1 //
2 // Copyright (C) 2017-2018 Google, Inc.
3 // Copyright (C) 2017 LunarG, Inc.
4 //
5 // All rights reserved.
6 //
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions
9 // are met:
10 //
11 // Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 //
14 // Redistributions in binary form must reproduce the above
15 // copyright notice, this list of conditions and the following
16 // disclaimer in the documentation and/or other materials provided
17 // with the distribution.
18 //
19 // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
20 // contributors may be used to endorse or promote products derived
21 // from this software without specific prior written permission.
22 //
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 // POSSIBILITY OF SUCH DAMAGE.
35 //
36
37 #include "hlslParseHelper.h"
38 #include "hlslScanContext.h"
39 #include "hlslGrammar.h"
40 #include "hlslAttributes.h"
41
42 #include "../Include/Common.h"
43 #include "../MachineIndependent/Scan.h"
44 #include "../MachineIndependent/preprocessor/PpContext.h"
45
46 #include "../OSDependent/osinclude.h"
47
48 #include <algorithm>
49 #include <functional>
50 #include <cctype>
51 #include <array>
52 #include <set>
53
54 namespace glslang {
55
HlslParseContext(TSymbolTable & symbolTable,TIntermediate & interm,bool parsingBuiltins,int version,EProfile profile,const SpvVersion & spvVersion,EShLanguage language,TInfoSink & infoSink,const TString sourceEntryPointName,bool forwardCompatible,EShMessages messages)56 HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
57 int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
58 TInfoSink& infoSink,
59 const TString sourceEntryPointName,
60 bool forwardCompatible, EShMessages messages) :
61 TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
62 forwardCompatible, messages, &sourceEntryPointName),
63 annotationNestingLevel(0),
64 inputPatch(nullptr),
65 nextInLocation(0), nextOutLocation(0),
66 entryPointFunction(nullptr),
67 entryPointFunctionBody(nullptr),
68 gsStreamOutput(nullptr),
69 clipDistanceOutput(nullptr),
70 cullDistanceOutput(nullptr),
71 clipDistanceInput(nullptr),
72 cullDistanceInput(nullptr),
73 parsingEntrypointParameters(false)
74 {
75 globalUniformDefaults.clear();
76 globalUniformDefaults.layoutMatrix = ElmRowMajor;
77 globalUniformDefaults.layoutPacking = ElpStd140;
78
79 globalBufferDefaults.clear();
80 globalBufferDefaults.layoutMatrix = ElmRowMajor;
81 globalBufferDefaults.layoutPacking = ElpStd430;
82
83 globalInputDefaults.clear();
84 globalOutputDefaults.clear();
85
86 clipSemanticNSizeIn.fill(0);
87 cullSemanticNSizeIn.fill(0);
88 clipSemanticNSizeOut.fill(0);
89 cullSemanticNSizeOut.fill(0);
90
91 // "Shaders in the transform
92 // feedback capturing mode have an initial global default of
93 // layout(xfb_buffer = 0) out;"
94 if (language == EShLangVertex ||
95 language == EShLangTessControl ||
96 language == EShLangTessEvaluation ||
97 language == EShLangGeometry)
98 globalOutputDefaults.layoutXfbBuffer = 0;
99
100 if (language == EShLangGeometry)
101 globalOutputDefaults.layoutStream = 0;
102 }
103
~HlslParseContext()104 HlslParseContext::~HlslParseContext()
105 {
106 }
107
initializeExtensionBehavior()108 void HlslParseContext::initializeExtensionBehavior()
109 {
110 TParseContextBase::initializeExtensionBehavior();
111
112 // HLSL allows #line by default.
113 extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
114 }
115
setLimits(const TBuiltInResource & r)116 void HlslParseContext::setLimits(const TBuiltInResource& r)
117 {
118 resources = r;
119 intermediate.setLimits(resources);
120 }
121
122 //
123 // Parse an array of strings using the parser in HlslRules.
124 //
125 // Returns true for successful acceptance of the shader, false if any errors.
126 //
parseShaderStrings(TPpContext & ppContext,TInputScanner & input,bool versionWillBeError)127 bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
128 {
129 currentScanner = &input;
130 ppContext.setInput(input, versionWillBeError);
131
132 HlslScanContext scanContext(*this, ppContext);
133 HlslGrammar grammar(scanContext, *this);
134 if (!grammar.parse()) {
135 // Print a message formated such that if you click on the message it will take you right to
136 // the line through most UIs.
137 const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
138 infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
139 << ", HLSL parsing failed.\n";
140 ++numErrors;
141 return false;
142 }
143
144 finish();
145
146 return numErrors == 0;
147 }
148
149 //
150 // Return true if this l-value node should be converted in some manner.
151 // For instance: turning a load aggregate into a store in an l-value.
152 //
shouldConvertLValue(const TIntermNode * node) const153 bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
154 {
155 if (node == nullptr || node->getAsTyped() == nullptr)
156 return false;
157
158 const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
159 const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
160
161 // If it's a swizzled/indexed aggregate, look at the left node instead.
162 if (lhsAsBinary != nullptr &&
163 (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
164 lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
165 if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
166 return true;
167
168 return false;
169 }
170
growGlobalUniformBlock(const TSourceLoc & loc,TType & memberType,const TString & memberName,TTypeList * newTypeList)171 void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
172 TTypeList* newTypeList)
173 {
174 newTypeList = nullptr;
175 correctUniform(memberType.getQualifier());
176 if (memberType.isStruct()) {
177 auto it = ioTypeMap.find(memberType.getStruct());
178 if (it != ioTypeMap.end() && it->second.uniform)
179 newTypeList = it->second.uniform;
180 }
181 TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
182 }
183
184 //
185 // Return a TLayoutFormat corresponding to the given texture type.
186 //
getLayoutFromTxType(const TSourceLoc & loc,const TType & txType)187 TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
188 {
189 if (txType.isStruct()) {
190 // TODO: implement.
191 error(loc, "unimplemented: structure type in image or buffer", "", "");
192 return ElfNone;
193 }
194
195 const int components = txType.getVectorSize();
196 const TBasicType txBasicType = txType.getBasicType();
197
198 const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
199 if (intermediate.getNoStorageFormat())
200 return ElfNone;
201
202 return components == 1 ? v1 :
203 components == 2 ? v2 : v4;
204 };
205
206 switch (txBasicType) {
207 case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f);
208 case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i);
209 case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
210 default:
211 error(loc, "unknown basic type in image format", "", "");
212 return ElfNone;
213 }
214 }
215
216 //
217 // Both test and if necessary, spit out an error, to see if the node is really
218 // an l-value that can be operated on this way.
219 //
220 // Returns true if there was an error.
221 //
lValueErrorCheck(const TSourceLoc & loc,const char * op,TIntermTyped * node)222 bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
223 {
224 if (shouldConvertLValue(node)) {
225 // if we're writing to a texture, it must be an RW form.
226
227 TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
228 TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
229
230 if (!object->getType().getSampler().isImage()) {
231 error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
232 return true;
233 }
234 }
235
236 // We tolerate samplers as l-values, even though they are nominally
237 // illegal, because we expect a later optimization to eliminate them.
238 if (node->getType().getBasicType() == EbtSampler) {
239 intermediate.setNeedsLegalization();
240 return false;
241 }
242
243 // Let the base class check errors
244 return TParseContextBase::lValueErrorCheck(loc, op, node);
245 }
246
247 //
248 // This function handles l-value conversions and verifications. It uses, but is not synonymous
249 // with lValueErrorCheck. That function accepts an l-value directly, while this one must be
250 // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
251 // series of other image operations.
252 //
253 // Most things are passed through unmodified, except for error checking.
254 //
handleLvalue(const TSourceLoc & loc,const char * op,TIntermTyped * & node)255 TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
256 {
257 if (node == nullptr)
258 return nullptr;
259
260 TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
261 TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
262 TIntermAggregate* sequence = nullptr;
263
264 TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() :
265 nodeAsBinary ? nodeAsBinary->getLeft() :
266 nullptr;
267
268 // Early bail out if there is no conversion to apply
269 if (!shouldConvertLValue(lhs)) {
270 if (lhs != nullptr)
271 if (lValueErrorCheck(loc, op, lhs))
272 return nullptr;
273 return node;
274 }
275
276 // *** If we get here, we're going to apply some conversion to an l-value.
277
278 // Helper to create a load.
279 const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
280 TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
281 loadOp->setLoc(loc);
282 loadOp->getSequence().push_back(object);
283 loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
284 loadOp->setType(derefType);
285
286 sequence = intermediate.growAggregate(sequence,
287 intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
288 loc);
289 };
290
291 // Helper to create a store.
292 const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
293 TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
294 storeOp->getSequence().push_back(object);
295 storeOp->getSequence().push_back(coord);
296 storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
297 storeOp->setLoc(loc);
298 storeOp->setType(TType(EbtVoid));
299
300 sequence = intermediate.growAggregate(sequence, storeOp);
301 };
302
303 // Helper to create an assign.
304 const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
305 sequence = intermediate.growAggregate(sequence,
306 intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
307 loc);
308 };
309
310 // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
311 const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
312 // Add a trailing use of the temp, so the sequence returns the proper value.
313 sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
314 sequence->setOperator(EOpSequence);
315 sequence->setLoc(loc);
316 sequence->setType(derefType);
317
318 return sequence;
319 };
320
321 // Helper to add unary op
322 const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
323 sequence = intermediate.growAggregate(sequence,
324 intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
325 rhsTmp->getType()),
326 loc);
327 };
328
329 // Return true if swizzle or index writes all components of the given variable.
330 const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
331 if (swizzle == nullptr) // not a swizzle or index
332 return true;
333
334 // Track which components are being set.
335 std::array<bool, 4> compIsSet;
336 compIsSet.fill(false);
337
338 const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion();
339 const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate();
340
341 // This could be either a direct index, or a swizzle.
342 if (asConst) {
343 compIsSet[asConst->getConstArray()[0].getIConst()] = true;
344 } else if (asAggregate) {
345 const TIntermSequence& seq = asAggregate->getSequence();
346 for (int comp=0; comp<int(seq.size()); ++comp)
347 compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
348 } else {
349 assert(0);
350 }
351
352 // Return true if all components are being set by the index or swizzle
353 return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
354 [](bool isSet) { return isSet; } );
355 };
356
357 // Create swizzle matching input swizzle
358 const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
359 if (swizzle)
360 return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
361 else
362 return var;
363 };
364
365 TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode();
366 TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
367 bool lhsIsSwizzle = false;
368
369 // If it's a swizzled L-value, remember the swizzle, and use the LHS.
370 if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
371 lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
372 lhsIsSwizzle = true;
373 }
374
375 TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
376 TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped();
377
378 const TSampler& texSampler = object->getType().getSampler();
379
380 TType objDerefType;
381 getTextureReturnType(texSampler, objDerefType);
382
383 if (nodeAsBinary) {
384 TIntermTyped* rhs = nodeAsBinary->getRight();
385 const TOperator assignOp = nodeAsBinary->getOp();
386
387 bool isModifyOp = false;
388
389 switch (assignOp) {
390 case EOpAddAssign:
391 case EOpSubAssign:
392 case EOpMulAssign:
393 case EOpVectorTimesMatrixAssign:
394 case EOpVectorTimesScalarAssign:
395 case EOpMatrixTimesScalarAssign:
396 case EOpMatrixTimesMatrixAssign:
397 case EOpDivAssign:
398 case EOpModAssign:
399 case EOpAndAssign:
400 case EOpInclusiveOrAssign:
401 case EOpExclusiveOrAssign:
402 case EOpLeftShiftAssign:
403 case EOpRightShiftAssign:
404 isModifyOp = true;
405 // fall through...
406 case EOpAssign:
407 {
408 // Since this is an lvalue, we'll convert an image load to a sequence like this
409 // (to still provide the value):
410 // OpSequence
411 // OpImageStore(object, lhs, rhs)
412 // rhs
413 // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
414 // so we'll convert instead to this:
415 // OpSequence
416 // rhsTmp = rhs
417 // OpImageStore(object, coord, rhsTmp)
418 // rhsTmp
419 // If this is a read-modify-write op, like +=, we issue:
420 // OpSequence
421 // coordtmp = load's param1
422 // rhsTmp = OpImageLoad(object, coordTmp)
423 // rhsTmp op= rhs
424 // OpImageStore(object, coordTmp, rhsTmp)
425 // rhsTmp
426 //
427 // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
428 // ...
429 // rhsTmp.some_swizzle = ...
430 // For partial writes, an error is generated.
431
432 TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
433 TIntermTyped* coordTmp = coord;
434
435 if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
436 rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
437
438 // Partial updates not yet supported
439 if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
440 error(loc, "unimplemented: partial image updates", "", "");
441 }
442
443 // Assign storeTemp = rhs
444 if (isModifyOp) {
445 // We have to make a temp var for the coordinate, to avoid evaluating it twice.
446 coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
447 makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
448 makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
449 }
450
451 // rhsTmp op= rhs.
452 makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
453 }
454
455 makeStore(object, coordTmp, rhsTmp); // add a store
456 return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
457 }
458
459 default:
460 break;
461 }
462 }
463
464 if (nodeAsUnary) {
465 const TOperator assignOp = nodeAsUnary->getOp();
466
467 switch (assignOp) {
468 case EOpPreIncrement:
469 case EOpPreDecrement:
470 {
471 // We turn this into:
472 // OpSequence
473 // coordtmp = load's param1
474 // rhsTmp = OpImageLoad(object, coordTmp)
475 // rhsTmp op
476 // OpImageStore(object, coordTmp, rhsTmp)
477 // rhsTmp
478
479 TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
480 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
481
482 makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
483 makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
484 makeUnary(assignOp, rhsTmp); // op rhsTmp
485 makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp)
486 return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
487 }
488
489 case EOpPostIncrement:
490 case EOpPostDecrement:
491 {
492 // We turn this into:
493 // OpSequence
494 // coordtmp = load's param1
495 // rhsTmp1 = OpImageLoad(object, coordTmp)
496 // rhsTmp2 = rhsTmp1
497 // rhsTmp2 op
498 // OpImageStore(object, coordTmp, rhsTmp2)
499 // rhsTmp1 (pre-op value)
500 TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType);
501 TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
502 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
503
504 makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
505 makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
506 makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1
507 makeUnary(assignOp, rhsTmp2); // rhsTmp op
508 makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2)
509 return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence
510 }
511
512 default:
513 break;
514 }
515 }
516
517 if (lhs)
518 if (lValueErrorCheck(loc, op, lhs))
519 return nullptr;
520
521 return node;
522 }
523
handlePragma(const TSourceLoc & loc,const TVector<TString> & tokens)524 void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
525 {
526 if (pragmaCallback)
527 pragmaCallback(loc.line, tokens);
528
529 if (tokens.size() == 0)
530 return;
531
532 // These pragmas are case insensitive in HLSL, so we'll compare in lower case.
533 TVector<TString> lowerTokens = tokens;
534
535 for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
536 std::transform(it->begin(), it->end(), it->begin(), ::tolower);
537
538 // Handle pack_matrix
539 if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
540 // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
541 // Row major becomes column major and vice versa.
542
543 if (lowerTokens[2] == "row_major") {
544 globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
545 } else if (lowerTokens[2] == "column_major") {
546 globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
547 } else {
548 // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
549 warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
550 globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
551 }
552 return;
553 }
554
555 // Handle once
556 if (lowerTokens[0] == "once") {
557 warn(loc, "not implemented", "#pragma once", "");
558 return;
559 }
560 }
561
562 //
563 // Look at a '.' matrix selector string and change it into components
564 // for a matrix. There are two types:
565 //
566 // _21 second row, first column (one based)
567 // _m21 third row, second column (zero based)
568 //
569 // Returns true if there is no error.
570 //
parseMatrixSwizzleSelector(const TSourceLoc & loc,const TString & fields,int cols,int rows,TSwizzleSelectors<TMatrixSelector> & components)571 bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
572 TSwizzleSelectors<TMatrixSelector>& components)
573 {
574 int startPos[MaxSwizzleSelectors];
575 int numComps = 0;
576 TString compString = fields;
577
578 // Find where each component starts,
579 // recording the first character position after the '_'.
580 for (size_t c = 0; c < compString.size(); ++c) {
581 if (compString[c] == '_') {
582 if (numComps >= MaxSwizzleSelectors) {
583 error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
584 return false;
585 }
586 if (c > compString.size() - 3 ||
587 ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
588 error(loc, "matrix component swizzle missing", compString.c_str(), "");
589 return false;
590 }
591 startPos[numComps++] = (int)c + 1;
592 }
593 }
594
595 // Process each component
596 for (int i = 0; i < numComps; ++i) {
597 int pos = startPos[i];
598 int bias = -1;
599 if (compString[pos] == 'm' || compString[pos] == 'M') {
600 bias = 0;
601 ++pos;
602 }
603 TMatrixSelector comp;
604 comp.coord1 = compString[pos+0] - '0' + bias;
605 comp.coord2 = compString[pos+1] - '0' + bias;
606 if (comp.coord1 < 0 || comp.coord1 >= cols) {
607 error(loc, "matrix row component out of range", compString.c_str(), "");
608 return false;
609 }
610 if (comp.coord2 < 0 || comp.coord2 >= rows) {
611 error(loc, "matrix column component out of range", compString.c_str(), "");
612 return false;
613 }
614 components.push_back(comp);
615 }
616
617 return true;
618 }
619
620 // If the 'comps' express a column of a matrix,
621 // return the column. Column means the first coords all match.
622 //
623 // Otherwise, return -1.
624 //
getMatrixComponentsColumn(int rows,const TSwizzleSelectors<TMatrixSelector> & selector)625 int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
626 {
627 int col = -1;
628
629 // right number of comps?
630 if (selector.size() != rows)
631 return -1;
632
633 // all comps in the same column?
634 // rows in order?
635 col = selector[0].coord1;
636 for (int i = 0; i < rows; ++i) {
637 if (col != selector[i].coord1)
638 return -1;
639 if (i != selector[i].coord2)
640 return -1;
641 }
642
643 return col;
644 }
645
646 //
647 // Handle seeing a variable identifier in the grammar.
648 //
handleVariable(const TSourceLoc & loc,const TString * string)649 TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
650 {
651 int thisDepth;
652 TSymbol* symbol = symbolTable.find(*string, thisDepth);
653 if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
654 error(loc, "expected symbol, not user-defined type", string->c_str(), "");
655 return nullptr;
656 }
657
658 const TVariable* variable = nullptr;
659 const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
660 TIntermTyped* node = nullptr;
661 if (anon) {
662 // It was a member of an anonymous container, which could be a 'this' structure.
663
664 // Create a subtree for its dereference.
665 if (thisDepth > 0) {
666 variable = getImplicitThis(thisDepth);
667 if (variable == nullptr)
668 error(loc, "cannot access member variables (static member function?)", "this", "");
669 }
670 if (variable == nullptr)
671 variable = anon->getAnonContainer().getAsVariable();
672
673 TIntermTyped* container = intermediate.addSymbol(*variable, loc);
674 TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
675 node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
676
677 node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
678 if (node->getType().hiddenMember())
679 error(loc, "member of nameless block was not redeclared", string->c_str(), "");
680 } else {
681 // Not a member of an anonymous container.
682
683 // The symbol table search was done in the lexical phase.
684 // See if it was a variable.
685 variable = symbol ? symbol->getAsVariable() : nullptr;
686 if (variable) {
687 if ((variable->getType().getBasicType() == EbtBlock ||
688 variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
689 error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
690 variable = nullptr;
691 }
692 } else {
693 if (symbol)
694 error(loc, "variable name expected", string->c_str(), "");
695 }
696
697 // Recovery, if it wasn't found or was not a variable.
698 if (variable == nullptr) {
699 error(loc, "unknown variable", string->c_str(), "");
700 variable = new TVariable(string, TType(EbtVoid));
701 }
702
703 if (variable->getType().getQualifier().isFrontEndConstant())
704 node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
705 else
706 node = intermediate.addSymbol(*variable, loc);
707 }
708
709 if (variable->getType().getQualifier().isIo())
710 intermediate.addIoAccessed(*string);
711
712 return node;
713 }
714
715 //
716 // Handle operator[] on any objects it applies to. Currently:
717 // Textures
718 // Buffers
719 //
handleBracketOperator(const TSourceLoc & loc,TIntermTyped * base,TIntermTyped * index)720 TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
721 {
722 // handle r-value operator[] on textures and images. l-values will be processed later.
723 if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
724 const TSampler& sampler = base->getType().getSampler();
725 if (sampler.isImage() || sampler.isTexture()) {
726 if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
727 // The first operator[] to a .mips[] sequence is the mip level. We'll remember it.
728 mipsOperatorMipArg.back().mipLevel = index;
729 return base; // next [] index is to the same base.
730 } else {
731 TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
732
733 TType sampReturnType;
734 getTextureReturnType(sampler, sampReturnType);
735
736 load->setType(sampReturnType);
737 load->setLoc(loc);
738 load->getSequence().push_back(base);
739 load->getSequence().push_back(index);
740
741 // Textures need a MIP. If we saw one go by, use it. Otherwise, use zero.
742 if (sampler.isTexture()) {
743 if (! mipsOperatorMipArg.empty()) {
744 load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
745 mipsOperatorMipArg.pop_back();
746 } else {
747 load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
748 }
749 }
750
751 return load;
752 }
753 }
754 }
755
756 // Handle operator[] on structured buffers: this indexes into the array element of the buffer.
757 // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
758 TIntermTyped* sbArray = indexStructBufferContent(loc, base);
759 if (sbArray != nullptr) {
760 // Now we'll apply the [] index to that array
761 const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
762
763 TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
764 const TType derefType(sbArray->getType(), 0);
765 element->setType(derefType);
766 return element;
767 }
768
769 return nullptr;
770 }
771
772 //
773 // Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
makeIntegerIndex(TIntermTyped * index)774 TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
775 {
776 const TBasicType indexBasicType = index->getType().getBasicType();
777 const int vecSize = index->getType().getVectorSize();
778
779 // We can use int types directly as the index
780 if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
781 indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
782 return index;
783
784 // Cast index to unsigned integer if it isn't one.
785 return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
786 }
787
788 //
789 // Handle seeing a base[index] dereference in the grammar.
790 //
handleBracketDereference(const TSourceLoc & loc,TIntermTyped * base,TIntermTyped * index)791 TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
792 {
793 index = makeIntegerIndex(index);
794
795 if (index == nullptr) {
796 error(loc, " unknown index type ", "", "");
797 return nullptr;
798 }
799
800 TIntermTyped* result = handleBracketOperator(loc, base, index);
801
802 if (result != nullptr)
803 return result; // it was handled as an operator[]
804
805 bool flattened = false;
806 int indexValue = 0;
807 if (index->getQualifier().isFrontEndConstant())
808 indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
809
810 variableCheck(base);
811 if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
812 if (base->getAsSymbolNode())
813 error(loc, " left of '[' is not of type array, matrix, or vector ",
814 base->getAsSymbolNode()->getName().c_str(), "");
815 else
816 error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
817 } else if (base->getType().getQualifier().isFrontEndConstant() &&
818 index->getQualifier().isFrontEndConstant()) {
819 // both base and index are front-end constants
820 checkIndex(loc, base->getType(), indexValue);
821 return intermediate.foldDereference(base, indexValue, loc);
822 } else {
823 // at least one of base and index is variable...
