883         {
4884             // rcp(a) -> 1 / a
4885             TIntermTyped* arg0 = fnUnary->getOperand();
4886             TBasicType   type0 = arg0->getBasicType();
4887             TIntermTyped* one  = intermediate.addConstantUnion(1, type0, loc, true);
4888             node  = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
4889 
4890             break;
4891         }
4892 
4893     case EOpAny: // fall through
4894     case EOpAll:
4895         {
4896             TIntermTyped* typedArg = arguments->getAsTyped();
4897 
4898             // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
4899             // We'll convert here.  Note that for efficiency, we could add a smarter
4900             // decomposition for some type cases, e.g, maybe by decomposing a dot product.
4901             if (typedArg->getType().getBasicType() != EbtBool) {
4902                 const TType boolType(EbtBool, EvqTemporary,
4903                                      typedArg->getVectorSize(),
4904                                      typedArg->getMatrixCols(),
4905                                      typedArg->getMatrixRows(),
4906                                      typedArg->isVector());
4907 
4908                 typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
4909                 node->getAsUnaryNode()->setOperand(typedArg);
4910             }
4911 
4912             break;
4913         }
4914 
4915     case EOpSaturate:
4916         {
4917             // saturate(a) -> clamp(a,0,1)
4918             TIntermTyped* arg0 = fnUnary->getOperand();
4919             TBasicType   type0 = arg0->getBasicType();
4920             TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
4921 
4922             clamp->getSequence().push_back(arg0);
4923             clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
4924             clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
4925             clamp->setLoc(loc);
4926             clamp->setType(node->getType());
4927             clamp->getWritableType().getQualifier().makeTemporary();
4928             node = clamp;
4929 
4930             break;
4931         }
4932 
4933     case EOpSinCos:
4934         {
4935             // sincos(a,b,c) -> b = sin(a), c = cos(a)
4936             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
4937             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
4938             TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
4939 
4940             TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
4941             TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
4942             TIntermTyped* sinAssign    = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
4943             TIntermTyped* cosAssign    = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
4944 
4945             TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
4946             compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
4947             compoundStatement->setOperator(EOpSequence);
4948             compoundStatement->setLoc(loc);
4949             compoundStatement->setType(TType(EbtVoid));
4950 
4951             node = compoundStatement;
4952 
4953             break;
4954         }
4955 
4956     case EOpClip:
4957         {
4958             // clip(a) -> if (any(a<0)) discard;
4959             TIntermTyped*  arg0 = fnUnary->getOperand();
4960             TBasicType     type0 = arg0->getBasicType();
4961             TIntermTyped*  compareNode = nullptr;
4962 
4963             // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
4964             if (!arg0->isScalar()) {
4965                 // component-wise compare: a < 0
4966                 TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
4967                 less->getSequence().push_back(arg0);
4968                 less->setLoc(loc);
4969 
4970                 // make vec or mat of bool matching dimensions of input
4971                 less->setType(TType(EbtBool, EvqTemporary,
4972                                     arg0->getType().getVectorSize(),
4973                                     arg0->getType().getMatrixCols(),
4974                                     arg0->getType().getMatrixRows(),
4975                                     arg0->getType().isVector()));
4976 
4977                 // calculate # of components for comparison const
4978                 const int constComponentCount =
4979                     std::max(arg0->getType().getVectorSize(), 1) *
4980                     std::max(arg0->getType().getMatrixCols(), 1) *
4981                     std::max(arg0->getType().getMatrixRows(), 1);
4982 
4983                 TConstUnion zero;
4984                 if (arg0->getType().isIntegerDomain())
4985                     zero.setDConst(0);
4986                 else
4987                     zero.setDConst(0.0);
4988                 TConstUnionArray zeros(constComponentCount, zero);
4989 
4990                 less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
4991 
4992                 compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
4993             } else {
4994                 TIntermTyped* zero;
4995                 if (arg0->getType().isIntegerDomain())
4996                     zero = intermediate.addConstantUnion(0, loc, true);
4997                 else
4998                     zero = intermediate.addConstantUnion(0.0, type0, loc, true);
4999                 compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
5000             }
5001 
5002             TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
5003 
5004             node = new TIntermSelection(compareNode, killNode, nullptr);
5005             node->setLoc(loc);
5006 
5007             break;
5008         }
5009 
5010     case EOpLog10:
5011         {
5012             // log10(a) -> log2(a) * 0.301029995663981  (== 1/log2(10))
5013             TIntermTyped* arg0 = fnUnary->getOperand();
5014             TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
5015             TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
5016 
5017             node  = handleBinaryMath(loc, "mul", EOpMul, log2, base);
5018 
5019             break;
5020         }
5021 
5022     case EOpDst:
5023         {
5024             // dest.x = 1;
5025             // dest.y = src0.y * src1.y;
5026             // dest.z = src0.z;
5027             // dest.w = src1.w;
5028 
5029             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5030             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5031 
5032             TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
5033             TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
5034             TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
5035 
5036             TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
5037             TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
5038             TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
5039             TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
5040 
5041             TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
5042 
5043             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5044             dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
5045             dst->getSequence().push_back(src0z);
5046             dst->getSequence().push_back(src1w);
5047             dst->setType(TType(EbtFloat, EvqTemporary, 4));
5048             dst->setLoc(loc);
5049             node = dst;
5050 
5051             break;
5052         }
5053 
5054     case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
5055     case EOpInterlockedMin: // ...
5056     case EOpInterlockedMax: // ...
5057     case EOpInterlockedAnd: // ...
5058     case EOpInterlockedOr:  // ...
5059     case EOpInterlockedXor: // ...
5060     case EOpInterlockedExchange: // always has output arg
5061         {
5062             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
5063             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // value
5064             TIntermTyped* arg2 = nullptr;
5065 
5066             if (argAggregate->getSequence().size() > 2)
5067                 arg2 = argAggregate->getSequence()[2]->getAsTyped();
5068 
5069             const bool isImage = isImageParam(arg0);
5070             const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
5071             TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
5072             atomic->setType(arg0->getType());
5073             atomic->getWritableType().getQualifier().makeTemporary();
5074             atomic->setLoc(loc);
5075 
5076             if (isImage) {
5077                 // orig_value = imageAtomicOp(image, loc, data)
5078                 imageAtomicParams(atomic, arg0);
5079                 atomic->getSequence().push_back(arg1);
5080 
5081                 if (argAggregate->getSequence().size() > 2) {
5082                     node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
5083                 } else {
5084                     node = atomic; // no assignment needed, as there was no out var.
5085                 }
5086             } else {
5087                 // Normal memory variable:
5088                 // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
5089                 if (argAggregate->getSequence().size() > 2) {
5090                     // optional output param is present.  return value goes to arg2.
5091                     atomic->getSequence().push_back(arg0);
5092                     atomic->getSequence().push_back(arg1);
5093 
5094                     node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
5095                 } else {
5096                     // Set the matching operator.  Since output is absent, this is all we need to do.
5097                     node->getAsAggregate()->setOperator(atomicOp);
5098                     node->setType(atomic->getType());
5099                 }
5100             }
5101 
5102             break;
5103         }
5104 
5105     case EOpInterlockedCompareExchange:
5106         {
5107             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
5108             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // cmp
5109             TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();  // value
5110             TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped();  // orig
5111 
5112             const bool isImage = isImageParam(arg0);
5113             TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
5114             atomic->setLoc(loc);
5115             atomic->setType(arg2->getType());
5116             atomic->getWritableType().getQualifier().makeTemporary();
5117 
5118             if (isImage) {
5119                 imageAtomicParams(atomic, arg0);
5120             } else {
5121                 atomic->getSequence().push_back(arg0);
5122             }
5123 
5124             atomic->getSequence().push_back(arg1);
5125             atomic->getSequence().push_back(arg2);
5126             node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
5127 
5128             break;
5129         }
5130 
5131     case EOpEvaluateAttributeSnapped:
5132         {
5133             // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
5134             // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
5135             //   iU = (iU<<28)>>28
5136             //   fU = ((float)iU)/16
5137             // Targets might handle this natively, in which case they can disable
5138             // decompositions.
5139 
5140             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // value
5141             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // offset
5142 
5143             TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
5144             TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
5145                                                 handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
5146                                                 i28);
5147 
5148             TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
5149             TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
5150                                                          intermediate.addConversion(EOpConstructFloat,
5151                                                                                     TType(EbtFloat, EvqTemporary, 2), iU),
5152                                                          recip16);
5153 
5154             TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
5155             interp->getSequence().push_back(arg0);
5156             interp->getSequence().push_back(floatOffset);
5157             interp->setLoc(loc);
5158             interp->setType(arg0->getType());
5159             interp->getWritableType().getQualifier().makeTemporary();
5160 
5161             node = interp;
5162 
5163             break;
5164         }
5165 
5166     case EOpLit:
5167         {
5168             TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
5169             TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
5170             TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
5171 
5172             TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
5173 
5174             // Ambient
5175             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5176 
5177             // Diffuse:
5178             TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
5179             TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
5180             diffuse->getSequence().push_back(n_dot_l);
5181             diffuse->getSequence().push_back(zero);
5182             diffuse->setLoc(loc);
5183             diffuse->setType(TType(EbtFloat));
5184             dst->getSequence().push_back(diffuse);
5185 
5186             // Specular:
5187             TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
5188             min_ndot->getSequence().push_back(n_dot_l);
5189             min_ndot->getSequence().push_back(n_dot_h);
5190             min_ndot->setLoc(loc);
5191             min_ndot->setType(TType(EbtFloat));
5192 
5193             TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
5194             TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m);  // n_dot_h * m
5195 
5196             dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
5197 
5198             // One:
5199             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5200 
5201             dst->setLoc(loc);
5202             dst->setType(TType(EbtFloat, EvqTemporary, 4));
5203             node = dst;
5204             break;
5205         }
5206 
5207     case EOpAsDouble:
5208         {
5209             // asdouble accepts two 32 bit ints.  we can use EOpUint64BitsToDouble, but must
5210             // first construct a uint64.
5211             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5212             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5213 
5214             if (arg0->getType().isVector()) { // TODO: ...
5215                 error(loc, "double2 conversion not implemented", "asdouble", "");
5216                 break;
5217             }
5218 
5219             TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
5220 
5221             uint64->getSequence().push_back(arg0);
5222             uint64->getSequence().push_back(arg1);
5223             uint64->setType(TType(EbtUint, EvqTemporary, 2));  // convert 2 uints to a uint2
5224             uint64->setLoc(loc);
5225 
5226             // bitcast uint2 to a double
5227             TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
5228             convert->getAsUnaryNode()->setOperand(uint64);
5229             convert->setLoc(loc);
5230             convert->setType(TType(EbtDouble, EvqTemporary));
5231             node = convert;
5232 
5233             break;
5234         }
5235 
5236     case EOpF16tof32:
5237         {
5238             // input uvecN with low 16 bits of each component holding a float16.  convert to float32.
5239             TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
5240             TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
5241             const int vecSize = argValue->getType().getVectorSize();
5242 
5243             TOperator constructOp = EOpNull;
5244             switch (vecSize) {
5245             case 1: constructOp = EOpNull;          break; // direct use, no construct needed
5246             case 2: constructOp = EOpConstructVec2; break;
5247             case 3: constructOp = EOpConstructVec3; break;
5248             case 4: constructOp = EOpConstructVec4; break;
5249             default: assert(0); break;
5250             }
5251 
5252             // For scalar case, we don't need to construct another type.
5253             TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
5254 
5255             if (result) {
5256                 result->setType(TType(EbtFloat, EvqTemporary, vecSize));
5257                 result->setLoc(loc);
5258             }
5259 
5260             for (int idx = 0; idx < vecSize; ++idx) {
5261                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
5262                 TIntermTyped* component = argValue->getType().isVector() ?
5263                     intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
5264 
5265                 if (component != argValue)
5266                     component->setType(TType(argValue->getBasicType(), EvqTemporary));
5267 
5268                 TIntermTyped* unpackOp  = new TIntermUnary(EOpUnpackHalf2x16);
5269                 unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
5270                 unpackOp->getAsUnaryNode()->setOperand(component);
5271                 unpackOp->setLoc(loc);
5272 
5273                 TIntermTyped* lowOrder  = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
5274 
5275                 if (result != nullptr) {
5276                     result->getSequence().push_back(lowOrder);
5277                     node = result;
5278                 } else {
5279                     node = lowOrder;
5280                 }
5281             }
5282 
5283             break;
5284         }
5285 
5286     case EOpF32tof16:
5287         {
5288             // input floatN converted to 16 bit float in low order bits of each component of uintN
5289             TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
5290 
5291             TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
5292             const int vecSize = argValue->getType().getVectorSize();
5293 
5294             TOperator constructOp = EOpNull;
5295             switch (vecSize) {
5296             case 1: constructOp = EOpNull;           break; // direct use, no construct needed
5297             case 2: constructOp = EOpConstructUVec2; break;
5298             case 3: constructOp = EOpConstructUVec3; break;
5299             case 4: constructOp = EOpConstructUVec4; break;
5300             default: assert(0); break;
5301             }
5302 
5303             // For scalar case, we don't need to construct another type.
5304             TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
5305 
5306             if (result) {
5307                 result->setType(TType(EbtUint, EvqTemporary, vecSize));
5308                 result->setLoc(loc);
5309             }
5310 
5311             for (int idx = 0; idx < vecSize; ++idx) {
5312                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
5313                 TIntermTyped* component = argValue->getType().isVector() ?
5314                     intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
5315 
5316                 if (component != argValue)
5317                     component->setType(TType(argValue->getBasicType(), EvqTemporary));
5318 
5319                 TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
5320                 vec2ComponentAndZero->getSequence().push_back(component);
5321                 vec2ComponentAndZero->getSequence().push_back(zero);
5322                 vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
5323                 vec2ComponentAndZero->setLoc(loc);
5324 
5325                 TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
5326                 packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
5327                 packOp->setLoc(loc);
5328                 packOp->setType(TType(EbtUint, EvqTemporary));
5329 
5330                 if (result != nullptr) {
5331                     result->getSequence().push_back(packOp);
5332                     node = result;
5333                 } else {
5334                     node = packOp;
5335                 }
5336             }
5337 
5338             break;
5339         }
5340 
5341     case EOpD3DCOLORtoUBYTE4:
5342         {
5343             // ivec4 ( x.zyxw * 255.001953 );
5344             TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
5345             TSwizzleSelectors<TVectorSelector> selectors;
5346             selectors.push_back(2);
5347             selectors.push_back(1);
5348             selectors.push_back(0);
5349             selectors.push_back(3);
5350             TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
5351             TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
5352             swizzled->setType(arg0->getType());
5353             swizzled->getWritableType().getQualifier().makeTemporary();
5354 
5355             TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
5356             TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
5357             rangeConverted->setType(arg0->getType());
5358             rangeConverted->getWritableType().getQualifier().makeTemporary();
5359 
5360             node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
5361             node->setLoc(loc);
5362             node->setType(TType(EbtInt, EvqTemporary, 4));
5363             break;
5364         }
5365 
5366     case EOpIsFinite:
5367         {
5368             // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
5369             // it to !isnan && !isinf
5370 
5371             TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
5372 
5373             // We'll make a temporary in case the RHS is cmoplex
5374             TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
5375             tempArg->getWritableType().getQualifier().makeTemporary();
5376 
5377             TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
5378                                                                 intermediate.addSymbol(*tempArg, loc),
5379                                                                 arg0, loc);
5380 
5381             TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
5382 
5383             const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
5384                                  arg0->getMatrixRows());
5385 
5386             TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
5387             isnan->setType(boolType);
5388 
5389             TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
5390             notnan->setType(boolType);
5391 
5392             TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
5393             isinf->setType(boolType);
5394 
5395             TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
5396             notinf->setType(boolType);
5397 
5398             TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
5399             andNode->setType(boolType);
5400 
5401             compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
5402             compoundStatement->setOperator(EOpSequence);
5403             compoundStatement->setLoc(loc);
5404             compoundStatement->setType(boolType);
5405 
5406             node = compoundStatement;
5407 
5408             break;
5409         }
5410     case EOpWaveGetLaneCount:
5411         {
5412             // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
5413             // so that it inhabits the symbol table, but has a user-invalid name
5414             // in-case some source HLSL defined the symbol also).
5415             TType type(EbtUint, EvqVaryingIn);
5416             node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
5417             break;
5418         }
5419     case EOpWaveGetLaneIndex:
5420         {
5421             // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
5422             // symbol so that it inhabits the symbol table, but has a
5423             // user-invalid name in-case some source HLSL defined the symbol
5424             // also).
5425             TType type(EbtUint, EvqVaryingIn);
5426             node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
5427             break;
5428         }
5429     case EOpWaveActiveCountBits:
5430         {
5431             // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
5432 
5433             // uvec4 type.
5434             TType uvec4Type(EbtUint, EvqTemporary, 4);
5435 
5436             // Get the uvec4 return from subgroupBallot().
5437             TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
5438                 EOpSubgroupBallot, true, arguments, uvec4Type);
5439 
5440             // uint type.
5441             TType uintType(EbtUint, EvqTemporary);
5442 
5443             node = intermediate.addBuiltInFunctionCall(loc,
5444                 EOpSubgroupBallotBitCount, true, res, uintType);
5445 
5446             break;
5447         }
5448     case EOpWavePrefixCountBits:
5449         {
5450             // Mapped to subgroupBallotExclusiveBitCount(subgroupBallot())
5451             // builtin
5452 
5453             // uvec4 type.
5454             TType uvec4Type(EbtUint, EvqTemporary, 4);
5455 
5456             // Get the uvec4 return from subgroupBallot().
5457             TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
5458                 EOpSubgroupBallot, true, arguments, uvec4Type);
5459 
5460             // uint type.
5461             TType uintType(EbtUint, EvqTemporary);
5462 
5463             node = intermediate.addBuiltInFunctionCall(loc,
5464                 EOpSubgroupBallotExclusiveBitCount, true, res, uintType);
5465 
5466             break;
5467         }
5468 
5469     default:
5470         break; // most pass through unchanged
5471     }
5472 }
5473 
5474 //
5475 // Handle seeing function call syntax in the grammar, which could be any of
5476 //  - .length() method
5477 //  - constructor
5478 //  - a call to a built-in function mapped to an operator
5479 //  - a call to a built-in function that will remain a function call (e.g., texturing)
5480 //  - user function
5481 //  - subroutine call (not implemented yet)
5482 //
handleFunctionCall(const TSourceLoc & loc,TFunction * function,TIntermTyped * arguments)5483 TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
5484 {
5485     TIntermTyped* result = nullptr;
5486 
5487     TOperator op = function->getBuiltInOp();
5488     if (op != EOpNull) {
5489         //
5490         // Then this should be a constructor.
5491         // Don't go through the symbol table for constructors.
5492         // Their parameters will be verified algorithmically.
5493         //
5494         TType type(EbtVoid);  // use this to get the type back
5495         if (! constructorError(loc, arguments, *function, op, type)) {
5496             //
5497             // It's a constructor, of type 'type'.
5498             //
5499             result = handleConstructor(loc, arguments, type);
5500             if (result == nullptr) {
5501                 error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
5502                 return nullptr;
5503             }
5504         }
5505     } else {
5506         //
5507         // Find it in the symbol table.
5508         //
5509         const TFunction* fnCandidate = nullptr;
5510         bool builtIn = false;
5511         int thisDepth = 0;
5512 
5513         // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
5514         // and clamp the opposite arg.  Since that's complex, we farm it off to a separate method.
5515         // It doesn't naturally fall out of processing an argument at a time in isolation.
5516         if (function->getName() == "mul")
5517             addGenMulArgumentConversion(loc, *function, arguments);
5518 
5519         TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
5520 
5521         // TODO: this needs improvement: there's no way at present to look up a signature in
5522         // the symbol table for an arbitrary type.  This is a temporary hack until that ability exists.
5523         // It will have false positives, since it doesn't check arg counts or types.
5524         if (arguments) {
5525             // Check if first argument is struct buffer type.  It may be an aggregate or a symbol, so we
5526             // look for either case.
5527 
5528             TIntermTyped* arg0 = nullptr;
5529 
5530             if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
5531                 arg0 = aggregate->getSequence()[0]->getAsTyped();
5532             else if (arguments->getAsSymbolNode())
5533                 arg0 = arguments->getAsSymbolNode();
5534 
5535             if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
5536                 static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
5537 
5538                 if (function->getName().length() > methodPrefixSize &&
5539                     isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
5540                     const TString mangle = function->getName() + "(";
5541                     TSymbol* symbol = symbolTable.find(mangle, &builtIn);
5542 
5543                     if (symbol)
5544                         fnCandidate = symbol->getAsFunction();
5545                 }
5546             }
5547         }
5548 
5549         if (fnCandidate == nullptr)
5550             fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
5551 
5552         if (fnCandidate) {
5553             // This is a declared function that might map to
5554             //  - a built-in operator,
5555             //  - a built-in function not mapped to an operator, or
5556             //  - a user function.
5557 
5558             // turn an implicit member-function resolution into an explicit call
5559             TString callerName;
5560             if (thisDepth == 0)
5561                 callerName = fnCandidate->getMangledName();
5562             else {
5563                 // get the explicit (full) name of the function
5564                 callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
5565                 callerName += fnCandidate->getMangledName();
5566                 // insert the implicit calling argument
5567                 pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
5568             }
5569 
5570             // Convert 'in' arguments, so that types match.
5571             // However, skip those that need expansion, that is covered next.
5572             if (arguments)
5573                 addInputArgumentConversions(*fnCandidate, arguments);
5574 
5575             // Expand arguments.  Some arguments must physically expand to a different set
5576             // than what the shader declared and passes.
5577             if (arguments && !builtIn)
5578                 expandArguments(loc, *fnCandidate, arguments);
5579 
5580             // Expansion may have changed the form of arguments
5581             aggregate = arguments ? arguments->getAsAggregate() : nullptr;
5582 
5583             op = fnCandidate->getBuiltInOp();
5584             if (builtIn && op != EOpNull) {
5585                 // SM 4.0 and above guarantees roundEven semantics for round()
5586                 if (!hlslDX9Compatible() && op == EOpRound)
5587                     op = EOpRoundEven;
5588 
5589                 // A function call mapped to a built-in operation.
5590                 result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
5591                                                              fnCandidate->getType());
5592                 if (result == nullptr)  {
5593                     error(arguments->getLoc(), " wrong operand type", "Internal Error",
5594                         "built in unary operator function.  Type: %s",
5595                         static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
5596                 } else if (result->getAsOperator()) {
5597                     builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
5598                 }
5599             } else {
5600                 // This is a function call not mapped to built-in operator.
5601                 // It could still be a built-in function, but only if PureOperatorBuiltins == false.
5602                 result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
5603                 TIntermAggregate* call = result->getAsAggregate();
5604                 call->setName(callerName);
5605 
5606                 // this is how we know whether the given function is a built-in function or a user-defined function
5607                 // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
5608                 // if builtIn == true, it's definitely a built-in function with EOpNull
5609                 if (! builtIn) {
5610                     call->setUserDefined();
5611                     intermediate.addToCallGraph(infoSink, currentCaller, callerName);
5612                 }
5613             }
5614 
5615             // for decompositions, since we want to operate on the function node, not the aggregate holding
5616             // output conversions.