824
825 if (index->getQualifier().isFrontEndConstant())
826 checkIndex(loc, base->getType(), indexValue);
827
828 if (base->getType().isScalarOrVec1())
829 result = base;
830 else if (base->getAsSymbolNode() && wasFlattened(base)) {
831 if (index->getQualifier().storage != EvqConst)
832 error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
833
834 result = flattenAccess(base, indexValue);
835 flattened = (result != base);
836 } else {
837 if (index->getQualifier().isFrontEndConstant()) {
838 if (base->getType().isUnsizedArray())
839 base->getWritableType().updateImplicitArraySize(indexValue + 1);
840 else
841 checkIndex(loc, base->getType(), indexValue);
842 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
843 } else
844 result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
845 }
846 }
847
848 if (result == nullptr) {
849 // Insert dummy error-recovery result
850 result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
851 } else {
852 // If the array reference was flattened, it has the correct type. E.g, if it was
853 // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
854 // In that case, we preserve the qualifiers.
855 if (!flattened) {
856 // Insert valid dereferenced result
857 TType newType(base->getType(), 0); // dereferenced type
858 if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
859 newType.getQualifier().storage = EvqConst;
860 else
861 newType.getQualifier().storage = EvqTemporary;
862 result->setType(newType);
863 }
864 }
865
866 return result;
867 }
868
869 // Handle seeing a binary node with a math operation.
handleBinaryMath(const TSourceLoc & loc,const char * str,TOperator op,TIntermTyped * left,TIntermTyped * right)870 TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
871 TIntermTyped* left, TIntermTyped* right)
872 {
873 TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
874 if (result == nullptr)
875 binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
876
877 return result;
878 }
879
880 // Handle seeing a unary node with a math operation.
handleUnaryMath(const TSourceLoc & loc,const char * str,TOperator op,TIntermTyped * childNode)881 TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
882 TIntermTyped* childNode)
883 {
884 TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
885
886 if (result)
887 return result;
888 else
889 unaryOpError(loc, str, childNode->getCompleteString());
890
891 return childNode;
892 }
893 //
894 // Return true if the name is a struct buffer method
895 //
isStructBufferMethod(const TString & name) const896 bool HlslParseContext::isStructBufferMethod(const TString& name) const
897 {
898 return
899 name == "GetDimensions" ||
900 name == "Load" ||
901 name == "Load2" ||
902 name == "Load3" ||
903 name == "Load4" ||
904 name == "Store" ||
905 name == "Store2" ||
906 name == "Store3" ||
907 name == "Store4" ||
908 name == "InterlockedAdd" ||
909 name == "InterlockedAnd" ||
910 name == "InterlockedCompareExchange" ||
911 name == "InterlockedCompareStore" ||
912 name == "InterlockedExchange" ||
913 name == "InterlockedMax" ||
914 name == "InterlockedMin" ||
915 name == "InterlockedOr" ||
916 name == "InterlockedXor" ||
917 name == "IncrementCounter" ||
918 name == "DecrementCounter" ||
919 name == "Append" ||
920 name == "Consume";
921 }
922
923 //
924 // Handle seeing a base.field dereference in the grammar, where 'field' is a
925 // swizzle or member variable.
926 //
handleDotDereference(const TSourceLoc & loc,TIntermTyped * base,const TString & field)927 TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
928 {
929 variableCheck(base);
930
931 if (base->isArray()) {
932 error(loc, "cannot apply to an array:", ".", field.c_str());
933 return base;
934 }
935
936 TIntermTyped* result = base;
937
938 if (base->getType().getBasicType() == EbtSampler) {
939 // Handle .mips[mipid][pos] operation on textures
940 const TSampler& sampler = base->getType().getSampler();
941 if (sampler.isTexture() && field == "mips") {
942 // Push a null to signify that we expect a mip level under operator[] next.
943 mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
944 // Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
945 } else {
946 if (field == "mips")
947 error(loc, "unexpected texture type for .mips[][] operator:",
948 base->getType().getCompleteString().c_str(), "");
949 else
950 error(loc, "unexpected operator on texture type:", field.c_str(),
951 base->getType().getCompleteString().c_str());
952 }
953 } else if (base->isVector() || base->isScalar()) {
954 TSwizzleSelectors<TVectorSelector> selectors;
955 parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
956
957 if (base->isScalar()) {
958 if (selectors.size() == 1)
959 return result;
960 else {
961 TType type(base->getBasicType(), EvqTemporary, selectors.size());
962 return addConstructor(loc, base, type);
963 }
964 }
965 if (base->getVectorSize() == 1) {
966 TType scalarType(base->getBasicType(), EvqTemporary, 1);
967 if (selectors.size() == 1)
968 return addConstructor(loc, base, scalarType);
969 else {
970 TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
971 return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
972 }
973 }
974
975 if (base->getType().getQualifier().isFrontEndConstant())
976 result = intermediate.foldSwizzle(base, selectors, loc);
977 else {
978 if (selectors.size() == 1) {
979 TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
980 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
981 result->setType(TType(base->getBasicType(), EvqTemporary));
982 } else {
983 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
984 result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
985 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
986 selectors.size()));
987 }
988 }
989 } else if (base->isMatrix()) {
990 TSwizzleSelectors<TMatrixSelector> selectors;
991 if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
992 return result;
993
994 if (selectors.size() == 1) {
995 // Representable by m[c][r]
996 if (base->getType().getQualifier().isFrontEndConstant()) {
997 result = intermediate.foldDereference(base, selectors[0].coord1, loc);
998 result = intermediate.foldDereference(result, selectors[0].coord2, loc);
999 } else {
1000 result = intermediate.addIndex(EOpIndexDirect, base,
1001 intermediate.addConstantUnion(selectors[0].coord1, loc),
1002 loc);
1003 TType dereferencedCol(base->getType(), 0);
1004 result->setType(dereferencedCol);
1005 result = intermediate.addIndex(EOpIndexDirect, result,
1006 intermediate.addConstantUnion(selectors[0].coord2, loc),
1007 loc);
1008 TType dereferenced(dereferencedCol, 0);
1009 result->setType(dereferenced);
1010 }
1011 } else {
1012 int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
1013 if (column >= 0) {
1014 // Representable by m[c]
1015 if (base->getType().getQualifier().isFrontEndConstant())
1016 result = intermediate.foldDereference(base, column, loc);
1017 else {
1018 result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
1019 loc);
1020 TType dereferenced(base->getType(), 0);
1021 result->setType(dereferenced);
1022 }
1023 } else {
1024 // general case, not a column, not a single component
1025 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
1026 result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
1027 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
1028 selectors.size()));
1029 }
1030 }
1031 } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
1032 const TTypeList* fields = base->getType().getStruct();
1033 bool fieldFound = false;
1034 int member;
1035 for (member = 0; member < (int)fields->size(); ++member) {
1036 if ((*fields)[member].type->getFieldName() == field) {
1037 fieldFound = true;
1038 break;
1039 }
1040 }
1041 if (fieldFound) {
1042 if (base->getAsSymbolNode() && wasFlattened(base)) {
1043 result = flattenAccess(base, member);
1044 } else {
1045 if (base->getType().getQualifier().storage == EvqConst)
1046 result = intermediate.foldDereference(base, member, loc);
1047 else {
1048 TIntermTyped* index = intermediate.addConstantUnion(member, loc);
1049 result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
1050 result->setType(*(*fields)[member].type);
1051 }
1052 }
1053 } else
1054 error(loc, "no such field in structure", field.c_str(), "");
1055 } else
1056 error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
1057
1058 return result;
1059 }
1060
1061 //
1062 // Return true if the field should be treated as a built-in method.
1063 // Return false otherwise.
1064 //
isBuiltInMethod(const TSourceLoc &,TIntermTyped * base,const TString & field)1065 bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
1066 {
1067 if (base == nullptr)
1068 return false;
1069
1070 variableCheck(base);
1071
1072 if (base->getType().getBasicType() == EbtSampler) {
1073 return true;
1074 } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
1075 return true;
1076 } else if (field == "Append" ||
1077 field == "RestartStrip") {
1078 // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
1079 // the code is around in the shader source.
1080 return true;
1081 } else
1082 return false;
1083 }
1084
1085 // Independently establish a built-in that is a member of a structure.
1086 // 'arraySizes' are what's desired for the independent built-in, whatever
1087 // the higher-level source/expression of them was.
splitBuiltIn(const TString & baseName,const TType & memberType,const TArraySizes * arraySizes,const TQualifier & outerQualifier)1088 void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
1089 const TQualifier& outerQualifier)
1090 {
1091 // Because of arrays of structs, we might be asked more than once,
1092 // but the arraySizes passed in should have captured the whole thing
1093 // the first time.
1094 // However, clip/cull rely on multiple updates.
1095 if (!isClipOrCullDistance(memberType))
1096 if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
1097 splitBuiltIns.end())
1098 return;
1099
1100 TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
1101
1102 if (arraySizes != nullptr && !memberType.isArray())
1103 ioVar->getWritableType().copyArraySizes(*arraySizes);
1104
1105 splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
1106 if (!isClipOrCullDistance(ioVar->getType()))
1107 trackLinkage(*ioVar);
1108
1109 // Merge qualifier from the user structure
1110 mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
1111
1112 // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
1113 // shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks
1114 // at the qualifier to determine e.g, in or out qualifications.
1115 fixBuiltInIoType(ioVar->getWritableType());
1116
1117 // But, not location, we're losing that
1118 ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
1119 }
1120
1121 // Split a type into
1122 // 1. a struct of non-I/O members
1123 // 2. a collection of independent I/O variables
split(const TVariable & variable)1124 void HlslParseContext::split(const TVariable& variable)
1125 {
1126 // Create a new variable:
1127 const TType& clonedType = *variable.getType().clone();
1128 const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
1129 splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
1130 }
1131
1132 // Recursive implementation of split().
1133 // Returns reference to the modified type.
split(const TType & type,const TString & name,const TQualifier & outerQualifier)1134 const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
1135 {
1136 if (type.isStruct()) {
1137 TTypeList* userStructure = type.getWritableStruct();
1138 for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
1139 if (ioType->type->isBuiltIn()) {
1140 // move out the built-in
1141 splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
1142 ioType = userStructure->erase(ioType);
1143 } else {
1144 split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
1145 ++ioType;
1146 }
1147 }
1148 }
1149
1150 return type;
1151 }
1152
1153 // Is this an aggregate that should be flattened?
1154 // Can be applied to intermediate levels of type in a hierarchy.
1155 // Some things like flattening uniform arrays are only about the top level
1156 // of the aggregate, triggered on 'topLevel'.
shouldFlatten(const TType & type,TStorageQualifier qualifier,bool topLevel) const1157 bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
1158 {
1159 switch (qualifier) {
1160 case EvqVaryingIn:
1161 case EvqVaryingOut:
1162 return type.isStruct() || type.isArray();
1163 case EvqUniform:
1164 return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
1165 (type.isStruct() && type.containsOpaque());
1166 default:
1167 return false;
1168 };
1169 }
1170
1171 // Top level variable flattening: construct data
flatten(const TVariable & variable,bool linkage,bool arrayed)1172 void HlslParseContext::flatten(const TVariable& variable, bool linkage, bool arrayed)
1173 {
1174 const TType& type = variable.getType();
1175
1176 // If it's a standalone built-in, there is nothing to flatten
1177 if (type.isBuiltIn() && !type.isStruct())
1178 return;
1179
1180 auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
1181 TFlattenData(type.getQualifier().layoutBinding,
1182 type.getQualifier().layoutLocation)));
1183
1184 // if flattening arrayed io struct, array each member of dereferenced type
1185 if (arrayed) {
1186 const TType dereferencedType(type, 0);
1187 flatten(variable, dereferencedType, entry.first->second, variable.getName(), linkage,
1188 type.getQualifier(), type.getArraySizes());
1189 } else {
1190 flatten(variable, type, entry.first->second, variable.getName(), linkage,
1191 type.getQualifier(), nullptr);
1192 }
1193 }
1194
1195 // Recursively flatten the given variable at the provided type, building the flattenData as we go.
1196 //
1197 // This is mutually recursive with flattenStruct and flattenArray.
1198 // We are going to flatten an arbitrarily nested composite structure into a linear sequence of
1199 // members, and later on, we want to turn a path through the tree structure into a final
1200 // location in this linear sequence.
1201 //
1202 // If the tree was N-ary, that can be directly calculated. However, we are dealing with
1203 // arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must
1204 // build a data structure to allow the sequence of bracket and dot operators on arrays and
1205 // structs to arrive at the proper member.
1206 //
1207 // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
1208 // The leaves are the indexes into the flattened member array.
1209 // Each level will have the next location for the Nth item stored sequentially, so for instance:
1210 //
1211 // struct { float2 a[2]; int b; float4 c[3] };
1212 //
1213 // This will produce the following flattened tree:
1214 // Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1215 // (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
1216 //
1217 // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
1218 // (0+2) = 8 --> (8+1) = 12 --> 12 = 4
1219 //
1220 // so the 4th flattened member in traversal order is ours.
1221 //
flatten(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1222 int HlslParseContext::flatten(const TVariable& variable, const TType& type,
1223 TFlattenData& flattenData, TString name, bool linkage,
1224 const TQualifier& outerQualifier,
1225 const TArraySizes* builtInArraySizes)
1226 {
1227 // If something is an arrayed struct, the array flattener will recursively call flatten()
1228 // to then flatten the struct, so this is an "if else": we don't do both.
1229 if (type.isArray())
1230 return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
1231 else if (type.isStruct())
1232 return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
1233 else {
1234 assert(0); // should never happen
1235 return -1;
1236 }
1237 }
1238
1239 // Add a single flattened member to the flattened data being tracked for the composite
1240 // Returns true for the final flattening level.
addFlattenedMember(const TVariable & variable,const TType & type,TFlattenData & flattenData,const TString & memberName,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1241 int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
1242 const TString& memberName, bool linkage,
1243 const TQualifier& outerQualifier,
1244 const TArraySizes* builtInArraySizes)
1245 {
1246 if (!shouldFlatten(type, outerQualifier.storage, false)) {
1247 // This is as far as we flatten. Insert the variable.
1248 TVariable* memberVariable = makeInternalVariable(memberName, type);
1249 mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
1250
1251 if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
1252 memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
1253
1254 if (memberVariable->getType().isBuiltIn()) {
1255 // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
1256 memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
1257 } else {
1258 // inherited locations must be auto bumped, not replicated
1259 if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
1260 memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
1261 flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
1262 nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
1263 }
1264 }
1265
1266 // Only propagate arraysizes here for arrayed io
1267 if (variable.getType().getQualifier().isArrayedIo(language) && builtInArraySizes != nullptr)
1268 memberVariable->getWritableType().copyArraySizes(*builtInArraySizes);
1269
1270 flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
1271 flattenData.members.push_back(memberVariable);
1272
1273 if (linkage)
1274 trackLinkage(*memberVariable);
1275
1276 return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
1277 } else {
1278 // Further recursion required
1279 return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
1280 }
1281 }
1282
1283 // Figure out the mapping between an aggregate's top members and an
1284 // equivalent set of individual variables.
1285 //
1286 // Assumes shouldFlatten() or equivalent was called first.
flattenStruct(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1287 int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
1288 TFlattenData& flattenData, TString name, bool linkage,
1289 const TQualifier& outerQualifier,
1290 const TArraySizes* builtInArraySizes)
1291 {
1292 assert(type.isStruct());
1293
1294 auto members = *type.getStruct();
1295
1296 // Reserve space for this tree level.
1297 int start = static_cast<int>(flattenData.offsets.size());
1298 int pos = start;
1299 flattenData.offsets.resize(int(pos + members.size()), -1);
1300
1301 for (int member = 0; member < (int)members.size(); ++member) {
1302 TType& dereferencedType = *members[member].type;
1303 if (dereferencedType.isBuiltIn())
1304 splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
1305 else {
1306 const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
1307 name + "." + dereferencedType.getFieldName(),
1308 linkage, outerQualifier,
1309 builtInArraySizes == nullptr && dereferencedType.isArray()
1310 ? dereferencedType.getArraySizes()
1311 : builtInArraySizes);
1312 flattenData.offsets[pos++] = mpos;
1313 }
1314 }
1315
1316 return start;
1317 }
1318
1319 // Figure out mapping between an array's members and an
1320 // equivalent set of individual variables.
1321 //
1322 // Assumes shouldFlatten() or equivalent was called first.
flattenArray(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier)1323 int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
1324 TFlattenData& flattenData, TString name, bool linkage,
1325 const TQualifier& outerQualifier)
1326 {
1327 assert(type.isSizedArray());
1328
1329 const int size = type.getOuterArraySize();
1330 const TType dereferencedType(type, 0);
1331
1332 if (name.empty())
1333 name = variable.getName();
1334
1335 // Reserve space for this tree level.
1336 int start = static_cast<int>(flattenData.offsets.size());
1337 int pos = start;
1338 flattenData.offsets.resize(int(pos + size), -1);
1339
1340 for (int element=0; element < size; ++element) {
1341 char elementNumBuf[20]; // sufficient for MAXINT
1342 snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
1343 const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
1344 name + elementNumBuf, linkage, outerQualifier,
1345 type.getArraySizes());
1346
1347 flattenData.offsets[pos++] = mpos;
1348 }
1349
1350 return start;
1351 }
1352
1353 // Return true if we have flattened this node.
wasFlattened(const TIntermTyped * node) const1354 bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
1355 {
1356 return node != nullptr && node->getAsSymbolNode() != nullptr &&
1357 wasFlattened(node->getAsSymbolNode()->getId());
1358 }
1359
1360 // Return true if we have split this structure
wasSplit(const TIntermTyped * node) const1361 bool HlslParseContext::wasSplit(const TIntermTyped* node) const
1362 {
1363 return node != nullptr && node->getAsSymbolNode() != nullptr &&
1364 wasSplit(node->getAsSymbolNode()->getId());
1365 }
1366
1367 // Turn an access into an aggregate that was flattened to instead be
1368 // an access to the individual variable the member was flattened to.
1369 // Assumes wasFlattened() or equivalent was called first.
flattenAccess(TIntermTyped * base,int member)1370 TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
1371 {
1372 const TType dereferencedType(base->getType(), member); // dereferenced type
1373 const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
1374 TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
1375 dereferencedType, symbolNode.getFlattenSubset());
1376
1377 return flattened ? flattened : base;
1378 }
flattenAccess(long long uniqueId,int member,TStorageQualifier outerStorage,const TType & dereferencedType,int subset)1379 TIntermTyped* HlslParseContext::flattenAccess(long long uniqueId, int member, TStorageQualifier outerStorage,
1380 const TType& dereferencedType, int subset)
1381 {
1382 const auto flattenData = flattenMap.find(uniqueId);
1383
1384 if (flattenData == flattenMap.end())
1385 return nullptr;
1386
1387 // Calculate new cumulative offset from the packed tree
1388 int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
1389
1390 TIntermSymbol* subsetSymbol;
1391 if (!shouldFlatten(dereferencedType, outerStorage, false)) {
1392 // Finished flattening: create symbol for variable
1393 member = flattenData->second.offsets[newSubset];
1394 const TVariable* memberVariable = flattenData->second.members[member];
1395 subsetSymbol = intermediate.addSymbol(*memberVariable);
1396 subsetSymbol->setFlattenSubset(-1);
1397 } else {
1398
1399 // If this is not the final flattening, accumulate the position and return
1400 // an object of the partially dereferenced type.
1401 subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
1402 subsetSymbol->setFlattenSubset(newSubset);
1403 }
1404
1405 return subsetSymbol;
1406 }
1407
1408 // For finding where the first leaf is in a subtree of a multi-level aggregate
1409 // that is just getting a subset assigned. Follows the same logic as flattenAccess,
1410 // but logically going down the "left-most" tree branch each step of the way.
1411 //
1412 // Returns the offset into the first leaf of the subset.
findSubtreeOffset(const TIntermNode & node) const1413 int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
1414 {
1415 const TIntermSymbol* sym = node.getAsSymbolNode();
1416 if (sym == nullptr)
1417 return 0;
1418 if (!sym->isArray() && !sym->isStruct())
1419 return 0;
1420 int subset = sym->getFlattenSubset();
1421 if (subset == -1)
1422 return 0;
1423
1424 // Getting this far means a partial aggregate is identified by the flatten subset.
1425 // Find the first leaf of the subset.
1426
1427 const auto flattenData = flattenMap.find(sym->getId());
1428 if (flattenData == flattenMap.end())
1429 return 0;
1430
1431 return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
1432
1433 do {
1434 subset = flattenData->second.offsets[subset];
1435 } while (true);
1436 }
1437 // Recursively do the desent
findSubtreeOffset(const TType & type,int subset,const TVector<int> & offsets) const1438 int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
1439 {
1440 if (!type.isArray() && !type.isStruct())
1441 return offsets[subset];
1442 TType derefType(type, 0);
1443 return findSubtreeOffset(derefType, offsets[subset], offsets);
1444 };
1445
1446 // Find and return the split IO TVariable for id, or nullptr if none.
getSplitNonIoVar(long long id) const1447 TVariable* HlslParseContext::getSplitNonIoVar(long long id) const
1448 {
1449 const auto splitNonIoVar = splitNonIoVars.find(id);
1450 if (splitNonIoVar == splitNonIoVars.end())
1451 return nullptr;
1452
1453 return splitNonIoVar->second;
1454 }
1455
1456 // Pass through to base class after remembering built-in mappings.
trackLinkage(TSymbol & symbol)1457 void HlslParseContext::trackLinkage(TSymbol& symbol)
1458 {
1459 TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
1460
1461 if (biType != EbvNone)
1462 builtInTessLinkageSymbols[biType] = symbol.clone();
1463
1464 TParseContextBase::trackLinkage(symbol);
1465 }
1466
1467
1468 // Returns true if the built-in is a clip or cull distance variable.
isClipOrCullDistance(TBuiltInVariable builtIn)1469 bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
1470 {
1471 return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
1472 }
1473
1474 // Some types require fixed array sizes in SPIR-V, but can be scalars or
1475 // arrays of sizes SPIR-V doesn't allow. For example, tessellation factors.
1476 // This creates the right size. A conversion is performed when the internal
1477 // type is copied to or from the external type. This corrects the externally
1478 // facing input or output type to abide downstream semantics.
fixBuiltInIoType(TType & type)1479 void HlslParseContext::fixBuiltInIoType(TType& type)
1480 {
1481 int requiredArraySize = 0;
1482 int requiredVectorSize = 0;
1483
1484 switch (type.getQualifier().builtIn) {
1485 case EbvTessLevelOuter: requiredArraySize = 4; break;
1486 case EbvTessLevelInner: requiredArraySize = 2; break;
1487
1488 case EbvSampleMask:
1489 {
1490 // Promote scalar to array of size 1. Leave existing arrays alone.
1491 if (!type.isArray())
1492 requiredArraySize = 1;
1493 break;
1494 }
1495
1496 case EbvWorkGroupId: requiredVectorSize = 3; break;
1497 case EbvGlobalInvocationId: requiredVectorSize = 3; break;
1498 case EbvLocalInvocationId: requiredVectorSize = 3; break;
1499 case EbvTessCoord: requiredVectorSize = 3; break;
1500
1501 default:
1502 if (isClipOrCullDistance(type)) {
1503 const int loc = type.getQualifier().layoutLocation;
1504
1505 if (type.getQualifier().builtIn == EbvClipDistance) {
1506 if (type.getQualifier().storage == EvqVaryingIn)
1507 clipSemanticNSizeIn[loc] = type.getVectorSize();
1508 else
1509 clipSemanticNSizeOut[loc] = type.getVectorSize();
1510 } else {
1511 if (type.getQualifier().storage == EvqVaryingIn)
1512 cullSemanticNSizeIn[loc] = type.getVectorSize();
1513 else
1514 cullSemanticNSizeOut[loc] = type.getVectorSize();
1515 }
1516 }
1517
1518 return;
1519 }
1520
1521 // Alter or set vector size as needed.