5617             const TIntermTyped* fnNode = result;
5618 
5619             decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
5620             decomposeIntrinsic(loc, result, arguments);           // HLSL->AST intrinsic decompositions
5621             decomposeSampleMethods(loc, result, arguments);       // HLSL->AST sample method decompositions
5622             decomposeGeometryMethods(loc, result, arguments);     // HLSL->AST geometry method decompositions
5623 
5624             // Create the qualifier list, carried in the AST for the call.
5625             // Because some arguments expand to multiple arguments, the qualifier list will
5626             // be longer than the formal parameter list.
5627             if (result == fnNode && result->getAsAggregate()) {
5628                 TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
5629                 for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
5630                     TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
5631                     if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
5632                         // add buffer and counter buffer argument qualifier
5633                         qualifierList.push_back(qual);
5634                         qualifierList.push_back(qual);
5635                     } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
5636                                              true)) {
5637                         // add structure member expansion
5638                         for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
5639                             qualifierList.push_back(qual);
5640                     } else {
5641                         // Normal 1:1 case
5642                         qualifierList.push_back(qual);
5643                     }
5644                 }
5645             }
5646 
5647             // Convert 'out' arguments.  If it was a constant folded built-in, it won't be an aggregate anymore.
5648             // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
5649             // Also, build the qualifier list for user function calls, which are always called with an aggregate.
5650             // We don't do this is if there has been a decomposition, which will have added its own conversions
5651             // for output parameters.
5652             if (result == fnNode && result->getAsAggregate())
5653                 result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
5654         }
5655     }
5656 
5657     // generic error recovery
5658     // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
5659     //       reduce cascades
5660     if (result == nullptr)
5661         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
5662 
5663     return result;
5664 }
5665 
5666 // An initial argument list is difficult: it can be null, or a single node,
5667 // or an aggregate if more than one argument.  Add one to the front, maintaining
5668 // this lack of uniformity.
pushFrontArguments(TIntermTyped * front,TIntermTyped * & arguments)5669 void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
5670 {
5671     if (arguments == nullptr)
5672         arguments = front;
5673     else if (arguments->getAsAggregate() != nullptr)
5674         arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
5675     else
5676         arguments = intermediate.growAggregate(front, arguments);
5677 }
5678 
5679 //
5680 // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat.  This is a
5681 // situation not well suited to resolution in intrinsic selection, but we can do so here, since we
5682 // can look at both arguments insert explicit shape changes if required.
5683 //
addGenMulArgumentConversion(const TSourceLoc & loc,TFunction & call,TIntermTyped * & args)5684 void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
5685 {
5686     TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
5687 
5688     if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
5689         // It really ought to have two arguments.
5690         error(loc, "expected: mul arguments", "", "");
5691         return;
5692     }
5693 
5694     TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5695     TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5696 
5697     if (arg0->isVector() && arg1->isVector()) {
5698         // For:
5699         //    vec * vec: it's handled during intrinsic selection, so while we could do it here,
5700         //               we can also ignore it, which is easier.
5701     } else if (arg0->isVector() && arg1->isMatrix()) {
5702         // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
5703         if (arg0->getVectorSize() < arg1->getMatrixCols()) {
5704             // vec is smaller, so truncate larger mat dimension
5705             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5706                                   0, arg0->getVectorSize(), arg1->getMatrixRows());
5707             arg1 = addConstructor(loc, arg1, truncType);
5708         } else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
5709             // vec is larger, so truncate vec to mat size
5710             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5711                                   arg1->getMatrixCols());
5712             arg0 = addConstructor(loc, arg0, truncType);
5713         }
5714     } else if (arg0->isMatrix() && arg1->isVector()) {
5715         // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
5716         if (arg1->getVectorSize() < arg0->getMatrixRows()) {
5717             // vec is smaller, so truncate larger mat dimension
5718             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5719                                   0, arg0->getMatrixCols(), arg1->getVectorSize());
5720             arg0 = addConstructor(loc, arg0, truncType);
5721         } else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
5722             // vec is larger, so truncate vec to mat size
5723             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5724                                   arg0->getMatrixRows());
5725             arg1 = addConstructor(loc, arg1, truncType);
5726         }
5727     } else if (arg0->isMatrix() && arg1->isMatrix()) {
5728         // mat * mat: we clamp the smaller inner dimension to match the other matrix size.
5729         // Remember, HLSL Mrc = GLSL/SPIRV Mcr.
5730         if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
5731             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5732                                   0, arg0->getMatrixCols(), arg1->getMatrixCols());
5733             arg0 = addConstructor(loc, arg0, truncType);
5734         } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
5735             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5736                                   0, arg0->getMatrixRows(), arg1->getMatrixRows());
5737             arg1 = addConstructor(loc, arg1, truncType);
5738         }
5739     } else {
5740         // It's something with scalars: we'll just leave it alone.  Function selection will handle it
5741         // downstream.
5742     }
5743 
5744     // Warn if we altered one of the arguments
5745     if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
5746         warn(loc, "mul() matrix size mismatch", "", "");
5747 
5748     // Put arguments back.  (They might be unchanged, in which case this is harmless).
5749     argAggregate->getSequence()[0] = arg0;
5750     argAggregate->getSequence()[1] = arg1;
5751 
5752     call[0].type = &arg0->getWritableType();
5753     call[1].type = &arg1->getWritableType();
5754 }
5755 
5756 //
5757 // Add any needed implicit conversions for function-call arguments to input parameters.
5758 //
addInputArgumentConversions(const TFunction & function,TIntermTyped * & arguments)5759 void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
5760 {
5761     TIntermAggregate* aggregate = arguments->getAsAggregate();
5762 
5763     // Replace a single argument with a single argument.
5764     const auto setArg = [&](int paramNum, TIntermTyped* arg) {
5765         if (function.getParamCount() == 1)
5766             arguments = arg;
5767         else {
5768             if (aggregate == nullptr)
5769                 arguments = arg;
5770             else
5771                 aggregate->getSequence()[paramNum] = arg;
5772         }
5773     };
5774 
5775     // Process each argument's conversion
5776     for (int param = 0; param < function.getParamCount(); ++param) {
5777         if (! function[param].type->getQualifier().isParamInput())
5778             continue;
5779 
5780         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
5781         // is the single argument itself or its children are the arguments.  Only one argument
5782         // means take 'arguments' itself as the one argument.
5783         TIntermTyped* arg = function.getParamCount() == 1
5784                                    ? arguments->getAsTyped()
5785                                    : (aggregate ?
5786                                         aggregate->getSequence()[param]->getAsTyped() :
5787                                         arguments->getAsTyped());
5788         if (*function[param].type != arg->getType()) {
5789             // In-qualified arguments just need an extra node added above the argument to
5790             // convert to the correct type.
5791             TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
5792             if (convArg != nullptr)
5793                 convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
5794             if (convArg != nullptr)
5795                 setArg(param, convArg);
5796             else
5797                 error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
5798         } else {
5799             if (wasFlattened(arg)) {
5800                 // If both formal and calling arg are to be flattened, leave that to argument
5801                 // expansion, not conversion.
5802                 if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
5803                     // Will make a two-level subtree.
5804                     // The deepest will copy member-by-member to build the structure to pass.
5805                     // The level above that will be a two-operand EOpComma sequence that follows the copy by the
5806                     // object itself.
5807                     TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
5808                     internalAggregate->getWritableType().getQualifier().makeTemporary();
5809                     TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
5810                                                                           internalAggregate->getName(),
5811                                                                           internalAggregate->getType());
5812                     internalSymbolNode->setLoc(arg->getLoc());
5813                     // This makes the deepest level, the member-wise copy
5814                     TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
5815                                                                internalSymbolNode, arg)->getAsAggregate();
5816 
5817                     // Now, pair that with the resulting aggregate.
5818                     assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
5819                     assignAgg->setOperator(EOpComma);
5820                     assignAgg->setType(internalAggregate->getType());
5821                     setArg(param, assignAgg);
5822                 }
5823             }
5824         }
5825     }
5826 }
5827 
5828 //
5829 // Add any needed implicit expansion of calling arguments from what the shader listed to what's
5830 // internally needed for the AST (given the constraints downstream).
5831 //
expandArguments(const TSourceLoc & loc,const TFunction & function,TIntermTyped * & arguments)5832 void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
5833 {
5834     TIntermAggregate* aggregate = arguments->getAsAggregate();
5835     int functionParamNumberOffset = 0;
5836 
5837     // Replace a single argument with a single argument.
5838     const auto setArg = [&](int paramNum, TIntermTyped* arg) {
5839         if (function.getParamCount() + functionParamNumberOffset == 1)
5840             arguments = arg;
5841         else {
5842             if (aggregate == nullptr)
5843                 arguments = arg;
5844             else
5845                 aggregate->getSequence()[paramNum] = arg;
5846         }
5847     };
5848 
5849     // Replace a single argument with a list of arguments
5850     const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
5851         if (args.size() == 1)
5852             setArg(paramNum, args.front());
5853         else if (args.size() > 1) {
5854             if (function.getParamCount() + functionParamNumberOffset == 1) {
5855                 arguments = intermediate.makeAggregate(args.front());
5856                 std::for_each(args.begin() + 1, args.end(),
5857                     [&](TIntermTyped* arg) {
5858                         arguments = intermediate.growAggregate(arguments, arg);
5859                     });
5860             } else {
5861                 auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
5862                 aggregate->getSequence().insert(it, args.begin(), args.end());
5863             }
5864             functionParamNumberOffset += (int)(args.size() - 1);
5865         }
5866     };
5867 
5868     // Process each argument's conversion
5869     for (int param = 0; param < function.getParamCount(); ++param) {
5870         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
5871         // is the single argument itself or its children are the arguments.  Only one argument
5872         // means take 'arguments' itself as the one argument.
5873         TIntermTyped* arg = function.getParamCount() == 1
5874                                    ? arguments->getAsTyped()
5875                                    : (aggregate ?
5876                                         aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
5877                                         arguments->getAsTyped());
5878 
5879         if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
5880             // Need to pass the structure members instead of the structure.
5881             TVector<TIntermTyped*> memberArgs;
5882             for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
5883                 memberArgs.push_back(flattenAccess(arg, memb));
5884             setArgList(param + functionParamNumberOffset, memberArgs);
5885         }
5886     }
5887 
5888     // TODO: if we need both hidden counter args (below) and struct expansion (above)
5889     // the two algorithms need to be merged: Each assumes the list starts out 1:1 between
5890     // parameters and arguments.
5891 
5892     // If any argument is a pass-by-reference struct buffer with an associated counter
5893     // buffer, we have to add another hidden parameter for that counter.
5894     if (aggregate)
5895         addStructBuffArguments(loc, aggregate);
5896 }
5897 
5898 //
5899 // Add any needed implicit output conversions for function-call arguments.  This
5900 // can require a new tree topology, complicated further by whether the function
5901 // has a return value.
5902 //
5903 // Returns a node of a subtree that evaluates to the return value of the function.
5904 //
addOutputArgumentConversions(const TFunction & function,TIntermOperator & intermNode)5905 TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
5906 {
5907     assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
5908 
5909     const TSourceLoc& loc = intermNode.getLoc();
5910 
5911     TIntermSequence argSequence; // temp sequence for unary node args
5912 
5913     if (intermNode.getAsUnaryNode())
5914         argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
5915 
5916     TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
5917 
5918     const auto needsConversion = [&](int argNum) {
5919         return function[argNum].type->getQualifier().isParamOutput() &&
5920                (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
5921                 shouldConvertLValue(arguments[argNum]) ||
5922                 wasFlattened(arguments[argNum]->getAsTyped()));
5923     };
5924 
5925     // Will there be any output conversions?
5926     bool outputConversions = false;
5927     for (int i = 0; i < function.getParamCount(); ++i) {
5928         if (needsConversion(i)) {
5929             outputConversions = true;
5930             break;
5931         }
5932     }
5933 
5934     if (! outputConversions)
5935         return &intermNode;
5936 
5937     // Setup for the new tree, if needed:
5938     //
5939     // Output conversions need a different tree topology.
5940     // Out-qualified arguments need a temporary of the correct type, with the call
5941     // followed by an assignment of the temporary to the original argument:
5942     //     void: function(arg, ...)  ->        (          function(tempArg, ...), arg = tempArg, ...)
5943     //     ret = function(arg, ...)  ->  ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
5944     // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
5945     TIntermTyped* conversionTree = nullptr;
5946     TVariable* tempRet = nullptr;
5947     if (intermNode.getBasicType() != EbtVoid) {
5948         // do the "tempRet = function(...), " bit from above
5949         tempRet = makeInternalVariable("tempReturn", intermNode.getType());
5950         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
5951         conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
5952     } else
5953         conversionTree = &intermNode;
5954 
5955     conversionTree = intermediate.makeAggregate(conversionTree);
5956 
5957     // Process each argument's conversion
5958     for (int i = 0; i < function.getParamCount(); ++i) {
5959         if (needsConversion(i)) {
5960             // Out-qualified arguments needing conversion need to use the topology setup above.
5961             // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
5962 
5963             // Make a temporary for what the function expects the argument to look like.
5964             TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
5965             tempArg->getWritableType().getQualifier().makeTemporary();
5966             TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
5967 
5968             // This makes the deepest level, the member-wise copy
5969             TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
5970                                                     tempArgNode);
5971             tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
5972             conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
5973 
5974             // replace the argument with another node for the same tempArg variable
5975             arguments[i] = intermediate.addSymbol(*tempArg, loc);
5976         }
5977     }
5978 
5979     // Finalize the tree topology (see bigger comment above).
5980     if (tempRet) {
5981         // do the "..., tempRet" bit from above
5982         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
5983         conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
5984     }
5985 
5986     conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
5987 
5988     return conversionTree;
5989 }
5990 
5991 //
5992 // Add any needed "hidden" counter buffer arguments for function calls.
5993 //
5994 // Modifies the 'aggregate' argument if needed.  Otherwise, is no-op.
5995 //
addStructBuffArguments(const TSourceLoc & loc,TIntermAggregate * & aggregate)5996 void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
5997 {
5998     // See if there are any SB types with counters.
5999     const bool hasStructBuffArg =
6000         std::any_of(aggregate->getSequence().begin(),
6001                     aggregate->getSequence().end(),
6002                     [this](const TIntermNode* node) {
6003                         return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
6004                     });
6005 
6006     // Nothing to do, if we didn't find one.
6007     if (! hasStructBuffArg)
6008         return;
6009 
6010     TIntermSequence argsWithCounterBuffers;
6011 
6012     for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
6013         argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
6014 
6015         if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
6016             const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
6017             if (blockSym != nullptr) {
6018                 TType counterType;
6019                 counterBufferType(loc, counterType);
6020 
6021                 const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
6022 
6023                 TVariable* variable = makeInternalVariable(counterBlockName, counterType);
6024 
6025                 // Mark this buffer's counter block as being in use
6026                 structBufferCounter[counterBlockName] = true;
6027 
6028                 TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
6029                 argsWithCounterBuffers.push_back(sym);
6030             }
6031         }
6032     }
6033 
6034     // Swap with the temp list we've built up.
6035     aggregate->getSequence().swap(argsWithCounterBuffers);
6036 }
6037 
6038 
6039 //
6040 // Do additional checking of built-in function calls that is not caught
6041 // by normal semantic checks on argument type, extension tagging, etc.
6042 //
6043 // Assumes there has been a semantically correct match to a built-in function prototype.
6044 //
builtInOpCheck(const TSourceLoc & loc,const TFunction & fnCandidate,TIntermOperator & callNode)6045 void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
6046 {
6047     // Set up convenience accessors to the argument(s).  There is almost always
6048     // multiple arguments for the cases below, but when there might be one,
6049     // check the unaryArg first.
6050     const TIntermSequence* argp = nullptr;   // confusing to use [] syntax on a pointer, so this is to help get a reference
6051     const TIntermTyped* unaryArg = nullptr;
6052     const TIntermTyped* arg0 = nullptr;
6053     if (callNode.getAsAggregate()) {
6054         argp = &callNode.getAsAggregate()->getSequence();
6055         if (argp->size() > 0)
6056             arg0 = (*argp)[0]->getAsTyped();
6057     } else {
6058         assert(callNode.getAsUnaryNode());
6059         unaryArg = callNode.getAsUnaryNode()->getOperand();
6060         arg0 = unaryArg;
6061     }
6062     const TIntermSequence& aggArgs = *argp;  // only valid when unaryArg is nullptr
6063 
6064     switch (callNode.getOp()) {
6065     case EOpTextureGather:
6066     case EOpTextureGatherOffset:
6067     case EOpTextureGatherOffsets:
6068     {
6069         // Figure out which variants are allowed by what extensions,
6070         // and what arguments must be constant for which situations.
6071 
6072         TString featureString = fnCandidate.getName() + "(...)";
6073         const char* feature = featureString.c_str();
6074         int compArg = -1;  // track which argument, if any, is the constant component argument
6075         switch (callNode.getOp()) {
6076         case EOpTextureGather:
6077             // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
6078             // otherwise, need GL_ARB_texture_gather.
6079             if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
6080                 fnCandidate[0].type->getSampler().shadow) {
6081                 if (! fnCandidate[0].type->getSampler().shadow)
6082                     compArg = 2;
6083             }
6084             break;
6085         case EOpTextureGatherOffset:
6086             // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
6087             if (! fnCandidate[0].type->getSampler().shadow)
6088                 compArg = 3;
6089             break;
6090         case EOpTextureGatherOffsets:
6091             if (! fnCandidate[0].type->getSampler().shadow)
6092                 compArg = 3;
6093             break;
6094         default:
6095             break;
6096         }
6097 
6098         if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
6099             if (aggArgs[compArg]->getAsConstantUnion()) {
6100                 int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
6101                 if (value < 0 || value > 3)
6102                     error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
6103             } else
6104                 error(loc, "must be a compile-time constant:", feature, "component argument");
6105         }
6106 
6107         break;
6108     }
6109 
6110     case EOpTextureOffset:
6111     case EOpTextureFetchOffset:
6112     case EOpTextureProjOffset:
6113     case EOpTextureLodOffset:
6114     case EOpTextureProjLodOffset:
6115     case EOpTextureGradOffset:
6116     case EOpTextureProjGradOffset:
6117     {
6118         // Handle texture-offset limits checking
6119         // Pick which argument has to hold constant offsets
6120         int arg = -1;
6121         switch (callNode.getOp()) {
6122         case EOpTextureOffset:          arg = 2;  break;
6123         case EOpTextureFetchOffset:     arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
6124         case EOpTextureProjOffset:      arg = 2;  break;
6125         case EOpTextureLodOffset:       arg = 3;  break;
6126         case EOpTextureProjLodOffset:   arg = 3;  break;
6127         case EOpTextureGradOffset:      arg = 4;  break;
6128         case EOpTextureProjGradOffset:  arg = 4;  break;
6129         default:
6130             assert(0);
6131             break;
6132         }
6133 
6134         if (arg > 0) {
6135             if (aggArgs[arg]->getAsConstantUnion() == nullptr)
6136                 error(loc, "argument must be compile-time constant", "texel offset", "");
6137             else {
6138                 const TType& type = aggArgs[arg]->getAsTyped()->getType();
6139                 for (int c = 0; c < type.getVectorSize(); ++c) {
6140                     int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
6141                     if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
6142                         error(loc, "value is out of range:", "texel offset",
6143                               "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
6144                 }
6145             }
6146         }
6147 
6148         break;
6149     }
6150 
6151     case EOpTextureQuerySamples:
6152     case EOpImageQuerySamples:
6153         break;
6154 
6155     case EOpImageAtomicAdd:
6156     case EOpImageAtomicMin:
6157     case EOpImageAtomicMax:
6158     case EOpImageAtomicAnd:
6159     case EOpImageAtomicOr:
6160     case EOpImageAtomicXor:
6161     case EOpImageAtomicExchange:
6162     case EOpImageAtomicCompSwap:
6163         break;
6164 
6165     case EOpInterpolateAtCentroid:
6166     case EOpInterpolateAtSample:
6167     case EOpInterpolateAtOffset:
6168         // TODO(greg-lunarg): Re-enable this check. It currently gives false errors for builtins
6169         // defined and passed as members of a struct. In this case the storage class is showing to be
6170         // Function. See glslang #2584
6171 
6172         // Make sure the first argument is an interpolant, or an array element of an interpolant
6173         // if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
6174             // It might still be an array element.
6175             //
6176             // We could check more, but the semantics of the first argument are already met; the
6177             // only way to turn an array into a float/vec* is array dereference and swizzle.
6178             //
6179             // ES and desktop 4.3 and earlier:  swizzles may not be used
6180             // desktop 4.4 and later: swizzles may be used
6181             // const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
6182             // if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
6183             //     error(loc, "first argument must be an interpolant, or interpolant-array element",
6184             //           fnCandidate.getName().c_str(), "");
6185         // }
6186         break;
6187 
6188     default:
6189         break;
6190     }
6191 }
6192 
6193 //
6194 // Handle seeing something in a grammar production that can be done by calling
6195 // a constructor.
6196 //
6197 // The constructor still must be "handled" by handleFunctionCall(), which will
6198 // then call handleConstructor().
6199 //
makeConstructorCall(const TSourceLoc & loc,const TType & type)6200 TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
6201 {
6202     TOperator op = intermediate.mapTypeToConstructorOp(type);
6203 
6204     if (op == EOpNull) {
6205         error(loc, "cannot construct this type", type.getBasicString(), "");
6206         return nullptr;
6207     }
6208 
6209     TString empty("");
6210 
6211     return new TFunction(&empty, type, op);
6212 }
6213 
6214 //
6215 // Handle seeing a "COLON semantic" at the end of a type declaration,
6216 // by updating the type according to the semantic.
6217 //
handleSemantic(TSourceLoc loc,TQualifier & qualifier,TBuiltInVariable builtIn,const TString & upperCase)6218 void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
6219                                       const TString& upperCase)
6220 {
6221     // Parse and return semantic number.  If limit is 0, it will be ignored.  Otherwise, if the parsed
6222     // semantic number is >= limit, errorMsg is issued and 0 is returned.
6223     // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
6224     // accept those in lambda functions.
6225     const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
6226         size_t pos = semantic.find_last_not_of("0123456789");
6227         if (pos == std::string::npos)
6228             return 0u;
6229 
6230         unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
6231 
6232         if (limit != 0 && semanticNum >= limit) {
6233             error(loc, errorMsg, semantic.c_str(), "");
6234             return 0u;
6235         }
6236 
6237         return semanticNum;
6238     };
6239 
6240     if (builtIn == EbvNone && hlslDX9Compatible()) {
6241         if (language == EShLangVertex) {
6242             if (qualifier.isParamOutput()) {
6243                 if (upperCase == "POSITION") {
6244                     builtIn = EbvPosition;
6245                 }
6246                 if (upperCase == "PSIZE") {
6247                     builtIn = EbvPointSize;
6248                 }
6249             }
6250         } else if (language == EShLangFragment) {
6251             if (qualifier.isParamInput() && upperCase == "VPOS") {
6252                 builtIn = EbvFragCoord;
6253             }
6254             if (qualifier.isParamOutput()) {
6255                 if (upperCase.compare(0, 5, "COLOR") == 0) {
6256                     qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
6257                     nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
6258                 }
6259                 if (upperCase == "DEPTH") {
6260                     builtIn = EbvFragDepth;
6261                 }
6262             }
6263         }
6264     }
6265 
6266     switch(builtIn) {
6267     case EbvNone:
6268         // Get location numbers from fragment outputs, instead of
6269         // auto-assigning them.
6270         if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
6271             qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
6272             nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
6273         } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
6274             builtIn = EbvClipDistance;
6275             qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
6276         } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
6277             builtIn = EbvCullDistance;
6278             qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
6279         }
6280         break;
6281     case EbvPosition:
6282         // adjust for stage in/out
6283         if (language == EShLangFragment)
6284             builtIn = EbvFragCoord;
6285         break;
6286     case EbvFragStencilRef:
6287         error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
6288         break;
6289     case EbvTessLevelInner:
6290     case EbvTessLevelOuter:
6291         qualifier.patch = true;
6292         break;
6293     default:
6294         break;
6295     }
6296 
6297     if (qualifier.builtIn == EbvNone)
6298         qualifier.builtIn = builtIn;
6299     qualifier.semanticName = intermediate.addSemanticName(upperCase);
6300 }
6301 
6302 //
6303 // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
6304 //
6305 // 'location' has the "c[Subcomponent]" part.
6306 // 'component' points to the "component" part, or nullptr if not present.
6307 //
handlePackOffset(const TSourceLoc & loc,TQualifier & qualifier,const glslang::TString & location,const glslang::TString * component)6308 void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
6309                                         const glslang::TString* component)
6310 {
6311     if (location.size() == 0 || location[0] != 'c') {
6312         error(loc, "expected 'c'", "packoffset", "");
6313         return;
6314     }
6315     if (location.size() == 1)
6316         return;
6317     if (! isdigit(location[1])) {
6318         error(loc, "expected number after 'c'", "packoffset", "");
6319         return;
6320     }
6321 
6322     qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
6323     if (component != nullptr) {
6324         int componentOffset = 0;
6325         switch ((*component)[0]) {
6326         case 'x': componentOffset =  0; break;
6327         case 'y': componentOffset =  4; break;
6328         case 'z': componentOffset =  8; break;
6329         case 'w': componentOffset = 12; break;
6330         default:
6331             componentOffset = -1;
6332             break;
6333         }
6334         if (componentOffset < 0 || component->size() > 1) {
6335             error(loc, "expected {x, y, z, w} for component", "packoffset", "");
6336             return;
6337         }
6338         qualifier.layoutOffset += componentOffset;
6339     }
6340 }
6341 
6342 //
6343 // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
6344 //
6345 // 'profile' points to the shader_profile part, or nullptr if not present.
6346 // 'desc' is the type# part.
6347 //
handleRegister(const TSourceLoc & loc,TQualifier & qualifier,const glslang::TString * profile,const glslang::TString & desc,int subComponent,const glslang::TString * spaceDesc)6348 void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
6349                                       const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
6350 {
6351     if (profile != nullptr)
6352         warn(loc, "ignoring shader_profile", "register", "");
6353 
6354     if (desc.size() < 1) {
6355         error(loc, "expected register type", "register", "");
6356         return;
6357     }
6358 
6359     int regNumber = 0;
6360     if (desc.size() > 1) {
6361         if (isdigit(desc[1]))
6362             regNumber = atoi(desc.substr(1, desc.size()).c_str());
6363         else {
6364             error(loc, "expected register number after register type", "register", "");
6365             return;
6366         }
6367     }
6368 
6369     // more information about register types see
6370     // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
6371     const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
6372     switch (std::tolower(desc[0])) {
6373     case 'c':
6374         // c register is the register slot in the global const buffer
6375         // each slot is a vector of 4 32 bit components
6376         qualifier.layoutOffset = regNumber * 4 * 4;
6377         break;
6378         // const buffer register slot
6379     case 'b':
6380         // textrues and structured buffers
6381     case 't':
6382         // samplers
6383     case 's':
6384         // uav resources
6385     case 'u':
6386         // if nothing else has set the binding, do so now
6387         // (other mechanisms override this one)
6388         if (!qualifier.hasBinding())
6389             qualifier.layoutBinding = regNumber + subComponent;
6390 
6391         // This handles per-register layout sets numbers.  For the global mode which sets
6392         // every symbol to the same value, see setLinkageLayoutSets().
6393         if ((resourceInfo.size() % 3) == 0) {
6394             // Apply per-symbol resource set and binding.
6395             for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
6396                 if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
6397                     qualifier.layoutSet = atoi(it[1].c_str());
6398                     qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
6399                     break;
6400                 }
6401             }
6402         }
6403         break;
6404     default:
6405         warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
6406         break;
6407     }
6408 
6409     // space
6410     unsigned int setNumber;
6411     const auto crackSpace = [&]() -> bool {
6412         const int spaceLen = 5;
6413         if (spaceDesc->size() < spaceLen + 1)
6414             return false;
6415         if (spaceDesc->compare(0, spaceLen, "space") != 0)
6416             return false;
6417         if (! isdigit((*spaceDesc)[spaceLen]))
6418             return false;
6419         setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
6420         return true;
6421     };
6422 
6423     // if nothing else has set the set, do so now
6424     // (other mechanisms override this one)
6425     if (spaceDesc && !qualifier.hasSet()) {
6426         if (! crackSpace()) {
6427             error(loc, "expected spaceN", "register", "");
6428             return;
6429         }
6430         qualifier.layoutSet = setNumber;
6431     }
6432 }
6433 
6434 // Convert to a scalar boolean, or if not allowed by HLSL semantics,
6435 // report an error and return nullptr.
convertConditionalExpression(const TSourceLoc & loc,TIntermTyped * condition,bool mustBeScalar)6436 TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
6437                                                              bool mustBeScalar)
6438 {
6439     if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
6440         error(loc, "requires a scalar", "conditional expression", "");
6441         return nullptr;
6442     }
6443 
6444     return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
6445                                       condition);
6446 }
6447 
6448 //
6449 // Same error message for all places assignments don't work.
6450 //
assignError(const TSourceLoc & loc,const char * op,TString left,TString right)6451 void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
6452 {
6453     error(loc, "", op, "cannot convert from '%s' to '%s'",
6454         right.c_str(), left.c_str());
6455 }
6456 
6457 //
6458 // Same error message for all places unary operations don't work.
6459 //
unaryOpError(const TSourceLoc & loc,const char * op,TString operand)6460 void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
6461 {
6462     error(loc, " wrong operand type", op,
6463         "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
6464         op, operand.c_str());
6465 }
6466 
6467 //
6468 // Same error message for all binary operations don't work.
6469 //
binaryOpError(const TSourceLoc & loc,const char * op,TString left,TString right)6470 void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
6471 {
6472     error(loc, " wrong operand types:", op,
6473         "no operation '%s' exists that takes a left-hand operand of type '%s' and "
6474         "a right operand of type '%s' (or there is no acceptable conversion)",
6475         op, left.c_str(), right.c_str());
6476 }
6477 
6478 //
6479 // A basic type of EbtVoid is a key that the name string was seen in the source, but
6480 // it was not found as a variable in the symbol table.  If so, give the error
6481 // message and insert a dummy variable in the symbol table to prevent future errors.
6482 //
variableCheck(TIntermTyped * & nodePtr)6483 void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
6484 {
6485     TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
6486     if (! symbol)
6487         return;
6488 
6489     if (symbol->getType().getBasicType() == EbtVoid) {
6490         error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
6491 
6492         // Add to symbol table to prevent future error messages on the same name
6493         if (symbol->getName().size() > 0) {
6494             TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
6495             symbolTable.insert(*fakeVariable);
6496 
6497             // substitute a symbol node for this new variable
6498             nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
6499         }
6500     }
6501 }
6502 
6503 //
6504 // Both test, and if necessary spit out an error, to see if the node is really
6505 // a constant.
6506 //
constantValueCheck(TIntermTyped * node,const char * token)6507 void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
6508 {
6509     if (node->getQualifier().storage != EvqConst)
6510         error(node->getLoc(), "constant expression required", token, "");
6511 }
6512 
6513 //
6514 // Both test, and if necessary spit out an error, to see if the node is really
6515 // an integer.
6516 //
integerCheck(const TIntermTyped * node,const char * token)6517 void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
6518 {
6519     if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
6520         return;
6521 
6522     error(node->getLoc(), "scalar integer expression required", token, "");
6523 }
6524 
6525 //
6526 // Both test, and if necessary spit out an error, to see if we are currently
6527 // globally scoped.
6528 //
globalCheck(const TSourceLoc & loc,const char * token)6529 void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
6530 {
6531     if (! symbolTable.atGlobalLevel())
6532         error(loc, "not allowed in nested scope", token, "");
6533 }
6534 
builtInName(const TString &)6535 bool HlslParseContext::builtInName(const TString& /*identifier*/)
6536 {
6537     return false;
6538 }
6539 
6540 //
6541 // Make sure there is enough data and not too many arguments provided to the
6542 // constructor to build something of the type of the constructor.  Also returns
6543 // the type of the constructor.
6544 //
6545 // Returns true if there was an error in construction.
6546 //
constructorError(const TSourceLoc & loc,TIntermNode * node,TFunction & function,TOperator op,TType & type)6547 bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
6548                                         TOperator op, TType& type)
6549 {
6550     type.shallowCopy(function.getType());
6551 
6552     bool constructingMatrix = false;
6553     switch (op) {
6554     case EOpConstructTextureSampler:
6555         error(loc, "unhandled texture constructor", "constructor", "");
6556         return true;
6557     case EOpConstructMat2x2:
6558     case EOpConstructMat2x3:
6559     case EOpConstructMat2x4:
6560     case EOpConstructMat3x2:
6561     case EOpConstructMat3x3:
6562     case EOpConstructMat3x4:
6563     case EOpConstructMat4x2:
6564     case EOpConstructMat4x3:
6565     case EOpConstructMat4x4:
6566     case EOpConstructDMat2x2:
6567     case EOpConstructDMat2x3:
6568     case EOpConstructDMat2x4:
6569     case EOpConstructDMat3x2:
6570     case EOpConstructDMat3x3:
6571     case EOpConstructDMat3x4:
6572     case EOpConstructDMat4x2:
6573     case EOpConstructDMat4x3:
6574     case EOpConstructDMat4x4:
6575     case EOpConstructIMat2x2:
6576     case EOpConstructIMat2x3:
6577     case EOpConstructIMat2x4:
6578     case EOpConstructIMat3x2:
6579     case EOpConstructIMat3x3:
6580     case EOpConstructIMat3x4:
6581     case EOpConstructIMat4x2:
6582     case EOpConstructIMat4x3:
6583     case EOpConstructIMat4x4:
6584     case EOpConstructUMat2x2:
6585     case EOpConstructUMat2x3:
6586     case EOpConstructUMat2x4:
6587     case EOpConstructUMat3x2:
6588     case EOpConstructUMat3x3:
6589     case EOpConstructUMat3x4:
6590     case EOpConstructUMat4x2:
6591     case EOpConstructUMat4x3:
6592     case EOpConstructUMat4x4:
6593     case EOpConstructBMat2x2:
6594     case EOpConstructBMat2x3:
6595     case EOpConstructBMat2x4:
6596     case EOpConstructBMat3x2:
6597     case EOpConstructBMat3x3:
6598     case EOpConstructBMat3x4:
6599     case EOpConstructBMat4x2:
6600     case EOpConstructBMat4x3:
6601     case EOpConstructBMat4x4:
6602         constructingMatrix = true;
6603         break;
6604     default:
6605         break;
6606     }
6607 
6608     //
6609     // Walk the arguments for first-pass checks and collection of information.
6610     //
6611 
6612     int size = 0;
6613     bool constType = true;
6614     bool full = false;
6615     bool overFull = false;
6616     bool matrixInMatrix = false;
6617     bool arrayArg = false;
6618     for (int arg = 0; arg < function.getParamCount(); ++arg) {
6619         if (function[arg].type->isArray()) {
6620             if (function[arg].type->isUnsizedArray()) {
6621                 // Can't construct from an unsized array.
6622                 error(loc, "array argument must be sized", "constructor", "");
6623                 return true;
6624             }
6625             arrayArg = true;
6626         }
6627         if (constructingMatrix && function[arg].type->isMatrix())
6628             matrixInMatrix = true;
6629 
6630         // 'full' will go to true when enough args have been seen.  If we loop
6631         // again, there is an extra argument.
6632         if (full) {
6633             // For vectors and matrices, it's okay to have too many components
6634             // available, but not okay to have unused arguments.
6635             overFull = true;
6636         }
6637 
6638         size += function[arg].type->computeNumComponents();
6639         if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
6640             full = true;
6641 
6642         if (function[arg].type->getQualifier().storage != EvqConst)
6643             constType = false;
6644     }
6645 
6646     if (constType)
6647         type.getQualifier().storage = EvqConst;
6648 
6649     if (type.isArray()) {
6650         if (function.getParamCount() == 0) {
6651             error(loc, "array constructor must have at least one argument", "constructor", "");
6652             return true;
6653         }
6654 
6655         if (type.isUnsizedArray()) {
6656             // auto adapt the constructor type to the number of arguments
6657             type.changeOuterArraySize(function.getParamCount());
6658         } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
6659             error(loc, "array constructor needs one argument per array element", "constructor", "");
6660             return true;
6661         }
6662 
6663         if (type.isArrayOfArrays()) {
6664             // Types have to match, but we're still making the type.
6665             // Finish making the type, and the comparison is done later
6666             // when checking for conversion.
6667             TArraySizes& arraySizes = *type.getArraySizes();
6668 
6669             // At least the dimensionalities have to match.
6670             if (! function[0].type->isArray() ||
6671                 arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
6672                 error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
6673                 return true;
6674             }
6675 
6676             if (arraySizes.isInnerUnsized()) {
6677                 // "Arrays of arrays ..., and the size for any dimension is optional"
6678                 // That means we need to adopt (from the first argument) the other array sizes into the type.
6679                 for (int d = 1; d < arraySizes.getNumDims(); ++d) {
6680                     if (arraySizes.getDimSize(d) == UnsizedArraySize) {
6681                         arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
6682                     }
6683                 }
6684             }
6685         }
6686     }
6687 
6688     // Some array -> array type casts are okay
6689     if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
6690         !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
6691         type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
6692         return false;
6693 
6694     if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
6695         error(loc, "constructing non-array constituent from array argument", "constructor", "");
6696         return true;
6697     }
6698 
6699     if (matrixInMatrix && ! type.isArray()) {
6700         return false;
6701     }
6702 
6703     if (overFull) {
6704         error(loc, "too many arguments", "constructor", "");
6705         return true;
6706     }
6707 
6708     if (op == EOpConstructStruct && ! type.isArray()) {
6709         if (isScalarConstructor(node))
6710             return false;
6711 
6712         // Self-type construction: e.g, we can construct a struct from a single identically typed object.
6713         if (function.getParamCount() == 1 && type == *function[0].type)
6714             return false;
6715 
6716         if ((int)type.getStruct()->size() != function.getParamCount()) {
6717             error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
6718             return true;
6719         }
6720     }
6721 
6722     if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
6723         (op == EOpConstructStruct && size < type.computeNumComponents())) {
6724         error(loc, "not enough data provided for construction", "constructor", "");
6725         return true;
6726     }
6727 
6728     return false;
6729 }
6730 
6731 // See if 'node', in the context of constructing aggregates, is a scalar argument
6732 // to a constructor.
6733 //
isScalarConstructor(const TIntermNode * node)6734 bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
6735 {
6736     // Obviously, it must be a scalar, but an aggregate node might not be fully
6737     // completed yet: holding a sequence of initializers under an aggregate
6738     // would not yet be typed, so don't check it's type.  This corresponds to
6739     // the aggregate operator also not being set yet. (An aggregate operation
6740     // that legitimately yields a scalar will have a getOp() of that operator,
6741     // not EOpNull.)
6742 
6743     return node->getAsTyped() != nullptr &&
6744            node->getAsTyped()->isScalar() &&
6745            (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
6746 }
6747 
6748 // Checks to see if a void variable has been declared and raise an error message for such a case
6749 //
6750 // returns true in case of an error
6751 //
voidErrorCheck(const TSourceLoc & loc,const TString & identifier,const TBasicType basicType)6752 bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
6753 {
6754     if (basicType == EbtVoid) {
6755         error(loc, "illegal use of type 'void'", identifier.c_str(), "");
6756         return true;
6757     }
6758 
6759     return false;
6760 }
6761 
6762 //
6763 // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
6764 //
globalQualifierFix(const TSourceLoc &,TQualifier & qualifier)6765 void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
6766 {
6767     // move from parameter/unknown qualifiers to pipeline in/out qualifiers
6768     switch (qualifier.storage) {
6769     case EvqIn:
6770         qualifier.storage = EvqVaryingIn;
6771         break;
6772     case EvqOut:
6773         qualifier.storage = EvqVaryingOut;
6774         break;
6775     default:
6776         break;
6777     }
6778 }
6779 
6780 //
6781 // Merge characteristics of the 'src' qualifier into the 'dst'.
6782 //
mergeQualifiers(TQualifier & dst,const TQualifier & src)6783 void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
6784 {
6785     // Storage qualification
6786     if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
6787         dst.storage = src.storage;
6788     else if ((dst.storage == EvqIn  && src.storage == EvqOut) ||
6789              (dst.storage == EvqOut && src.storage == EvqIn))
6790         dst.storage = EvqInOut;
6791     else if ((dst.storage == EvqIn    && src.storage == EvqConst) ||
6792              (dst.storage == EvqConst && src.storage == EvqIn))
6793         dst.storage = EvqConstReadOnly;
6794 
6795     // Layout qualifiers
6796     mergeObjectLayoutQualifiers(dst, src, false);
6797 
6798     // individual qualifiers
6799 #define MERGE_SINGLETON(field) dst.field |= src.field;
6800     MERGE_SINGLETON(invariant);
6801     MERGE_SINGLETON(noContraction);
6802     MERGE_SINGLETON(centroid);
6803     MERGE_SINGLETON(smooth);
6804     MERGE_SINGLETON(flat);
6805     MERGE_SINGLETON(nopersp);
6806     MERGE_SINGLETON(patch);
6807     MERGE_SINGLETON(sample);
6808     MERGE_SINGLETON(coherent);
6809     MERGE_SINGLETON(volatil);
6810     MERGE_SINGLETON(restrict);
6811     MERGE_SINGLETON(readonly);
6812     MERGE_SINGLETON(writeonly);
6813     MERGE_SINGLETON(specConstant);
6814     MERGE_SINGLETON(nonUniform);
6815 }
6816 
6817 // used to flatten the sampler type space into a single dimension
6818 // correlates with the declaration of defaultSamplerPrecision[]
computeSamplerTypeIndex(TSampler & sampler)6819 int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
6820 {
6821     int arrayIndex = sampler.arrayed ? 1 : 0;
6822     int shadowIndex = sampler.shadow ? 1 : 0;
6823     int externalIndex = sampler.external ? 1 : 0;
6824 
6825     return EsdNumDims *
6826            (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
6827 }
6828 
6829 //
6830 // Do size checking for an array type's size.
6831 //
arraySizeCheck(const TSourceLoc & loc,TIntermTyped * expr,TArraySize & sizePair)6832 void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
6833 {
6834     bool isConst = false;
6835     sizePair.size = 1;
6836     sizePair.node = nullptr;
6837 
6838     TIntermConstantUnion* constant = expr->getAsConstantUnion();
6839     if (constant) {
6840         // handle true (non-specialization) constant
6841         sizePair.size = constant->getConstArray()[0].getIConst();
6842         isConst = true;
6843     } else {
6844         // see if it's a specialization constant instead
6845         if (expr->getQualifier().isSpecConstant()) {
6846             isConst = true;
6847             sizePair.node = expr;
6848             TIntermSymbol* symbol = expr->getAsSymbolNode();
6849             if (symbol && symbol->getConstArray().size() > 0)
6850                 sizePair.size = symbol->getConstArray()[0].getIConst();
6851         }
6852     }
6853 
6854     if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
6855         error(loc, "array size must be a constant integer expression", "", "");
6856         return;
6857     }
6858 
6859     if (sizePair.size <= 0) {
6860         error(loc, "array size must be a positive integer", "", "");
6861         return;
6862     }
6863 }
6864 
6865 //
6866 // Require array to be completely sized
6867 //
arraySizeRequiredCheck(const TSourceLoc & loc,const TArraySizes & arraySizes)6868 void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
6869 {
6870     if (arraySizes.hasUnsized())
6871         error(loc, "array size required", "", "");
6872 }
6873 
structArrayCheck(const TSourceLoc &,const TType & type)6874 void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
6875 {
6876     const TTypeList& structure = *type.getStruct();
6877     for (int m = 0; m < (int)structure.size(); ++m) {
6878         const TType& member = *structure[m].type;
6879         if (member.isArray())
6880             arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
6881     }
6882 }
6883 
6884 //
6885 // Do all the semantic checking for declaring or redeclaring an array, with and
6886 // without a size, and make the right changes to the symbol table.
6887 //
declareArray(const TSourceLoc & loc,const TString & identifier,const TType & type,TSymbol * & symbol,bool track)6888 void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
6889                                     TSymbol*& symbol, bool track)
6890 {
6891     if (symbol == nullptr) {
6892         bool currentScope;
6893         symbol = symbolTable.find(identifier, nullptr, &currentScope);
6894 
6895         if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
6896             // bad shader (errors already reported) trying to redeclare a built-in name as an array
6897             return;
6898         }
6899         if (symbol == nullptr || ! currentScope) {
6900             //
6901             // Successfully process a new definition.
6902             // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
6903             //
6904             symbol = new TVariable(&identifier, type);
6905             symbolTable.insert(*symbol);
6906             if (track && symbolTable.atGlobalLevel())
6907                 trackLinkage(*symbol);
6908 
6909             return;
6910         }
6911         if (symbol->getAsAnonMember()) {
6912             error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
6913             symbol = nullptr;
6914             return;
6915         }
6916     }
6917 
6918     //
6919     // Process a redeclaration.
6920     //
6921 
6922     if (symbol == nullptr) {
6923         error(loc, "array variable name expected", identifier.c_str(), "");
6924         return;
6925     }
6926 
6927     // redeclareBuiltinVariable() should have already done the copyUp()
6928     TType& existingType = symbol->getWritableType();
6929 
6930     if (existingType.isSizedArray()) {
6931         // be more lenient for input arrays to geometry shaders and tessellation control outputs,
6932         // where the redeclaration is the same size
6933         return;
6934     }
6935 
6936     existingType.updateArraySizes(type);
6937 }
6938 
6939 //
6940 // Enforce non-initializer type/qualifier rules.
6941 //
fixConstInit(const TSourceLoc & loc,const TString & identifier,TType & type,TIntermTyped * & initializer)6942 void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
6943                                     TIntermTyped*& initializer)
6944 {
6945     //
6946     // Make the qualifier make sense, given that there is an initializer.
6947     //
6948     if (initializer == nullptr) {
6949         if (type.getQualifier().storage == EvqConst ||
6950             type.getQualifier().storage == EvqConstReadOnly) {
6951             initializer = intermediate.makeAggregate(loc);
6952             warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
6953         }
6954     }
6955 }
6956 
6957 //
6958 // See if the identifier is a built-in symbol that can be redeclared, and if so,
6959 // copy the symbol table's read-only built-in variable to the current
6960 // global level, where it can be modified based on the passed in type.
6961 //
6962 // Returns nullptr if no redeclaration took place; meaning a normal declaration still
6963 // needs to occur for it, not necessarily an error.
6964 //
6965 // Returns a redeclared and type-modified variable if a redeclared occurred.