1522 if (requiredVectorSize > 0) {
1523 TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
1524 newType.getQualifier() = type.getQualifier();
1525
1526 type.shallowCopy(newType);
1527 }
1528
1529 // Alter or set array size as needed.
1530 if (requiredArraySize > 0) {
1531 if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
1532 TArraySizes* arraySizes = new TArraySizes;
1533 arraySizes->addInnerSize(requiredArraySize);
1534 type.transferArraySizes(arraySizes);
1535 }
1536 }
1537 }
1538
1539 // Variables that correspond to the user-interface in and out of a stage
1540 // (not the built-in interface) are
1541 // - assigned locations
1542 // - registered as a linkage node (part of the stage's external interface).
1543 // Assumes it is called in the order in which locations should be assigned.
assignToInterface(TVariable & variable)1544 void HlslParseContext::assignToInterface(TVariable& variable)
1545 {
1546 const auto assignLocation = [&](TVariable& variable) {
1547 TType& type = variable.getWritableType();
1548 if (!type.isStruct() || type.getStruct()->size() > 0) {
1549 TQualifier& qualifier = type.getQualifier();
1550 if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
1551 if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
1552 // Strip off the outer array dimension for those having an extra one.
1553 int size;
1554 if (type.isArray() && qualifier.isArrayedIo(language)) {
1555 TType elementType(type, 0);
1556 size = intermediate.computeTypeLocationSize(elementType, language);
1557 } else
1558 size = intermediate.computeTypeLocationSize(type, language);
1559
1560 if (qualifier.storage == EvqVaryingIn) {
1561 variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
1562 nextInLocation += size;
1563 } else {
1564 variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
1565 nextOutLocation += size;
1566 }
1567 }
1568 trackLinkage(variable);
1569 }
1570 }
1571 };
1572
1573 if (wasFlattened(variable.getUniqueId())) {
1574 auto& memberList = flattenMap[variable.getUniqueId()].members;
1575 for (auto member = memberList.begin(); member != memberList.end(); ++member)
1576 assignLocation(**member);
1577 } else if (wasSplit(variable.getUniqueId())) {
1578 TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
1579 assignLocation(*splitIoVar);
1580 } else {
1581 assignLocation(variable);
1582 }
1583 }
1584
1585 //
1586 // Handle seeing a function declarator in the grammar. This is the precursor
1587 // to recognizing a function prototype or function definition.
1588 //
handleFunctionDeclarator(const TSourceLoc & loc,TFunction & function,bool prototype)1589 void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
1590 {
1591 //
1592 // Multiple declarations of the same function name are allowed.
1593 //
1594 // If this is a definition, the definition production code will check for redefinitions
1595 // (we don't know at this point if it's a definition or not).
1596 //
1597 bool builtIn;
1598 TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
1599 const TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
1600
1601 if (prototype) {
1602 // All built-in functions are defined, even though they don't have a body.
1603 // Count their prototype as a definition instead.
1604 if (symbolTable.atBuiltInLevel())
1605 function.setDefined();
1606 else {
1607 if (prevDec && ! builtIn)
1608 symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
1609 function.setPrototyped();
1610 }
1611 }
1612
1613 // This insert won't actually insert it if it's a duplicate signature, but it will still check for
1614 // other forms of name collisions.
1615 if (! symbolTable.insert(function))
1616 error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
1617 }
1618
1619 // For struct buffers with counters, we must pass the counter buffer as hidden parameter.
1620 // This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
1621 // Otherwise, it's a no-op
addStructBufferHiddenCounterParam(const TSourceLoc & loc,TParameter & param,TIntermAggregate * & paramNodes)1622 void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
1623 TIntermAggregate*& paramNodes)
1624 {
1625 if (! hasStructBuffCounter(*param.type))
1626 return;
1627
1628 const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
1629
1630 TType counterType;
1631 counterBufferType(loc, counterType);
1632 TVariable *variable = makeInternalVariable(counterBlockName, counterType);
1633
1634 if (! symbolTable.insert(*variable))
1635 error(loc, "redefinition", variable->getName().c_str(), "");
1636
1637 paramNodes = intermediate.growAggregate(paramNodes,
1638 intermediate.addSymbol(*variable, loc),
1639 loc);
1640 }
1641
1642 //
1643 // Handle seeing the function prototype in front of a function definition in the grammar.
1644 // The body is handled after this function returns.
1645 //
1646 // Returns an aggregate of parameter-symbol nodes.
1647 //
handleFunctionDefinition(const TSourceLoc & loc,TFunction & function,const TAttributes & attributes,TIntermNode * & entryPointTree)1648 TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
1649 const TAttributes& attributes,
1650 TIntermNode*& entryPointTree)
1651 {
1652 currentCaller = function.getMangledName();
1653 TSymbol* symbol = symbolTable.find(function.getMangledName());
1654 TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
1655
1656 if (prevDec == nullptr)
1657 error(loc, "can't find function", function.getName().c_str(), "");
1658 // Note: 'prevDec' could be 'function' if this is the first time we've seen function
1659 // as it would have just been put in the symbol table. Otherwise, we're looking up
1660 // an earlier occurrence.
1661
1662 if (prevDec && prevDec->isDefined()) {
1663 // Then this function already has a body.
1664 error(loc, "function already has a body", function.getName().c_str(), "");
1665 }
1666 if (prevDec && ! prevDec->isDefined()) {
1667 prevDec->setDefined();
1668
1669 // Remember the return type for later checking for RETURN statements.
1670 currentFunctionType = &(prevDec->getType());
1671 } else
1672 currentFunctionType = new TType(EbtVoid);
1673 functionReturnsValue = false;
1674
1675 // Entry points need different I/O and other handling, transform it so the
1676 // rest of this function doesn't care.
1677 entryPointTree = transformEntryPoint(loc, function, attributes);
1678
1679 //
1680 // New symbol table scope for body of function plus its arguments
1681 //
1682 pushScope();
1683
1684 //
1685 // Insert parameters into the symbol table.
1686 // If the parameter has no name, it's not an error, just don't insert it
1687 // (could be used for unused args).
1688 //
1689 // Also, accumulate the list of parameters into the AST, so lower level code
1690 // knows where to find parameters.
1691 //
1692 TIntermAggregate* paramNodes = new TIntermAggregate;
1693 for (int i = 0; i < function.getParamCount(); i++) {
1694 TParameter& param = function[i];
1695 if (param.name != nullptr) {
1696 TVariable *variable = new TVariable(param.name, *param.type);
1697
1698 if (i == 0 && function.hasImplicitThis()) {
1699 // Anonymous 'this' members are already in a symbol-table level,
1700 // and we need to know what function parameter to map them to.
1701 symbolTable.makeInternalVariable(*variable);
1702 pushImplicitThis(variable);
1703 }
1704
1705 // Insert the parameters with name in the symbol table.
1706 if (! symbolTable.insert(*variable))
1707 error(loc, "redefinition", variable->getName().c_str(), "");
1708
1709 // Add parameters to the AST list.
1710 if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
1711 // Expand the AST parameter nodes (but not the name mangling or symbol table view)
1712 // for structures that need to be flattened.
1713 flatten(*variable, false);
1714 const TTypeList* structure = variable->getType().getStruct();
1715 for (int mem = 0; mem < (int)structure->size(); ++mem) {
1716 paramNodes = intermediate.growAggregate(paramNodes,
1717 flattenAccess(variable->getUniqueId(), mem,
1718 variable->getType().getQualifier().storage,
1719 *(*structure)[mem].type),
1720 loc);
1721 }
1722 } else {
1723 // Add the parameter to the AST
1724 paramNodes = intermediate.growAggregate(paramNodes,
1725 intermediate.addSymbol(*variable, loc),
1726 loc);
1727 }
1728
1729 // Add hidden AST parameter for struct buffer counters, if needed.
1730 addStructBufferHiddenCounterParam(loc, param, paramNodes);
1731 } else
1732 paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
1733 }
1734 if (function.hasIllegalImplicitThis())
1735 pushImplicitThis(nullptr);
1736
1737 intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
1738 loopNestingLevel = 0;
1739 controlFlowNestingLevel = 0;
1740 postEntryPointReturn = false;
1741
1742 return paramNodes;
1743 }
1744
1745 // Handle all [attrib] attribute for the shader entry point
handleEntryPointAttributes(const TSourceLoc & loc,const TAttributes & attributes)1746 void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
1747 {
1748 for (auto it = attributes.begin(); it != attributes.end(); ++it) {
1749 switch (it->name) {
1750 case EatNumThreads:
1751 {
1752 const TIntermSequence& sequence = it->args->getSequence();
1753 for (int lid = 0; lid < int(sequence.size()); ++lid)
1754 intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
1755 break;
1756 }
1757 case EatInstance:
1758 {
1759 int invocations;
1760
1761 if (!it->getInt(invocations)) {
1762 error(loc, "invalid instance", "", "");
1763 } else {
1764 if (!intermediate.setInvocations(invocations))
1765 error(loc, "cannot change previously set instance attribute", "", "");
1766 }
1767 break;
1768 }
1769 case EatMaxVertexCount:
1770 {
1771 int maxVertexCount;
1772
1773 if (! it->getInt(maxVertexCount)) {
1774 error(loc, "invalid maxvertexcount", "", "");
1775 } else {
1776 if (! intermediate.setVertices(maxVertexCount))
1777 error(loc, "cannot change previously set maxvertexcount attribute", "", "");
1778 }
1779 break;
1780 }
1781 case EatPatchConstantFunc:
1782 {
1783 TString pcfName;
1784 if (! it->getString(pcfName, 0, false)) {
1785 error(loc, "invalid patch constant function", "", "");
1786 } else {
1787 patchConstantFunctionName = pcfName;
1788 }
1789 break;
1790 }
1791 case EatDomain:
1792 {
1793 // Handle [domain("...")]
1794 TString domainStr;
1795 if (! it->getString(domainStr)) {
1796 error(loc, "invalid domain", "", "");
1797 } else {
1798 TLayoutGeometry domain = ElgNone;
1799
1800 if (domainStr == "tri") {
1801 domain = ElgTriangles;
1802 } else if (domainStr == "quad") {
1803 domain = ElgQuads;
1804 } else if (domainStr == "isoline") {
1805 domain = ElgIsolines;
1806 } else {
1807 error(loc, "unsupported domain type", domainStr.c_str(), "");
1808 }
1809
1810 if (language == EShLangTessEvaluation) {
1811 if (! intermediate.setInputPrimitive(domain))
1812 error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
1813 } else {
1814 if (! intermediate.setOutputPrimitive(domain))
1815 error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
1816 }
1817 }
1818 break;
1819 }
1820 case EatOutputTopology:
1821 {
1822 // Handle [outputtopology("...")]
1823 TString topologyStr;
1824 if (! it->getString(topologyStr)) {
1825 error(loc, "invalid outputtopology", "", "");
1826 } else {
1827 TVertexOrder vertexOrder = EvoNone;
1828 TLayoutGeometry primitive = ElgNone;
1829
1830 if (topologyStr == "point") {
1831 intermediate.setPointMode();
1832 } else if (topologyStr == "line") {
1833 primitive = ElgIsolines;
1834 } else if (topologyStr == "triangle_cw") {
1835 vertexOrder = EvoCw;
1836 primitive = ElgTriangles;
1837 } else if (topologyStr == "triangle_ccw") {
1838 vertexOrder = EvoCcw;
1839 primitive = ElgTriangles;
1840 } else {
1841 error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
1842 }
1843
1844 if (vertexOrder != EvoNone) {
1845 if (! intermediate.setVertexOrder(vertexOrder)) {
1846 error(loc, "cannot change previously set outputtopology",
1847 TQualifier::getVertexOrderString(vertexOrder), "");
1848 }
1849 }
1850 if (primitive != ElgNone)
1851 intermediate.setOutputPrimitive(primitive);
1852 }
1853 break;
1854 }
1855 case EatPartitioning:
1856 {
1857 // Handle [partitioning("...")]
1858 TString partitionStr;
1859 if (! it->getString(partitionStr)) {
1860 error(loc, "invalid partitioning", "", "");
1861 } else {
1862 TVertexSpacing partitioning = EvsNone;
1863
1864 if (partitionStr == "integer") {
1865 partitioning = EvsEqual;
1866 } else if (partitionStr == "fractional_even") {
1867 partitioning = EvsFractionalEven;
1868 } else if (partitionStr == "fractional_odd") {
1869 partitioning = EvsFractionalOdd;
1870 //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
1871 } else {
1872 error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
1873 }
1874
1875 if (! intermediate.setVertexSpacing(partitioning))
1876 error(loc, "cannot change previously set partitioning",
1877 TQualifier::getVertexSpacingString(partitioning), "");
1878 }
1879 break;
1880 }
1881 case EatOutputControlPoints:
1882 {
1883 // Handle [outputcontrolpoints("...")]
1884 int ctrlPoints;
1885 if (! it->getInt(ctrlPoints)) {
1886 error(loc, "invalid outputcontrolpoints", "", "");
1887 } else {
1888 if (! intermediate.setVertices(ctrlPoints)) {
1889 error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
1890 }
1891 }
1892 break;
1893 }
1894 case EatEarlyDepthStencil:
1895 intermediate.setEarlyFragmentTests();
1896 break;
1897 case EatBuiltIn:
1898 case EatLocation:
1899 // tolerate these because of dual use of entrypoint and type attributes
1900 break;
1901 default:
1902 warn(loc, "attribute does not apply to entry point", "", "");
1903 break;
1904 }
1905 }
1906 }
1907
1908 // Update the given type with any type-like attribute information in the
1909 // attributes.
transferTypeAttributes(const TSourceLoc & loc,const TAttributes & attributes,TType & type,bool allowEntry)1910 void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
1911 bool allowEntry)
1912 {
1913 if (attributes.size() == 0)
1914 return;
1915
1916 int value;
1917 TString builtInString;
1918 for (auto it = attributes.begin(); it != attributes.end(); ++it) {
1919 switch (it->name) {
1920 case EatLocation:
1921 // location
1922 if (it->getInt(value))
1923 type.getQualifier().layoutLocation = value;
1924 else
1925 error(loc, "needs a literal integer", "location", "");
1926 break;
1927 case EatBinding:
1928 // binding
1929 if (it->getInt(value)) {
1930 type.getQualifier().layoutBinding = value;
1931 type.getQualifier().layoutSet = 0;
1932 } else
1933 error(loc, "needs a literal integer", "binding", "");
1934 // set
1935 if (it->getInt(value, 1))
1936 type.getQualifier().layoutSet = value;
1937 break;
1938 case EatGlobalBinding:
1939 // global cbuffer binding
1940 if (it->getInt(value))
1941 globalUniformBinding = value;
1942 else
1943 error(loc, "needs a literal integer", "global binding", "");
1944 // global cbuffer set
1945 if (it->getInt(value, 1))
1946 globalUniformSet = value;
1947 break;
1948 case EatInputAttachment:
1949 // input attachment
1950 if (it->getInt(value))
1951 type.getQualifier().layoutAttachment = value;
1952 else
1953 error(loc, "needs a literal integer", "input attachment", "");
1954 break;
1955 case EatBuiltIn:
1956 // PointSize built-in
1957 if (it->getString(builtInString, 0, false)) {
1958 if (builtInString == "PointSize")
1959 type.getQualifier().builtIn = EbvPointSize;
1960 }
1961 break;
1962 case EatPushConstant:
1963 // push_constant
1964 type.getQualifier().layoutPushConstant = true;
1965 break;
1966 case EatConstantId:
1967 // specialization constant
1968 if (type.getQualifier().storage != EvqConst) {
1969 error(loc, "needs a const type", "constant_id", "");
1970 break;
1971 }
1972 if (it->getInt(value)) {
1973 TSourceLoc loc;
1974 loc.init();
1975 setSpecConstantId(loc, type.getQualifier(), value);
1976 }
1977 break;
1978
1979 // image formats
1980 case EatFormatRgba32f: type.getQualifier().layoutFormat = ElfRgba32f; break;
1981 case EatFormatRgba16f: type.getQualifier().layoutFormat = ElfRgba16f; break;
1982 case EatFormatR32f: type.getQualifier().layoutFormat = ElfR32f; break;
1983 case EatFormatRgba8: type.getQualifier().layoutFormat = ElfRgba8; break;
1984 case EatFormatRgba8Snorm: type.getQualifier().layoutFormat = ElfRgba8Snorm; break;
1985 case EatFormatRg32f: type.getQualifier().layoutFormat = ElfRg32f; break;
1986 case EatFormatRg16f: type.getQualifier().layoutFormat = ElfRg16f; break;
1987 case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break;
1988 case EatFormatR16f: type.getQualifier().layoutFormat = ElfR16f; break;
1989 case EatFormatRgba16: type.getQualifier().layoutFormat = ElfRgba16; break;
1990 case EatFormatRgb10A2: type.getQualifier().layoutFormat = ElfRgb10A2; break;
1991 case EatFormatRg16: type.getQualifier().layoutFormat = ElfRg16; break;
1992 case EatFormatRg8: type.getQualifier().layoutFormat = ElfRg8; break;
1993 case EatFormatR16: type.getQualifier().layoutFormat = ElfR16; break;
1994 case EatFormatR8: type.getQualifier().layoutFormat = ElfR8; break;
1995 case EatFormatRgba16Snorm: type.getQualifier().layoutFormat = ElfRgba16Snorm; break;
1996 case EatFormatRg16Snorm: type.getQualifier().layoutFormat = ElfRg16Snorm; break;
1997 case EatFormatRg8Snorm: type.getQualifier().layoutFormat = ElfRg8Snorm; break;
1998 case EatFormatR16Snorm: type.getQualifier().layoutFormat = ElfR16Snorm; break;
1999 case EatFormatR8Snorm: type.getQualifier().layoutFormat = ElfR8Snorm; break;
2000 case EatFormatRgba32i: type.getQualifier().layoutFormat = ElfRgba32i; break;
2001 case EatFormatRgba16i: type.getQualifier().layoutFormat = ElfRgba16i; break;
2002 case EatFormatRgba8i: type.getQualifier().layoutFormat = ElfRgba8i; break;
2003 case EatFormatR32i: type.getQualifier().layoutFormat = ElfR32i; break;
2004 case EatFormatRg32i: type.getQualifier().layoutFormat = ElfRg32i; break;
2005 case EatFormatRg16i: type.getQualifier().layoutFormat = ElfRg16i; break;
2006 case EatFormatRg8i: type.getQualifier().layoutFormat = ElfRg8i; break;
2007 case EatFormatR16i: type.getQualifier().layoutFormat = ElfR16i; break;
2008 case EatFormatR8i: type.getQualifier().layoutFormat = ElfR8i; break;
2009 case EatFormatRgba32ui: type.getQualifier().layoutFormat = ElfRgba32ui; break;
2010 case EatFormatRgba16ui: type.getQualifier().layoutFormat = ElfRgba16ui; break;
2011 case EatFormatRgba8ui: type.getQualifier().layoutFormat = ElfRgba8ui; break;
2012 case EatFormatR32ui: type.getQualifier().layoutFormat = ElfR32ui; break;
2013 case EatFormatRgb10a2ui: type.getQualifier().layoutFormat = ElfRgb10a2ui; break;
2014 case EatFormatRg32ui: type.getQualifier().layoutFormat = ElfRg32ui; break;
2015 case EatFormatRg16ui: type.getQualifier().layoutFormat = ElfRg16ui; break;
2016 case EatFormatRg8ui: type.getQualifier().layoutFormat = ElfRg8ui; break;
2017 case EatFormatR16ui: type.getQualifier().layoutFormat = ElfR16ui; break;
2018 case EatFormatR8ui: type.getQualifier().layoutFormat = ElfR8ui; break;
2019 case EatFormatUnknown: type.getQualifier().layoutFormat = ElfNone; break;
2020
2021 case EatNonWritable: type.getQualifier().readonly = true; break;
2022 case EatNonReadable: type.getQualifier().writeonly = true; break;
2023
2024 default:
2025 if (! allowEntry)
2026 warn(loc, "attribute does not apply to a type", "", "");
2027 break;
2028 }
2029 }
2030 }
2031
2032 //
2033 // Do all special handling for the entry point, including wrapping
2034 // the shader's entry point with the official entry point that will call it.
2035 //
2036 // The following:
2037 //
2038 // retType shaderEntryPoint(args...) // shader declared entry point
2039 // { body }
2040 //
2041 // Becomes
2042 //
2043 // out retType ret;
2044 // in iargs<that are input>...;
2045 // out oargs<that are output> ...;
2046 //
2047 // void shaderEntryPoint() // synthesized, but official, entry point
2048 // {
2049 // args<that are input> = iargs...;
2050 // ret = @shaderEntryPoint(args...);
2051 // oargs = args<that are output>...;
2052 // }
2053 // retType @shaderEntryPoint(args...)
2054 // { body }
2055 //
2056 // The symbol table will still map the original entry point name to the
2057 // the modified function and its new name:
2058 //
2059 // symbol table: shaderEntryPoint -> @shaderEntryPoint
2060 //
2061 // Returns nullptr if no entry-point tree was built, otherwise, returns
2062 // a subtree that creates the entry point.
2063 //
transformEntryPoint(const TSourceLoc & loc,TFunction & userFunction,const TAttributes & attributes)2064 TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
2065 const TAttributes& attributes)
2066 {
2067 // Return true if this is a tessellation patch constant function input to a domain shader.
2068 const auto isDsPcfInput = [this](const TType& type) {
2069 return language == EShLangTessEvaluation &&
2070 type.contains([](const TType* t) {
2071 return t->getQualifier().builtIn == EbvTessLevelOuter ||
2072 t->getQualifier().builtIn == EbvTessLevelInner;
2073 });
2074 };
2075
2076 // if we aren't in the entry point, fix the IO as such and exit
2077 if (! isEntrypointName(userFunction.getName())) {
2078 remapNonEntryPointIO(userFunction);
2079 return nullptr;
2080 }
2081
2082 entryPointFunction = &userFunction; // needed in finish()
2083
2084 // Handle entry point attributes
2085 handleEntryPointAttributes(loc, attributes);
2086
2087 // entry point logic...
2088
2089 // Move parameters and return value to shader in/out
2090 TVariable* entryPointOutput; // gets created in remapEntryPointIO
2091 TVector<TVariable*> inputs;
2092 TVector<TVariable*> outputs;
2093 remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
2094
2095 // Further this return/in/out transform by flattening, splitting, and assigning locations
2096 const auto makeVariableInOut = [&](TVariable& variable) {
2097 if (variable.getType().isStruct()) {
2098 bool arrayed = variable.getType().getQualifier().isArrayedIo(language);
2099 flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */, arrayed);
2100 }
2101 // TODO: flatten arrays too
2102 // TODO: flatten everything in I/O
2103 // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
2104
2105 // For clip and cull distance, multiple output variables potentially get merged
2106 // into one in assignClipCullDistance. That code in assignClipCullDistance
2107 // handles the interface logic, so we avoid it here in that case.
2108 if (!isClipOrCullDistance(variable.getType()))
2109 assignToInterface(variable);
2110 };
2111 if (entryPointOutput != nullptr)
2112 makeVariableInOut(*entryPointOutput);
2113 for (auto it = inputs.begin(); it != inputs.end(); ++it)
2114 if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below)
2115 makeVariableInOut(*(*it));
2116 for (auto it = outputs.begin(); it != outputs.end(); ++it)
2117 makeVariableInOut(*(*it));
2118
2119 // In the domain shader, PCF input must be at the end of the linkage. That's because in the
2120 // hull shader there is no ordering: the output comes from the separate PCF, which does not
2121 // participate in the argument list. That is always put at the end of the HS linkage, so the
2122 // input side of the DS must match. The argument may be in any position in the DS argument list
2123 // however, so this ensures the linkage is built in the correct order regardless of argument order.
2124 if (language == EShLangTessEvaluation) {
2125 for (auto it = inputs.begin(); it != inputs.end(); ++it)
2126 if (isDsPcfInput((*it)->getType()))
2127 makeVariableInOut(*(*it));
2128 }
2129
2130 // Add uniform parameters to the $Global uniform block.
2131 TVector<TVariable*> opaque_uniforms;
2132 for (int i = 0; i < userFunction.getParamCount(); i++) {
2133 TType& paramType = *userFunction[i].type;
2134 TString& paramName = *userFunction[i].name;
2135 if (paramType.getQualifier().storage == EvqUniform) {
2136 if (!paramType.containsOpaque()) {
2137 // Add it to the global uniform block.
2138 growGlobalUniformBlock(loc, paramType, paramName);
2139 } else {
2140 // Declare it as a separate variable.
2141 TVariable *var = makeInternalVariable(paramName.c_str(), paramType);
2142 opaque_uniforms.push_back(var);
2143 }
2144 }
2145 }
2146
2147 // Synthesize the call
2148
2149 pushScope(); // matches the one in handleFunctionBody()
2150
2151 // new signature
2152 TType voidType(EbtVoid);
2153 TFunction synthEntryPoint(&userFunction.getName(), voidType);
2154 TIntermAggregate* synthParams = new TIntermAggregate();
2155 intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
2156 intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
2157 intermediate.incrementEntryPointCount();
2158 TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
2159
2160 // change original name
2161 userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table
2162
2163 // Copy inputs (shader-in -> calling arg), while building up the call node
2164 TVector<TVariable*> argVars;
2165 TIntermAggregate* synthBody = new TIntermAggregate();
2166 auto inputIt = inputs.begin();
2167 auto opaqueUniformIt = opaque_uniforms.begin();
2168 TIntermTyped* callingArgs = nullptr;
2169
2170 for (int i = 0; i < userFunction.getParamCount(); i++) {
2171 TParameter& param = userFunction[i];
2172 argVars.push_back(makeInternalVariable(*param.name, *param.type));
2173 argVars.back()->getWritableType().getQualifier().makeTemporary();
2174
2175 // Track the input patch, which is the only non-builtin supported by hull shader PCF.
2176 if (param.getDeclaredBuiltIn() == EbvInputPatch)
2177 inputPatch = argVars.back();
2178
2179 TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
2180 handleFunctionArgument(&callee, callingArgs, arg);
2181 if (param.type->getQualifier().isParamInput()) {
2182 TIntermTyped* input = intermediate.addSymbol(**inputIt);
2183 if (input->getType().getQualifier().builtIn == EbvFragCoord && intermediate.getDxPositionW()) {
2184 // Replace FragCoord W with reciprocal
2185 auto pos_xyz = handleDotDereference(loc, input, "xyz");
2186 auto pos_w = handleDotDereference(loc, input, "w");
2187 auto one = intermediate.addConstantUnion(1.0, EbtFloat, loc);
2188 auto recip_w = intermediate.addBinaryMath(EOpDiv, one, pos_w, loc);
2189 TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
2190 dst->getSequence().push_back(pos_xyz);
2191 dst->getSequence().push_back(recip_w);
2192 dst->setType(TType(EbtFloat, EvqTemporary, 4));
2193 dst->setLoc(loc);
2194 input = dst;
2195 }
2196 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, input));
2197 inputIt++;
2198 }
2199 if (param.type->getQualifier().storage == EvqUniform) {
2200 if (!param.type->containsOpaque()) {
2201 // Look it up in the $Global uniform block.
2202 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
2203 handleVariable(loc, param.name)));
2204 } else {
2205 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
2206 intermediate.addSymbol(**opaqueUniformIt)));
2207 ++opaqueUniformIt;
2208 }
2209 }
2210 }
2211
2212 // Call
2213 currentCaller = synthEntryPoint.getMangledName();
2214 TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
2215 currentCaller = userFunction.getMangledName();
2216
2217 // Return value
2218 if (entryPointOutput) {
2219 TIntermTyped* returnAssign;
2220
2221 // For hull shaders, the wrapped entry point return value is written to
2222 // an array element as indexed by invocation ID, which we might have to make up.
2223 // This is required to match SPIR-V semantics.
2224 if (language == EShLangTessControl) {
2225 TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
2226
2227 // If there is no user declared invocation ID, we must make one.
2228 if (invocationIdSym == nullptr) {
2229 TType invocationIdType(EbtUint, EvqIn, 1);
2230 TString* invocationIdName = NewPoolTString("InvocationId");
2231 invocationIdType.getQualifier().builtIn = EbvInvocationId;
2232
2233 TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
2234
2235 globalQualifierFix(loc, variable->getWritableType().getQualifier());
2236 trackLinkage(*variable);
2237
2238 invocationIdSym = intermediate.addSymbol(*variable);
2239 }
2240
2241 TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
2242 invocationIdSym, loc);
2243
2244 // Set the type of the array element being dereferenced
2245 const TType derefElementType(entryPointOutput->getType(), 0);
2246 element->setType(derefElementType);
2247
2248 returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
2249 } else {
2250 returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
2251 }
2252 intermediate.growAggregate(synthBody, returnAssign);
2253 } else
2254 intermediate.growAggregate(synthBody, callReturn);
2255
2256 // Output copies
2257 auto outputIt = outputs.begin();
2258 for (int i = 0; i < userFunction.getParamCount(); i++) {
2259 TParameter& param = userFunction[i];
2260
2261 // GS outputs are via emit, so we do not copy them here.
2262 if (param.type->getQualifier().isParamOutput()) {
2263 if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
2264 // GS output stream does not assign outputs here: it's the Append() method
2265 // which writes to the output, probably multiple times separated by Emit.
2266 // We merely remember the output to use, here.
2267 gsStreamOutput = *outputIt;
2268 } else {
2269 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
2270 intermediate.addSymbol(**outputIt),
2271 intermediate.addSymbol(*argVars[i])));
2272 }
2273
2274 outputIt++;
2275 }
2276 }
2277
2278 // Put the pieces together to form a full function subtree
2279 // for the synthesized entry point.
2280 synthBody->setOperator(EOpSequence);
2281 TIntermNode* synthFunctionDef = synthParams;
2282 handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
2283
2284 entryPointFunctionBody = synthBody;
2285
2286 return synthFunctionDef;
2287 }
2288
handleFunctionBody(const TSourceLoc & loc,TFunction & function,TIntermNode * functionBody,TIntermNode * & node)2289 void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
2290 TIntermNode*& node)
2291 {
2292 node = intermediate.growAggregate(node, functionBody);
2293 intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
2294 node->getAsAggregate()->setName(function.getMangledName().c_str());
2295
2296 popScope();
2297 if (function.hasImplicitThis())
2298 popImplicitThis();
2299
2300 if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
2301 error(loc, "function does not return a value:", "", function.getName().c_str());
2302 }
2303
2304 // AST I/O is done through shader globals declared in the 'in' or 'out'
2305 // storage class. An HLSL entry point has a return value, input parameters
2306 // and output parameters. These need to get remapped to the AST I/O.
remapEntryPointIO(TFunction & function,TVariable * & returnValue,TVector<TVariable * > & inputs,TVector<TVariable * > & outputs)2307 void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
2308 TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
2309 {
2310 // We might have in input structure type with no decorations that caused it
2311 // to look like an input type, yet it has (e.g.) interpolation types that
2312 // must be modified that turn it into an input type.
2313 // Hence, a missing ioTypeMap for 'input' might need to be synthesized.
2314 const auto synthesizeEditedInput = [this](TType& type) {
2315 // True if a type needs to be 'flat'
2316 const auto needsFlat = [](const TType& type) {
2317 return type.containsBasicType(EbtInt) ||
2318 type.containsBasicType(EbtUint) ||
2319 type.containsBasicType(EbtInt64) ||
2320 type.containsBasicType(EbtUint64) ||
2321 type.containsBasicType(EbtBool) ||
2322 type.containsBasicType(EbtDouble);
2323 };
2324
2325 if (language == EShLangFragment && needsFlat(type)) {
2326 if (type.isStruct()) {
2327 TTypeList* finalList = nullptr;
2328 auto it = ioTypeMap.find(type.getStruct());
2329 if (it == ioTypeMap.end() || it->second.input == nullptr) {
2330 // Getting here means we have no input struct, but we need one.
2331 auto list = new TTypeList;
2332 for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
2333 TType* newType = new TType;
2334 newType->shallowCopy(*member->type);
2335 TTypeLoc typeLoc = { newType, member->loc };
2336 list->push_back(typeLoc);
2337 }
2338 // install the new input type
2339 if (it == ioTypeMap.end()) {
2340 tIoKinds newLists = { list, nullptr, nullptr };
2341 ioTypeMap[type.getStruct()] = newLists;
2342 } else
2343 it->second.input = list;
2344 finalList = list;
2345 } else
2346 finalList = it->second.input;
2347 // edit for 'flat'
2348 for (auto member = finalList->begin(); member != finalList->end(); ++member) {
2349 if (needsFlat(*member->type)) {
2350 member->type->getQualifier().clearInterpolation();
2351 member->type->getQualifier().flat = true;
2352 }
2353 }
2354 } else {
2355 type.getQualifier().clearInterpolation();
2356 type.getQualifier().flat = true;
2357 }
2358 }
2359 };
2360
2361 // Do the actual work to make a type be a shader input or output variable,
2362 // and clear the original to be non-IO (for use as a normal function parameter/return).
2363 const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
2364 TVariable* ioVariable = makeInternalVariable(name, type);
2365 clearUniformInputOutput(type.getQualifier());
2366 if (type.isStruct()) {
2367 auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
2368 if (newLists != ioTypeMap.end()) {
2369 if (storage == EvqVaryingIn && newLists->second.input)
2370 ioVariable->getWritableType().setStruct(newLists->second.input);
2371 else if (storage == EvqVaryingOut && newLists->second.output)
2372 ioVariable->getWritableType().setStruct(newLists->second.output);
2373 }
2374 }
2375 if (storage == EvqVaryingIn) {
2376 correctInput(ioVariable->getWritableType().getQualifier());
2377 if (language == EShLangTessEvaluation)
2378 if (!ioVariable->getType().isArray())
2379 ioVariable->getWritableType().getQualifier().patch = true;
2380 } else {
2381 correctOutput(ioVariable->getWritableType().getQualifier());
2382 }
2383 ioVariable->getWritableType().getQualifier().storage = storage;
2384
2385 fixBuiltInIoType(ioVariable->getWritableType());
2386
2387 return ioVariable;
2388 };
2389
2390 // return value is actually a shader-scoped output (out)
2391 if (function.getType().getBasicType() == EbtVoid) {
2392 returnValue = nullptr;
2393 } else {
2394 if (language == EShLangTessControl) {
2395 // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
2396 // array in SPIR-V semantics. We'll write to it indexed by invocation ID.
2397
2398 returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
2399
2400 TType outputType;
2401 outputType.shallowCopy(function.getType());
2402
2403 // vertices has necessarily already been set when handling entry point attributes.
2404 TArraySizes* arraySizes = new TArraySizes;
2405 arraySizes->addInnerSize(intermediate.getVertices());
2406 outputType.transferArraySizes(arraySizes);
2407
2408 clearUniformInputOutput(function.getWritableType().getQualifier());
2409 returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
2410 } else {
2411 returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
2412 }
2413 }
2414
2415 // parameters are actually shader-scoped inputs and outputs (in or out)
2416 for (int i = 0; i < function.getParamCount(); i++) {
2417 TType& paramType = *function[i].type;
2418 if (paramType.getQualifier().isParamInput()) {
2419 synthesizeEditedInput(paramType);
2420 TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
2421 inputs.push_back(argAsGlobal);
2422 }
2423 if (paramType.getQualifier().isParamOutput()) {
2424 TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
2425 outputs.push_back(argAsGlobal);
2426 }
2427 }
2428 }
2429
2430 // An HLSL function that looks like an entry point, but is not,
2431 // declares entry point IO built-ins, but these have to be undone.
remapNonEntryPointIO(TFunction & function)2432 void HlslParseContext::remapNonEntryPointIO(TFunction& function)
2433 {
2434 // return value
2435 if (function.getType().getBasicType() != EbtVoid)
2436 clearUniformInputOutput(function.getWritableType().getQualifier());
2437
2438 // parameters.
2439 // References to structuredbuffer types are left unmodified
2440 for (int i = 0; i < function.getParamCount(); i++)
2441 if (!isReference(*function[i].type))
2442 clearUniformInputOutput(function[i].type->getQualifier());
2443 }
2444
handleDeclare(const TSourceLoc & loc,TIntermTyped * var)2445 TIntermNode* HlslParseContext::handleDeclare(const TSourceLoc& loc, TIntermTyped* var)
2446 {
2447 return intermediate.addUnaryNode(EOpDeclare, var, loc, TType(EbtVoid));
2448 }
2449
2450 // Handle function returns, including type conversions to the function return type
2451 // if necessary.
handleReturnValue(const TSourceLoc & loc,TIntermTyped * value)2452 TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
2453 {
2454 functionReturnsValue = true;
2455
2456 if (currentFunctionType->getBasicType() == EbtVoid) {
2457 error(loc, "void function cannot return a value", "return", "");
2458 return intermediate.addBranch(EOpReturn, loc);
2459 } else if (*currentFunctionType != value->getType()) {
2460 value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
2461 if (value && *currentFunctionType != value->getType())
2462 value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
2463 if (value == nullptr || *currentFunctionType != value->getType()) {
2464 error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
2465 return value;
2466 }
2467 }
2468
2469 return intermediate.addBranch(EOpReturn, value, loc);
2470 }
2471
handleFunctionArgument(TFunction * function,TIntermTyped * & arguments,TIntermTyped * newArg)2472 void HlslParseContext::handleFunctionArgument(TFunction* function,
2473 TIntermTyped*& arguments, TIntermTyped* newArg)
2474 {
2475 TParameter param = { nullptr, new TType, nullptr };
2476 param.type->shallowCopy(newArg->getType());
2477
2478 function->addParameter(param);
2479 if (arguments)
2480 arguments = intermediate.growAggregate(arguments, newArg);
2481 else
2482 arguments = newArg;
2483 }
2484
2485 // FragCoord may require special loading: we can optionally reciprocate W.
assignFromFragCoord(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2486 TIntermTyped* HlslParseContext::assignFromFragCoord(const TSourceLoc& loc, TOperator op,
2487 TIntermTyped* left, TIntermTyped* right)
2488 {
2489 // If we are not asked for reciprocal W, use a plain old assign.
2490 if (!intermediate.getDxPositionW())
2491 return intermediate.addAssign(op, left, right, loc);
2492
2493 // If we get here, we should reciprocate W.
2494 TIntermAggregate* assignList = nullptr;
2495
2496 // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary.
2497 TVariable* rhsTempVar = nullptr;
2498 rhsTempVar = makeInternalVariable("@fragcoord", right->getType());
2499 rhsTempVar->getWritableType().getQualifier().makeTemporary();
2500
2501 {
2502 TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2503 assignList = intermediate.growAggregate(assignList,
2504 intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
2505 }
2506
2507 // tmp.w = 1.0 / tmp.w
2508 {
2509 const int W = 3;
2510
2511 TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
2512 TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
2513 TIntermTyped* index = intermediate.addConstantUnion(W, loc);
2514
2515 TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
2516 TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
2517
2518 const TType derefType(right->getType(), 0);
2519
2520 lhsElement->setType(derefType);
2521 rhsElement->setType(derefType);
2522
2523 auto one = intermediate.addConstantUnion(1.0, EbtFloat, loc);
2524 auto recip_w = intermediate.addBinaryMath(EOpDiv, one, rhsElement, loc);
2525
2526 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, recip_w, loc));
2527 }
2528
2529 // Assign the rhs temp (now with W reciprocal) to the final output
2530 {
2531 TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2532 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
2533 }
2534
2535 assert(assignList != nullptr);
2536 assignList->setOperator(EOpSequence);
2537
2538 return assignList;
2539 }
2540
2541 // Position may require special handling: we can optionally invert Y.
2542 // See: https://github.com/KhronosGroup/glslang/issues/1173
2543 // https://github.com/KhronosGroup/glslang/issues/494
assignPosition(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2544 TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
2545 TIntermTyped* left, TIntermTyped* right)
2546 {
2547 // If we are not asked for Y inversion, use a plain old assign.
2548 if (!intermediate.getInvertY())
2549 return intermediate.addAssign(op, left, right, loc);
2550
2551 // If we get here, we should invert Y.
2552 TIntermAggregate* assignList = nullptr;
2553
2554 // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary.
2555 TVariable* rhsTempVar = nullptr;
2556 rhsTempVar = makeInternalVariable("@position", right->getType());
2557 rhsTempVar->getWritableType().getQualifier().makeTemporary();
2558
2559 {
2560 TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2561 assignList = intermediate.growAggregate(assignList,
2562 intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
2563 }
2564
2565 // pos.y = -pos.y
2566 {
2567 const int Y = 1;
2568
2569 TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
2570 TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
2571 TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
2572
2573 TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
2574 TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
2575
2576 const TType derefType(right->getType(), 0);
2577
2578 lhsElement->setType(derefType);
2579 rhsElement->setType(derefType);
2580
2581 TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
2582
2583 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
2584 }
2585
2586 // Assign the rhs temp (now with Y inversion) to the final output
2587 {
2588 TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2589 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
2590 }
2591
2592 assert(assignList != nullptr);
2593 assignList->setOperator(EOpSequence);
2594
2595 return assignList;
2596 }
2597
2598 // Clip and cull distance require special handling due to a semantic mismatch. In HLSL,
2599 // these can be float scalar, float vector, or arrays of float scalar or float vector.
2600 // In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components
2601 // (e.g, both x and y components of a float2) out into the destination float array.
2602 //
2603 // The values are assigned to sequential members of the output array. The inner dimension
2604 // is vector components. The outer dimension is array elements.
assignClipCullDistance(const TSourceLoc & loc,TOperator op,int semanticId,TIntermTyped * left,TIntermTyped * right)2605 TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
2606 TIntermTyped* left, TIntermTyped* right)
2607 {
2608 switch (language) {
2609 case EShLangFragment:
2610 case EShLangVertex:
2611 case EShLangGeometry:
2612 break;
2613 default:
2614 error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
2615 return nullptr;
2616 }
2617
2618 TVariable** clipCullVar = nullptr;
2619
2620 // Figure out if we are assigning to, or from, clip or cull distance.
2621 const bool isOutput = isClipOrCullDistance(left->getType());
2622
2623 // This is the rvalue or lvalue holding the clip or cull distance.
2624 TIntermTyped* clipCullNode = isOutput ? left : right;
2625 // This is the value going into or out of the clip or cull distance.
2626 TIntermTyped* internalNode = isOutput ? right : left;
2627
2628 const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
2629
2630 decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
2631
2632 // Refer to either the clip or the cull distance, depending on semantic.
2633 switch (builtInType) {
2634 case EbvClipDistance:
2635 clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
2636 semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
2637 break;
2638 case EbvCullDistance:
2639 clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
2640 semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
2641 break;
2642
2643 // called invalidly: we expected a clip or a cull distance.
2644 // static compile time problem: should not happen.
2645 default: assert(0); return nullptr;
2646 }
2647
2648 // This is the offset in the destination array of a given semantic's data
2649 std::array<int, maxClipCullRegs> semanticOffset;
2650
2651 // Calculate offset of variable of semantic N in destination array
2652 int arrayLoc = 0;
2653 int vecItems = 0;
2654
2655 for (int x = 0; x < maxClipCullRegs; ++x) {
2656 // See if we overflowed the vec4 packing
2657 if ((vecItems + (*semanticNSize)[x]) > 4) {
2658 arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
2659 vecItems = 0;
2660 }
2661
2662 semanticOffset[x] = arrayLoc;
2663 vecItems += (*semanticNSize)[x];
2664 arrayLoc += (*semanticNSize)[x];
2665 }
2666
2667
2668 // It can have up to 2 array dimensions (in the case of geometry shader inputs)
2669 const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
2670 const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
2671 // vector sizes:
2672 const int internalVectorSize = internalNode->getType().getVectorSize();
2673 // array sizes, or 1 if it's not an array:
2674 const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
2675 const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
2676
2677 // The created type may be an array of arrays, e.g, for geometry shader inputs.
2678 const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
2679
2680 // If we haven't created the output already, create it now.
2681 if (*clipCullVar == nullptr) {
2682 // ClipDistance and CullDistance are handled specially in the entry point input/output copy
2683 // algorithm, because they may need to be unpacked from components of vectors (or a scalar)
2684 // into a float array, or vice versa. Here, we make the array the right size and type,
2685 // which depends on the incoming data, which has several potential dimensions:
2686 // * Semantic ID
2687 // * vector size
2688 // * array size
2689 // Of those, semantic ID and array size cannot appear simultaneously.
2690 //
2691 // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
2692 // array dimensions. The shader's declaration may have one or two array dimensions. One is always
2693 // the geometry's dimension.
2694
2695 const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
2696
2697 const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
2698 const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
2699
2700 TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
2701 clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
2702
2703 // Create required array dimension
2704 TArraySizes* arraySizes = new TArraySizes;
2705 if (isImplicitlyArrayed)
2706 arraySizes->addInnerSize(requiredOuterArraySize);
2707 arraySizes->addInnerSize(requiredInnerArraySize);
2708 clipCullType.transferArraySizes(arraySizes);
2709
2710 // Obtain symbol name: we'll use that for the symbol we introduce.
2711 TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
2712 assert(sym != nullptr);
2713
2714 // We are moving the semantic ID from the layout location, so it is no longer needed or
2715 // desired there.
2716 clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
2717
2718 // Create variable and track its linkage
2719 *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
2720
2721 trackLinkage(**clipCullVar);
2722 }
2723
2724 // Create symbol for the clip or cull variable.
2725 TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
2726
2727 // vector sizes:
2728 const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
2729
2730 // array sizes, or 1 if it's not an array:
2731 const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
2732 const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
2733 const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
2734
2735 // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
2736 // fixBuiltInIoType() should have handled that upstream.
2737 assert(clipCullSym->getType().isArray());
2738 assert(clipCullSym->getType().getVectorSize() == 1);
2739 assert(clipCullSym->getType().getBasicType() == EbtFloat);
2740
2741 // We may be creating multiple sub-assignments. This is an aggregate to hold them.
2742 // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
2743 TIntermAggregate* assignList = nullptr;
2744
2745 // Holds individual component assignments as we make them.