6966 //
redeclareBuiltinVariable(const TSourceLoc &,const TString & identifier,const TQualifier &,const TShaderQualifiers &)6967 TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
6968                                                     const TQualifier& /*qualifier*/,
6969                                                     const TShaderQualifiers& /*publicType*/)
6970 {
6971     if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
6972         return nullptr;
6973 
6974     return nullptr;
6975 }
6976 
6977 //
6978 // Generate index to the array element in a structure buffer (SSBO)
6979 //
indexStructBufferContent(const TSourceLoc & loc,TIntermTyped * buffer) const6980 TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
6981 {
6982     // Bail out if not a struct buffer
6983     if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
6984         return nullptr;
6985 
6986     // Runtime sized array is always the last element.
6987     const TTypeList* bufferStruct = buffer->getType().getStruct();
6988     TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
6989 
6990     TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
6991     argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
6992 
6993     return argArray;
6994 }
6995 
6996 //
6997 // IFF type is a structuredbuffer/byteaddressbuffer type, return the content
6998 // (template) type.   E.g, StructuredBuffer<MyType> -> MyType.  Else return nullptr.
6999 //
getStructBufferContentType(const TType & type) const7000 TType* HlslParseContext::getStructBufferContentType(const TType& type) const
7001 {
7002     if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
7003         return nullptr;
7004 
7005     const int memberCount = (int)type.getStruct()->size();
7006     assert(memberCount > 0);
7007 
7008     TType* contentType = (*type.getStruct())[memberCount-1].type;
7009 
7010     return contentType->isUnsizedArray() ? contentType : nullptr;
7011 }
7012 
7013 //
7014 // If an existing struct buffer has a sharable type, then share it.
7015 //
shareStructBufferType(TType & type)7016 void HlslParseContext::shareStructBufferType(TType& type)
7017 {
7018     // PackOffset must be equivalent to share types on a per-member basis.
7019     // Note: cannot use auto type due to recursion.  Thus, this is a std::function.
7020     const std::function<bool(TType& lhs, TType& rhs)>
7021     compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
7022         if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
7023             return false;
7024 
7025         if (lhs.isStruct() != rhs.isStruct())
7026             return false;
7027 
7028         if (lhs.getQualifier().builtIn != rhs.getQualifier().builtIn)
7029             return false;
7030 
7031         if (lhs.isStruct() && rhs.isStruct()) {
7032             if (lhs.getStruct()->size() != rhs.getStruct()->size())
7033                 return false;
7034 
7035             for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
7036                 if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
7037                     return false;
7038         }
7039 
7040         return true;
7041     };
7042 
7043     // We need to compare certain qualifiers in addition to the type.
7044     const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
7045         if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
7046             return false;
7047 
7048         // If both are structures, recursively look for packOffset equality
7049         // as well as type equality.
7050         return compareQualifiers(lhs, rhs) && lhs == rhs;
7051     };
7052 
7053     // This is an exhaustive O(N) search, but real world shaders have
7054     // only a small number of these.
7055     for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
7056         // If the deep structure matches, modulo qualifiers, use it
7057         if (typeEqual(*structBufferTypes[idx], type)) {
7058             type.shallowCopy(*structBufferTypes[idx]);
7059             return;
7060         }
7061     }
7062 
7063     // Otherwise, remember it:
7064     TType* typeCopy = new TType;
7065     typeCopy->shallowCopy(type);
7066     structBufferTypes.push_back(typeCopy);
7067 }
7068 
paramFix(TType & type)7069 void HlslParseContext::paramFix(TType& type)
7070 {
7071     switch (type.getQualifier().storage) {
7072     case EvqConst:
7073         type.getQualifier().storage = EvqConstReadOnly;
7074         break;
7075     case EvqGlobal:
7076     case EvqTemporary:
7077         type.getQualifier().storage = EvqIn;
7078         break;
7079     case EvqBuffer:
7080         {
7081             // SSBO parameter.  These do not go through the declareBlock path since they are fn parameters.
7082             correctUniform(type.getQualifier());
7083             TQualifier bufferQualifier = globalBufferDefaults;
7084             mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
7085             bufferQualifier.storage = type.getQualifier().storage;
7086             bufferQualifier.readonly = type.getQualifier().readonly;
7087             bufferQualifier.coherent = type.getQualifier().coherent;
7088             bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
7089             type.getQualifier() = bufferQualifier;
7090             break;
7091         }
7092     default:
7093         break;
7094     }
7095 }
7096 
specializationCheck(const TSourceLoc & loc,const TType & type,const char * op)7097 void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
7098 {
7099     if (type.containsSpecializationSize())
7100         error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
7101 }
7102 
7103 //
7104 // Layout qualifier stuff.
7105 //
7106 
7107 // Put the id's layout qualification into the public type, for qualifiers not having a number set.
7108 // This is before we know any type information for error checking.
setLayoutQualifier(const TSourceLoc & loc,TQualifier & qualifier,TString & id)7109 void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
7110 {
7111     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
7112 
7113     if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
7114         qualifier.layoutMatrix = ElmRowMajor;
7115         return;
7116     }
7117     if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
7118         qualifier.layoutMatrix = ElmColumnMajor;
7119         return;
7120     }
7121     if (id == "push_constant") {
7122         requireVulkan(loc, "push_constant");
7123         qualifier.layoutPushConstant = true;
7124         return;
7125     }
7126     if (language == EShLangGeometry || language == EShLangTessEvaluation) {
7127         if (id == TQualifier::getGeometryString(ElgTriangles)) {
7128             // publicType.shaderQualifiers.geometry = ElgTriangles;
7129             warn(loc, "ignored", id.c_str(), "");
7130             return;
7131         }
7132         if (language == EShLangGeometry) {
7133             if (id == TQualifier::getGeometryString(ElgPoints)) {
7134                 // publicType.shaderQualifiers.geometry = ElgPoints;
7135                 warn(loc, "ignored", id.c_str(), "");
7136                 return;
7137             }
7138             if (id == TQualifier::getGeometryString(ElgLineStrip)) {
7139                 // publicType.shaderQualifiers.geometry = ElgLineStrip;
7140                 warn(loc, "ignored", id.c_str(), "");
7141                 return;
7142             }
7143             if (id == TQualifier::getGeometryString(ElgLines)) {
7144                 // publicType.shaderQualifiers.geometry = ElgLines;
7145                 warn(loc, "ignored", id.c_str(), "");
7146                 return;
7147             }
7148             if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
7149                 // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
7150                 warn(loc, "ignored", id.c_str(), "");
7151                 return;
7152             }
7153             if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
7154                 // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
7155                 warn(loc, "ignored", id.c_str(), "");
7156                 return;
7157             }
7158             if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
7159                 // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
7160                 warn(loc, "ignored", id.c_str(), "");
7161                 return;
7162             }
7163         } else {
7164             assert(language == EShLangTessEvaluation);
7165 
7166             // input primitive
7167             if (id == TQualifier::getGeometryString(ElgTriangles)) {
7168                 // publicType.shaderQualifiers.geometry = ElgTriangles;
7169                 warn(loc, "ignored", id.c_str(), "");
7170                 return;
7171             }
7172             if (id == TQualifier::getGeometryString(ElgQuads)) {
7173                 // publicType.shaderQualifiers.geometry = ElgQuads;
7174                 warn(loc, "ignored", id.c_str(), "");
7175                 return;
7176             }
7177             if (id == TQualifier::getGeometryString(ElgIsolines)) {
7178                 // publicType.shaderQualifiers.geometry = ElgIsolines;
7179                 warn(loc, "ignored", id.c_str(), "");
7180                 return;
7181             }
7182 
7183             // vertex spacing
7184             if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
7185                 // publicType.shaderQualifiers.spacing = EvsEqual;
7186                 warn(loc, "ignored", id.c_str(), "");
7187                 return;
7188             }
7189             if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
7190                 // publicType.shaderQualifiers.spacing = EvsFractionalEven;
7191                 warn(loc, "ignored", id.c_str(), "");
7192                 return;
7193             }
7194             if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
7195                 // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
7196                 warn(loc, "ignored", id.c_str(), "");
7197                 return;
7198             }
7199 
7200             // triangle order
7201             if (id == TQualifier::getVertexOrderString(EvoCw)) {
7202                 // publicType.shaderQualifiers.order = EvoCw;
7203                 warn(loc, "ignored", id.c_str(), "");
7204                 return;
7205             }
7206             if (id == TQualifier::getVertexOrderString(EvoCcw)) {
7207                 // publicType.shaderQualifiers.order = EvoCcw;
7208                 warn(loc, "ignored", id.c_str(), "");
7209                 return;
7210             }
7211 
7212             // point mode
7213             if (id == "point_mode") {
7214                 // publicType.shaderQualifiers.pointMode = true;
7215                 warn(loc, "ignored", id.c_str(), "");
7216                 return;
7217             }
7218         }
7219     }
7220     if (language == EShLangFragment) {
7221         if (id == "origin_upper_left") {
7222             // publicType.shaderQualifiers.originUpperLeft = true;
7223             warn(loc, "ignored", id.c_str(), "");
7224             return;
7225         }
7226         if (id == "pixel_center_integer") {
7227             // publicType.shaderQualifiers.pixelCenterInteger = true;
7228             warn(loc, "ignored", id.c_str(), "");
7229             return;
7230         }
7231         if (id == "early_fragment_tests") {
7232             // publicType.shaderQualifiers.earlyFragmentTests = true;
7233             warn(loc, "ignored", id.c_str(), "");
7234             return;
7235         }
7236         for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
7237             if (id == TQualifier::getLayoutDepthString(depth)) {
7238                 // publicType.shaderQualifiers.layoutDepth = depth;
7239                 warn(loc, "ignored", id.c_str(), "");
7240                 return;
7241             }
7242         }
7243         if (id.compare(0, 13, "blend_support") == 0) {
7244             bool found = false;
7245             for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
7246                 if (id == TQualifier::getBlendEquationString(be)) {
7247                     requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
7248                     intermediate.addBlendEquation(be);
7249                     // publicType.shaderQualifiers.blendEquation = true;
7250                     warn(loc, "ignored", id.c_str(), "");
7251                     found = true;
7252                     break;
7253                 }
7254             }
7255             if (! found)
7256                 error(loc, "unknown blend equation", "blend_support", "");
7257             return;
7258         }
7259     }
7260     error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
7261 }
7262 
7263 // Put the id's layout qualifier value into the public type, for qualifiers having a number set.
7264 // This is before we know any type information for error checking.
setLayoutQualifier(const TSourceLoc & loc,TQualifier & qualifier,TString & id,const TIntermTyped * node)7265 void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
7266                                           const TIntermTyped* node)
7267 {
7268     const char* feature = "layout-id value";
7269     // const char* nonLiteralFeature = "non-literal layout-id value";
7270 
7271     integerCheck(node, feature);
7272     const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
7273     int value = 0;
7274     if (constUnion) {
7275         value = constUnion->getConstArray()[0].getIConst();
7276     }
7277 
7278     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
7279 
7280     if (id == "offset") {
7281         qualifier.layoutOffset = value;
7282         return;
7283     } else if (id == "align") {
7284         // "The specified alignment must be a power of 2, or a compile-time error results."
7285         if (! IsPow2(value))
7286             error(loc, "must be a power of 2", "align", "");
7287         else
7288             qualifier.layoutAlign = value;
7289         return;
7290     } else if (id == "location") {
7291         if ((unsigned int)value >= TQualifier::layoutLocationEnd)
7292             error(loc, "location is too large", id.c_str(), "");
7293         else
7294             qualifier.layoutLocation = value;
7295         return;
7296     } else if (id == "set") {
7297         if ((unsigned int)value >= TQualifier::layoutSetEnd)
7298             error(loc, "set is too large", id.c_str(), "");
7299         else
7300             qualifier.layoutSet = value;
7301         return;
7302     } else if (id == "binding") {
7303         if ((unsigned int)value >= TQualifier::layoutBindingEnd)
7304             error(loc, "binding is too large", id.c_str(), "");
7305         else
7306             qualifier.layoutBinding = value;
7307         return;
7308     } else if (id == "component") {
7309         if ((unsigned)value >= TQualifier::layoutComponentEnd)
7310             error(loc, "component is too large", id.c_str(), "");
7311         else
7312             qualifier.layoutComponent = value;
7313         return;
7314     } else if (id.compare(0, 4, "xfb_") == 0) {
7315         // "Any shader making any static use (after preprocessing) of any of these
7316         // *xfb_* qualifiers will cause the shader to be in a transform feedback
7317         // capturing mode and hence responsible for describing the transform feedback
7318         // setup."
7319         intermediate.setXfbMode();
7320         if (id == "xfb_buffer") {
7321             // "It is a compile-time error to specify an *xfb_buffer* that is greater than
7322             // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
7323             if (value >= resources.maxTransformFeedbackBuffers)
7324                 error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
7325                       resources.maxTransformFeedbackBuffers);
7326             if (value >= (int)TQualifier::layoutXfbBufferEnd)
7327                 error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
7328             else
7329                 qualifier.layoutXfbBuffer = value;
7330             return;
7331         } else if (id == "xfb_offset") {
7332             if (value >= (int)TQualifier::layoutXfbOffsetEnd)
7333                 error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
7334             else
7335                 qualifier.layoutXfbOffset = value;
7336             return;
7337         } else if (id == "xfb_stride") {
7338             // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
7339             // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
7340             if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
7341                 error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
7342                       resources.maxTransformFeedbackInterleavedComponents);
7343             else if (value >= (int)TQualifier::layoutXfbStrideEnd)
7344                 error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
7345             if (value < (int)TQualifier::layoutXfbStrideEnd)
7346                 qualifier.layoutXfbStride = value;
7347             return;
7348         }
7349     }
7350 
7351     if (id == "input_attachment_index") {
7352         requireVulkan(loc, "input_attachment_index");
7353         if (value >= (int)TQualifier::layoutAttachmentEnd)
7354             error(loc, "attachment index is too large", id.c_str(), "");
7355         else
7356             qualifier.layoutAttachment = value;
7357         return;
7358     }
7359     if (id == "constant_id") {
7360         setSpecConstantId(loc, qualifier, value);
7361         return;
7362     }
7363 
7364     switch (language) {
7365     case EShLangVertex:
7366         break;
7367 
7368     case EShLangTessControl:
7369         if (id == "vertices") {
7370             if (value == 0)
7371                 error(loc, "must be greater than 0", "vertices", "");
7372             else
7373                 // publicType.shaderQualifiers.vertices = value;
7374                 warn(loc, "ignored", id.c_str(), "");
7375             return;
7376         }
7377         break;
7378 
7379     case EShLangTessEvaluation:
7380         break;
7381 
7382     case EShLangGeometry:
7383         if (id == "invocations") {
7384             if (value == 0)
7385                 error(loc, "must be at least 1", "invocations", "");
7386             else
7387                 // publicType.shaderQualifiers.invocations = value;
7388                 warn(loc, "ignored", id.c_str(), "");
7389             return;
7390         }
7391         if (id == "max_vertices") {
7392             // publicType.shaderQualifiers.vertices = value;
7393             warn(loc, "ignored", id.c_str(), "");
7394             if (value > resources.maxGeometryOutputVertices)
7395                 error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
7396             return;
7397         }
7398         if (id == "stream") {
7399             qualifier.layoutStream = value;
7400             return;
7401         }
7402         break;
7403 
7404     case EShLangFragment:
7405         if (id == "index") {
7406             qualifier.layoutIndex = value;
7407             return;
7408         }
7409         break;
7410 
7411     case EShLangCompute:
7412         if (id.compare(0, 11, "local_size_") == 0) {
7413             if (id == "local_size_x") {
7414                 // publicType.shaderQualifiers.localSize[0] = value;
7415                 warn(loc, "ignored", id.c_str(), "");
7416                 return;
7417             }
7418             if (id == "local_size_y") {
7419                 // publicType.shaderQualifiers.localSize[1] = value;
7420                 warn(loc, "ignored", id.c_str(), "");
7421                 return;
7422             }
7423             if (id == "local_size_z") {
7424                 // publicType.shaderQualifiers.localSize[2] = value;
7425                 warn(loc, "ignored", id.c_str(), "");
7426                 return;
7427             }
7428             if (spvVersion.spv != 0) {
7429                 if (id == "local_size_x_id") {
7430                     // publicType.shaderQualifiers.localSizeSpecId[0] = value;
7431                     warn(loc, "ignored", id.c_str(), "");
7432                     return;
7433                 }
7434                 if (id == "local_size_y_id") {
7435                     // publicType.shaderQualifiers.localSizeSpecId[1] = value;
7436                     warn(loc, "ignored", id.c_str(), "");
7437                     return;
7438                 }
7439                 if (id == "local_size_z_id") {
7440                     // publicType.shaderQualifiers.localSizeSpecId[2] = value;
7441                     warn(loc, "ignored", id.c_str(), "");
7442                     return;
7443                 }
7444             }
7445         }
7446         break;
7447 
7448     default:
7449         break;
7450     }
7451 
7452     error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
7453 }
7454 
setSpecConstantId(const TSourceLoc & loc,TQualifier & qualifier,int value)7455 void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
7456 {
7457     if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
7458         error(loc, "specialization-constant id is too large", "constant_id", "");
7459     } else {
7460         qualifier.layoutSpecConstantId = value;
7461         qualifier.specConstant = true;
7462         if (! intermediate.addUsedConstantId(value))
7463             error(loc, "specialization-constant id already used", "constant_id", "");
7464     }
7465     return;
7466 }
7467 
7468 // Merge any layout qualifier information from src into dst, leaving everything else in dst alone
7469 //
7470 // "More than one layout qualifier may appear in a single declaration.
7471 // Additionally, the same layout-qualifier-name can occur multiple times
7472 // within a layout qualifier or across multiple layout qualifiers in the
7473 // same declaration. When the same layout-qualifier-name occurs
7474 // multiple times, in a single declaration, the last occurrence overrides
7475 // the former occurrence(s).  Further, if such a layout-qualifier-name
7476 // will effect subsequent declarations or other observable behavior, it
7477 // is only the last occurrence that will have any effect, behaving as if
7478 // the earlier occurrence(s) within the declaration are not present.
7479 // This is also true for overriding layout-qualifier-names, where one
7480 // overrides the other (e.g., row_major vs. column_major); only the last
7481 // occurrence has any effect."
7482 //
mergeObjectLayoutQualifiers(TQualifier & dst,const TQualifier & src,bool inheritOnly)7483 void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
7484 {
7485     if (src.hasMatrix())
7486         dst.layoutMatrix = src.layoutMatrix;
7487     if (src.hasPacking())
7488         dst.layoutPacking = src.layoutPacking;
7489 
7490     if (src.hasStream())
7491         dst.layoutStream = src.layoutStream;
7492 
7493     if (src.hasFormat())
7494         dst.layoutFormat = src.layoutFormat;
7495 
7496     if (src.hasXfbBuffer())
7497         dst.layoutXfbBuffer = src.layoutXfbBuffer;
7498 
7499     if (src.hasAlign())
7500         dst.layoutAlign = src.layoutAlign;
7501 
7502     if (! inheritOnly) {
7503         if (src.hasLocation())
7504             dst.layoutLocation = src.layoutLocation;
7505         if (src.hasComponent())
7506             dst.layoutComponent = src.layoutComponent;
7507         if (src.hasIndex())
7508             dst.layoutIndex = src.layoutIndex;
7509 
7510         if (src.hasOffset())
7511             dst.layoutOffset = src.layoutOffset;
7512 
7513         if (src.hasSet())
7514             dst.layoutSet = src.layoutSet;
7515         if (src.layoutBinding != TQualifier::layoutBindingEnd)
7516             dst.layoutBinding = src.layoutBinding;
7517 
7518         if (src.hasXfbStride())
7519             dst.layoutXfbStride = src.layoutXfbStride;
7520         if (src.hasXfbOffset())
7521             dst.layoutXfbOffset = src.layoutXfbOffset;
7522         if (src.hasAttachment())
7523             dst.layoutAttachment = src.layoutAttachment;
7524         if (src.hasSpecConstantId())
7525             dst.layoutSpecConstantId = src.layoutSpecConstantId;
7526 
7527         if (src.layoutPushConstant)
7528             dst.layoutPushConstant = true;
7529     }
7530 }
7531 
7532 
7533 //
7534 // Look up a function name in the symbol table, and make sure it is a function.
7535 //
7536 // First, look for an exact match.  If there is none, use the generic selector
7537 // TParseContextBase::selectFunction() to find one, parameterized by the
7538 // convertible() and better() predicates defined below.
7539 //
7540 // Return the function symbol if found, otherwise nullptr.
7541 //
findFunction(const TSourceLoc & loc,TFunction & call,bool & builtIn,int & thisDepth,TIntermTyped * & args)7542 const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
7543                                                 TIntermTyped*& args)
7544 {
7545     if (symbolTable.isFunctionNameVariable(call.getName())) {
7546         error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
7547         return nullptr;
7548     }
7549 
7550     // first, look for an exact match
7551     bool dummyScope;
7552     TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
7553     if (symbol)
7554         return symbol->getAsFunction();
7555 
7556     // no exact match, use the generic selector, parameterized by the GLSL rules
7557 
7558     // create list of candidates to send
7559     TVector<const TFunction*> candidateList;
7560     symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
7561 
7562     // These built-in ops can accept any type, so we bypass the argument selection
7563     if (candidateList.size() == 1 && builtIn &&
7564         (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
7565          candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
7566          candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
7567          candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
7568          candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
7569          candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
7570         return candidateList[0];
7571     }
7572 
7573     bool allowOnlyUpConversions = true;
7574 
7575     // can 'from' convert to 'to'?
7576     const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
7577         if (from == to)
7578             return true;
7579 
7580         // no aggregate conversions
7581         if (from.isArray()  || to.isArray() ||
7582             from.isStruct() || to.isStruct())
7583             return false;
7584 
7585         switch (op) {
7586         case EOpInterlockedAdd:
7587         case EOpInterlockedAnd:
7588         case EOpInterlockedCompareExchange:
7589         case EOpInterlockedCompareStore:
7590         case EOpInterlockedExchange:
7591         case EOpInterlockedMax:
7592         case EOpInterlockedMin:
7593         case EOpInterlockedOr:
7594         case EOpInterlockedXor:
7595             // We do not promote the texture or image type for these ocodes.  Normally that would not
7596             // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
7597             // stage it's merely e.g, a basic integer type.
7598             //
7599             // Instead, we want to promote other arguments, but stay within the same family.  In other
7600             // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
7601             // but it is allowed to promote its other arguments.
7602             if (arg == 0)
7603                 return false;
7604             break;
7605         case EOpMethodSample:
7606         case EOpMethodSampleBias:
7607         case EOpMethodSampleCmp:
7608         case EOpMethodSampleCmpLevelZero:
7609         case EOpMethodSampleGrad:
7610         case EOpMethodSampleLevel:
7611         case EOpMethodLoad:
7612         case EOpMethodGetDimensions:
7613         case EOpMethodGetSamplePosition:
7614         case EOpMethodGather:
7615         case EOpMethodCalculateLevelOfDetail:
7616         case EOpMethodCalculateLevelOfDetailUnclamped:
7617         case EOpMethodGatherRed:
7618         case EOpMethodGatherGreen:
7619         case EOpMethodGatherBlue:
7620         case EOpMethodGatherAlpha:
7621         case EOpMethodGatherCmp:
7622         case EOpMethodGatherCmpRed:
7623         case EOpMethodGatherCmpGreen:
7624         case EOpMethodGatherCmpBlue:
7625         case EOpMethodGatherCmpAlpha:
7626         case EOpMethodAppend:
7627         case EOpMethodRestartStrip:
7628             // those are method calls, the object type can not be changed
7629             // they are equal if the dim and type match (is dim sufficient?)