2746 TIntermTyped* clipCullAssign = nullptr;
2747
2748 // If the types are homomorphic, use a simple assign. No need to mess about with
2749 // individual components.
2750 if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
2751 clipCullInnerArraySize == internalInnerArraySize &&
2752 clipCullOuterArraySize == internalOuterArraySize &&
2753 clipCullVectorSize == internalVectorSize) {
2754
2755 if (isOutput)
2756 clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
2757 else
2758 clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
2759
2760 assignList = intermediate.growAggregate(assignList, clipCullAssign);
2761 assignList->setOperator(EOpSequence);
2762
2763 return assignList;
2764 }
2765
2766 // We are going to copy each component of the internal (per array element if indicated) to sequential
2767 // array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along.
2768 // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
2769 int clipCullInnerArrayPos = semanticOffset[semanticId];
2770 int clipCullOuterArrayPos = 0;
2771
2772 // Lambda to add an index to a node, set the type of the result, and return the new node.
2773 const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
2774 const TType derefType(node->getType(), 0);
2775 node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
2776 node->setType(derefType);
2777 return node;
2778 };
2779
2780 // Loop through every component of every element of the internal, and copy to or from the matching external.
2781 for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
2782 for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
2783 for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
2784 // clip/cull array member to read from / write to:
2785 TIntermTyped* clipCullMember = clipCullSym;
2786
2787 // If implicitly arrayed, there is an outer array dimension involved
2788 if (isImplicitlyArrayed)
2789 clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
2790
2791 // Index into proper array position for clip cull member
2792 clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
2793
2794 // if needed, start over with next outer array slice.
2795 if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
2796 clipCullInnerArrayPos = semanticOffset[semanticId];
2797 ++clipCullOuterArrayPos;
2798 }
2799
2800 // internal member to read from / write to:
2801 TIntermTyped* internalMember = internalNode;
2802
2803 // If internal node has outer array dimension, index appropriately.
2804 if (internalArrayDims > 1)
2805 internalMember = addIndex(internalMember, internalOuterArrayPos);
2806
2807 // If internal node has inner array dimension, index appropriately.
2808 if (internalArrayDims > 0)
2809 internalMember = addIndex(internalMember, internalInnerArrayPos);
2810
2811 // If internal node is a vector, extract the component of interest.
2812 if (internalNode->getType().isVector())
2813 internalMember = addIndex(internalMember, internalComponent);
2814
2815 // Create an assignment: output from internal to clip cull, or input from clip cull to internal.
2816 if (isOutput)
2817 clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
2818 else
2819 clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
2820
2821 // Track assignment in the sequence.
2822 assignList = intermediate.growAggregate(assignList, clipCullAssign);
2823 }
2824 }
2825 }
2826
2827 assert(assignList != nullptr);
2828 assignList->setOperator(EOpSequence);
2829
2830 return assignList;
2831 }
2832
2833 // Some simple source assignments need to be flattened to a sequence
2834 // of AST assignments. Catch these and flatten, otherwise, pass through
2835 // to intermediate.addAssign().
2836 //
2837 // Also, assignment to matrix swizzles requires multiple component assignments,
2838 // intercept those as well.
handleAssign(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2839 TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
2840 TIntermTyped* right)
2841 {
2842 if (left == nullptr || right == nullptr)
2843 return nullptr;
2844
2845 // writing to opaques will require fixing transforms
2846 if (left->getType().containsOpaque())
2847 intermediate.setNeedsLegalization();
2848
2849 if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
2850 return handleAssignToMatrixSwizzle(loc, op, left, right);
2851
2852 // Return true if the given node is an index operation into a split variable.
2853 const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
2854 const TIntermBinary* binaryNode = node->getAsBinaryNode();
2855
2856 if (binaryNode == nullptr)
2857 return false;
2858
2859 return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) &&
2860 wasSplit(binaryNode->getLeft());
2861 };
2862
2863 // Return symbol if node is symbol or index ref
2864 const auto getSymbol = [](const TIntermTyped* node) -> const TIntermSymbol* {
2865 const TIntermSymbol* symbolNode = node->getAsSymbolNode();
2866 if (symbolNode != nullptr)
2867 return symbolNode;
2868
2869 const TIntermBinary* binaryNode = node->getAsBinaryNode();
2870 if (binaryNode != nullptr && (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect))
2871 return binaryNode->getLeft()->getAsSymbolNode();
2872
2873 return nullptr;
2874 };
2875
2876 // Return true if this stage assigns clip position with potentially inverted Y
2877 const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
2878 return node->getType().getQualifier().builtIn == EbvPosition &&
2879 (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
2880 };
2881
2882 const TIntermSymbol* leftSymbol = getSymbol(left);
2883 const TIntermSymbol* rightSymbol = getSymbol(right);
2884
2885 const bool isSplitLeft = wasSplit(left) || indexesSplit(left);
2886 const bool isSplitRight = wasSplit(right) || indexesSplit(right);
2887
2888 const bool isFlattenLeft = wasFlattened(leftSymbol);
2889 const bool isFlattenRight = wasFlattened(rightSymbol);
2890
2891 // OK to do a single assign if neither side is split or flattened. Otherwise,
2892 // fall through to a member-wise copy.
2893 if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
2894 // Clip and cull distance requires more processing. See comment above assignClipCullDistance.
2895 if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
2896 const bool isOutput = isClipOrCullDistance(left->getType());
2897
2898 const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
2899 return assignClipCullDistance(loc, op, semanticId, left, right);
2900 } else if (assignsClipPos(left)) {
2901 // Position can require special handling: see comment above assignPosition
2902 return assignPosition(loc, op, left, right);
2903 } else if (left->getQualifier().builtIn == EbvSampleMask) {
2904 // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
2905 // in the shader. Copy the scalar RHS into the LHS array element zero, if that happens.
2906 if (left->isArray() && !right->isArray()) {
2907 const TType derefType(left->getType(), 0);
2908 left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
2909 left->setType(derefType);
2910 // Fall through to add assign.
2911 }
2912 }
2913
2914 return intermediate.addAssign(op, left, right, loc);
2915 }
2916
2917 TIntermAggregate* assignList = nullptr;
2918 const TVector<TVariable*>* leftVariables = nullptr;
2919 const TVector<TVariable*>* rightVariables = nullptr;
2920
2921 // A temporary to store the right node's value, so we don't keep indirecting into it
2922 // if it's not a simple symbol.
2923 TVariable* rhsTempVar = nullptr;
2924
2925 // If the RHS is a simple symbol node, we'll copy it for each member.
2926 TIntermSymbol* cloneSymNode = nullptr;
2927
2928 int memberCount = 0;
2929
2930 // Track how many items there are to copy.
2931 if (left->getType().isStruct())
2932 memberCount = (int)left->getType().getStruct()->size();
2933 if (left->getType().isArray())
2934 memberCount = left->getType().getCumulativeArraySize();
2935
2936 if (isFlattenLeft)
2937 leftVariables = &flattenMap.find(leftSymbol->getId())->second.members;
2938
2939 if (isFlattenRight) {
2940 rightVariables = &flattenMap.find(rightSymbol->getId())->second.members;
2941 } else {
2942 // The RHS is not flattened. There are several cases:
2943 // 1. 1 item to copy: Use the RHS directly.
2944 // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
2945 // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
2946
2947 if (memberCount <= 1) {
2948 // case 1: we'll use the symbol directly below. Nothing to do.
2949 } else {
2950 if (right->getAsSymbolNode() != nullptr) {
2951 // case 2: we'll copy the symbol per iteration below.
2952 cloneSymNode = right->getAsSymbolNode();
2953 } else {
2954 // case 3: assign to a temp, and indirect into that.
2955 rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
2956 rhsTempVar->getWritableType().getQualifier().makeTemporary();
2957 TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
2958
2959 // Add this to the aggregate being built.
2960 assignList = intermediate.growAggregate(assignList,
2961 intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
2962 }
2963 }
2964 }
2965
2966 // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
2967 // variables, which is awkward when copying between split and unsplit structures. This variable tracks
2968 // array indirections so they can be percolated from outer structs to inner variables.
2969 std::vector <int> arrayElement;
2970
2971 TStorageQualifier leftStorage = left->getType().getQualifier().storage;
2972 TStorageQualifier rightStorage = right->getType().getQualifier().storage;
2973
2974 int leftOffsetStart = findSubtreeOffset(*left);
2975 int rightOffsetStart = findSubtreeOffset(*right);
2976 int leftOffset = leftOffsetStart;
2977 int rightOffset = rightOffsetStart;
2978
2979 const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
2980 bool flattened)
2981 -> TIntermTyped * {
2982 const bool split = isLeft ? isSplitLeft : isSplitRight;
2983
2984 TIntermTyped* subTree;
2985 const TType derefType(type, member);
2986 const TVariable* builtInVar = nullptr;
2987 if ((flattened || split) && derefType.isBuiltIn()) {
2988 auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
2989 derefType.getQualifier().builtIn,
2990 isLeft ? leftStorage : rightStorage));
2991 if (splitPair != splitBuiltIns.end())
2992 builtInVar = splitPair->second;
2993 }
2994 if (builtInVar != nullptr) {
2995 // copy from interstage IO built-in if needed
2996 subTree = intermediate.addSymbol(*builtInVar);
2997
2998 if (subTree->getType().isArray()) {
2999 // Arrayness of builtIn symbols isn't handled by the normal recursion:
3000 // it's been extracted and moved to the built-in.
3001 if (!arrayElement.empty()) {
3002 const TType splitDerefType(subTree->getType(), arrayElement.back());
3003 subTree = intermediate.addIndex(EOpIndexDirect, subTree,
3004 intermediate.addConstantUnion(arrayElement.back(), loc), loc);
3005 subTree->setType(splitDerefType);
3006 } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
3007 // This might also be a stage with arrayed outputs, in which case there's an index
3008 // operation we should transfer to the output builtin.
3009
3010 const TType splitDerefType(subTree->getType(), 0);
3011 subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
3012 splitNode->getAsBinaryNode()->getRight(), loc);
3013 subTree->setType(splitDerefType);
3014 }
3015 }
3016 } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
3017 if (isLeft) {
3018 // offset will cycle through variables for arrayed io
3019 if (leftOffset >= static_cast<int>(leftVariables->size()))
3020 leftOffset = leftOffsetStart;
3021 subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
3022 } else {
3023 // offset will cycle through variables for arrayed io
3024 if (rightOffset >= static_cast<int>(rightVariables->size()))
3025 rightOffset = rightOffsetStart;
3026 subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
3027 }
3028
3029 // arrayed io
3030 if (subTree->getType().isArray()) {
3031 if (!arrayElement.empty()) {
3032 const TType derefType(subTree->getType(), arrayElement.front());
3033 subTree = intermediate.addIndex(EOpIndexDirect, subTree,
3034 intermediate.addConstantUnion(arrayElement.front(), loc), loc);
3035 subTree->setType(derefType);
3036 } else {
3037 // There's an index operation we should transfer to the output builtin.
3038 assert(splitNode->getAsOperator() != nullptr &&
3039 splitNode->getAsOperator()->getOp() == EOpIndexIndirect);
3040 const TType splitDerefType(subTree->getType(), 0);
3041 subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
3042 splitNode->getAsBinaryNode()->getRight(), loc);
3043 subTree->setType(splitDerefType);
3044 }
3045 }
3046 } else {
3047 // Index operator if it's an aggregate, else EOpNull
3048 const TOperator accessOp = type.isArray() ? EOpIndexDirect
3049 : type.isStruct() ? EOpIndexDirectStruct
3050 : EOpNull;
3051 if (accessOp == EOpNull) {
3052 subTree = splitNode;
3053 } else {
3054 subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
3055 loc);
3056 const TType splitDerefType(splitNode->getType(), splitMember);
3057 subTree->setType(splitDerefType);
3058 }
3059 }
3060
3061 return subTree;
3062 };
3063
3064 // Use the proper RHS node: a new symbol from a TVariable, copy
3065 // of an TIntermSymbol node, or sometimes the right node directly.
3066 right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) :
3067 cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
3068 right;
3069
3070 // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
3071 // whole thing. So, we'll resort to an explicit type via std::function.
3072 const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
3073 bool topLevel)>
3074 traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
3075 bool topLevel) -> void {
3076 // If we get here, we are assigning to or from a whole array or struct that must be
3077 // flattened, so have to do member-by-member assignment:
3078
3079 bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
3080 bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
3081
3082 if ((left->getType().isArray() || right->getType().isArray()) &&
3083 (shouldFlattenSubsetLeft || isSplitLeft ||
3084 shouldFlattenSubsetRight || isSplitRight)) {
3085 const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1;
3086 const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
3087
3088 // The arrays might not be the same size,
3089 // e.g., if the size has been forced for EbvTessLevelInner/Outer.
3090 const int elementsToCopy = std::min(elementsL, elementsR);
3091
3092 // array case
3093 for (int element = 0; element < elementsToCopy; ++element) {
3094 arrayElement.push_back(element);
3095
3096 // Add a new AST symbol node if we have a temp variable holding a complex RHS.
3097 TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element,
3098 shouldFlattenSubsetLeft);
3099 TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
3100 shouldFlattenSubsetRight);
3101
3102 TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft,
3103 element, shouldFlattenSubsetLeft)
3104 : subLeft;
3105 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
3106 element, shouldFlattenSubsetRight)
3107 : subRight;
3108
3109 traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
3110
3111 arrayElement.pop_back();
3112 }
3113 } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft ||
3114 shouldFlattenSubsetRight || isSplitRight)) {
3115 // struct case
3116 const auto& membersL = *left->getType().getStruct();
3117 const auto& membersR = *right->getType().getStruct();
3118
3119 // These track the members in the split structures corresponding to the same in the unsplit structures,
3120 // which we traverse in parallel.
3121 int memberL = 0;
3122 int memberR = 0;
3123
3124 // Handle empty structure assignment
3125 if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
3126 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
3127
3128 for (int member = 0; member < int(membersL.size()); ++member) {
3129 const TType& typeL = *membersL[member].type;
3130 const TType& typeR = *membersR[member].type;
3131
3132 TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member,
3133 shouldFlattenSubsetLeft);
3134 TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
3135 shouldFlattenSubsetRight);
3136
3137 // If there is no splitting, use the same values to avoid inefficiency.
3138 TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft,
3139 memberL, shouldFlattenSubsetLeft)
3140 : subLeft;
3141 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
3142 memberR, shouldFlattenSubsetRight)
3143 : subRight;
3144
3145 if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
3146 // Clip and cull distance built-in assignment is complex in its own right, and is handled in
3147 // a separate function dedicated to that task. See comment above assignClipCullDistance;
3148
3149 const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
3150
3151 // Since all clip/cull semantics boil down to the same built-in type, we need to get the
3152 // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
3153 const TType derefType((isOutput ? left : right)->getType(), member);
3154 const int semanticId = derefType.getQualifier().layoutLocation;
3155
3156 TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
3157 subSplitLeft, subSplitRight);
3158
3159 assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
3160 } else if (subSplitRight->getType().getQualifier().builtIn == EbvFragCoord) {
3161 // FragCoord can require special handling: see comment above assignFromFragCoord
3162 TIntermTyped* fragCoordAssign = assignFromFragCoord(loc, op, subSplitLeft, subSplitRight);
3163 assignList = intermediate.growAggregate(assignList, fragCoordAssign, loc);
3164 } else if (assignsClipPos(subSplitLeft)) {
3165 // Position can require special handling: see comment above assignPosition
3166 TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
3167 assignList = intermediate.growAggregate(assignList, positionAssign, loc);
3168 } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
3169 !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
3170 // If this is the final flattening (no nested types below to flatten)
3171 // we'll copy the member, else recurse into the type hierarchy.
3172 // However, if splitting the struct, that means we can copy a whole
3173 // subtree here IFF it does not itself contain any interstage built-in
3174 // IO variables, so we only have to recurse into it if there's something
3175 // for splitting to do. That can save a lot of AST verbosity for
3176 // a bunch of memberwise copies.
3177
3178 assignList = intermediate.growAggregate(assignList,
3179 intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
3180 loc);
3181 } else {
3182 traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
3183 }
3184
3185 memberL += (typeL.isBuiltIn() ? 0 : 1);
3186 memberR += (typeR.isBuiltIn() ? 0 : 1);
3187 }
3188 } else {
3189 // Member copy
3190 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
3191 }
3192
3193 };
3194
3195 TIntermTyped* splitLeft = left;
3196 TIntermTyped* splitRight = right;
3197
3198 // If either left or right was a split structure, we must read or write it, but still have to
3199 // parallel-recurse through the unsplit structure to identify the built-in IO vars.
3200 // The left can be either a symbol, or an index into a symbol (e.g, array reference)
3201 if (isSplitLeft) {
3202 if (indexesSplit(left)) {
3203 // Index case: Refer to the indexed symbol, if the left is an index operator.
3204 const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
3205
3206 TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
3207
3208 splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
3209 left->getAsBinaryNode()->getRight(), loc);
3210
3211 const TType derefType(splitLeftNonIo->getType(), 0);
3212 splitLeft->setType(derefType);
3213 } else {
3214 // Symbol case: otherwise, if not indexed, we have the symbol directly.
3215 const TIntermSymbol* symNode = left->getAsSymbolNode();
3216 splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
3217 }
3218 }
3219
3220 if (isSplitRight)
3221 splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
3222
3223 // This makes the whole assignment, recursing through subtypes as needed.
3224 traverse(left, right, splitLeft, splitRight, true);
3225
3226 assert(assignList != nullptr);
3227 assignList->setOperator(EOpSequence);
3228
3229 return assignList;
3230 }
3231
3232 // An assignment to matrix swizzle must be decomposed into individual assignments.
3233 // These must be selected component-wise from the RHS and stored component-wise
3234 // into the LHS.
handleAssignToMatrixSwizzle(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)3235 TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
3236 TIntermTyped* right)
3237 {
3238 assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
3239
3240 if (op != EOpAssign)
3241 error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
3242
3243 // isolate the matrix and swizzle nodes
3244 TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
3245 const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
3246
3247 // if the RHS isn't already a simple vector, let's store into one
3248 TIntermSymbol* vector = right->getAsSymbolNode();
3249 TIntermTyped* vectorAssign = nullptr;
3250 if (vector == nullptr) {
3251 // create a new intermediate vector variable to assign to
3252 TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
3253 vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
3254
3255 // assign the right to the new vector
3256 vectorAssign = handleAssign(loc, op, vector, right);
3257 }
3258
3259 // Assign the vector components to the matrix components.
3260 // Store this as a sequence, so a single aggregate node represents this
3261 // entire operation.
3262 TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
3263 TType columnType(matrix->getType(), 0);
3264 TType componentType(columnType, 0);
3265 TType indexType(EbtInt);
3266 for (int i = 0; i < (int)swizzle.size(); i += 2) {
3267 // the right component, single index into the RHS vector
3268 TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
3269 intermediate.addConstantUnion(i/2, loc), loc);
3270
3271 // the left component, double index into the LHS matrix
3272 TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
3273 intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
3274 indexType, loc),
3275 loc);
3276 leftComp->setType(columnType);
3277 leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
3278 intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
3279 indexType, loc),
3280 loc);
3281 leftComp->setType(componentType);
3282
3283 // Add the assignment to the aggregate
3284 result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
3285 }
3286
3287 result->setOp(EOpSequence);
3288
3289 return result;
3290 }
3291
3292 //
3293 // HLSL atomic operations have slightly different arguments than
3294 // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic.
3295 // This provides the post-decomposition equivalent opcode.
3296 //
mapAtomicOp(const TSourceLoc & loc,TOperator op,bool isImage)3297 TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
3298 {
3299 switch (op) {
3300 case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd;
3301 case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd;
3302 case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
3303 case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax;
3304 case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin;
3305 case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr;
3306 case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor;
3307 case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
3308 case EOpInterlockedCompareStore: // TODO: ...
3309 default:
3310 error(loc, "unknown atomic operation", "unknown op", "");
3311 return EOpNull;
3312 }
3313 }
3314
3315 //
3316 // Create a combined sampler/texture from separate sampler and texture.
3317 //
handleSamplerTextureCombine(const TSourceLoc & loc,TIntermTyped * argTex,TIntermTyped * argSampler)3318 TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
3319 TIntermTyped* argSampler)
3320 {
3321 TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
3322
3323 txcombine->getSequence().push_back(argTex);
3324 txcombine->getSequence().push_back(argSampler);
3325
3326 TSampler samplerType = argTex->getType().getSampler();
3327 samplerType.combined = true;
3328
3329 // TODO:
3330 // This block exists until the spec no longer requires shadow modes on texture objects.
3331 // It can be deleted after that, along with the shadowTextureVariant member.
3332 {
3333 const bool shadowMode = argSampler->getType().getSampler().shadow;
3334
3335 TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
3336
3337 if (texSymbol == nullptr)
3338 texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
3339
3340 if (texSymbol == nullptr) {
3341 error(loc, "unable to find texture symbol", "", "");
3342 return nullptr;
3343 }
3344
3345 // This forces the texture's shadow state to be the sampler's
3346 // shadow state. This depends on downstream optimization to
3347 // DCE one variant in [shadow, nonshadow] if both are present,
3348 // or the SPIR-V module would be invalid.
3349 long long newId = texSymbol->getId();
3350
3351 // Check to see if this texture has been given a shadow mode already.
3352 // If so, look up the one we already have.
3353 const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
3354
3355 if (textureShadowEntry != textureShadowVariant.end())
3356 newId = textureShadowEntry->second->get(shadowMode);
3357 else
3358 textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
3359
3360 // Sometimes we have to create another symbol (if this texture has been seen before,
3361 // and we haven't created the form for this shadow mode).
3362 if (newId == -1) {
3363 TType texType;
3364 texType.shallowCopy(argTex->getType());
3365 texType.getSampler().shadow = shadowMode; // set appropriate shadow mode.
3366 globalQualifierFix(loc, texType.getQualifier());
3367
3368 TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
3369
3370 trackLinkage(*newTexture);
3371
3372 newId = newTexture->getUniqueId();
3373 }
3374
3375 assert(newId != -1);
3376
3377 if (textureShadowVariant.find(newId) == textureShadowVariant.end())
3378 textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
3379
3380 textureShadowVariant[newId]->set(shadowMode, newId);
3381
3382 // Remember this shadow mode in the texture and the merged type.
3383 argTex->getWritableType().getSampler().shadow = shadowMode;
3384 samplerType.shadow = shadowMode;
3385
3386 texSymbol->switchId(newId);
3387 }
3388
3389 txcombine->setType(TType(samplerType, EvqTemporary));
3390 txcombine->setLoc(loc);
3391
3392 return txcombine;
3393 }
3394
3395 // Return true if this a buffer type that has an associated counter buffer.
hasStructBuffCounter(const TType & type) const3396 bool HlslParseContext::hasStructBuffCounter(const TType& type) const
3397 {
3398 switch (type.getQualifier().declaredBuiltIn) {
3399 case EbvAppendConsume: // fall through...
3400 case EbvRWStructuredBuffer: // ...
3401 return true;
3402 default:
3403 return false; // the other structuredbuffer types do not have a counter.