7630             if (arg == 0)
7631                 return from.getSampler().type == to.getSampler().type &&
7632                        from.getSampler().arrayed == to.getSampler().arrayed &&
7633                        from.getSampler().shadow == to.getSampler().shadow &&
7634                        from.getSampler().ms == to.getSampler().ms &&
7635                        from.getSampler().dim == to.getSampler().dim;
7636             break;
7637         default:
7638             break;
7639         }
7640 
7641         // basic types have to be convertible
7642         if (allowOnlyUpConversions)
7643             if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
7644                 return false;
7645 
7646         // shapes have to be convertible
7647         if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
7648             (from.isScalarOrVec1() && to.isVector())    ||
7649             (from.isScalarOrVec1() && to.isMatrix())    ||
7650             (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
7651             return true;
7652 
7653         // TODO: what are the matrix rules? they go here
7654 
7655         return false;
7656     };
7657 
7658     // Is 'to2' a better conversion than 'to1'?
7659     // Ties should not be considered as better.
7660     // Assumes 'convertible' already said true.
7661     const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
7662         // exact match is always better than mismatch
7663         if (from == to2)
7664             return from != to1;
7665         if (from == to1)
7666             return false;
7667 
7668         // shape changes are always worse
7669         if (from.isScalar() || from.isVector()) {
7670             if (from.getVectorSize() == to2.getVectorSize() &&
7671                 from.getVectorSize() != to1.getVectorSize())
7672                 return true;
7673             if (from.getVectorSize() == to1.getVectorSize() &&
7674                 from.getVectorSize() != to2.getVectorSize())
7675                 return false;
7676         }
7677 
7678         // Handle sampler betterness: An exact sampler match beats a non-exact match.
7679         // (If we just looked at basic type, all EbtSamplers would look the same).
7680         // If any type is not a sampler, just use the linearize function below.
7681         if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
7682             // We can ignore the vector size in the comparison.
7683             TSampler to1Sampler = to1.getSampler();
7684             TSampler to2Sampler = to2.getSampler();
7685 
7686             to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
7687 
7688             if (from.getSampler() == to2Sampler)
7689                 return from.getSampler() != to1Sampler;
7690             if (from.getSampler() == to1Sampler)
7691                 return false;
7692         }
7693 
7694         // Might or might not be changing shape, which means basic type might
7695         // or might not match, so within that, the question is how big a
7696         // basic-type conversion is being done.
7697         //
7698         // Use a hierarchy of domains, translated to order of magnitude
7699         // in a linearized view:
7700         //   - floating-point vs. integer
7701         //     - 32 vs. 64 bit (or width in general)
7702         //       - bool vs. non bool
7703         //         - signed vs. not signed
7704         const auto linearize = [](const TBasicType& basicType) -> int {
7705             switch (basicType) {
7706             case EbtBool:     return 1;
7707             case EbtInt:      return 10;
7708             case EbtUint:     return 11;
7709             case EbtInt64:    return 20;
7710             case EbtUint64:   return 21;
7711             case EbtFloat:    return 100;
7712             case EbtDouble:   return 110;
7713             default:          return 0;
7714             }
7715         };
7716 
7717         return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
7718                abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
7719     };
7720 
7721     // for ambiguity reporting
7722     bool tie = false;
7723 
7724     // send to the generic selector
7725     const TFunction* bestMatch = nullptr;
7726 
7727     // printf has var args and is in the symbol table as "printf()",
7728     // mangled to "printf("
7729     if (call.getName() == "printf") {
7730         TSymbol* symbol = symbolTable.find("printf(", &builtIn);
7731         if (symbol)
7732             return symbol->getAsFunction();
7733     }
7734 
7735     bestMatch = selectFunction(candidateList, call, convertible, better, tie);
7736 
7737     if (bestMatch == nullptr) {
7738         // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
7739         // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
7740         // upconversions possible.
7741         allowOnlyUpConversions = false;
7742         bestMatch = selectFunction(candidateList, call, convertible, better, tie);
7743     }
7744 
7745     if (bestMatch == nullptr) {
7746         error(loc, "no matching overloaded function found", call.getName().c_str(), "");
7747         return nullptr;
7748     }
7749 
7750     // For built-ins, we can convert across the arguments.  This will happen in several steps:
7751     // Step 1:  If there's an exact match, use it.
7752     // Step 2a: Otherwise, get the operator from the best match and promote arguments:
7753     // Step 2b: reconstruct the TFunction based on the new arg types
7754     // Step 3:  Re-select after type promotion is applied, to find proper candidate.
7755     if (builtIn) {
7756         // Step 1: If there's an exact match, use it.
7757         if (call.getMangledName() == bestMatch->getMangledName())
7758             return bestMatch;
7759 
7760         // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
7761         // are that kind of operator.
7762         if (args != nullptr) {
7763             // The arg list can be a unary node, or an aggregate.  We have to handle both.
7764             // We will use the normal promote() facilities, which require an interm node.
7765             TIntermOperator* promote = nullptr;
7766 
7767             if (call.getParamCount() == 1) {
7768                 promote = new TIntermUnary(bestMatch->getBuiltInOp());
7769                 promote->getAsUnaryNode()->setOperand(args->getAsTyped());
7770             } else {
7771                 promote = new TIntermAggregate(bestMatch->getBuiltInOp());
7772                 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
7773             }
7774 
7775             if (! intermediate.promote(promote))
7776                 return nullptr;
7777 
7778             // Obtain the promoted arg list.
7779             if (call.getParamCount() == 1) {
7780                 args = promote->getAsUnaryNode()->getOperand();
7781             } else {
7782                 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
7783             }
7784         }
7785 
7786         // Step 2b: reconstruct the TFunction based on the new arg types
7787         TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
7788 
7789         if (args->getAsAggregate()) {
7790             // Handle aggregates: put all args into the new function call
7791             for (int arg = 0; arg < int(args->getAsAggregate()->getSequence().size()); ++arg) {
7792                 // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
7793                 TParameter param = { nullptr, new TType, nullptr };
7794                 param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
7795                 convertedCall.addParameter(param);
7796             }
7797         } else if (args->getAsUnaryNode()) {
7798             // Handle unaries: put all args into the new function call
7799             TParameter param = { nullptr, new TType, nullptr };
7800             param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
7801             convertedCall.addParameter(param);
7802         } else if (args->getAsTyped()) {
7803             // Handle bare e.g, floats, not in an aggregate.
7804             TParameter param = { nullptr, new TType, nullptr };
7805             param.type->shallowCopy(args->getAsTyped()->getType());
7806             convertedCall.addParameter(param);
7807         } else {
7808             assert(0); // unknown argument list.
7809             return nullptr;
7810         }
7811 
7812         // Step 3: Re-select after type promotion, to find proper candidate
7813         // send to the generic selector
7814         bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
7815 
7816         // At this point, there should be no tie.
7817     }
7818 
7819     if (tie)
7820         error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
7821 
7822     // Append default parameter values if needed
7823     if (!tie && bestMatch != nullptr) {
7824         for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
7825             handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
7826         }
7827     }
7828 
7829     return bestMatch;
7830 }
7831 
7832 //
7833 // Do everything necessary to handle a typedef declaration, for a single symbol.
7834 //
7835 // 'parseType' is the type part of the declaration (to the left)
7836 // 'arraySizes' is the arrayness tagged on the identifier (to the right)
7837 //
declareTypedef(const TSourceLoc & loc,const TString & identifier,const TType & parseType)7838 void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
7839 {
7840     TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
7841     if (! symbolTable.insert(*typeSymbol))
7842         error(loc, "name already defined", "typedef", identifier.c_str());
7843 }
7844 
7845 // Do everything necessary to handle a struct declaration, including
7846 // making IO aliases because HLSL allows mixed IO in a struct that specializes
7847 // based on the usage (input, output, uniform, none).
declareStruct(const TSourceLoc & loc,TString & structName,TType & type)7848 void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
7849 {
7850     // If it was named, which means the type can be reused later, add
7851     // it to the symbol table.  (Unless it's a block, in which
7852     // case the name is not a type.)
7853     if (type.getBasicType() == EbtBlock || structName.size() == 0)
7854         return;
7855 
7856     TVariable* userTypeDef = new TVariable(&structName, type, true);
7857     if (! symbolTable.insert(*userTypeDef)) {
7858         error(loc, "redefinition", structName.c_str(), "struct");
7859         return;
7860     }
7861 
7862     // See if we need IO aliases for the structure typeList
7863 
7864     const auto condAlloc = [](bool pred, TTypeList*& list) {
7865         if (pred && list == nullptr)
7866             list = new TTypeList;
7867     };
7868 
7869     tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
7870     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
7871         condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
7872         condAlloc(  hasInput(member->type->getQualifier()), newLists.input);
7873         condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
7874 
7875         if (member->type->isStruct()) {
7876             auto it = ioTypeMap.find(member->type->getStruct());
7877             if (it != ioTypeMap.end()) {
7878                 condAlloc(it->second.uniform != nullptr, newLists.uniform);
7879                 condAlloc(it->second.input   != nullptr, newLists.input);
7880                 condAlloc(it->second.output  != nullptr, newLists.output);
7881             }
7882         }
7883     }
7884     if (newLists.uniform == nullptr &&
7885         newLists.input   == nullptr &&
7886         newLists.output  == nullptr) {
7887         // Won't do any IO caching, clear up the type and get out now.
7888         for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
7889             clearUniformInputOutput(member->type->getQualifier());
7890         return;
7891     }
7892 
7893     // We have IO involved.
7894 
7895     // Make a pure typeList for the symbol table, and cache side copies of IO versions.
7896     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
7897         const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
7898             if (s != nullptr) {
7899                 ioMember.type = new TType;
7900                 ioMember.type->shallowCopy(*member->type);
7901                 ioMember.type->setStruct(s);
7902             }
7903         };
7904         const auto newMember = [&](TTypeLoc& m) {
7905             if (m.type == nullptr) {
7906                 m.type = new TType;
7907                 m.type->shallowCopy(*member->type);
7908             }
7909         };
7910 
7911         TTypeLoc newUniformMember = { nullptr, member->loc };
7912         TTypeLoc newInputMember   = { nullptr, member->loc };
7913         TTypeLoc newOutputMember  = { nullptr, member->loc };
7914         if (member->type->isStruct()) {
7915             // swap in an IO child if there is one
7916             auto it = ioTypeMap.find(member->type->getStruct());
7917             if (it != ioTypeMap.end()) {
7918                 inheritStruct(it->second.uniform, newUniformMember);
7919                 inheritStruct(it->second.input,   newInputMember);
7920                 inheritStruct(it->second.output,  newOutputMember);
7921             }
7922         }
7923         if (newLists.uniform) {
7924             newMember(newUniformMember);
7925 
7926             // inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
7927             if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
7928                 newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
7929 
7930             correctUniform(newUniformMember.type->getQualifier());
7931             newLists.uniform->push_back(newUniformMember);
7932         }
7933         if (newLists.input) {
7934             newMember(newInputMember);
7935             correctInput(newInputMember.type->getQualifier());
7936             newLists.input->push_back(newInputMember);
7937         }
7938         if (newLists.output) {
7939             newMember(newOutputMember);
7940             correctOutput(newOutputMember.type->getQualifier());
7941             newLists.output->push_back(newOutputMember);
7942         }
7943 
7944         // make original pure
7945         clearUniformInputOutput(member->type->getQualifier());
7946     }
7947     ioTypeMap[type.getStruct()] = newLists;
7948 }
7949 
7950 // Lookup a user-type by name.
7951 // If found, fill in the type and return the defining symbol.
7952 // If not found, return nullptr.
lookupUserType(const TString & typeName,TType & type)7953 TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
7954 {
7955     TSymbol* symbol = symbolTable.find(typeName);
7956     if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
7957         type.shallowCopy(symbol->getType());
7958         return symbol;
7959     } else
7960         return nullptr;
7961 }
7962 
7963 //
7964 // Do everything necessary to handle a variable (non-block) declaration.
7965 // Either redeclaring a variable, or making a new one, updating the symbol
7966 // table, and all error checking.
7967 //
7968 // Returns a subtree node that computes an initializer, if needed.
7969 // Returns nullptr if there is no code to execute for initialization.
7970 //
7971 // 'parseType' is the type part of the declaration (to the left)
7972 // 'arraySizes' is the arrayness tagged on the identifier (to the right)
7973 //
declareVariable(const TSourceLoc & loc,const TString & identifier,TType & type,TIntermTyped * initializer)7974 TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
7975                                                TIntermTyped* initializer)
7976 {
7977     if (voidErrorCheck(loc, identifier, type.getBasicType()))
7978         return nullptr;
7979 
7980     // Global consts with initializers that are non-const act like EvqGlobal in HLSL.
7981     // This test is implicitly recursive, because initializers propagate constness
7982     // up the aggregate node tree during creation.  E.g, for:
7983     //    { { 1, 2 }, { 3, 4 } }
7984     // the initializer list is marked EvqConst at the top node, and remains so here.  However:
7985     //    { 1, { myvar, 2 }, 3 }
7986     // is not a const intializer, and still becomes EvqGlobal here.
7987 
7988     const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
7989 
7990     if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
7991         // Force to global
7992         type.getQualifier().storage = EvqGlobal;
7993     }
7994 
7995     // make const and initialization consistent
7996     fixConstInit(loc, identifier, type, initializer);
7997 
7998     // Check for redeclaration of built-ins and/or attempting to declare a reserved name
7999     TSymbol* symbol = nullptr;
8000 
8001     inheritGlobalDefaults(type.getQualifier());
8002 
8003     const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
8004 
8005     // correct IO in the type
8006     switch (type.getQualifier().storage) {
8007     case EvqGlobal:
8008     case EvqTemporary:
8009         clearUniformInputOutput(type.getQualifier());
8010         break;
8011     case EvqUniform:
8012     case EvqBuffer:
8013         correctUniform(type.getQualifier());
8014         if (type.isStruct()) {
8015             auto it = ioTypeMap.find(type.getStruct());
8016             if (it != ioTypeMap.end())
8017                 type.setStruct(it->second.uniform);
8018         }
8019 
8020         break;
8021     default:
8022         break;
8023     }
8024 
8025     // Declare the variable
8026     if (type.isArray()) {
8027         // array case
8028         declareArray(loc, identifier, type, symbol, !flattenVar);
8029     } else {
8030         // non-array case
8031         if (symbol == nullptr)
8032             symbol = declareNonArray(loc, identifier, type, !flattenVar);
8033         else if (type != symbol->getType())
8034             error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
8035     }
8036 
8037     if (symbol == nullptr)
8038         return nullptr;
8039 
8040     if (flattenVar)
8041         flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
8042 
8043     TVariable* variable = symbol->getAsVariable();
8044 
8045     if (initializer == nullptr) {
8046         if (intermediate.getDebugInfo())
8047             return executeDeclaration(loc, variable);
8048         else
8049             return nullptr;
8050     }
8051 
8052     // Deal with initializer
8053     if (variable == nullptr) {
8054         error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
8055         return nullptr;
8056     }
8057     return executeInitializer(loc, initializer, variable);
8058 }
8059 
8060 // Pick up global defaults from the provide global defaults into dst.
inheritGlobalDefaults(TQualifier & dst) const8061 void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
8062 {
8063     if (dst.storage == EvqVaryingOut) {
8064         if (! dst.hasStream() && language == EShLangGeometry)
8065             dst.layoutStream = globalOutputDefaults.layoutStream;
8066         if (! dst.hasXfbBuffer())
8067             dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
8068     }
8069 }
8070 
8071 //
8072 // Make an internal-only variable whose name is for debug purposes only
8073 // and won't be searched for.  Callers will only use the return value to use
8074 // the variable, not the name to look it up.  It is okay if the name
8075 // is the same as other names; there won't be any conflict.
8076 //
makeInternalVariable(const char * name,const TType & type) const8077 TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
8078 {
8079     TString* nameString = NewPoolTString(name);
8080     TVariable* variable = new TVariable(nameString, type);
8081     symbolTable.makeInternalVariable(*variable);
8082 
8083     return variable;
8084 }
8085 
8086 // Make a symbol node holding a new internal temporary variable.
makeInternalVariableNode(const TSourceLoc & loc,const char * name,const TType & type) const8087 TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
8088                                                           const TType& type) const
8089 {
8090     TVariable* tmpVar = makeInternalVariable(name, type);
8091     tmpVar->getWritableType().getQualifier().makeTemporary();
8092 
8093     return intermediate.addSymbol(*tmpVar, loc);
8094 }
8095 
8096 //
8097 // Declare a non-array variable, the main point being there is no redeclaration
8098 // for resizing allowed.
8099 //
8100 // Return the successfully declared variable.
8101 //
declareNonArray(const TSourceLoc & loc,const TString & identifier,const TType & type,bool track)8102 TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
8103                                              bool track)
8104 {
8105     // make a new variable
8106     TVariable* variable = new TVariable(&identifier, type);
8107 
8108     // add variable to symbol table
8109     if (symbolTable.insert(*variable)) {
8110         if (track && symbolTable.atGlobalLevel())
8111             trackLinkage(*variable);
8112         return variable;
8113     }
8114 
8115     error(loc, "redefinition", variable->getName().c_str(), "");
8116     return nullptr;
8117 }
8118 
8119 // Return a declaration of a temporary variable
8120 //
8121 // This is used to force a variable to be declared in the correct scope
8122 // when debug information is being generated.
8123 
executeDeclaration(const TSourceLoc & loc,TVariable * variable)8124 TIntermNode* HlslParseContext::executeDeclaration(const TSourceLoc& loc, TVariable* variable)
8125 {
8126   //
8127   // Identifier must be of type temporary.
8128   //
8129   TStorageQualifier qualifier = variable->getType().getQualifier().storage;
8130   if (qualifier != EvqTemporary)
8131       return nullptr;
8132 
8133   TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
8134   return handleDeclare(loc, intermSymbol);
8135 }
8136 
8137 //
8138 // Handle all types of initializers from the grammar.
8139 //
8140 // Returning nullptr just means there is no code to execute to handle the
8141 // initializer, which will, for example, be the case for constant initializers.
8142 //
8143 // Returns a subtree that accomplished the initialization.
8144 //
executeInitializer(const TSourceLoc & loc,TIntermTyped * initializer,TVariable * variable)8145 TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
8146 {
8147     //
8148     // Identifier must be of type constant, a global, or a temporary, and
8149     // starting at version 120, desktop allows uniforms to have initializers.
8150     //
8151     TStorageQualifier qualifier = variable->getType().getQualifier().storage;
8152 
8153     //
8154     // If the initializer was from braces { ... }, we convert the whole subtree to a
8155     // constructor-style subtree, allowing the rest of the code to operate
8156     // identically for both kinds of initializers.
8157     //
8158     //
8159     // Type can't be deduced from the initializer list, so a skeletal type to
8160     // follow has to be passed in.  Constness and specialization-constness
8161     // should be deduced bottom up, not dictated by the skeletal type.
8162     //
8163     TType skeletalType;
8164     skeletalType.shallowCopy(variable->getType());
8165     skeletalType.getQualifier().makeTemporary();
8166     if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
8167         initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
8168     if (initializer == nullptr) {
8169         // error recovery; don't leave const without constant values
8170         if (qualifier == EvqConst)
8171             variable->getWritableType().getQualifier().storage = EvqTemporary;
8172         return nullptr;
8173     }
8174 
8175     // Fix outer arrayness if variable is unsized, getting size from the initializer
8176     if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
8177         variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
8178 
8179     // Inner arrayness can also get set by an initializer
8180     if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
8181         initializer->getType().getArraySizes()->getNumDims() ==
8182         variable->getType().getArraySizes()->getNumDims()) {
8183         // adopt unsized sizes from the initializer's sizes
8184         for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
8185             if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
8186                 variable->getWritableType().getArraySizes()->setDimSize(d,
8187                     initializer->getType().getArraySizes()->getDimSize(d));
8188             }
8189         }
8190     }
8191 
8192     // Uniform and global consts require a constant initializer
8193     if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
8194         error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
8195         variable->getWritableType().getQualifier().storage = EvqTemporary;
8196         return nullptr;
8197     }
8198 
8199     // Const variables require a constant initializer
8200     if (qualifier == EvqConst) {
8201         if (initializer->getType().getQualifier().storage != EvqConst) {
8202             variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
8203             qualifier = EvqConstReadOnly;
8204         }
8205     }
8206 
8207     if (qualifier == EvqConst || qualifier == EvqUniform) {
8208         // Compile-time tagging of the variable with its constant value...
8209 
8210         initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
8211         if (initializer != nullptr && variable->getType() != initializer->getType())
8212             initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
8213         if (initializer == nullptr || !initializer->getAsConstantUnion() ||
8214                                       variable->getType() != initializer->getType()) {
8215             error(loc, "non-matching or non-convertible constant type for const initializer",
8216                 variable->getType().getStorageQualifierString(), "");
8217             variable->getWritableType().getQualifier().storage = EvqTemporary;
8218             return nullptr;
8219         }
8220 
8221         variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
8222     } else {
8223         // normal assigning of a value to a variable...
8224         specializationCheck(loc, initializer->getType(), "initializer");
8225         TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
8226         TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
8227         if (initNode == nullptr)
8228             assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
8229         return initNode;
8230     }
8231 
8232     return nullptr;
8233 }
8234 
8235 //
8236 // Reprocess any initializer-list { ... } parts of the initializer.
8237 // Need to hierarchically assign correct types and implicit
8238 // conversions. Will do this mimicking the same process used for
8239 // creating a constructor-style initializer, ensuring we get the
8240 // same form.
8241 //
8242 // Returns a node representing an expression for the initializer list expressed
8243 // as the correct type.
8244 //
8245 // Returns nullptr if there is an error.
8246 //
convertInitializerList(const TSourceLoc & loc,const TType & type,TIntermTyped * initializer,TIntermTyped * scalarInit)8247 TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
8248                                                        TIntermTyped* initializer, TIntermTyped* scalarInit)
8249 {
8250     // Will operate recursively.  Once a subtree is found that is constructor style,
8251     // everything below it is already good: Only the "top part" of the initializer
8252     // can be an initializer list, where "top part" can extend for several (or all) levels.
8253 
8254     // see if we have bottomed out in the tree within the initializer-list part
8255     TIntermAggregate* initList = initializer->getAsAggregate();
8256     if (initList == nullptr || initList->getOp() != EOpNull) {
8257         // We don't have a list, but if it's a scalar and the 'type' is a
8258         // composite, we need to lengthen below to make it useful.
8259         // Otherwise, this is an already formed object to initialize with.
8260         if (type.isScalar() || !initializer->getType().isScalar())
8261             return initializer;
8262         else
8263             initList = intermediate.makeAggregate(initializer);
8264     }
8265 
8266     // Of the initializer-list set of nodes, need to process bottom up,
8267     // so recurse deep, then process on the way up.
8268 
8269     // Go down the tree here...
8270     if (type.isArray()) {
8271         // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
8272         // Later on, initializer execution code will deal with array size logic.