3404 }
3405 }
3406
counterBufferType(const TSourceLoc & loc,TType & type)3407 void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
3408 {
3409 // Counter type
3410 TType* counterType = new TType(EbtUint, EvqBuffer);
3411 counterType->setFieldName(intermediate.implicitCounterName);
3412
3413 TTypeList* blockStruct = new TTypeList;
3414 TTypeLoc member = { counterType, loc };
3415 blockStruct->push_back(member);
3416
3417 TType blockType(blockStruct, "", counterType->getQualifier());
3418 blockType.getQualifier().storage = EvqBuffer;
3419
3420 type.shallowCopy(blockType);
3421 shareStructBufferType(type);
3422 }
3423
3424 // declare counter for a structured buffer type
declareStructBufferCounter(const TSourceLoc & loc,const TType & bufferType,const TString & name)3425 void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
3426 {
3427 // Bail out if not a struct buffer
3428 if (! isStructBufferType(bufferType))
3429 return;
3430
3431 if (! hasStructBuffCounter(bufferType))
3432 return;
3433
3434 TType blockType;
3435 counterBufferType(loc, blockType);
3436
3437 TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
3438
3439 // Counter buffer is not yet in use
3440 structBufferCounter[*blockName] = false;
3441
3442 shareStructBufferType(blockType);
3443 declareBlock(loc, blockType, blockName);
3444 }
3445
3446 // return the counter that goes with a given structuredbuffer
getStructBufferCounter(const TSourceLoc & loc,TIntermTyped * buffer)3447 TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
3448 {
3449 // Bail out if not a struct buffer
3450 if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
3451 return nullptr;
3452
3453 const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
3454
3455 // Mark the counter as being used
3456 structBufferCounter[counterBlockName] = true;
3457
3458 TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure
3459 TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
3460
3461 TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
3462 counterMember->setType(TType(EbtUint));
3463 return counterMember;
3464 }
3465
3466 //
3467 // Decompose structure buffer methods into AST
3468 //
decomposeStructBufferMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)3469 void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
3470 {
3471 if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
3472 return;
3473
3474 const TOperator op = node->getAsOperator()->getOp();
3475 TIntermAggregate* argAggregate = arguments->getAsAggregate();
3476
3477 // Buffer is the object upon which method is called, so always arg 0
3478 TIntermTyped* bufferObj = nullptr;
3479
3480 // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
3481 if (argAggregate) {
3482 if (argAggregate->getSequence().empty())
3483 return;
3484 if (argAggregate->getSequence()[0])
3485 bufferObj = argAggregate->getSequence()[0]->getAsTyped();
3486 } else {
3487 bufferObj = arguments->getAsSymbolNode();
3488 }
3489
3490 if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
3491 return;
3492
3493 // Some methods require a hidden internal counter, obtained via getStructBufferCounter().
3494 // This lambda adds something to it and returns the old value.
3495 const auto incDecCounter = [&](int incval) -> TIntermTyped* {
3496 TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
3497 TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
3498
3499 if (counter == nullptr)
3500 return nullptr;
3501
3502 TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
3503 counterIncrement->setType(TType(EbtUint, EvqTemporary));
3504 counterIncrement->setLoc(loc);
3505 counterIncrement->getSequence().push_back(counter);
3506 counterIncrement->getSequence().push_back(incrementValue);
3507
3508 return counterIncrement;
3509 };
3510
3511 // Index to obtain the runtime sized array out of the buffer.
3512 TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
3513 if (argArray == nullptr)
3514 return; // It might not be a struct buffer method.
3515
3516 switch (op) {
3517 case EOpMethodLoad:
3518 {
3519 TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
3520
3521 const TType& bufferType = bufferObj->getType();
3522
3523 const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
3524
3525 // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
3526 // buffer then, but that's what it calls itself.
3527 const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer ||
3528 builtInType == EbvRWByteAddressBuffer);
3529
3530
3531 if (isByteAddressBuffer)
3532 argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
3533 intermediate.addConstantUnion(2, loc, true),
3534 loc, TType(EbtInt));
3535
3536 // Index into the array to find the item being loaded.
3537 const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
3538
3539 node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
3540
3541 const TType derefType(argArray->getType(), 0);
3542 node->setType(derefType);
3543 }
3544
3545 break;
3546
3547 case EOpMethodLoad2:
3548 case EOpMethodLoad3:
3549 case EOpMethodLoad4:
3550 {
3551 TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
3552
3553 TOperator constructOp = EOpNull;
3554 int size = 0;
3555
3556 switch (op) {
3557 case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
3558 case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
3559 case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
3560 default: assert(0);
3561 }
3562
3563 TIntermTyped* body = nullptr;
3564
3565 // First, we'll store the address in a variable to avoid multiple shifts
3566 // (we must convert the byte address to an item address)
3567 TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
3568 intermediate.addConstantUnion(2, loc, true),
3569 loc, TType(EbtInt));
3570
3571 TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
3572 TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
3573
3574 body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
3575
3576 TIntermTyped* vec = nullptr;
3577
3578 // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
3579 // address conversion.
3580 for (int idx=0; idx<size; ++idx) {
3581 TIntermTyped* offsetIdx = byteAddrIdxVar;
3582
3583 // add index offset
3584 if (idx != 0)
3585 offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
3586 intermediate.addConstantUnion(idx, loc, true),
3587 loc, TType(EbtInt));
3588
3589 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
3590 : EOpIndexIndirect;
3591
3592 TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
3593
3594 TType derefType(argArray->getType(), 0);
3595 derefType.getQualifier().makeTemporary();
3596 indexVal->setType(derefType);
3597
3598 vec = intermediate.growAggregate(vec, indexVal);
3599 }
3600
3601 vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
3602 vec->getAsAggregate()->setOperator(constructOp);
3603
3604 body = intermediate.growAggregate(body, vec);
3605 body->setType(vec->getType());
3606 body->getAsAggregate()->setOperator(EOpSequence);
3607
3608 node = body;
3609 }
3610
3611 break;
3612
3613 case EOpMethodStore:
3614 case EOpMethodStore2:
3615 case EOpMethodStore3:
3616 case EOpMethodStore4:
3617 {
3618 TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
3619 TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value
3620
3621 // Index into the array to find the item being loaded.
3622 // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
3623 // buffer then, but that's what it calls itself).
3624
3625 int size = 0;
3626
3627 switch (op) {
3628 case EOpMethodStore: size = 1; break;
3629 case EOpMethodStore2: size = 2; break;
3630 case EOpMethodStore3: size = 3; break;
3631 case EOpMethodStore4: size = 4; break;
3632 default: assert(0);
3633 }
3634
3635 TIntermAggregate* body = nullptr;
3636
3637 // First, we'll store the address in a variable to avoid multiple shifts
3638 // (we must convert the byte address to an item address)
3639 TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
3640 intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
3641
3642 TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
3643 TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
3644
3645 body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
3646
3647 for (int idx=0; idx<size; ++idx) {
3648 TIntermTyped* offsetIdx = byteAddrIdxVar;
3649 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
3650
3651 // add index offset
3652 if (idx != 0)
3653 offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
3654
3655 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
3656 : EOpIndexIndirect;
3657
3658 TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
3659 const TType derefType(argArray->getType(), 0);
3660 lValue->setType(derefType);
3661
3662 TIntermTyped* rValue;
3663 if (size == 1) {
3664 rValue = argValue;
3665 } else {
3666 rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
3667 const TType indexType(argValue->getType(), 0);
3668 rValue->setType(indexType);
3669 }
3670
3671 TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
3672
3673 body = intermediate.growAggregate(body, assign);
3674 }
3675
3676 body->setOperator(EOpSequence);
3677 node = body;
3678 }
3679
3680 break;
3681
3682 case EOpMethodGetDimensions:
3683 {
3684 const int numArgs = (int)argAggregate->getSequence().size();
3685 TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items
3686 TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride
3687
3688 TIntermAggregate* body = nullptr;
3689
3690 // Length output:
3691 if (argArray->getType().isSizedArray()) {
3692 const int length = argArray->getType().getOuterArraySize();
3693 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
3694 intermediate.addConstantUnion(length, loc, true), loc);
3695 body = intermediate.growAggregate(body, assign, loc);
3696 } else {
3697 TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
3698 argNumItems->getType());
3699 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
3700 body = intermediate.growAggregate(body, assign, loc);
3701 }
3702
3703 // Stride output:
3704 if (argStride != nullptr) {
3705 int size;
3706 int stride;
3707 intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
3708 argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
3709
3710 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
3711 intermediate.addConstantUnion(stride, loc, true), loc);
3712
3713 body = intermediate.growAggregate(body, assign);
3714 }
3715
3716 body->setOperator(EOpSequence);
3717 node = body;
3718 }
3719
3720 break;
3721
3722 case EOpInterlockedAdd:
3723 case EOpInterlockedAnd:
3724 case EOpInterlockedExchange:
3725 case EOpInterlockedMax:
3726 case EOpInterlockedMin:
3727 case EOpInterlockedOr:
3728 case EOpInterlockedXor:
3729 case EOpInterlockedCompareExchange:
3730 case EOpInterlockedCompareStore:
3731 {
3732 // We'll replace the first argument with the block dereference, and let
3733 // downstream decomposition handle the rest.
3734
3735 TIntermSequence& sequence = argAggregate->getSequence();
3736
3737 TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index
3738 argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
3739 loc, TType(EbtInt));
3740
3741 const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
3742 TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
3743
3744 const TType derefType(argArray->getType(), 0);
3745 element->setType(derefType);
3746
3747 // Replace the numeric byte offset parameter with array reference.
3748 sequence[1] = element;
3749 sequence.erase(sequence.begin(), sequence.begin()+1);
3750 }
3751 break;
3752
3753 case EOpMethodIncrementCounter:
3754 {
3755 node = incDecCounter(1);
3756 break;
3757 }
3758
3759 case EOpMethodDecrementCounter:
3760 {
3761 TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
3762 node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
3763 preIncValue->getType());
3764 break;
3765 }
3766
3767 case EOpMethodAppend:
3768 {
3769 TIntermTyped* oldCounter = incDecCounter(1);
3770
3771 TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
3772 TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
3773
3774 const TType derefType(argArray->getType(), 0);
3775 lValue->setType(derefType);
3776
3777 node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
3778
3779 break;
3780 }
3781
3782 case EOpMethodConsume:
3783 {
3784 TIntermTyped* oldCounter = incDecCounter(-1);
3785
3786 TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
3787 intermediate.addConstantUnion(-1, loc, true), loc,
3788 oldCounter->getType());
3789
3790 node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
3791
3792 const TType derefType(argArray->getType(), 0);
3793 node->setType(derefType);
3794
3795 break;
3796 }
3797
3798 default:
3799 break; // most pass through unchanged
3800 }
3801 }
3802
3803 // Create array of standard sample positions for given sample count.
3804 // TODO: remove when a real method to query sample pos exists in SPIR-V.
getSamplePosArray(int count)3805 TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
3806 {
3807 struct tSamplePos { float x, y; };
3808
3809 static const tSamplePos pos1[] = {
3810 { 0.0/16.0, 0.0/16.0 },
3811 };
3812
3813 // standard sample positions for 2, 4, 8, and 16 samples.
3814 static const tSamplePos pos2[] = {
3815 { 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
3816 };
3817
3818 static const tSamplePos pos4[] = {
3819 {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 },
3820 };
3821
3822 static const tSamplePos pos8[] = {
3823 { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
3824 {-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
3825 };
3826
3827 static const tSamplePos pos16[] = {
3828 { 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
3829 {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
3830 {-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 },
3831 {-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
3832 };
3833
3834 const tSamplePos* sampleLoc = nullptr;
3835 int numSamples = count;
3836
3837 switch (count) {
3838 case 2: sampleLoc = pos2; break;
3839 case 4: sampleLoc = pos4; break;
3840 case 8: sampleLoc = pos8; break;
3841 case 16: sampleLoc = pos16; break;
3842 default:
3843 sampleLoc = pos1;
3844 numSamples = 1;
3845 }
3846
3847 TConstUnionArray* values = new TConstUnionArray(numSamples*2);
3848
3849 for (int pos=0; pos<count; ++pos) {
3850 TConstUnion x, y;
3851 x.setDConst(sampleLoc[pos].x);
3852 y.setDConst(sampleLoc[pos].y);
3853
3854 (*values)[pos*2+0] = x;
3855 (*values)[pos*2+1] = y;
3856 }
3857
3858 TType retType(EbtFloat, EvqConst, 2);
3859
3860 if (numSamples != 1) {
3861 TArraySizes* arraySizes = new TArraySizes;
3862 arraySizes->addInnerSize(numSamples);
3863 retType.transferArraySizes(arraySizes);
3864 }
3865
3866 return new TIntermConstantUnion(*values, retType);
3867 }
3868
3869 //
3870 // Decompose DX9 and DX10 sample intrinsics & object methods into AST
3871 //
decomposeSampleMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)3872 void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
3873 {
3874 if (node == nullptr || !node->getAsOperator())
3875 return;
3876
3877 // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
3878 const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
3879 result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
3880
3881 TIntermTyped* convertedResult = nullptr;
3882
3883 TType retType;
3884 getTextureReturnType(sampler, retType);
3885
3886 if (retType.isStruct()) {
3887 // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
3888 TIntermAggregate* conversionAggregate = new TIntermAggregate;
3889 convertedResult = conversionAggregate;
3890
3891 // Convert vector output to return structure. We will need a temp symbol to copy the results to.
3892 TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
3893
3894 // We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the
3895 // sample each time we'll index into the result, so we'll copy to this, and index into the copy.
3896 TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
3897
3898 // Initial copy from texture to our sample result shadow.
3899 TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
3900 result, loc);
3901
3902 conversionAggregate->getSequence().push_back(shadowCopy);
3903
3904 unsigned vec4Pos = 0;
3905
3906 for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
3907 const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
3908
3909 // Check for bad struct members. This should have been caught upstream. Complain, because
3910 // wwe don't know what to do with it. This algorithm could be generalized to handle
3911 // other things, e.g, sub-structures, but HLSL doesn't allow them.
3912 if (!memberType.isVector() && !memberType.isScalar()) {
3913 error(loc, "expected: scalar or vector type in texture structure", "", "");
3914 return nullptr;
3915 }
3916
3917 // Index into the struct variable to find the member to assign.
3918 TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
3919 intermediate.addSymbol(*structVar, loc),
3920 intermediate.addConstantUnion(m, loc), loc);
3921
3922 structMember->setType(memberType);
3923
3924 // Assign each component of (possible) vector in struct member.
3925 for (int component = 0; component < memberType.getVectorSize(); ++component) {
3926 TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
3927 intermediate.addSymbol(*sampleShadow, loc),
3928 intermediate.addConstantUnion(vec4Pos++, loc), loc);
3929 vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
3930
3931 TIntermTyped* memberAssign = nullptr;
3932
3933 if (memberType.isVector()) {
3934 // Vector member: we need to create an access chain to the vector component.
3935
3936 TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
3937 intermediate.addConstantUnion(component, loc), loc);
3938
3939 memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
3940 } else {
3941 // Scalar member: we can assign to it directly.
3942 memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
3943 }
3944
3945
3946 conversionAggregate->getSequence().push_back(memberAssign);
3947 }
3948 }
3949
3950 // Add completed variable so the expression results in the whole struct value we just built.
3951 conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
3952
3953 // Make it a sequence.
3954 intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
3955 } else {
3956 // vector clamp the output if template vector type is smaller than sample result.
3957 if (retType.getVectorSize() < node->getVectorSize()) {
3958 // Too many components. Construct shorter vector from it.
3959 const TOperator op = intermediate.mapTypeToConstructorOp(retType);
3960
3961 convertedResult = constructBuiltIn(retType, op, result, loc, false);
3962 } else {
3963 // Enough components. Use directly.
3964 convertedResult = result;
3965 }
3966 }
3967
3968 convertedResult->setLoc(loc);
3969 return convertedResult;
3970 };
3971
3972 const TOperator op = node->getAsOperator()->getOp();
3973 const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
3974
3975 // Bail out if not a sampler method.
3976 // Note though this is odd to do before checking the op, because the op
3977 // could be something that takes the arguments, and the function in question
3978 // takes the result of the op. So, this is not the final word.
3979 if (arguments != nullptr) {
3980 if (argAggregate == nullptr) {
3981 if (arguments->getAsTyped()->getBasicType() != EbtSampler)
3982 return;
3983 } else {
3984 if (argAggregate->getSequence().size() == 0 ||
3985 argAggregate->getSequence()[0] == nullptr ||
3986 argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
3987 return;
3988 }
3989 }
3990
3991 switch (op) {
3992 // **** DX9 intrinsics: ****
3993 case EOpTexture:
3994 {
3995 // Texture with ddx & ddy is really gradient form in HLSL
3996 if (argAggregate->getSequence().size() == 4)
3997 node->getAsAggregate()->setOperator(EOpTextureGrad);
3998
3999 break;
4000 }
4001 case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
4002 {
4003 TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped(); // sampler
4004 TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped(); // coord
4005
4006 assert(argCoord->getVectorSize() == 4);
4007 TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
4008 TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
4009
4010 TOperator constructOp = EOpNull;
4011 const TSampler &sampler = argSamp->getType().getSampler();
4012 int coordSize = 0;
4013
4014 switch (sampler.dim)
4015 {
4016 case Esd1D: constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
4017 case Esd2D: constructOp = EOpConstructVec2; coordSize = 2; break; // 2D
4018 case Esd3D: constructOp = EOpConstructVec3; coordSize = 3; break; // 3D
4019 case EsdCube: constructOp = EOpConstructVec3; coordSize = 3; break; // also 3D
4020 default:
4021 error(loc, "unhandled DX9 texture LoD dimension", "", "");
4022 break;
4023 }
4024
4025 TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
4026 constructCoord->getSequence().push_back(argCoord);
4027 constructCoord->setLoc(loc);
4028 constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
4029
4030 TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
4031 tex->getSequence().push_back(argSamp); // sampler
4032 tex->getSequence().push_back(constructCoord); // coordinate
4033 tex->getSequence().push_back(argLod); // lod
4034
4035 node = convertReturn(tex, sampler);
4036
4037 break;
4038 }
4039
4040 case EOpTextureBias:
4041 {
4042 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler
4043 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord
4044
4045 // HLSL puts bias in W component of coordinate. We extract it and add it to
4046 // the argument list, instead
4047 TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
4048 TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
4049
4050 TOperator constructOp = EOpNull;
4051 const TSampler& sampler = arg0->getType().getSampler();
4052
4053 switch (sampler.dim) {
4054 case Esd1D: constructOp = EOpConstructFloat; break; // 1D
4055 case Esd2D: constructOp = EOpConstructVec2; break; // 2D
4056 case Esd3D: constructOp = EOpConstructVec3; break; // 3D
4057 case EsdCube: constructOp = EOpConstructVec3; break; // also 3D
4058 default:
4059 error(loc, "unhandled DX9 texture bias dimension", "", "");
4060 break;
4061 }
4062
4063 TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
4064 constructCoord->getSequence().push_back(arg1);
4065 constructCoord->setLoc(loc);
4066
4067 // The input vector should never be less than 2, since there's always a bias.
4068 // The max is for safety, and should be a no-op.
4069 constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
4070
4071 TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
4072 tex->getSequence().push_back(arg0); // sampler
4073 tex->getSequence().push_back(constructCoord); // coordinate
4074 tex->getSequence().push_back(bias); // bias
4075
4076 node = convertReturn(tex, sampler);
4077
4078 break;
4079 }
4080
4081 // **** DX10 methods: ****
4082 case EOpMethodSample: // fall through
4083 case EOpMethodSampleBias: // ...
4084 {
4085 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4086 TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
4087 TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
4088 TIntermTyped* argBias = nullptr;
4089 TIntermTyped* argOffset = nullptr;
4090 const TSampler& sampler = argTex->getType().getSampler();
4091
4092 int nextArg = 3;
4093
4094 if (op == EOpMethodSampleBias) // SampleBias has a bias arg
4095 argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
4096
4097 TOperator textureOp = EOpTexture;
4098
4099 if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
4100 textureOp = EOpTextureOffset;
4101 argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
4102 }
4103
4104 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4105
4106 TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4107 txsample->getSequence().push_back(txcombine);
4108 txsample->getSequence().push_back(argCoord);
4109
4110 if (argOffset != nullptr)
4111 txsample->getSequence().push_back(argOffset);
4112
4113 if (argBias != nullptr)
4114 txsample->getSequence().push_back(argBias);
4115
4116 node = convertReturn(txsample, sampler);
4117
4118 break;
4119 }
4120
4121 case EOpMethodSampleGrad: // ...
4122 {
4123 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4124 TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
4125 TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
4126 TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped();
4127 TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped();
4128 TIntermTyped* argOffset = nullptr;
4129 const TSampler& sampler = argTex->getType().getSampler();
4130
4131 TOperator textureOp = EOpTextureGrad;
4132
4133 if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
4134 textureOp = EOpTextureGradOffset;
4135 argOffset = argAggregate->getSequence()[5]->getAsTyped();
4136 }
4137
4138 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4139
4140 TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4141 txsample->getSequence().push_back(txcombine);
4142 txsample->getSequence().push_back(argCoord);
4143 txsample->getSequence().push_back(argDDX);
4144 txsample->getSequence().push_back(argDDY);
4145
4146 if (argOffset != nullptr)
4147 txsample->getSequence().push_back(argOffset);
4148
4149 node = convertReturn(txsample, sampler);
4150
4151 break;
4152 }
4153
4154 case EOpMethodGetDimensions:
4155 {
4156 // AST returns a vector of results, which we break apart component-wise into
4157 // separate values to assign to the HLSL method's outputs, ala:
4158 // tx . GetDimensions(width, height);
4159 // float2 sizeQueryTemp = EOpTextureQuerySize
4160 // width = sizeQueryTemp.X;
4161 // height = sizeQueryTemp.Y;
4162
4163 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4164 const TType& texType = argTex->getType();
4165
4166 assert(texType.getBasicType() == EbtSampler);
4167
4168 const TSampler& sampler = texType.getSampler();
4169 const TSamplerDim dim = sampler.dim;
4170 const bool isImage = sampler.isImage();
4171 const bool isMs = sampler.isMultiSample();
4172 const int numArgs = (int)argAggregate->getSequence().size();
4173
4174 int numDims = 0;
4175
4176 switch (dim) {
4177 case Esd1D: numDims = 1; break; // W
4178 case Esd2D: numDims = 2; break; // W, H
4179 case Esd3D: numDims = 3; break; // W, H, D
4180 case EsdCube: numDims = 2; break; // W, H (cube)
4181 case EsdBuffer: numDims = 1; break; // W (buffers)
4182 case EsdRect: numDims = 2; break; // W, H (rect)
4183 default:
4184 error(loc, "unhandled DX10 MethodGet dimension", "", "");
4185 break;
4186 }
4187
4188 // Arrayed adds another dimension for the number of array elements
4189 if (sampler.isArrayed())
4190 ++numDims;
4191
4192 // Establish whether the method itself is querying mip levels. This can be false even
4193 // if the underlying query requires a MIP level, due to the available HLSL method overloads.
4194 const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
4195
4196 // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
4197 // True if:
4198 // 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
4199 // or,
4200 // 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
4201 const bool mipRequired =
4202 ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
4203 mipQuery; // 2...
4204
4205 // AST assumes integer return. Will be converted to float if required.
4206 TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
4207 sizeQuery->getSequence().push_back(argTex);
4208
4209 // If we're building an LOD query, add the LOD.
4210 if (mipRequired) {
4211 // If the base HLSL query had no MIP level given, use level 0.
4212 TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
4213 intermediate.addConstantUnion(0, loc, true);
4214 sizeQuery->getSequence().push_back(queryLod);
4215 }
4216
4217 sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
4218 sizeQuery->setLoc(loc);
4219
4220 // Return value from size query
4221 TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
4222 tempArg->getWritableType().getQualifier().makeTemporary();
4223 TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
4224 intermediate.addSymbol(*tempArg, loc),
4225 sizeQuery, loc);
4226
4227 // Compound statement for assigning outputs
4228 TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
4229 // Index of first output parameter
4230 const int outParamBase = mipQuery ? 2 : 1;
4231
4232 for (int compNum = 0; compNum < numDims; ++compNum) {
4233 TIntermTyped* indexedOut = nullptr;
4234 TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
4235
4236 if (numDims > 1) {
4237 TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
4238 indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
4239 indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
4240 indexedOut->setLoc(loc);
4241 } else {
4242 indexedOut = sizeQueryReturn;
4243 }
4244
4245 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
4246 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
4247
4248 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4249 }
4250
4251 // handle mip level parameter
4252 if (mipQuery) {
4253 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
4254
4255 TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
4256 levelsQuery->getSequence().push_back(argTex);
4257 levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
4258 levelsQuery->setLoc(loc);
4259
4260 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
4261 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4262 }
4263
4264 // 2DMS formats query # samples, which needs a different query op
4265 if (sampler.isMultiSample()) {
4266 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
4267
4268 TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
4269 samplesQuery->getSequence().push_back(argTex);
4270 samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
4271 samplesQuery->setLoc(loc);
4272
4273 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
4274 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4275 }
4276
4277 compoundStatement->setOperator(EOpSequence);
4278 compoundStatement->setLoc(loc);
4279 compoundStatement->setType(TType(EbtVoid));
4280
4281 node = compoundStatement;
4282
4283 break;
4284 }
4285
4286 case EOpMethodSampleCmp: // fall through...
4287 case EOpMethodSampleCmpLevelZero:
4288 {
4289 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4290 TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
4291 TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
4292 TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
4293 TIntermTyped* argOffset = nullptr;
4294
4295 // Sampler argument should be a sampler.
4296 if (argSamp->getType().getBasicType() != EbtSampler) {
4297 error(loc, "expected: sampler type", "", "");
4298 return;
4299 }
4300
4301 // Sampler should be a SamplerComparisonState
4302 if (! argSamp->getType().getSampler().isShadow()) {
4303 error(loc, "expected: SamplerComparisonState", "", "");
4304 return;
4305 }
4306
4307 // optional offset value
4308 if (argAggregate->getSequence().size() > 4)
4309 argOffset = argAggregate->getSequence()[4]->getAsTyped();
4310
4311 const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
4312
4313 // AST wants comparison value as one of the texture coordinates
4314 TOperator constructOp = EOpNull;
4315 switch (coordDimWithCmpVal) {
4316 // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
4317 case 2: constructOp = EOpConstructVec2; break;
4318 case 3: constructOp = EOpConstructVec3; break;
4319 case 4: constructOp = EOpConstructVec4; break;
4320 case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg.
4321 default:
4322 error(loc, "unhandled DX10 MethodSample dimension", "", "");
4323 break;
4324 }
4325
4326 TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
4327 coordWithCmp->getSequence().push_back(argCoord);
4328 if (coordDimWithCmpVal != 5) // cube array shadow is special.
4329 coordWithCmp->getSequence().push_back(argCmpVal);
4330 coordWithCmp->setLoc(loc);
4331 coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
4332
4333 TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
4334 if (argOffset != nullptr)
4335 textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
4336
4337 // Create combined sampler & texture op
4338 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4339 TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4340 txsample->getSequence().push_back(txcombine);
4341 txsample->getSequence().push_back(coordWithCmp);
4342
4343 if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
4344 txsample->getSequence().push_back(argCmpVal);
4345
4346 // the LevelZero form uses 0 as an explicit LOD
4347 if (op == EOpMethodSampleCmpLevelZero)
4348 txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
4349
4350 // Add offset if present
4351 if (argOffset != nullptr)
4352 txsample->getSequence().push_back(argOffset);
4353
4354 txsample->setType(node->getType());
4355 txsample->setLoc(loc);
4356 node = txsample;
4357
4358 break;
4359 }
4360
4361 case EOpMethodLoad:
4362 {
4363 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4364 TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped();
4365 TIntermTyped* argOffset = nullptr;
4366 TIntermTyped* lodComponent = nullptr;
4367 TIntermTyped* coordSwizzle = nullptr;
4368
4369 const TSampler& sampler = argTex->getType().getSampler();
4370 const bool isMS = sampler.isMultiSample();
4371 const bool isBuffer = sampler.dim == EsdBuffer;
4372 const bool isImage = sampler.isImage();
4373 const TBasicType coordBaseType = argCoord->getType().getBasicType();
4374
4375 // Last component of coordinate is the mip level, for non-MS. we separate them here:
4376 if (isMS || isBuffer || isImage) {
4377 // MS, Buffer, and Image have no LOD
4378 coordSwizzle = argCoord;
4379 } else {
4380 // Extract coordinate
4381 int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
4382 TSwizzleSelectors<TVectorSelector> coordFields;
4383 for (int i = 0; i < swizzleSize; ++i)
4384 coordFields.push_back(i);
4385 TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
4386 coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
4387 coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
4388
4389 // Extract LOD
4390 TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
4391 lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
4392 lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
4393 }
4394
4395 const int numArgs = (int)argAggregate->getSequence().size();
4396 const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
4397
4398 // Create texel fetch
4399 const TOperator fetchOp = (isImage ? EOpImageLoad :
4400 hasOffset ? EOpTextureFetchOffset :
4401 EOpTextureFetch);
4402 TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
4403
4404 // Build up the fetch
4405 txfetch->getSequence().push_back(argTex);
4406 txfetch->getSequence().push_back(coordSwizzle);
4407
4408 if (isMS) {
4409 // add 2DMS sample index
4410 TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped();
4411 txfetch->getSequence().push_back(argSampleIdx);
4412 } else if (isBuffer) {
4413 // Nothing else to do for buffers.
4414 } else if (isImage) {
4415 // Nothing else to do for images.
4416 } else {
4417 // 2DMS and buffer have no LOD, but everything else does.
4418 txfetch->getSequence().push_back(lodComponent);
4419 }
4420
4421 // Obtain offset arg, if there is one.
4422 if (hasOffset) {
4423 const int offsetPos = (isMS ? 3 : 2);
4424 argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
4425 txfetch->getSequence().push_back(argOffset);
4426 }
4427
4428 node = convertReturn(txfetch, sampler);
4429
4430 break;
4431 }
4432
4433 case EOpMethodSampleLevel:
4434 {
4435 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4436 TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
4437 TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
4438 TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped();
4439 TIntermTyped* argOffset = nullptr;
4440 const TSampler& sampler = argTex->getType().getSampler();
4441
4442 const int numArgs = (int)argAggregate->getSequence().size();
4443
4444 if (numArgs == 5) // offset, if present
4445 argOffset = argAggregate->getSequence()[4]->getAsTyped();
4446
4447 const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
4448 TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4449
4450 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4451
4452 txsample->getSequence().push_back(txcombine);
4453 txsample->getSequence().push_back(argCoord);
4454 txsample->getSequence().push_back(argLod);
4455
4456 if (argOffset != nullptr)
4457 txsample->getSequence().push_back(argOffset);
4458
4459 node = convertReturn(txsample, sampler);
4460
4461 break;
4462 }
4463
4464 case EOpMethodGather:
4465 {
4466 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4467 TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
4468 TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
4469 TIntermTyped* argOffset = nullptr;
4470
4471 // Offset is optional
4472 if (argAggregate->getSequence().size() > 3)
4473 argOffset = argAggregate->getSequence()[3]->getAsTyped();
4474
4475 const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
4476 TIntermAggregate* txgather = new TIntermAggregate(textureOp);
4477
4478 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4479
4480 txgather->getSequence().push_back(txcombine);
4481 txgather->getSequence().push_back(argCoord);
4482 // Offset if not given is implicitly channel 0 (red)
4483
4484 if (argOffset != nullptr)
4485 txgather->getSequence().push_back(argOffset);
4486
4487 txgather->setType(node->getType());
4488 txgather->setLoc(loc);
4489 node = txgather;
4490
4491 break;
4492 }
4493
4494 case EOpMethodGatherRed: // fall through...
4495 case EOpMethodGatherGreen: // ...
4496 case EOpMethodGatherBlue: // ...
4497 case EOpMethodGatherAlpha: // ...
4498 case EOpMethodGatherCmpRed: // ...
4499 case EOpMethodGatherCmpGreen: // ...
4500 case EOpMethodGatherCmpBlue: // ...
4501 case EOpMethodGatherCmpAlpha: // ...
4502 {
4503 int channel = 0; // the channel we are gathering
4504 int cmpValues = 0; // 1 if there is a compare value (handier than a bool below)
4505
4506 switch (op) {
4507 case EOpMethodGatherCmpRed: cmpValues = 1; // fall through
4508 case EOpMethodGatherRed: channel = 0; break;
4509 case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through
4510 case EOpMethodGatherGreen: channel = 1; break;
4511 case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through
4512 case EOpMethodGatherBlue: channel = 2; break;
4513 case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through
4514 case EOpMethodGatherAlpha: channel = 3; break;
4515 default: assert(0); break;
4516 }
4517
4518 // For now, we have nothing to map the component-wise comparison forms
4519 // to, because neither GLSL nor SPIR-V has such an opcode. Issue an
4520 // unimplemented error instead. Most of the machinery is here if that
4521 // should ever become available. However, red can be passed through
4522 // to OpImageDrefGather. G/B/A cannot, because that opcode does not
4523 // accept a component.
4524 if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
4525 error(loc, "unimplemented: component-level gather compare", "", "");
4526 return;
4527 }
4528
4529 int arg = 0;
4530
4531 TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped();
4532 TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped();
4533 TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped();
4534 TIntermTyped* argOffset = nullptr;
4535 TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
4536 // TIntermTyped* argStatus = nullptr; // TODO: residency
4537 TIntermTyped* argCmp = nullptr;
4538
4539 const TSamplerDim dim = argTex->getType().getSampler().dim;
4540
4541 const int argSize = (int)argAggregate->getSequence().size();
4542 bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
4543 bool hasOffset1 = false;
4544 bool hasOffset4 = false;
4545
4546 // Sampler argument should be a sampler.
4547 if (argSamp->getType().getBasicType() != EbtSampler) {
4548 error(loc, "expected: sampler type", "", "");
4549 return;
4550 }
4551
4552 // Cmp forms require SamplerComparisonState
4553 if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
4554 error(loc, "expected: SamplerComparisonState", "", "");
4555 return;
4556 }
4557
4558 // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets.
4559 if (dim == Esd2D) {
4560 hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
4561 hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
4562 }
4563
4564 assert(!(hasOffset1 && hasOffset4));
4565
4566 TOperator textureOp = EOpTextureGather;
4567
4568 // Compare forms have compare value
4569 if (cmpValues != 0)
4570 argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
4571
4572 // Some forms have single offset
4573 if (hasOffset1) {
4574 textureOp = EOpTextureGatherOffset; // single offset form
4575 argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
4576 }
4577
4578 // Some forms have 4 gather offsets
4579 if (hasOffset4) {
4580 textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form
4581 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
4582 argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
4583 }
4584
4585 // Residency status
4586 if (hasStatus) {
4587 // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
4588 error(loc, "unimplemented: residency status", "", "");
4589 return;
4590 }
4591
4592 TIntermAggregate* txgather = new TIntermAggregate(textureOp);
4593 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4594
4595 TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
4596
4597 txgather->getSequence().push_back(txcombine);
4598 txgather->getSequence().push_back(argCoord);
4599
4600 // AST wants an array of 4 offsets, where HLSL has separate args. Here
4601 // we construct an array from the separate args.
4602 if (hasOffset4) {
4603 TType arrayType(EbtInt, EvqTemporary, 2);
4604 TArraySizes* arraySizes = new TArraySizes;
4605 arraySizes->addInnerSize(4);
4606 arrayType.transferArraySizes(arraySizes);
4607
4608 TIntermAggregate* initList = new TIntermAggregate(EOpNull);
4609
4610 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
4611 initList->getSequence().push_back(argOffsets[offsetNum]);
4612
4613 argOffset = addConstructor(loc, initList, arrayType);
4614 }
4615
4616 // Add comparison value if we have one
4617 if (argCmp != nullptr)
4618 txgather->getSequence().push_back(argCmp);
4619
4620 // Add offset (either 1, or an array of 4) if we have one
4621 if (argOffset != nullptr)
4622 txgather->getSequence().push_back(argOffset);
4623
4624 // Add channel value if the sampler is not shadow
4625 if (! argSamp->getType().getSampler().isShadow())
4626 txgather->getSequence().push_back(argChannel);
4627
4628 txgather->setType(node->getType());
4629 txgather->setLoc(loc);
4630 node = txgather;
4631
4632 break;
4633 }
4634
4635 case EOpMethodCalculateLevelOfDetail:
4636 case EOpMethodCalculateLevelOfDetailUnclamped:
4637 {
4638 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4639 TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
4640 TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
4641
4642 TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
4643
4644 TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4645 txquerylod->getSequence().push_back(txcombine);
4646 txquerylod->getSequence().push_back(argCoord);
4647
4648 TIntermTyped* lodComponent = intermediate.addConstantUnion(
4649 op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
4650 loc, true);
4651 TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
4652 lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
4653 node = lodComponentIdx;
4654
4655 break;
4656 }
4657
4658 case EOpMethodGetSamplePosition:
4659 {
4660 // TODO: this entire decomposition exists because there is not yet a way to query
4661 // the sample position directly through SPIR-V. Instead, we return fixed sample
4662 // positions for common cases. *** If the sample positions are set differently,
4663 // this will be wrong. ***
4664
4665 TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4666 TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
4667
4668 TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
4669 samplesQuery->getSequence().push_back(argTex);
4670 samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
4671 samplesQuery->setLoc(loc);
4672
4673 TIntermAggregate* compoundStatement = nullptr;
4674
4675 TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
4676 outSampleCount->getWritableType().getQualifier().makeTemporary();
4677 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
4678 samplesQuery, loc);
4679 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4680
4681 TIntermTyped* idxtest[4];
4682
4683 // Create tests against 2, 4, 8, and 16 sample values
4684 int count = 0;
4685 for (int val = 2; val <= 16; val *= 2)
4686 idxtest[count++] =
4687 intermediate.addBinaryNode(EOpEqual,
4688 intermediate.addSymbol(*outSampleCount, loc),
4689 intermediate.addConstantUnion(val, loc),
4690 loc, TType(EbtBool));
4691
4692 const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
4693
4694 // Create index ops into position arrays given sample index.
4695 // TODO: should it be clamped?
4696 TIntermTyped* index[4];
4697 count = 0;
4698 for (int val = 2; val <= 16; val *= 2) {
4699 index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
4700 index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
4701 }
4702
4703 // Create expression as:
4704 // (sampleCount == 2) ? pos2[idx] :
4705 // (sampleCount == 4) ? pos4[idx] :
4706 // (sampleCount == 8) ? pos8[idx] :
4707 // (sampleCount == 16) ? pos16[idx] : float2(0,0);
4708 TIntermTyped* test =
4709 intermediate.addSelection(idxtest[0], index[0],
4710 intermediate.addSelection(idxtest[1], index[1],
4711 intermediate.addSelection(idxtest[2], index[2],
4712 intermediate.addSelection(idxtest[3], index[3],
4713 getSamplePosArray(1), loc), loc), loc), loc);
4714
4715 compoundStatement = intermediate.growAggregate(compoundStatement, test);
4716 compoundStatement->setOperator(EOpSequence);
4717 compoundStatement->setLoc(loc);
4718 compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
4719
4720 node = compoundStatement;
4721
4722 break;
4723 }
4724
4725 case EOpSubpassLoad:
4726 {
4727 const TIntermTyped* argSubpass =
4728 argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
4729 arguments->getAsTyped();
4730
4731 const TSampler& sampler = argSubpass->getType().getSampler();
4732
4733 // subpass load: the multisample form is overloaded. Here, we convert that to
4734 // the EOpSubpassLoadMS opcode.
4735 if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
4736 node->getAsOperator()->setOp(EOpSubpassLoadMS);
4737
4738 node = convertReturn(node, sampler);
4739
4740 break;
4741 }
4742
4743
4744 default:
4745 break; // most pass through unchanged
4746 }
4747 }
4748
4749 //
4750 // Decompose geometry shader methods
4751 //
decomposeGeometryMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)4752 void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
4753 {
4754 if (node == nullptr || !node->getAsOperator())
4755 return;
4756
4757 const TOperator op = node->getAsOperator()->getOp();
4758 const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
4759
4760 switch (op) {
4761 case EOpMethodAppend:
4762 if (argAggregate) {
4763 // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
4764 if (language != EShLangGeometry) {
4765 node = nullptr;
4766 return;
4767 }
4768
4769 TIntermAggregate* sequence = nullptr;
4770 TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
4771
4772 emit->setLoc(loc);
4773 emit->setType(TType(EbtVoid));
4774
4775 TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
4776
4777 // This will be patched in finalization during finalizeAppendMethods()
4778 sequence = intermediate.growAggregate(sequence, data, loc);
4779 sequence = intermediate.growAggregate(sequence, emit);
4780
4781 sequence->setOperator(EOpSequence);
4782 sequence->setLoc(loc);
4783 sequence->setType(TType(EbtVoid));
4784
4785 gsAppends.push_back({sequence, loc});
4786
4787 node = sequence;
4788 }
4789 break;
4790
4791 case EOpMethodRestartStrip:
4792 {
4793 // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
4794 if (language != EShLangGeometry) {
4795 node = nullptr;
4796 return;
4797 }
4798
4799 TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
4800 cut->setLoc(loc);
4801 cut->setType(TType(EbtVoid));
4802 node = cut;
4803 }
4804 break;
4805
4806 default:
4807 break; // most pass through unchanged
4808 }
4809 }
4810
4811 //
4812 // Optionally decompose intrinsics to AST opcodes.
4813 //
decomposeIntrinsic(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)4814 void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
4815 {
4816 // Helper to find image data for image atomics:
4817 // OpImageLoad(image[idx])
4818 // We take the image load apart and add its params to the atomic op aggregate node
4819 const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
4820 TIntermAggregate* loadOp = load->getAsAggregate();
4821 if (loadOp == nullptr) {
4822 error(loc, "unknown image type in atomic operation", "", "");
4823 node = nullptr;
4824 return;
4825 }
4826
4827 atomic->getSequence().push_back(loadOp->getSequence()[0]);
4828 atomic->getSequence().push_back(loadOp->getSequence()[1]);
4829 };
4830
4831 // Return true if this is an imageLoad, which we will change to an image atomic.
4832 const auto isImageParam = [](TIntermTyped* image) -> bool {
4833 TIntermAggregate* imageAggregate = image->getAsAggregate();
4834 return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
4835 };
4836
4837 const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
4838 TSymbol* symbol = symbolTable.find(name);
4839 if (nullptr == symbol) {
4840 type.getQualifier().builtIn = builtin;
4841
4842 TVariable* variable = new TVariable(NewPoolTString(name), type);
4843
4844 symbolTable.insert(*variable);
4845
4846 symbol = symbolTable.find(name);
4847 assert(symbol && "Inserted symbol could not be found!");
4848 }
4849
4850 return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
4851 };
4852
4853 // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
4854 // opcodes for compatibility with existing software stacks.
4855 static const bool decomposeHlslIntrinsics = true;
4856
4857 if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
4858 return;
4859
4860 const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
4861 TIntermUnary* fnUnary = node->getAsUnaryNode();
4862 const TOperator op = node->getAsOperator()->getOp();
4863
4864 switch (op) {
4865 case EOpGenMul:
4866 {
4867 // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
4868 // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
4869 // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc.
4870 TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
4871 TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
4872
4873 if (arg0->isVector() && arg1->isVector()) { // vec * vec
4874 node->getAsAggregate()->setOperator(EOpDot);
4875 } else {
4876 node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
4877 }
4878
4879 break;
4880 }
4881
4882 case EOpRcp:
4883 {
4884 // rcp(a) -> 1 / a
4885 TIntermTyped* arg0 = fnUnary->getOperand();
4886 TBasicType type0 = arg0->getBasicType();
4887 TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
4888 node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
4889
4890 break;
4891 }
4892
4893 case EOpAny: // fall through
4894 case EOpAll:
4895 {
4896 TIntermTyped* typedArg = arguments->getAsTyped();
4897
4898 // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
4899 // We'll convert here. Note that for efficiency, we could add a smarter
4900 // decomposition for some type cases, e.g, maybe by decomposing a dot product.
4901 if (typedArg->getType().getBasicType() != EbtBool) {
4902 const TType boolType(EbtBool, EvqTemporary,
4903 typedArg->getVectorSize(),
4904 typedArg->getMatrixCols(),
4905 typedArg->getMatrixRows(),
4906 typedArg->isVector());
4907
4908 typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
4909 node->getAsUnaryNode()->setOperand(typedArg);
4910 }
4911
4912 break;
4913 }
4914
4915 case EOpSaturate:
4916 {
4917 // saturate(a) -> clamp(a,0,1)
4918 TIntermTyped* arg0 = fnUnary->getOperand();
4919 TBasicType type0 = arg0->getBasicType();
4920 TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
4921
4922 clamp->getSequence().push_back(arg0);
4923 clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
4924 clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
4925 clamp->setLoc(loc);
4926 clamp->setType(node->getType());
4927 clamp->getWritableType().getQualifier().makeTemporary();
4928 node = clamp;
4929
4930 break;
4931 }
4932
4933 case EOpSinCos:
4934 {
4935 // sincos(a,b,c) -> b = sin(a), c = cos(a)
4936 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
4937 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
4938 TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
4939
4940 TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
4941 TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
4942 TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
4943 TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
4944
4945 TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
4946 compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
4947 compoundStatement->setOperator(EOpSequence);
4948 compoundStatement->setLoc(loc);
4949 compoundStatement->setType(TType(EbtVoid));
4950
4951 node = compoundStatement;
4952
4953 break;
4954 }
4955
4956 case EOpClip:
4957 {
4958 // clip(a) -> if (any(a<0)) discard;
4959 TIntermTyped* arg0 = fnUnary->getOperand();
4960 TBasicType type0 = arg0->getBasicType();
4961 TIntermTyped* compareNode = nullptr;
4962
4963 // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
4964 if (!arg0->isScalar()) {
4965 // component-wise compare: a < 0
4966 TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
4967 less->getSequence().push_back(arg0);
4968 less->setLoc(loc);
4969
4970 // make vec or mat of bool matching dimensions of input
4971 less->setType(TType(EbtBool, EvqTemporary,
4972 arg0->getType().getVectorSize(),
4973 arg0->getType().getMatrixCols(),
4974 arg0->getType().getMatrixRows(),
4975 arg0->getType().isVector()));
4976
4977 // calculate # of components for comparison const
4978 const int constComponentCount =
4979 std::max(arg0->getType().getVectorSize(), 1) *
4980 std::max(arg0->getType().getMatrixCols(), 1) *
4981 std::max(arg0->getType().getMatrixRows(), 1);
4982
4983 TConstUnion zero;
4984 if (arg0->getType().isIntegerDomain())
4985 zero.setDConst(0);
4986 else
4987 zero.setDConst(0.0);
4988 TConstUnionArray zeros(constComponentCount, zero);
4989
4990 less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
4991
4992 compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
4993 } else {
4994 TIntermTyped* zero;
4995 if (arg0->getType().isIntegerDomain())
4996 zero = intermediate.addConstantUnion(0, loc, true);
4997 else
4998 zero = intermediate.addConstantUnion(0.0, type0, loc, true);
4999 compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
5000 }
5001
5002 TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
5003
5004 node = new TIntermSelection(compareNode, killNode, nullptr);
5005 node->setLoc(loc);
5006
5007 break;
5008 }
5009
5010 case EOpLog10:
5011 {
5012 // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
5013 TIntermTyped* arg0 = fnUnary->getOperand();
5014 TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
5015 TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
5016
5017 node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
5018
5019 break;
5020 }
5021
5022 case EOpDst:
5023 {
5024 // dest.x = 1;
5025 // dest.y = src0.y * src1.y;
5026 // dest.z = src0.z;
5027 // dest.w = src1.w;
5028
5029 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5030 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5031
5032 TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
5033 TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
5034 TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
5035
5036 TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
5037 TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
5038 TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
5039 TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
5040
5041 TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
5042
5043 dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5044 dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
5045 dst->getSequence().push_back(src0z);
5046 dst->getSequence().push_back(src1w);
5047 dst->setType(TType(EbtFloat, EvqTemporary, 4));
5048 dst->setLoc(loc);
5049 node = dst;
5050
5051 break;
5052 }
5053
5054 case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
5055 case EOpInterlockedMin: // ...