8273         TType arrayType;
8274         arrayType.shallowCopy(type);                     // sharing struct stuff is fine
8275         arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
8276 
8277         // edit array sizes to fill in unsized dimensions
8278         if (type.isUnsizedArray())
8279             arrayType.changeOuterArraySize((int)initList->getSequence().size());
8280 
8281         // set unsized array dimensions that can be derived from the initializer's first element
8282         if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
8283             TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
8284             if (firstInit->getType().isArray() &&
8285                 arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
8286                 for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
8287                     if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
8288                         arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
8289                 }
8290             }
8291         }
8292 
8293         // lengthen list to be long enough
8294         lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
8295 
8296         // recursively process each element
8297         TType elementType(arrayType, 0); // dereferenced type
8298         for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
8299             initList->getSequence()[i] = convertInitializerList(loc, elementType,
8300                                                                 initList->getSequence()[i]->getAsTyped(), scalarInit);
8301             if (initList->getSequence()[i] == nullptr)
8302                 return nullptr;
8303         }
8304 
8305         return addConstructor(loc, initList, arrayType);
8306     } else if (type.isStruct()) {
8307         // do we have implicit assignments to opaques?
8308         for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
8309             if ((*type.getStruct())[i].type->containsOpaque()) {
8310                 error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
8311                 return nullptr;
8312             }
8313         }
8314 
8315         // lengthen list to be long enough
8316         lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
8317 
8318         if (type.getStruct()->size() != initList->getSequence().size()) {
8319             error(loc, "wrong number of structure members", "initializer list", "");
8320             return nullptr;
8321         }
8322         for (size_t i = 0; i < type.getStruct()->size(); ++i) {
8323             initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
8324                                                                 initList->getSequence()[i]->getAsTyped(), scalarInit);
8325             if (initList->getSequence()[i] == nullptr)
8326                 return nullptr;
8327         }
8328     } else if (type.isMatrix()) {
8329         if (type.computeNumComponents() == (int)initList->getSequence().size()) {
8330             // This means the matrix is initialized component-wise, rather than as
8331             // a series of rows and columns.  We can just use the list directly as
8332             // a constructor; no further processing needed.
8333         } else {
8334             // lengthen list to be long enough
8335             lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
8336 
8337             if (type.getMatrixCols() != (int)initList->getSequence().size()) {
8338                 error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
8339                 return nullptr;
8340             }
8341             TType vectorType(type, 0); // dereferenced type
8342             for (int i = 0; i < type.getMatrixCols(); ++i) {
8343                 initList->getSequence()[i] = convertInitializerList(loc, vectorType,
8344                                                                     initList->getSequence()[i]->getAsTyped(), scalarInit);
8345                 if (initList->getSequence()[i] == nullptr)
8346                     return nullptr;
8347             }
8348         }
8349     } else if (type.isVector()) {
8350         // lengthen list to be long enough
8351         lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
8352 
8353         // error check; we're at bottom, so work is finished below
8354         if (type.getVectorSize() != (int)initList->getSequence().size()) {
8355             error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
8356                   type.getCompleteString().c_str());
8357             return nullptr;
8358         }
8359     } else if (type.isScalar()) {
8360         // lengthen list to be long enough
8361         lengthenList(loc, initList->getSequence(), 1, scalarInit);
8362 
8363         if ((int)initList->getSequence().size() != 1) {
8364             error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
8365             return nullptr;
8366         }
8367     } else {
8368         error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
8369         return nullptr;
8370     }
8371 
8372     // Now that the subtree is processed, process this node as if the
8373     // initializer list is a set of arguments to a constructor.
8374     TIntermTyped* emulatedConstructorArguments;
8375     if (initList->getSequence().size() == 1)
8376         emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
8377     else
8378         emulatedConstructorArguments = initList;
8379 
8380     return addConstructor(loc, emulatedConstructorArguments, type);
8381 }
8382 
8383 // Lengthen list to be long enough to cover any gap from the current list size
8384 // to 'size'. If the list is longer, do nothing.
8385 // The value to lengthen with is the default for short lists.
8386 //
8387 // By default, lists that are too short due to lack of initializers initialize to zero.
8388 // Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
8389 // based on whether something is passed in as 'scalarInit'.
8390 //
8391 // 'scalarInit' must be safe to use each time this is called (no side effects replication).
8392 //
lengthenList(const TSourceLoc & loc,TIntermSequence & list,int size,TIntermTyped * scalarInit)8393 void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
8394 {
8395     for (int c = (int)list.size(); c < size; ++c) {
8396         if (scalarInit == nullptr)
8397             list.push_back(intermediate.addConstantUnion(0, loc));
8398         else
8399             list.push_back(scalarInit);
8400     }
8401 }
8402 
8403 //
8404 // Test for the correctness of the parameters passed to various constructor functions
8405 // and also convert them to the right data type, if allowed and required.
8406 //
8407 // Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
8408 //
handleConstructor(const TSourceLoc & loc,TIntermTyped * node,const TType & type)8409 TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
8410 {
8411     if (node == nullptr)
8412         return nullptr;
8413 
8414     // Construct identical type
8415     if (type == node->getType())
8416         return node;
8417 
8418     // Handle the idiom "(struct type)<scalar value>"
8419     if (type.isStruct() && isScalarConstructor(node)) {
8420         // 'node' will almost always get used multiple times, so should not be used directly,
8421         // it would create a DAG instead of a tree, which might be okay (would
8422         // like to formalize that for constants and symbols), but if it has
8423         // side effects, they would get executed multiple times, which is not okay.
8424         if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
8425             TIntermAggregate* seq = intermediate.makeAggregate(loc);
8426             TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
8427             seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
8428             seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
8429             seq->setOp(EOpComma);
8430             seq->setType(type);
8431             return seq;
8432         } else
8433             return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
8434     }
8435 
8436     return addConstructor(loc, node, type);
8437 }
8438 
8439 // Add a constructor, either from the grammar, or other programmatic reasons.
8440 //
8441 // 'node' is what to construct from.
8442 // 'type' is what type to construct.
8443 //
8444 // Returns the constructed object.
8445 // Return nullptr if it can't be done.
8446 //
addConstructor(const TSourceLoc & loc,TIntermTyped * node,const TType & type)8447 TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
8448 {
8449     TIntermAggregate* aggrNode = node->getAsAggregate();
8450     TOperator op = intermediate.mapTypeToConstructorOp(type);
8451 
8452     if (op == EOpConstructTextureSampler)
8453         return intermediate.setAggregateOperator(aggrNode, op, type, loc);
8454 
8455     TTypeList::const_iterator memberTypes;
8456     if (op == EOpConstructStruct)
8457         memberTypes = type.getStruct()->begin();
8458 
8459     TType elementType;
8460     if (type.isArray()) {
8461         TType dereferenced(type, 0);
8462         elementType.shallowCopy(dereferenced);
8463     } else
8464         elementType.shallowCopy(type);
8465 
8466     bool singleArg;
8467     if (aggrNode != nullptr) {
8468         if (aggrNode->getOp() != EOpNull)
8469             singleArg = true;
8470         else
8471             singleArg = false;
8472     } else
8473         singleArg = true;
8474 
8475     TIntermTyped *newNode;
8476     if (singleArg) {
8477         // Handle array -> array conversion
8478         // Constructing an array of one type from an array of another type is allowed,
8479         // assuming there are enough components available (semantic-checked earlier).
8480         if (type.isArray() && node->isArray())
8481             newNode = convertArray(node, type);
8482 
8483         // If structure constructor or array constructor is being called
8484         // for only one parameter inside the aggregate, we need to call constructAggregate function once.
8485         else if (type.isArray())
8486             newNode = constructAggregate(node, elementType, 1, node->getLoc());
8487         else if (op == EOpConstructStruct)
8488             newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
8489         else {
8490             // shape conversion for matrix constructor from scalar.  HLSL semantics are: scalar
8491             // is replicated into every element of the matrix (not just the diagnonal), so
8492             // that is handled specially here.
8493             if (type.isMatrix() && node->getType().isScalarOrVec1())
8494                 node = intermediate.addShapeConversion(type, node);
8495 
8496             newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
8497         }
8498 
8499         if (newNode && (type.isArray() || op == EOpConstructStruct))
8500             newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
8501 
8502         return newNode;
8503     }
8504 
8505     //
8506     // Handle list of arguments.
8507     //
8508     TIntermSequence& sequenceVector = aggrNode->getSequence();    // Stores the information about the parameter to the constructor
8509     // if the structure constructor contains more than one parameter, then construct
8510     // each parameter
8511 
8512     int paramCount = 0;  // keeps a track of the constructor parameter number being checked
8513 
8514     // for each parameter to the constructor call, check to see if the right type is passed or convert them
8515     // to the right type if possible (and allowed).
8516     // for structure constructors, just check if the right type is passed, no conversion is allowed.
8517 
8518     for (TIntermSequence::iterator p = sequenceVector.begin();
8519         p != sequenceVector.end(); p++, paramCount++) {
8520         if (type.isArray())
8521             newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
8522         else if (op == EOpConstructStruct)
8523             newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
8524         else
8525             newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
8526 
8527         if (newNode)
8528             *p = newNode;
8529         else
8530             return nullptr;
8531     }
8532 
8533     TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
8534 
8535     return constructor;
8536 }
8537 
8538 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
8539 // for the parameter to the constructor (passed to this function). Essentially, it converts
8540 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
8541 // float, then float is converted to int.
8542 //
8543 // Returns nullptr for an error or the constructed node.
8544 //
constructBuiltIn(const TType & type,TOperator op,TIntermTyped * node,const TSourceLoc & loc,bool subset)8545 TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
8546                                                  const TSourceLoc& loc, bool subset)
8547 {
8548     TIntermTyped* newNode;
8549     TOperator basicOp;
8550 
8551     //
8552     // First, convert types as needed.
8553     //
8554     switch (op) {
8555     case EOpConstructF16Vec2:
8556     case EOpConstructF16Vec3:
8557     case EOpConstructF16Vec4:
8558     case EOpConstructF16Mat2x2:
8559     case EOpConstructF16Mat2x3:
8560     case EOpConstructF16Mat2x4:
8561     case EOpConstructF16Mat3x2:
8562     case EOpConstructF16Mat3x3:
8563     case EOpConstructF16Mat3x4:
8564     case EOpConstructF16Mat4x2:
8565     case EOpConstructF16Mat4x3:
8566     case EOpConstructF16Mat4x4:
8567     case EOpConstructFloat16:
8568         basicOp = EOpConstructFloat16;
8569         break;
8570 
8571     case EOpConstructVec2:
8572     case EOpConstructVec3:
8573     case EOpConstructVec4:
8574     case EOpConstructMat2x2:
8575     case EOpConstructMat2x3:
8576     case EOpConstructMat2x4:
8577     case EOpConstructMat3x2:
8578     case EOpConstructMat3x3:
8579     case EOpConstructMat3x4:
8580     case EOpConstructMat4x2:
8581     case EOpConstructMat4x3:
8582     case EOpConstructMat4x4:
8583     case EOpConstructFloat:
8584         basicOp = EOpConstructFloat;
8585         break;
8586 
8587     case EOpConstructDVec2:
8588     case EOpConstructDVec3:
8589     case EOpConstructDVec4:
8590     case EOpConstructDMat2x2:
8591     case EOpConstructDMat2x3:
8592     case EOpConstructDMat2x4:
8593     case EOpConstructDMat3x2:
8594     case EOpConstructDMat3x3:
8595     case EOpConstructDMat3x4:
8596     case EOpConstructDMat4x2:
8597     case EOpConstructDMat4x3:
8598     case EOpConstructDMat4x4:
8599     case EOpConstructDouble:
8600         basicOp = EOpConstructDouble;
8601         break;
8602 
8603     case EOpConstructI16Vec2:
8604     case EOpConstructI16Vec3:
8605     case EOpConstructI16Vec4:
8606     case EOpConstructInt16:
8607         basicOp = EOpConstructInt16;
8608         break;
8609 
8610     case EOpConstructIVec2:
8611     case EOpConstructIVec3:
8612     case EOpConstructIVec4:
8613     case EOpConstructIMat2x2:
8614     case EOpConstructIMat2x3:
8615     case EOpConstructIMat2x4:
8616     case EOpConstructIMat3x2:
8617     case EOpConstructIMat3x3:
8618     case EOpConstructIMat3x4:
8619     case EOpConstructIMat4x2:
8620     case EOpConstructIMat4x3:
8621     case EOpConstructIMat4x4:
8622     case EOpConstructInt:
8623         basicOp = EOpConstructInt;
8624         break;
8625 
8626     case EOpConstructU16Vec2:
8627     case EOpConstructU16Vec3:
8628     case EOpConstructU16Vec4:
8629     case EOpConstructUint16:
8630         basicOp = EOpConstructUint16;
8631         break;
8632 
8633     case EOpConstructUVec2:
8634     case EOpConstructUVec3:
8635     case EOpConstructUVec4:
8636     case EOpConstructUMat2x2:
8637     case EOpConstructUMat2x3:
8638     case EOpConstructUMat2x4:
8639     case EOpConstructUMat3x2:
8640     case EOpConstructUMat3x3:
8641     case EOpConstructUMat3x4:
8642     case EOpConstructUMat4x2:
8643     case EOpConstructUMat4x3:
8644     case EOpConstructUMat4x4:
8645     case EOpConstructUint:
8646         basicOp = EOpConstructUint;
8647         break;
8648 
8649     case EOpConstructBVec2:
8650     case EOpConstructBVec3:
8651     case EOpConstructBVec4:
8652     case EOpConstructBMat2x2:
8653     case EOpConstructBMat2x3:
8654     case EOpConstructBMat2x4:
8655     case EOpConstructBMat3x2:
8656     case EOpConstructBMat3x3:
8657     case EOpConstructBMat3x4:
8658     case EOpConstructBMat4x2:
8659     case EOpConstructBMat4x3:
8660     case EOpConstructBMat4x4:
8661     case EOpConstructBool:
8662         basicOp = EOpConstructBool;
8663         break;
8664 
8665     default:
8666         error(loc, "unsupported construction", "", "");
8667 
8668         return nullptr;
8669     }
8670     newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
8671     if (newNode == nullptr) {
8672         error(loc, "can't convert", "constructor", "");
8673         return nullptr;
8674     }
8675 
8676     //
8677     // Now, if there still isn't an operation to do the construction, and we need one, add one.
8678     //
8679 
8680     // Otherwise, skip out early.
8681     if (subset || (newNode != node && newNode->getType() == type))
8682         return newNode;
8683 
8684     // setAggregateOperator will insert a new node for the constructor, as needed.
8685     return intermediate.setAggregateOperator(newNode, op, type, loc);
8686 }
8687 
8688 // Convert the array in node to the requested type, which is also an array.
8689 // Returns nullptr on failure, otherwise returns aggregate holding the list of
8690 // elements needed to construct the array.
convertArray(TIntermTyped * node,const TType & type)8691 TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
8692 {
8693     assert(node->isArray() && type.isArray());
8694     if (node->getType().computeNumComponents() < type.computeNumComponents())
8695         return nullptr;
8696 
8697     // TODO: write an argument replicator, for the case the argument should not be
8698     // executed multiple times, yet multiple copies are needed.
8699 
8700     TIntermTyped* constructee = node->getAsTyped();
8701     // track where we are in consuming the argument
8702     int constructeeElement = 0;
8703     int constructeeComponent = 0;
8704 
8705     // bump up to the next component to consume
8706     const auto getNextComponent = [&]() {
8707         TIntermTyped* component;
8708         component = handleBracketDereference(node->getLoc(), constructee,
8709                                              intermediate.addConstantUnion(constructeeElement, node->getLoc()));
8710         if (component->isVector())
8711             component = handleBracketDereference(node->getLoc(), component,
8712                                                  intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
8713         // bump component pointer up
8714         ++constructeeComponent;
8715         if (constructeeComponent == constructee->getVectorSize()) {
8716             constructeeComponent = 0;
8717             ++constructeeElement;
8718         }
8719         return component;
8720     };
8721 
8722     // make one subnode per constructed array element
8723     TIntermAggregate* constructor = nullptr;
8724     TType derefType(type, 0);
8725     TType speculativeComponentType(derefType, 0);
8726     TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
8727     TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
8728     TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
8729     for (int e = 0; e < type.getOuterArraySize(); ++e) {
8730         // construct an element
8731         TIntermTyped* elementArg;
8732         if (type.getVectorSize() == constructee->getVectorSize()) {
8733             // same element shape
8734             elementArg = handleBracketDereference(node->getLoc(), constructee,
8735                                                   intermediate.addConstantUnion(e, node->getLoc()));
8736         } else {
8737             // mismatched element shapes
8738             if (type.getVectorSize() == 1)
8739                 elementArg = getNextComponent();
8740             else {
8741                 // make a vector
8742                 TIntermAggregate* elementConstructee = nullptr;
8743                 for (int c = 0; c < type.getVectorSize(); ++c)
8744                     elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
8745                 elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
8746             }
8747         }
8748         // convert basic types
8749         elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
8750         if (elementArg == nullptr)
8751             return nullptr;
8752         // combine with top-level constructor
8753         constructor = intermediate.growAggregate(constructor, elementArg);
8754     }
8755 
8756     return constructor;
8757 }
8758 
8759 // This function tests for the type of the parameters to the structure or array constructor. Raises
8760 // an error message if the expected type does not match the parameter passed to the constructor.
8761 //
8762 // Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
8763 //
constructAggregate(TIntermNode * node,const TType & type,int paramCount,const TSourceLoc & loc)8764 TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
8765                                                    const TSourceLoc& loc)
8766 {
8767     // Handle cases that map more 1:1 between constructor arguments and constructed.
8768     TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
8769     if (converted == nullptr || converted->getType() != type) {
8770         error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
8771             node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
8772 
8773         return nullptr;
8774     }
8775 
8776     return converted;
8777 }
8778 
8779 //
8780 // Do everything needed to add an interface block.
8781 //
declareBlock(const TSourceLoc & loc,TType & type,const TString * instanceName)8782 void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
8783 {
8784     assert(type.getWritableStruct() != nullptr);
8785 
8786     // Clean up top-level decorations that don't belong.
8787     switch (type.getQualifier().storage) {
8788     case EvqUniform:
8789     case EvqBuffer:
8790         correctUniform(type.getQualifier());
8791         break;
8792     case EvqVaryingIn:
8793         correctInput(type.getQualifier());
8794         break;
8795     case EvqVaryingOut:
8796         correctOutput(type.getQualifier());
8797         break;
8798     default:
8799         break;
8800     }
8801 
8802     TTypeList& typeList = *type.getWritableStruct();
8803     // fix and check for member storage qualifiers and types that don't belong within a block
8804     for (unsigned int member = 0; member < typeList.size(); ++member) {
8805         TType& memberType = *typeList[member].type;
8806         TQualifier& memberQualifier = memberType.getQualifier();
8807         const TSourceLoc& memberLoc = typeList[member].loc;
8808         globalQualifierFix(memberLoc, memberQualifier);
8809         memberQualifier.storage = type.getQualifier().storage;
8810 
8811         if (memberType.isStruct()) {
8812             // clean up and pick up the right set of decorations
8813             auto it = ioTypeMap.find(memberType.getStruct());
8814             switch (type.getQualifier().storage) {
8815             case EvqUniform:
8816             case EvqBuffer:
8817                 correctUniform(type.getQualifier());
8818                 if (it != ioTypeMap.end() && it->second.uniform)
8819                     memberType.setStruct(it->second.uniform);
8820                 break;
8821             case EvqVaryingIn:
8822                 correctInput(type.getQualifier());
8823                 if (it != ioTypeMap.end() && it->second.input)
8824                     memberType.setStruct(it->second.input);
8825                 break;
8826             case EvqVaryingOut:
8827                 correctOutput(type.getQualifier());
8828                 if (it != ioTypeMap.end() && it->second.output)
8829                     memberType.setStruct(it->second.output);
8830                 break;
8831             default:
8832                 break;
8833             }
8834         }
8835     }
8836 
8837     // Make default block qualification, and adjust the member qualifications
8838 
8839     TQualifier defaultQualification;
8840     switch (type.getQualifier().storage) {
8841     case EvqUniform:    defaultQualification = globalUniformDefaults;    break;
8842     case EvqBuffer:     defaultQualification = globalBufferDefaults;     break;
8843     case EvqVaryingIn:  defaultQualification = globalInputDefaults;      break;
8844     case EvqVaryingOut: defaultQualification = globalOutputDefaults;     break;
8845     default:            defaultQualification.clear();                    break;
8846     }
8847 
8848     // Special case for "push_constant uniform", which has a default of std430,
8849     // contrary to normal uniform defaults, and can't have a default tracked for it.
8850     if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
8851         type.getQualifier().layoutPacking = ElpStd430;
8852 
8853     // fix and check for member layout qualifiers
8854 
8855     mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
8856 
8857     bool memberWithLocation = false;
8858     bool memberWithoutLocation = false;
8859     for (unsigned int member = 0; member < typeList.size(); ++member) {
8860         TQualifier& memberQualifier = typeList[member].type->getQualifier();
8861         const TSourceLoc& memberLoc = typeList[member].loc;
8862         if (memberQualifier.hasStream()) {
8863             if (defaultQualification.layoutStream != memberQualifier.layoutStream)
8864                 error(memberLoc, "member cannot contradict block", "stream", "");
8865         }
8866 
8867         // "This includes a block's inheritance of the
8868         // current global default buffer, a block member's inheritance of the block's
8869         // buffer, and the requirement that any *xfb_buffer* declared on a block
8870         // member must match the buffer inherited from the block."
8871         if (memberQualifier.hasXfbBuffer()) {
8872             if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
8873                 error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
8874         }
8875 
8876         if (memberQualifier.hasLocation()) {
8877             switch (type.getQualifier().storage) {
8878             case EvqVaryingIn:
8879             case EvqVaryingOut:
8880                 memberWithLocation = true;
8881                 break;
8882             default:
8883                 break;
8884             }
8885         } else
8886             memberWithoutLocation = true;
8887 
8888         TQualifier newMemberQualification = defaultQualification;
8889         mergeQualifiers(newMemberQualification, memberQualifier);
8890         memberQualifier = newMemberQualification;
8891     }
8892 
8893     // Process the members
8894     fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
8895     fixXfbOffsets(type.getQualifier(), typeList);
8896     fixBlockUniformOffsets(type.getQualifier(), typeList);
8897 
8898     // reverse merge, so that currentBlockQualifier now has all layout information
8899     // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
8900     mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
8901 
8902     //
8903     // Build and add the interface block as a new type named 'blockName'
8904     //
8905 
8906     // Use the instance name as the interface name if one exists, else the block name.
8907     const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
8908 
8909     TType blockType(&typeList, interfaceName, type.getQualifier());
8910     if (type.isArray())
8911         blockType.transferArraySizes(type.getArraySizes());
8912 
8913     // Add the variable, as anonymous or named instanceName.
8914     // Make an anonymous variable if no name was provided.
8915     if (instanceName == nullptr)
8916         instanceName = NewPoolTString("");
8917 
8918     TVariable& variable = *new TVariable(instanceName, blockType);
8919     if (! symbolTable.insert(variable)) {
8920         if (*instanceName == "")
8921             error(loc, "nameless block contains a member that already has a name at global scope",
8922                   "" /* blockName->c_str() */, "");
8923         else
8924             error(loc, "block instance name redefinition", variable.getName().c_str(), "");
8925 
8926         return;
8927     }
8928 
8929     // Save it in the AST for linker use.
8930     if (symbolTable.atGlobalLevel())
8931         trackLinkage(variable);
8932 }
8933 
8934 //
8935 // "For a block, this process applies to the entire block, or until the first member
8936 // is reached that has a location layout qualifier. When a block member is declared with a location
8937 // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
8938 // declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
8939 // until the next member declared with a location qualifier. The values used for locations do not have to be
8940 // declared in increasing order."
fixBlockLocations(const TSourceLoc & loc,TQualifier & qualifier,TTypeList & typeList,bool memberWithLocation,bool memberWithoutLocation)8941 void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
8942 {
8943     // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
8944     // have a location layout qualifier, or a compile-time error results."
8945     if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
8946         error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
8947     else {
8948         if (memberWithLocation) {
8949             // remove any block-level location and make it per *every* member
8950             int nextLocation = 0;  // by the rule above, initial value is not relevant
8951             if (qualifier.hasAnyLocation()) {
8952                 nextLocation = qualifier.layoutLocation;
8953                 qualifier.layoutLocation = TQualifier::layoutLocationEnd;
8954                 if (qualifier.hasComponent()) {
8955                     // "It is a compile-time error to apply the *component* qualifier to a ... block"
8956                     error(loc, "cannot apply to a block", "component", "");
8957                 }
8958                 if (qualifier.hasIndex()) {
8959                     error(loc, "cannot apply to a block", "index", "");
8960                 }
8961             }
8962             for (unsigned int member = 0; member < typeList.size(); ++member) {
8963                 TQualifier& memberQualifier = typeList[member].type->getQualifier();
8964                 const TSourceLoc& memberLoc = typeList[member].loc;
8965                 if (! memberQualifier.hasLocation()) {
8966                     if (nextLocation >= (int)TQualifier::layoutLocationEnd)
8967                         error(memberLoc, "location is too large", "location", "");
8968                     memberQualifier.layoutLocation = nextLocation;
8969                     memberQualifier.layoutComponent = 0;
8970                 }
8971                 nextLocation = memberQualifier.layoutLocation +
8972                                intermediate.computeTypeLocationSize(*typeList[member].type, language);
8973             }
8974         }
8975     }
8976 }
8977 
fixXfbOffsets(TQualifier & qualifier,TTypeList & typeList)8978 void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
8979 {
8980     // "If a block is qualified with xfb_offset, all its
8981     // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
8982     // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
8983     // offsets."
8984 
8985     if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
8986         return;
8987 
8988     int nextOffset = qualifier.layoutXfbOffset;
8989     for (unsigned int member = 0; member < typeList.size(); ++member) {
8990         TQualifier& memberQualifier = typeList[member].type->getQualifier();
8991         bool contains64BitType = false;
8992         bool contains32BitType = false;
8993         bool contains16BitType = false;
8994         int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
8995         // see if we need to auto-assign an offset to this member
8996         if (! memberQualifier.hasXfbOffset()) {
8997             // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
8998             if (contains64BitType)
8999                 RoundToPow2(nextOffset, 8);
9000             else if (contains32BitType)
9001                 RoundToPow2(nextOffset, 4);
9002             // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
9003             else if (contains16BitType)
9004                 RoundToPow2(nextOffset, 2);
9005             memberQualifier.layoutXfbOffset = nextOffset;
9006         } else
9007             nextOffset = memberQualifier.layoutXfbOffset;
9008         nextOffset += memberSize;
9009     }
9010 
9011     // The above gave all block members an offset, so we can take it off the block now,
9012     // which will avoid double counting the offset usage.
9013     qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
9014 }
9015 
9016 // Calculate and save the offset of each block member, using the recursively
9017 // defined block offset rules and the user-provided offset and align.
9018 //
9019 // Also, compute and save the total size of the block. For the block's size, arrayness
9020 // is not taken into account, as each element is backed by a separate buffer.
9021 //
fixBlockUniformOffsets(const TQualifier & qualifier,TTypeList & typeList)9022 void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
9023 {
9024     if (! qualifier.isUniformOrBuffer())
9025         return;
9026     if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
9027         return;
9028 
9029     int offset = 0;
9030     int memberSize;
9031     for (unsigned int member = 0; member < typeList.size(); ++member) {
9032         TQualifier& memberQualifier = typeList[member].type->getQualifier();
9033         const TSourceLoc& memberLoc = typeList[member].loc;
9034 
9035         // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
9036 
9037         // modify just the children's view of matrix layout, if there is one for this member
9038         TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
9039         int dummyStride;
9040         int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
9041                                                               qualifier.layoutPacking,
9042                                                               subMatrixLayout != ElmNone
9043                                                                   ? subMatrixLayout == ElmRowMajor
9044                                                                   : qualifier.layoutMatrix == ElmRowMajor);
9045         if (memberQualifier.hasOffset()) {
9046             // "The specified offset must be a multiple
9047             // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
9048             if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
9049                 error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
9050 
9051             // "The offset qualifier forces the qualified member to start at or after the specified
9052             // integral-constant expression, which will be its byte offset from the beginning of the buffer.
9053             // "The actual offset of a member is computed as
9054             // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
9055             offset = std::max(offset, memberQualifier.layoutOffset);
9056         }
9057 
9058         // "The actual alignment of a member will be the greater of the specified align alignment and the standard
9059         // (e.g., std140) base alignment for the member's type."
9060         if (memberQualifier.hasAlign())
9061             memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
9062 
9063         // "If the resulting offset is not a multiple of the actual alignment,
9064         // increase it to the first offset that is a multiple of
9065         // the actual alignment."
9066         RoundToPow2(offset, memberAlignment);
9067         typeList[member].type->getQualifier().layoutOffset = offset;
9068         offset += memberSize;
9069     }
9070 }
9071 
9072 // For an identifier that is already declared, add more qualification to it.
addQualifierToExisting(const TSourceLoc & loc,TQualifier qualifier,const TString & identifier)9073 void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
9074 {
9075     TSymbol* symbol = symbolTable.find(identifier);
9076     if (symbol == nullptr) {
9077         error(loc, "identifier not previously declared", identifier.c_str(), "");
9078         return;
9079     }
9080     if (symbol->getAsFunction()) {
9081         error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
9082         return;
9083     }
9084 
9085     if (qualifier.isAuxiliary() ||
9086         qualifier.isMemory() ||
9087         qualifier.isInterpolation() ||
9088         qualifier.hasLayout() ||
9089         qualifier.storage != EvqTemporary ||
9090         qualifier.precision != EpqNone) {
9091         error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
9092         return;
9093     }
9094 
9095     // For read-only built-ins, add a new symbol for holding the modified qualifier.
9096     // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
9097     if (symbol->isReadOnly())
9098         symbol = symbolTable.copyUp(symbol);
9099 
9100     if (qualifier.invariant) {
9101         if (intermediate.inIoAccessed(identifier))
9102             error(loc, "cannot change qualification after use", "invariant", "");
9103         symbol->getWritableType().getQualifier().invariant = true;
9104     } else if (qualifier.noContraction) {
9105         if (intermediate.inIoAccessed(identifier))
9106             error(loc, "cannot change qualification after use", "precise", "");
9107         symbol->getWritableType().getQualifier().noContraction = true;
9108     } else if (qualifier.specConstant) {
9109         symbol->getWritableType().getQualifier().makeSpecConstant();
9110         if (qualifier.hasSpecConstantId())
9111             symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
9112     } else
9113         warn(loc, "unknown requalification", "", "");
9114 }
9115 
addQualifierToExisting(const TSourceLoc & loc,TQualifier qualifier,TIdentifierList & identifiers)9116 void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
9117 {
9118     for (unsigned int i = 0; i < identifiers.size(); ++i)
9119         addQualifierToExisting(loc, qualifier, *identifiers[i]);
9120 }
9121 
9122 //
9123 // Update the intermediate for the given input geometry
9124 //
handleInputGeometry(const TSourceLoc & loc,const TLayoutGeometry & geometry)9125 bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
9126 {
9127     // these can be declared on non-entry-points, in which case they lose their meaning
9128     if (! parsingEntrypointParameters)
9129         return true;
9130 
9131     switch (geometry) {
9132     case ElgPoints:             // fall through
9133     case ElgLines:              // ...
9134     case ElgTriangles:          // ...
9135     case ElgLinesAdjacency:     // ...
9136     case ElgTrianglesAdjacency: // ...
9137         if (! intermediate.setInputPrimitive(geometry)) {
9138             error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
9139             return false;
9140         }
9141         break;
9142 
9143     default:
9144         error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
9145         return false;
9146     }
9147 
9148     return true;
9149 }
9150 
9151 //
9152 // Update the intermediate for the given output geometry
9153 //
handleOutputGeometry(const TSourceLoc & loc,const TLayoutGeometry & geometry)9154 bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
9155 {
9156     // If this is not a geometry shader, ignore.  It might be a mixed shader including several stages.
9157     // Since that's an OK situation, return true for success.
9158     if (language != EShLangGeometry)
9159         return true;
9160 
9161     // these can be declared on non-entry-points, in which case they lose their meaning
9162     if (! parsingEntrypointParameters)
9163         return true;
9164 
9165     switch (geometry) {
9166     case ElgPoints:
9167     case ElgLineStrip:
9168     case ElgTriangleStrip:
9169         if (! intermediate.setOutputPrimitive(geometry)) {
9170             error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
9171             return false;
9172         }
9173         break;
9174     default:
9175         error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
9176         return false;
9177     }
9178 
9179     return true;
9180 }
9181 
9182 //
9183 // Selection attributes
9184 //
handleSelectionAttributes(const TSourceLoc & loc,TIntermSelection * selection,const TAttributes & attributes)9185 void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
9186     const TAttributes& attributes)
9187 {
9188     if (selection == nullptr)
9189         return;
9190 
9191     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9192         switch (it->name) {
9193         case EatFlatten:
9194             selection->setFlatten();
9195             break;
9196         case EatBranch:
9197             selection->setDontFlatten();
9198             break;
9199         default:
9200             warn(loc, "attribute does not apply to a selection", "", "");
9201             break;
9202         }
9203     }
9204 }
9205 
9206 //
9207 // Switch attributes
9208 //
handleSwitchAttributes(const TSourceLoc & loc,TIntermSwitch * selection,const TAttributes & attributes)9209 void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
9210     const TAttributes& attributes)
9211 {
9212     if (selection == nullptr)
9213         return;
9214 
9215     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9216         switch (it->name) {
9217         case EatFlatten:
9218             selection->setFlatten();
9219             break;
9220         case EatBranch:
9221             selection->setDontFlatten();
9222             break;
9223         default:
9224             warn(loc, "attribute does not apply to a switch", "", "");
9225             break;
9226         }
9227     }
9228 }
9229 
9230 //
9231 // Loop attributes
9232 //
handleLoopAttributes(const TSourceLoc & loc,TIntermLoop * loop,const TAttributes & attributes)9233 void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
9234     const TAttributes& attributes)
9235 {
9236     if (loop == nullptr)
9237         return;
9238 
9239     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9240         switch (it->name) {
9241         case EatUnroll:
9242             loop->setUnroll();
9243             break;
9244         case EatLoop:
9245             loop->setDontUnroll();
9246             break;
9247         default:
9248             warn(loc, "attribute does not apply to a loop", "", "");
9249             break;
9250         }
9251     }
9252 }
9253 
9254 //
9255 // Updating default qualifier for the case of a declaration with just a qualifier,
9256 // no type, block, or identifier.
9257 //
updateStandaloneQualifierDefaults(const TSourceLoc & loc,const TPublicType & publicType)9258 void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
9259 {
9260     if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
9261         assert(language == EShLangTessControl || language == EShLangGeometry);
9262         // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
9263     }
9264     if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
9265         if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
9266             error(loc, "cannot change previously set layout value", "invocations", "");
9267     }
9268     if (publicType.shaderQualifiers.geometry != ElgNone) {
9269         if (publicType.qualifier.storage == EvqVaryingIn) {
9270             switch (publicType.shaderQualifiers.geometry) {
9271             case ElgPoints:
9272             case ElgLines:
9273             case ElgLinesAdjacency:
9274             case ElgTriangles:
9275             case ElgTrianglesAdjacency:
9276             case ElgQuads:
9277             case ElgIsolines:
9278                 break;
9279             default:
9280                 error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
9281                       "");
9282             }
9283         } else if (publicType.qualifier.storage == EvqVaryingOut) {
9284             handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
9285         } else
9286             error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
9287                   GetStorageQualifierString(publicType.qualifier.storage));
9288     }
9289     if (publicType.shaderQualifiers.spacing != EvsNone)
9290         intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
9291     if (publicType.shaderQualifiers.order != EvoNone)
9292         intermediate.setVertexOrder(publicType.shaderQualifiers.order);
9293     if (publicType.shaderQualifiers.pointMode)
9294         intermediate.setPointMode();
9295     for (int i = 0; i < 3; ++i) {
9296         if (publicType.shaderQualifiers.localSize[i] > 1) {
9297             int max = 0;
9298             switch (i) {
9299             case 0: max = resources.maxComputeWorkGroupSizeX; break;
9300             case 1: max = resources.maxComputeWorkGroupSizeY; break;
9301             case 2: max = resources.maxComputeWorkGroupSizeZ; break;
9302             default: break;
9303             }
9304             if (intermediate.getLocalSize(i) > (unsigned int)max)
9305                 error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
9306 
9307             // Fix the existing constant gl_WorkGroupSize with this new information.
9308             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
9309             workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
9310         }
9311         if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
9312             intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
9313             // Set the workgroup built-in variable as a specialization constant
9314             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
9315             workGroupSize->getWritableType().getQualifier().specConstant = true;
9316         }
9317     }
9318     if (publicType.shaderQualifiers.earlyFragmentTests)
9319         intermediate.setEarlyFragmentTests();
9320 
9321     const TQualifier& qualifier = publicType.qualifier;
9322 
9323     switch (qualifier.storage) {
9324     case EvqUniform:
9325         if (qualifier.hasMatrix())
9326             globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
9327         if (qualifier.hasPacking())
9328             globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
9329         break;
9330     case EvqBuffer:
9331         if (qualifier.hasMatrix())
9332             globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
9333         if (qualifier.hasPacking())
9334             globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
9335         break;
9336     case EvqVaryingIn:
9337         break;
9338     case EvqVaryingOut:
9339         if (qualifier.hasStream())
9340             globalOutputDefaults.layoutStream = qualifier.layoutStream;
9341         if (qualifier.hasXfbBuffer())
9342             globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
9343         if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
9344             if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
9345                 error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
9346                       qualifier.layoutXfbBuffer);
9347         }
9348         break;
9349     default:
9350         error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
9351         return;
9352     }
9353 }
9354 
9355 //
9356 // Take the sequence of statements that has been built up since the last case/default,
9357 // put it on the list of top-level nodes for the current (inner-most) switch statement,
9358 // and follow that by the case/default we are on now.  (See switch topology comment on
9359 // TIntermSwitch.)
9360 //
wrapupSwitchSubsequence(TIntermAggregate * statements,TIntermNode * branchNode)9361 void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
9362 {
9363     TIntermSequence* switchSequence = switchSequenceStack.back();
9364 
9365     if (statements) {
9366         statements->setOperator(EOpSequence);
9367         switchSequence->push_back(statements);
9368     }
9369     if (branchNode) {
9370         // check all previous cases for the same label (or both are 'default')
9371         for (unsigned int s = 0; s < switchSequence->size(); ++s) {
9372             TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
9373             if (prevBranch) {
9374                 TIntermTyped* prevExpression = prevBranch->getExpression();
9375                 TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
9376                 if (prevExpression == nullptr && newExpression == nullptr)
9377                     error(branchNode->getLoc(), "duplicate label", "default", "");
9378                 else if (prevExpression != nullptr &&
9379                     newExpression != nullptr &&
9380                     prevExpression->getAsConstantUnion() &&
9381                     newExpression->getAsConstantUnion() &&
9382                     prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
9383                     newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
9384                     error(branchNode->getLoc(), "duplicated value", "case", "");
9385             }
9386         }
9387         switchSequence->push_back(branchNode);
9388     }
9389 }
9390 
9391 //
9392 // Turn the top-level node sequence built up of wrapupSwitchSubsequence
9393 // into a switch node.
9394 //
addSwitch(const TSourceLoc & loc,TIntermTyped * expression,TIntermAggregate * lastStatements,const TAttributes & attributes)9395 TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
9396                                          TIntermAggregate* lastStatements, const TAttributes& attributes)
9397 {
9398     wrapupSwitchSubsequence(lastStatements, nullptr);
9399 
9400     if (expression == nullptr ||
9401         (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
9402         expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
9403         error(loc, "condition must be a scalar integer expression", "switch", "");
9404 
9405     // If there is nothing to do, drop the switch but still execute the expression
9406     TIntermSequence* switchSequence = switchSequenceStack.back();
9407     if (switchSequence->size() == 0)
9408         return expression;
9409 
9410     if (lastStatements == nullptr) {
9411         // emulate a break for error recovery
9412         lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
9413         lastStatements->setOperator(EOpSequence);
9414         switchSequence->push_back(lastStatements);
9415     }
9416 
9417     TIntermAggregate* body = new TIntermAggregate(EOpSequence);
9418     body->getSequence() = *switchSequenceStack.back();
9419     body->setLoc(loc);
9420 
9421     TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
9422     switchNode->setLoc(loc);
9423     handleSwitchAttributes(loc, switchNode, attributes);
9424 
9425     return switchNode;
9426 }
9427 
9428 // Make a new symbol-table level that is made out of the members of a structure.
9429 // This should be done as an anonymous struct (name is "") so that the symbol table
9430 // finds the members with no explicit reference to a 'this' variable.
pushThisScope(const TType & thisStruct,const TVector<TFunctionDeclarator> & functionDeclarators)9431 void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
9432 {
9433     // member variables
9434     TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
9435     symbolTable.pushThis(thisVariable);
9436 
9437     // member functions
9438     for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
9439         // member should have a prefix matching currentTypePrefix.back()
9440         // but, symbol lookup within the class scope will just use the
9441         // unprefixed name. Hence, there are two: one fully prefixed and
9442         // one with no prefix.
9443         TFunction& member = *it->function->clone();
9444         member.removePrefix(currentTypePrefix.back());
9445         symbolTable.insert(member);
9446     }
9447 }
9448 
9449 // Track levels of class/struct/namespace nesting with a prefix string using
9450 // the type names separated by the scoping operator. E.g., two levels
9451 // would look like:
9452 //
9453 //   outer::inner
9454 //
9455 // The string is empty when at normal global level.
9456 //
pushNamespace(const TString & typeName)9457 void HlslParseContext::pushNamespace(const TString& typeName)
9458 {
9459     // make new type prefix
9460     TString newPrefix;
9461     if (currentTypePrefix.size() > 0)
9462         newPrefix = currentTypePrefix.back();
9463     newPrefix.append(typeName);
9464     newPrefix.append(scopeMangler);
9465     currentTypePrefix.push_back(newPrefix);
9466 }
9467 
9468 // Opposite of pushNamespace(), see above
popNamespace()9469 void HlslParseContext::popNamespace()
9470 {
9471     currentTypePrefix.pop_back();
9472 }
9473 
9474 // Use the class/struct nesting string to create a global name for
9475 // a member of a class/struct.
getFullNamespaceName(TString * & name) const9476 void HlslParseContext::getFullNamespaceName(TString*& name) const
9477 {
9478     if (currentTypePrefix.size() == 0)
9479         return;
9480 
9481     TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
9482     fullName->append(*name);
9483     name = fullName;
9484 }
9485 
9486 // Helper function to add the namespace scope mangling syntax to a string.
addScopeMangler(TString & name)9487 void HlslParseContext::addScopeMangler(TString& name)
9488 {
9489     name.append(scopeMangler);
9490 }
9491 
9492 // Return true if this has uniform-interface like decorations.
hasUniform(const TQualifier & qualifier) const9493 bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
9494 {
9495     return qualifier.hasUniformLayout() ||
9496            qualifier.layoutPushConstant;
9497 }
9498 
9499 // Potentially not the opposite of hasUniform(), as if some characteristic is
9500 // ever used for more than one thing (e.g., uniform or input), hasUniform() should
9501 // say it exists, but clearUniform() should leave it in place.
clearUniform(TQualifier & qualifier)9502 void HlslParseContext::clearUniform(TQualifier& qualifier)
9503 {
9504     qualifier.clearUniformLayout();
9505     qualifier.layoutPushConstant = false;
9506 }
9507 
9508 // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
isInputBuiltIn(const TQualifier & qualifier) const9509 bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
9510 {
9511     switch (qualifier.builtIn) {
9512     case EbvPosition:
9513     case EbvPointSize:
9514         return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
9515     case EbvClipDistance:
9516     case EbvCullDistance:
9517         return language != EShLangVertex && language != EShLangCompute;
9518     case EbvFragCoord:
9519     case EbvFace:
9520     case EbvHelperInvocation:
9521     case EbvLayer:
9522     case EbvPointCoord:
9523     case EbvSampleId:
9524     case EbvSampleMask:
9525     case EbvSamplePosition:
9526     case EbvViewportIndex:
9527         return language == EShLangFragment;
9528     case EbvGlobalInvocationId:
9529     case EbvLocalInvocationIndex:
9530     case EbvLocalInvocationId:
9531     case EbvNumWorkGroups:
9532     case EbvWorkGroupId:
9533     case EbvWorkGroupSize:
9534         return language == EShLangCompute;
9535     case EbvInvocationId:
9536         return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
9537     case EbvPatchVertices:
9538         return language == EShLangTessControl || language == EShLangTessEvaluation;
9539     case EbvInstanceId:
9540     case EbvInstanceIndex:
9541     case EbvVertexId:
9542     case EbvVertexIndex:
9543         return language == EShLangVertex;
9544     case EbvPrimitiveId:
9545         return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
9546     case EbvTessLevelInner:
9547     case EbvTessLevelOuter:
9548         return language == EShLangTessEvaluation;
9549     case EbvTessCoord:
9550         return language == EShLangTessEvaluation;
9551     default:
9552         return false;
9553     }
9554 }
9555 
9556 // Return true if there are decorations to preserve for input-like storage.
hasInput(const TQualifier & qualifier) const9557 bool HlslParseContext::hasInput(const TQualifier& qualifier) const
9558 {
9559     if (qualifier.hasAnyLocation())
9560         return true;
9561 
9562     if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
9563         return true;
9564 
9565     if (language == EShLangTessEvaluation && qualifier.patch)
9566         return true;
9567 
9568     if (isInputBuiltIn(qualifier))
9569         return true;
9570 
9571     return false;
9572 }
9573 
9574 // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
isOutputBuiltIn(const TQualifier & qualifier) const9575 bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
9576 {
9577     switch (qualifier.builtIn) {
9578     case EbvPosition:
9579     case EbvPointSize:
9580     case EbvClipVertex:
9581     case EbvClipDistance:
9582     case EbvCullDistance:
9583         return language != EShLangFragment && language != EShLangCompute;
9584     case EbvFragDepth:
9585     case EbvFragDepthGreater:
9586     case EbvFragDepthLesser:
9587     case EbvSampleMask:
9588         return language == EShLangFragment;
9589     case EbvLayer:
9590     case EbvViewportIndex:
9591         return language == EShLangGeometry || language == EShLangVertex;
9592     case EbvPrimitiveId:
9593         return language == EShLangGeometry;
9594     case EbvTessLevelInner:
9595     case EbvTessLevelOuter:
9596         return language == EShLangTessControl;
9597     default:
9598         return false;
9599     }
9600 }
9601 
9602 // Return true if there are decorations to preserve for output-like storage.
hasOutput(const TQualifier & qualifier) const9603 bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
9604 {
9605     if (qualifier.hasAnyLocation())
9606         return true;
9607 
9608     if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
9609         return true;
9610 
9611     if (language == EShLangTessControl && qualifier.patch)
9612         return true;
9613 
9614     if (language == EShLangGeometry && qualifier.hasStream())
9615         return true;
9616 
9617     if (isOutputBuiltIn(qualifier))
9618         return true;
9619 
9620     return false;
9621 }
9622 
9623 // Make the IO decorations etc. be appropriate only for an input interface.
correctInput(TQualifier & qualifier)9624 void HlslParseContext::correctInput(TQualifier& qualifier)
9625 {
9626     clearUniform(qualifier);
9627     if (language == EShLangVertex)
9628         qualifier.clearInterstage();
9629     if (language != EShLangTessEvaluation)
9630         qualifier.patch = false;
9631     if (language != EShLangFragment) {
9632         qualifier.clearInterpolation();
9633         qualifier.sample = false;
9634     }
9635 
9636     qualifier.clearStreamLayout();
9637     qualifier.clearXfbLayout();
9638 
9639     if (! isInputBuiltIn(qualifier))
9640         qualifier.builtIn = EbvNone;
9641 }
9642 
9643 // Make the IO decorations etc. be appropriate only for an output interface.
correctOutput(TQualifier & qualifier)9644 void HlslParseContext::correctOutput(TQualifier& qualifier)
9645 {
9646     clearUniform(qualifier);
9647     if (language == EShLangFragment)
9648         qualifier.clearInterstage();
9649     if (language != EShLangGeometry)
9650         qualifier.clearStreamLayout();
9651     if (language == EShLangFragment)
9652         qualifier.clearXfbLayout();
9653     if (language != EShLangTessControl)
9654         qualifier.patch = false;
9655 
9656     switch (qualifier.builtIn) {
9657     case EbvFragDepth:
9658         intermediate.setDepthReplacing();
9659         intermediate.setDepth(EldAny);
9660         break;
9661     case EbvFragDepthGreater:
9662         intermediate.setDepthReplacing();
9663         intermediate.setDepth(EldGreater);
9664         qualifier.builtIn = EbvFragDepth;
9665         break;
9666     case EbvFragDepthLesser:
9667         intermediate.setDepthReplacing();
9668         intermediate.setDepth(EldLess);
9669         qualifier.builtIn = EbvFragDepth;
9670         break;
9671     default:
9672         break;
9673     }
9674 
9675     if (! isOutputBuiltIn(qualifier))
9676         qualifier.builtIn = EbvNone;
9677 }
9678 
9679 // Make the IO decorations etc. be appropriate only for uniform type interfaces.
correctUniform(TQualifier & qualifier)9680 void HlslParseContext::correctUniform(TQualifier& qualifier)
9681 {
9682     if (qualifier.declaredBuiltIn == EbvNone)
9683         qualifier.declaredBuiltIn = qualifier.builtIn;
9684 
9685     qualifier.builtIn = EbvNone;
9686     qualifier.clearInterstage();
9687     qualifier.clearInterstageLayout();
9688 }
9689 
9690 // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
clearUniformInputOutput(TQualifier & qualifier)9691 void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
9692 {
9693     clearUniform(qualifier);
9694     correctUniform(qualifier);
9695 }
9696 
9697 
9698 // Set texture return type.  Returns success (not all types are valid).
setTextureReturnType(TSampler & sampler,const TType & retType,const TSourceLoc & loc)9699 bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
9700 {
9701     // Seed the output with an invalid index.  We will set it to a valid one if we can.
9702     sampler.structReturnIndex = TSampler::noReturnStruct;
9703 
9704     // Arrays aren't supported.
9705     if (retType.isArray()) {
9706         error(loc, "Arrays not supported in texture template types", "", "");
9707         return false;
9708     }
9709 
9710     // If return type is a vector, remember the vector size in the sampler, and return.
9711     if (retType.isVector() || retType.isScalar()) {
9712         sampler.vectorSize = retType.getVectorSize();
9713         return true;
9714     }
9715 
9716     // If it wasn't a vector, it must be a struct meeting certain requirements.  The requirements
9717     // are checked below: just check for struct-ness here.
9718     if (!retType.isStruct()) {
9719         error(loc, "Invalid texture template type", "", "");
9720         return false;
9721     }
9722 
9723     // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
9724     if (sampler.isSubpass()) {
9725         error(loc, "Unimplemented: structure template type in subpass input", "", "");
9726         return false;
9727     }
9728 
9729     TTypeList* members = retType.getWritableStruct();
9730 
9731     // Check for too many or not enough structure members.
9732     if (members->size() > 4 || members->size() == 0) {
9733         error(loc, "Invalid member count in texture template structure", "", "");
9734         return false;
9735     }
9736 
9737     // Error checking: We must have <= 4 total components, all of the same basic type.
9738     unsigned totalComponents = 0;
9739     for (unsigned m = 0; m < members->size(); ++m) {
9740         // Check for bad member types
9741         if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
9742             error(loc, "Invalid texture template struct member type", "", "");
9743             return false;
9744         }
9745 
9746         const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
9747         totalComponents += memberVectorSize;
9748 
9749         // too many total member components
9750         if (totalComponents > 4) {
9751             error(loc, "Too many components in texture template structure type", "", "");
9752             return false;
9753         }
9754 
9755         // All members must be of a common basic type
9756         if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
9757             error(loc, "Texture template structure members must same basic type", "", "");
9758             return false;
9759         }
9760     }
9761 
9762     // If the structure in the return type already exists in the table, we'll use it.  Otherwise, we'll make
9763     // a new entry.  This is a linear search, but it hardly ever happens, and the list cannot be very large.
9764     for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
9765         if (textureReturnStruct[idx] == members) {
9766             sampler.structReturnIndex = idx;
9767             return true;
9768         }
9769     }
9770 
9771     // It wasn't found as an existing entry.  See if we have room for a new one.
9772     if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
9773         error(loc, "Texture template struct return slots exceeded", "", "");
9774         return false;
9775     }
9776 
9777     // Insert it in the vector that tracks struct return types.
9778     sampler.structReturnIndex = unsigned(textureReturnStruct.size());
9779     textureReturnStruct.push_back(members);
9780 
9781     // Success!
9782     return true;
9783 }
9784 
9785 // Return the sampler return type in retType.
getTextureReturnType(const TSampler & sampler,TType & retType) const9786 void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
9787 {
9788     if (sampler.hasReturnStruct()) {
9789         assert(textureReturnStruct.size() >= sampler.structReturnIndex);
9790 
9791         // We land here if the texture return is a structure.
9792         TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
9793 
9794         const TType resultType(blockStruct, "");
9795         retType.shallowCopy(resultType);
9796     } else {
9797         // We land here if the texture return is a vector or scalar.
9798         const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
9799         retType.shallowCopy(resultType);
9800     }
9801 }
9802 
9803 
9804 // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
findTessLinkageSymbol(TBuiltInVariable biType) const9805 TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
9806 {
9807     const auto it = builtInTessLinkageSymbols.find(biType);
9808     if (it == builtInTessLinkageSymbols.end())  // if it wasn't declared by the user, return nullptr
9809         return nullptr;
9810 
9811     return intermediate.addSymbol(*it->second->getAsVariable());
9812 }
9813 
9814 // Find the patch constant function (issues error, returns nullptr if not found)
findPatchConstantFunction(const TSourceLoc & loc)9815 const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
9816 {
9817     if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
9818         error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
9819         return nullptr;
9820     }
9821 
9822     const TString mangledName = patchConstantFunctionName + "(";
9823 
9824     // create list of PCF candidates
9825     TVector<const TFunction*> candidateList;
9826     bool builtIn;
9827     symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
9828 
9829     // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
9830     // allow any disambiguation of overloads.
9831     if (candidateList.empty()) {
9832         error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
9833         return nullptr;
9834     }
9835 
9836     // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
9837     // HLSL picks the last one in shader source order.  Since that isn't yet implemented here, error
9838     // out if there is more than one candidate.
9839     if (candidateList.size() > 1) {
9840         error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
9841         return nullptr;
9842     }
9843 
9844     return candidateList[0];
9845 }
9846 
9847 // Finalization step: Add patch constant function invocation
addPatchConstantInvocation()9848 void HlslParseContext::addPatchConstantInvocation()
9849 {
9850     TSourceLoc loc;
9851     loc.init();
9852 
9853     // If there's no patch constant function, or we're not a HS, do nothing.
9854     if (patchConstantFunctionName.empty() || language != EShLangTessControl)
9855         return;
9856 
9857     // Look for built-in variables in a function's parameter list.
9858     const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
9859         for (int p=0; p<function.getParamCount(); ++p) {
9860             TStorageQualifier storage = function[p].type->getQualifier().storage;
9861 
9862             if (storage == EvqConstReadOnly) // treated identically to input
9863                 storage = EvqIn;
9864 
9865             if (function[p].getDeclaredBuiltIn() != EbvNone)
9866                 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
9867             else
9868                 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
9869         }
9870     };
9871 
9872     // If we synthesize a built-in interface variable, we must add it to the linkage.
9873     const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
9874         if (name == nullptr) {
9875             error(loc, "unable to locate patch function parameter name", "", "");
9876             return;
9877         } else {
9878             TVariable& variable = *new TVariable(name, type);
9879             if (! symbolTable.insert(variable)) {
9880                 error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
9881                 return;
9882             }
9883 
9884             globalQualifierFix(loc, variable.getWritableType().getQualifier());
9885 
9886             if (symbolNode != nullptr)
9887                 *symbolNode = intermediate.addSymbol(variable);
9888 
9889             trackLinkage(variable);
9890         }
9891     };
9892 
9893     const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
9894         const TType& type = *patchConstantFunction[param].type;
9895         const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
9896 
9897         return type.isSizedArray() && biType == EbvOutputPatch;
9898     };
9899 
9900     // We will perform these steps.  Each is in a scoped block for separation: they could
9901     // become separate functions to make addPatchConstantInvocation shorter.
9902     //
9903     // 1. Union the interfaces, and create built-ins for anything present in the PCF and
9904     //    declared as a built-in variable that isn't present in the entry point's signature.
9905     //
9906     // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
9907     //    or the ones we created.  Matching is based on built-in type.  We may use synthesized
9908     //    variables from (1) above.
9909     //
9910     // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
9911     //
9912     // 3. Create a return sequence: copy the return value (if any) from the PCF to a
9913     //    (non-sanitized) output variable.  In case this may involve multiple copies, such as for
9914     //    an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
9915     //    indirections into a complex R-value coming from the call to the PCF.
9916     //
9917     // 4. Create a barrier.
9918     //
9919     // 5/5B. Call the PCF inside an if test for (invocation id == 0).
9920 
9921     TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
9922 
9923     if (patchConstantFunctionPtr == nullptr)
9924         return;
9925 
9926     TFunction& patchConstantFunction = *patchConstantFunctionPtr;
9927 
9928     const int pcfParamCount = patchConstantFunction.getParamCount();
9929     TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
9930     TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
9931 
9932     int outPatchParam = -1; // -1 means there isn't one.
9933 
9934     // ================ Step 1A: Union Interfaces ================
9935     // Our patch constant function.
9936     {
9937         std::set<tInterstageIoData> pcfBuiltIns;  // patch constant function built-ins
9938         std::set<tInterstageIoData> epfBuiltIns;  // entry point function built-ins
9939 
9940         assert(entryPointFunction);
9941         assert(entryPointFunctionBody);
9942 
9943         findBuiltIns(patchConstantFunction, pcfBuiltIns);
9944         findBuiltIns(*entryPointFunction,   epfBuiltIns);
9945 
9946         // Find the set of built-ins in the PCF that are not present in the entry point.
9947         std::set<tInterstageIoData> notInEntryPoint;
9948 
9949         notInEntryPoint = pcfBuiltIns;
9950 
9951         // std::set_difference not usable on unordered containers
9952         for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
9953             notInEntryPoint.erase(*bi);
9954 
9955         // Now we'll add those to the entry and to the linkage.
9956         for (int p=0; p<pcfParamCount; ++p) {
9957             const TBuiltInVariable biType   = patchConstantFunction[p].getDeclaredBuiltIn();
9958             TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
9959 
9960             // Track whether there is an output patch param
9961             if (isOutputPatch(patchConstantFunction, p)) {
9962                 if (outPatchParam >= 0) {
9963                     // Presently we only support one per ctrl pt input.
9964                     error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
9965                     return;
9966                 }
9967                 outPatchParam = p;
9968             }
9969 
9970             if (biType != EbvNone) {
9971                 TType* paramType = patchConstantFunction[p].type->clone();
9972 
9973                 if (storage == EvqConstReadOnly) // treated identically to input
9974                     storage = EvqIn;
9975 
9976                 // Presently, the only non-built-in we support is InputPatch, which is treated as
9977                 // a pseudo-built-in.
9978                 if (biType == EbvInputPatch) {
9979                     builtInTessLinkageSymbols[biType] = inputPatch;
9980                 } else if (biType == EbvOutputPatch) {
9981                     // Nothing...
9982                 } else {
9983                     // Use the original declaration type for the linkage
9984                     paramType->getQualifier().builtIn = biType;
9985                     if (biType == EbvTessLevelInner || biType == EbvTessLevelOuter)
9986                         paramType->getQualifier().patch = true;
9987 
9988                     if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
9989                         addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
9990                 }
9991             }
9992         }
9993 
9994         // If we didn't find it because the shader made one, add our own.
9995         if (invocationIdSym == nullptr) {
9996             TType invocationIdType(EbtUint, EvqIn, 1);
9997             TString* invocationIdName = NewPoolTString("InvocationId");
9998             invocationIdType.getQualifier().builtIn = EbvInvocationId;
9999             addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
10000         }
10001 
10002         assert(invocationIdSym);
10003     }
10004 
10005     TIntermTyped* pcfArguments = nullptr;
10006     TVariable* perCtrlPtVar = nullptr;
10007 
10008     // ================ Step 1B: Argument synthesis ================
10009     // Create pcfArguments for synthesis of patchconstantfunction invocation
10010     {
10011         for (int p=0; p<pcfParamCount; ++p) {
10012             TIntermTyped* inputArg = nullptr;
10013 
10014             if (p == outPatchParam) {
10015                 if (perCtrlPtVar == nullptr) {
10016                     perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
10017                                                         *patchConstantFunction[outPatchParam].type);
10018 
10019                     perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
10020                 }
10021                 inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
10022             } else {
10023                 // find which built-in it is
10024                 const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
10025 
10026                 if (biType == EbvInputPatch && inputPatch == nullptr) {
10027                     error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
10028                     return;
10029                 }
10030 
10031                 inputArg = findTessLinkageSymbol(biType);
10032 
10033                 if (inputArg == nullptr) {
10034                     error(loc, "unable to find patch constant function built-in variable", "", "");
10035                     return;
10036                 }
10037             }
10038 
10039             if (pcfParamCount == 1)
10040                 pcfArguments = inputArg;
10041             else
10042                 pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
10043         }
10044     }
10045 
10046     // ================ Step 2: Synthesize call to PCF ================
10047     TIntermAggregate* pcfCallSequence = nullptr;
10048     TIntermTyped* pcfCall = nullptr;
10049 
10050     {
10051         // Create a function call to the patchconstantfunction
10052         if (pcfArguments)
10053             addInputArgumentConversions(patchConstantFunction, pcfArguments);
10054 
10055         // Synthetic call.
10056         pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
10057         pcfCall->getAsAggregate()->setUserDefined();
10058         pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
10059         intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
10060                                     patchConstantFunction.getMangledName());
10061 
10062         if (pcfCall->getAsAggregate()) {
10063             TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
10064             for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
10065                 TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
10066                 qualifierList.push_back(qual);
10067             }
10068             pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
10069         }
10070     }
10071 
10072     // ================ Step 2B: Per Control Point synthesis ================
10073     // If there is per control point data, we must either emulate that with multiple
10074     // invocations of the entry point to build up an array, or (TODO:) use a yet
10075     // unavailable extension to look across the SIMD lanes.  This is the former
10076     // as a placeholder for the latter.
10077     if (outPatchParam >= 0) {
10078         // We must introduce a local temp variable of the type wanted by the PCF input.
10079         const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
10080 
10081         if (entryPointFunction->getType().getBasicType() == EbtVoid) {
10082             error(loc, "entry point must return a value for use with patch constant function", "", "");
10083             return;
10084         }
10085 
10086         // Create calls to wrapped main to fill in the array.  We will substitute fixed values
10087         // of invocation ID when calling the wrapped main.
10088 
10089         // This is the type of the each member of the per ctrl point array.
10090         const TType derefType(perCtrlPtVar->getType(), 0);
10091 
10092         for (int cpt = 0; cpt < arraySize; ++cpt) {
10093             // TODO: improve.  substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
10094             // for this function.
10095             const TString origName = entryPointFunction->getName().substr(1);
10096             TFunction callee(&origName, TType(EbtVoid));
10097             TIntermTyped* callingArgs = nullptr;
10098 
10099             for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
10100                 TParameter& param = (*entryPointFunction)[i];
10101                 TType& paramType = *param.type;
10102 
10103                 if (paramType.getQualifier().isParamOutput()) {
10104                     error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
10105                     return;
10106                 }
10107 
10108                 if (paramType.getQualifier().isParamInput())  {
10109                     TIntermTyped* arg = nullptr;
10110                     if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
10111                         // substitute invocation ID with the array element ID
10112                         arg = intermediate.addConstantUnion(cpt, loc);
10113                     } else {
10114                         TVariable* argVar = makeInternalVariable(*param.name, *param.type);
10115                         argVar->getWritableType().getQualifier().makeTemporary();
10116                         arg = intermediate.addSymbol(*argVar);
10117                     }
10118 
10119                     handleFunctionArgument(&callee, callingArgs, arg);
10120                 }
10121             }
10122 
10123             // Call and assign to per ctrl point variable
10124             currentCaller = intermediate.getEntryPointMangledName().c_str();
10125             TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
10126             TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
10127             TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
10128             TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
10129             element->setType(derefType);
10130             element->setLoc(loc);
10131 
10132             pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
10133                                                          handleAssign(loc, EOpAssign, element, callReturn));
10134         }
10135     }
10136 
10137     // ================ Step 3: Create return Sequence ================
10138     // Return sequence: copy PCF result to a temporary, then to shader output variable.
10139     if (pcfCall->getBasicType() != EbtVoid) {
10140         const TType* retType = &patchConstantFunction.getType();  // return type from the PCF
10141         TType outType; // output type that goes with the return type.
10142         outType.shallowCopy(*retType);
10143 
10144         // substitute the output type
10145         const auto newLists = ioTypeMap.find(retType->getStruct());
10146         if (newLists != ioTypeMap.end())
10147             outType.setStruct(newLists->second.output);
10148 
10149         // Substitute the top level type's built-in type
10150         if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
10151             outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
10152 
10153         outType.getQualifier().patch = true; // make it a per-patch variable
10154 
10155         TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
10156         pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
10157 
10158         if (pcfOutput->getType().isStruct())
10159             flatten(*pcfOutput, false);
10160 
10161         assignToInterface(*pcfOutput);
10162 
10163         TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
10164 
10165         // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
10166         // repeated calls to the PCF:
10167         TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
10168         pcfCallResult->getWritableType().getQualifier().makeTemporary();
10169 
10170         TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
10171         TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
10172         TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
10173                                                    intermediate.addSymbol(*pcfCallResult, loc));
10174 
10175         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
10176         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
10177     } else {
10178         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
10179     }
10180 
10181     // ================ Step 4: Barrier ================
10182     TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
10183     barrier->setLoc(loc);
10184     barrier->setType(TType(EbtVoid));
10185     epBodySeq.insert(epBodySeq.end(), barrier);
10186 
10187     // ================ Step 5: Test on invocation ID ================
10188     TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
10189     TIntermTyped* cmp =  intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
10190 
10191 
10192     // ================ Step 5B: Create if statement on Invocation ID == 0 ================
10193     intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
10194     TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
10195     invocationIdTest->setLoc(loc);
10196 
10197     // add our test sequence before the return.
10198     epBodySeq.insert(epBodySeq.end(), invocationIdTest);
10199 }
10200 
10201 // Finalization step: remove unused buffer blocks from linkage (we don't know until the
10202 // shader is entirely compiled).
10203 // Preserve order of remaining symbols.
removeUnusedStructBufferCounters()10204 void HlslParseContext::removeUnusedStructBufferCounters()
10205 {
10206     const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
10207                                       [this](const TSymbol* sym) {
10208                                           const auto sbcIt = structBufferCounter.find(sym->getName());
10209                                           return sbcIt != structBufferCounter.end() && !sbcIt->second;
10210                                       });
10211 
10212     linkageSymbols.erase(endIt, linkageSymbols.end());
10213 }
10214 
10215 // Finalization step: patch texture shadow modes to match samplers they were combined with
fixTextureShadowModes()10216 void HlslParseContext::fixTextureShadowModes()
10217 {
10218     for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
10219         TSampler& sampler = (*symbol)->getWritableType().getSampler();
10220 
10221         if (sampler.isTexture()) {
10222             const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
10223             if (shadowMode != textureShadowVariant.end()) {
10224 
10225                 if (shadowMode->second->overloaded())
10226                     // Texture needs legalization if it's been seen with both shadow and non-shadow modes.
10227                     intermediate.setNeedsLegalization();
10228 
10229                 sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
10230             }
10231         }
10232     }
10233 }
10234 
10235 // Finalization step: patch append methods to use proper stream output, which isn't known until
10236 // main is parsed, which could happen after the append method is parsed.
finalizeAppendMethods()10237 void HlslParseContext::finalizeAppendMethods()
10238 {
10239     TSourceLoc loc;
10240     loc.init();
10241 
10242     // Nothing to do: bypass test for valid stream output.
10243     if (gsAppends.empty())
10244         return;
10245 
10246     if (gsStreamOutput == nullptr) {
10247         error(loc, "unable to find output symbol for Append()", "", "");
10248         return;
10249     }
10250 
10251     // Patch append sequences, now that we know the stream output symbol.
10252     for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
10253         append->node->getSequence()[0] =
10254             handleAssign(append->loc, EOpAssign,
10255                          intermediate.addSymbol(*gsStreamOutput, append->loc),
10256                          append->node->getSequence()[0]->getAsTyped());
10257     }
10258 }
10259 
10260 // post-processing
finish()10261 void HlslParseContext::finish()
10262 {
10263     // Error check: There was a dangling .mips operator.  These are not nested constructs in the grammar, so
10264     // cannot be detected there.  This is not strictly needed in a non-validating parser; it's just helpful.
10265     if (! mipsOperatorMipArg.empty()) {
10266         error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
10267     }
10268 
10269     removeUnusedStructBufferCounters();
10270     addPatchConstantInvocation();
10271     fixTextureShadowModes();
10272     finalizeAppendMethods();
10273 
10274     // Communicate out (esp. for command line) that we formed AST that will make
10275     // illegal AST SPIR-V and it needs transforms to legalize it.
10276     if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
10277         infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
10278 
10279     TParseContextBase::finish();
10280 }
10281 
10282 } // end namespace glslang
10283