5056 case EOpInterlockedMax: // ...
5057 case EOpInterlockedAnd: // ...
5058 case EOpInterlockedOr: // ...
5059 case EOpInterlockedXor: // ...
5060 case EOpInterlockedExchange: // always has output arg
5061 {
5062 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
5063 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value
5064 TIntermTyped* arg2 = nullptr;
5065
5066 if (argAggregate->getSequence().size() > 2)
5067 arg2 = argAggregate->getSequence()[2]->getAsTyped();
5068
5069 const bool isImage = isImageParam(arg0);
5070 const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
5071 TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
5072 atomic->setType(arg0->getType());
5073 atomic->getWritableType().getQualifier().makeTemporary();
5074 atomic->setLoc(loc);
5075
5076 if (isImage) {
5077 // orig_value = imageAtomicOp(image, loc, data)
5078 imageAtomicParams(atomic, arg0);
5079 atomic->getSequence().push_back(arg1);
5080
5081 if (argAggregate->getSequence().size() > 2) {
5082 node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
5083 } else {
5084 node = atomic; // no assignment needed, as there was no out var.
5085 }
5086 } else {
5087 // Normal memory variable:
5088 // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
5089 if (argAggregate->getSequence().size() > 2) {
5090 // optional output param is present. return value goes to arg2.
5091 atomic->getSequence().push_back(arg0);
5092 atomic->getSequence().push_back(arg1);
5093
5094 node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
5095 } else {
5096 // Set the matching operator. Since output is absent, this is all we need to do.
5097 node->getAsAggregate()->setOperator(atomicOp);
5098 node->setType(atomic->getType());
5099 }
5100 }
5101
5102 break;
5103 }
5104
5105 case EOpInterlockedCompareExchange:
5106 {
5107 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
5108 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp
5109 TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value
5110 TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig
5111
5112 const bool isImage = isImageParam(arg0);
5113 TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
5114 atomic->setLoc(loc);
5115 atomic->setType(arg2->getType());
5116 atomic->getWritableType().getQualifier().makeTemporary();
5117
5118 if (isImage) {
5119 imageAtomicParams(atomic, arg0);
5120 } else {
5121 atomic->getSequence().push_back(arg0);
5122 }
5123
5124 atomic->getSequence().push_back(arg1);
5125 atomic->getSequence().push_back(arg2);
5126 node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
5127
5128 break;
5129 }
5130
5131 case EOpEvaluateAttributeSnapped:
5132 {
5133 // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
5134 // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
5135 // iU = (iU<<28)>>28
5136 // fU = ((float)iU)/16
5137 // Targets might handle this natively, in which case they can disable
5138 // decompositions.
5139
5140 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value
5141 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset
5142
5143 TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
5144 TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
5145 handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
5146 i28);
5147
5148 TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
5149 TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
5150 intermediate.addConversion(EOpConstructFloat,
5151 TType(EbtFloat, EvqTemporary, 2), iU),
5152 recip16);
5153
5154 TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
5155 interp->getSequence().push_back(arg0);
5156 interp->getSequence().push_back(floatOffset);
5157 interp->setLoc(loc);
5158 interp->setType(arg0->getType());
5159 interp->getWritableType().getQualifier().makeTemporary();
5160
5161 node = interp;
5162
5163 break;
5164 }
5165
5166 case EOpLit:
5167 {
5168 TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
5169 TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
5170 TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
5171
5172 TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
5173
5174 // Ambient
5175 dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5176
5177 // Diffuse:
5178 TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
5179 TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
5180 diffuse->getSequence().push_back(n_dot_l);
5181 diffuse->getSequence().push_back(zero);
5182 diffuse->setLoc(loc);
5183 diffuse->setType(TType(EbtFloat));
5184 dst->getSequence().push_back(diffuse);
5185
5186 // Specular:
5187 TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
5188 min_ndot->getSequence().push_back(n_dot_l);
5189 min_ndot->getSequence().push_back(n_dot_h);
5190 min_ndot->setLoc(loc);
5191 min_ndot->setType(TType(EbtFloat));
5192
5193 TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
5194 TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m
5195
5196 dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
5197
5198 // One:
5199 dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5200
5201 dst->setLoc(loc);
5202 dst->setType(TType(EbtFloat, EvqTemporary, 4));
5203 node = dst;
5204 break;
5205 }
5206
5207 case EOpAsDouble:
5208 {
5209 // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must
5210 // first construct a uint64.
5211 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5212 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5213
5214 if (arg0->getType().isVector()) { // TODO: ...
5215 error(loc, "double2 conversion not implemented", "asdouble", "");
5216 break;
5217 }
5218
5219 TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
5220
5221 uint64->getSequence().push_back(arg0);
5222 uint64->getSequence().push_back(arg1);
5223 uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2
5224 uint64->setLoc(loc);
5225
5226 // bitcast uint2 to a double
5227 TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
5228 convert->getAsUnaryNode()->setOperand(uint64);
5229 convert->setLoc(loc);
5230 convert->setType(TType(EbtDouble, EvqTemporary));
5231 node = convert;
5232
5233 break;
5234 }
5235
5236 case EOpF16tof32:
5237 {
5238 // input uvecN with low 16 bits of each component holding a float16. convert to float32.
5239 TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
5240 TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
5241 const int vecSize = argValue->getType().getVectorSize();
5242
5243 TOperator constructOp = EOpNull;
5244 switch (vecSize) {
5245 case 1: constructOp = EOpNull; break; // direct use, no construct needed
5246 case 2: constructOp = EOpConstructVec2; break;
5247 case 3: constructOp = EOpConstructVec3; break;
5248 case 4: constructOp = EOpConstructVec4; break;
5249 default: assert(0); break;
5250 }
5251
5252 // For scalar case, we don't need to construct another type.
5253 TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
5254
5255 if (result) {
5256 result->setType(TType(EbtFloat, EvqTemporary, vecSize));
5257 result->setLoc(loc);
5258 }
5259
5260 for (int idx = 0; idx < vecSize; ++idx) {
5261 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
5262 TIntermTyped* component = argValue->getType().isVector() ?
5263 intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
5264
5265 if (component != argValue)
5266 component->setType(TType(argValue->getBasicType(), EvqTemporary));
5267
5268 TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16);
5269 unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
5270 unpackOp->getAsUnaryNode()->setOperand(component);
5271 unpackOp->setLoc(loc);
5272
5273 TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
5274
5275 if (result != nullptr) {
5276 result->getSequence().push_back(lowOrder);
5277 node = result;
5278 } else {
5279 node = lowOrder;
5280 }
5281 }
5282
5283 break;
5284 }
5285
5286 case EOpF32tof16:
5287 {
5288 // input floatN converted to 16 bit float in low order bits of each component of uintN
5289 TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
5290
5291 TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
5292 const int vecSize = argValue->getType().getVectorSize();
5293
5294 TOperator constructOp = EOpNull;
5295 switch (vecSize) {
5296 case 1: constructOp = EOpNull; break; // direct use, no construct needed
5297 case 2: constructOp = EOpConstructUVec2; break;
5298 case 3: constructOp = EOpConstructUVec3; break;
5299 case 4: constructOp = EOpConstructUVec4; break;
5300 default: assert(0); break;
5301 }
5302
5303 // For scalar case, we don't need to construct another type.
5304 TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
5305
5306 if (result) {
5307 result->setType(TType(EbtUint, EvqTemporary, vecSize));
5308 result->setLoc(loc);
5309 }
5310
5311 for (int idx = 0; idx < vecSize; ++idx) {
5312 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
5313 TIntermTyped* component = argValue->getType().isVector() ?
5314 intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
5315
5316 if (component != argValue)
5317 component->setType(TType(argValue->getBasicType(), EvqTemporary));
5318
5319 TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
5320 vec2ComponentAndZero->getSequence().push_back(component);
5321 vec2ComponentAndZero->getSequence().push_back(zero);
5322 vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
5323 vec2ComponentAndZero->setLoc(loc);
5324
5325 TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
5326 packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
5327 packOp->setLoc(loc);
5328 packOp->setType(TType(EbtUint, EvqTemporary));
5329
5330 if (result != nullptr) {
5331 result->getSequence().push_back(packOp);
5332 node = result;
5333 } else {
5334 node = packOp;
5335 }
5336 }
5337
5338 break;
5339 }
5340
5341 case EOpD3DCOLORtoUBYTE4:
5342 {
5343 // ivec4 ( x.zyxw * 255.001953 );
5344 TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
5345 TSwizzleSelectors<TVectorSelector> selectors;
5346 selectors.push_back(2);
5347 selectors.push_back(1);
5348 selectors.push_back(0);
5349 selectors.push_back(3);
5350 TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
5351 TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
5352 swizzled->setType(arg0->getType());
5353 swizzled->getWritableType().getQualifier().makeTemporary();
5354
5355 TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
5356 TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
5357 rangeConverted->setType(arg0->getType());
5358 rangeConverted->getWritableType().getQualifier().makeTemporary();
5359
5360 node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
5361 node->setLoc(loc);
5362 node->setType(TType(EbtInt, EvqTemporary, 4));
5363 break;
5364 }
5365
5366 case EOpIsFinite:
5367 {
5368 // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
5369 // it to !isnan && !isinf
5370
5371 TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
5372
5373 // We'll make a temporary in case the RHS is cmoplex
5374 TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
5375 tempArg->getWritableType().getQualifier().makeTemporary();
5376
5377 TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
5378 intermediate.addSymbol(*tempArg, loc),
5379 arg0, loc);
5380
5381 TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
5382
5383 const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
5384 arg0->getMatrixRows());
5385
5386 TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
5387 isnan->setType(boolType);
5388
5389 TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
5390 notnan->setType(boolType);
5391
5392 TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
5393 isinf->setType(boolType);
5394
5395 TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
5396 notinf->setType(boolType);
5397
5398 TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
5399 andNode->setType(boolType);
5400
5401 compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
5402 compoundStatement->setOperator(EOpSequence);
5403 compoundStatement->setLoc(loc);
5404 compoundStatement->setType(boolType);
5405
5406 node = compoundStatement;
5407
5408 break;
5409 }
5410 case EOpWaveGetLaneCount:
5411 {
5412 // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
5413 // so that it inhabits the symbol table, but has a user-invalid name
5414 // in-case some source HLSL defined the symbol also).
5415 TType type(EbtUint, EvqVaryingIn);
5416 node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
5417 break;
5418 }
5419 case EOpWaveGetLaneIndex:
5420 {
5421 // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
5422 // symbol so that it inhabits the symbol table, but has a
5423 // user-invalid name in-case some source HLSL defined the symbol
5424 // also).
5425 TType type(EbtUint, EvqVaryingIn);
5426 node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
5427 break;
5428 }
5429 case EOpWaveActiveCountBits:
5430 {
5431 // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
5432
5433 // uvec4 type.
5434 TType uvec4Type(EbtUint, EvqTemporary, 4);
5435
5436 // Get the uvec4 return from subgroupBallot().
5437 TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
5438 EOpSubgroupBallot, true, arguments, uvec4Type);
5439
5440 // uint type.
5441 TType uintType(EbtUint, EvqTemporary);
5442
5443 node = intermediate.addBuiltInFunctionCall(loc,
5444 EOpSubgroupBallotBitCount, true, res, uintType);
5445
5446 break;
5447 }
5448 case EOpWavePrefixCountBits:
5449 {
5450 // Mapped to subgroupBallotExclusiveBitCount(subgroupBallot())
5451 // builtin
5452
5453 // uvec4 type.
5454 TType uvec4Type(EbtUint, EvqTemporary, 4);
5455
5456 // Get the uvec4 return from subgroupBallot().
5457 TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
5458 EOpSubgroupBallot, true, arguments, uvec4Type);
5459
5460 // uint type.
5461 TType uintType(EbtUint, EvqTemporary);
5462
5463 node = intermediate.addBuiltInFunctionCall(loc,
5464 EOpSubgroupBallotExclusiveBitCount, true, res, uintType);
5465
5466 break;
5467 }
5468
5469 default:
5470 break; // most pass through unchanged
5471 }
5472 }
5473
5474 //
5475 // Handle seeing function call syntax in the grammar, which could be any of
5476 // - .length() method
5477 // - constructor
5478 // - a call to a built-in function mapped to an operator
5479 // - a call to a built-in function that will remain a function call (e.g., texturing)
5480 // - user function
5481 // - subroutine call (not implemented yet)
5482 //
handleFunctionCall(const TSourceLoc & loc,TFunction * function,TIntermTyped * arguments)5483 TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
5484 {
5485 TIntermTyped* result = nullptr;
5486
5487 TOperator op = function->getBuiltInOp();
5488 if (op != EOpNull) {
5489 //
5490 // Then this should be a constructor.
5491 // Don't go through the symbol table for constructors.
5492 // Their parameters will be verified algorithmically.
5493 //
5494 TType type(EbtVoid); // use this to get the type back
5495 if (! constructorError(loc, arguments, *function, op, type)) {
5496 //
5497 // It's a constructor, of type 'type'.
5498 //
5499 result = handleConstructor(loc, arguments, type);
5500 if (result == nullptr) {
5501 error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
5502 return nullptr;
5503 }
5504 }
5505 } else {
5506 //
5507 // Find it in the symbol table.
5508 //
5509 const TFunction* fnCandidate = nullptr;
5510 bool builtIn = false;
5511 int thisDepth = 0;
5512
5513 // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
5514 // and clamp the opposite arg. Since that's complex, we farm it off to a separate method.
5515 // It doesn't naturally fall out of processing an argument at a time in isolation.
5516 if (function->getName() == "mul")
5517 addGenMulArgumentConversion(loc, *function, arguments);
5518
5519 TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
5520
5521 // TODO: this needs improvement: there's no way at present to look up a signature in
5522 // the symbol table for an arbitrary type. This is a temporary hack until that ability exists.
5523 // It will have false positives, since it doesn't check arg counts or types.
5524 if (arguments) {
5525 // Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we
5526 // look for either case.
5527
5528 TIntermTyped* arg0 = nullptr;
5529
5530 if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
5531 arg0 = aggregate->getSequence()[0]->getAsTyped();
5532 else if (arguments->getAsSymbolNode())
5533 arg0 = arguments->getAsSymbolNode();
5534
5535 if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
5536 static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
5537
5538 if (function->getName().length() > methodPrefixSize &&
5539 isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
5540 const TString mangle = function->getName() + "(";
5541 TSymbol* symbol = symbolTable.find(mangle, &builtIn);
5542
5543 if (symbol)
5544 fnCandidate = symbol->getAsFunction();
5545 }
5546 }
5547 }
5548
5549 if (fnCandidate == nullptr)
5550 fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
5551
5552 if (fnCandidate) {
5553 // This is a declared function that might map to
5554 // - a built-in operator,
5555 // - a built-in function not mapped to an operator, or
5556 // - a user function.
5557
5558 // turn an implicit member-function resolution into an explicit call
5559 TString callerName;
5560 if (thisDepth == 0)
5561 callerName = fnCandidate->getMangledName();
5562 else {
5563 // get the explicit (full) name of the function
5564 callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
5565 callerName += fnCandidate->getMangledName();
5566 // insert the implicit calling argument
5567 pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
5568 }
5569
5570 // Convert 'in' arguments, so that types match.
5571 // However, skip those that need expansion, that is covered next.
5572 if (arguments)
5573 addInputArgumentConversions(*fnCandidate, arguments);
5574
5575 // Expand arguments. Some arguments must physically expand to a different set
5576 // than what the shader declared and passes.
5577 if (arguments && !builtIn)
5578 expandArguments(loc, *fnCandidate, arguments);
5579
5580 // Expansion may have changed the form of arguments
5581 aggregate = arguments ? arguments->getAsAggregate() : nullptr;
5582
5583 op = fnCandidate->getBuiltInOp();
5584 if (builtIn && op != EOpNull) {
5585 // SM 4.0 and above guarantees roundEven semantics for round()
5586 if (!hlslDX9Compatible() && op == EOpRound)
5587 op = EOpRoundEven;
5588
5589 // A function call mapped to a built-in operation.
5590 result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
5591 fnCandidate->getType());
5592 if (result == nullptr) {
5593 error(arguments->getLoc(), " wrong operand type", "Internal Error",
5594 "built in unary operator function. Type: %s",
5595 static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
5596 } else if (result->getAsOperator()) {
5597 builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
5598 }
5599 } else {
5600 // This is a function call not mapped to built-in operator.
5601 // It could still be a built-in function, but only if PureOperatorBuiltins == false.
5602 result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
5603 TIntermAggregate* call = result->getAsAggregate();
5604 call->setName(callerName);
5605
5606 // this is how we know whether the given function is a built-in function or a user-defined function
5607 // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
5608 // if builtIn == true, it's definitely a built-in function with EOpNull
5609 if (! builtIn) {
5610 call->setUserDefined();
5611 intermediate.addToCallGraph(infoSink, currentCaller, callerName);
5612 }
5613 }
5614
5615 // for decompositions, since we want to operate on the function node, not the aggregate holding
5616 // output conversions.
5617 const TIntermTyped* fnNode = result;
5618
5619 decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
5620 decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
5621 decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
5622 decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
5623
5624 // Create the qualifier list, carried in the AST for the call.
5625 // Because some arguments expand to multiple arguments, the qualifier list will
5626 // be longer than the formal parameter list.
5627 if (result == fnNode && result->getAsAggregate()) {
5628 TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
5629 for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
5630 TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
5631 if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
5632 // add buffer and counter buffer argument qualifier
5633 qualifierList.push_back(qual);
5634 qualifierList.push_back(qual);
5635 } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
5636 true)) {
5637 // add structure member expansion
5638 for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
5639 qualifierList.push_back(qual);
5640 } else {
5641 // Normal 1:1 case
5642 qualifierList.push_back(qual);
5643 }
5644 }
5645 }
5646
5647 // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
5648 // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
5649 // Also, build the qualifier list for user function calls, which are always called with an aggregate.
5650 // We don't do this is if there has been a decomposition, which will have added its own conversions
5651 // for output parameters.
5652 if (result == fnNode && result->getAsAggregate())
5653 result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
5654 }
5655 }
5656
5657 // generic error recovery
5658 // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
5659 // reduce cascades
5660 if (result == nullptr)
5661 result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
5662
5663 return result;
5664 }
5665
5666 // An initial argument list is difficult: it can be null, or a single node,
5667 // or an aggregate if more than one argument. Add one to the front, maintaining
5668 // this lack of uniformity.
pushFrontArguments(TIntermTyped * front,TIntermTyped * & arguments)5669 void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
5670 {
5671 if (arguments == nullptr)
5672 arguments = front;
5673 else if (arguments->getAsAggregate() != nullptr)
5674 arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
5675 else
5676 arguments = intermediate.growAggregate(front, arguments);
5677 }
5678
5679 //
5680 // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a
5681 // situation not well suited to resolution in intrinsic selection, but we can do so here, since we
5682 // can look at both arguments insert explicit shape changes if required.
5683 //
addGenMulArgumentConversion(const TSourceLoc & loc,TFunction & call,TIntermTyped * & args)5684 void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
5685 {
5686 TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
5687
5688 if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
5689 // It really ought to have two arguments.
5690 error(loc, "expected: mul arguments", "", "");
5691 return;
5692 }
5693
5694 TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5695 TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5696
5697 if (arg0->isVector() && arg1->isVector()) {
5698 // For:
5699 // vec * vec: it's handled during intrinsic selection, so while we could do it here,
5700 // we can also ignore it, which is easier.
5701 } else if (arg0->isVector() && arg1->isMatrix()) {
5702 // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
5703 if (arg0->getVectorSize() < arg1->getMatrixCols()) {
5704 // vec is smaller, so truncate larger mat dimension
5705 const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5706 0, arg0->getVectorSize(), arg1->getMatrixRows());
5707 arg1 = addConstructor(loc, arg1, truncType);
5708 } else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
5709 // vec is larger, so truncate vec to mat size
5710 const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5711 arg1->getMatrixCols());
5712 arg0 = addConstructor(loc, arg0, truncType);
5713 }
5714 } else if (arg0->isMatrix() && arg1->isVector()) {
5715 // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
5716 if (arg1->getVectorSize() < arg0->getMatrixRows()) {
5717 // vec is smaller, so truncate larger mat dimension
5718 const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5719 0, arg0->getMatrixCols(), arg1->getVectorSize());
5720 arg0 = addConstructor(loc, arg0, truncType);
5721 } else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
5722 // vec is larger, so truncate vec to mat size
5723 const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5724 arg0->getMatrixRows());
5725 arg1 = addConstructor(loc, arg1, truncType);
5726 }
5727 } else if (arg0->isMatrix() && arg1->isMatrix()) {
5728 // mat * mat: we clamp the smaller inner dimension to match the other matrix size.
5729 // Remember, HLSL Mrc = GLSL/SPIRV Mcr.
5730 if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
5731 const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5732 0, arg0->getMatrixCols(), arg1->getMatrixCols());
5733 arg0 = addConstructor(loc, arg0, truncType);
5734 } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
5735 const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5736 0, arg0->getMatrixRows(), arg1->getMatrixRows());
5737 arg1 = addConstructor(loc, arg1, truncType);
5738 }
5739 } else {
5740 // It's something with scalars: we'll just leave it alone. Function selection will handle it
5741 // downstream.
5742 }
5743
5744 // Warn if we altered one of the arguments
5745 if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
5746 warn(loc, "mul() matrix size mismatch", "", "");
5747
5748 // Put arguments back. (They might be unchanged, in which case this is harmless).
5749 argAggregate->getSequence()[0] = arg0;
5750 argAggregate->getSequence()[1] = arg1;
5751
5752 call[0].type = &arg0->getWritableType();
5753 call[1].type = &arg1->getWritableType();
5754 }
5755
5756 //
5757 // Add any needed implicit conversions for function-call arguments to input parameters.
5758 //
addInputArgumentConversions(const TFunction & function,TIntermTyped * & arguments)5759 void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
5760 {
5761 TIntermAggregate* aggregate = arguments->getAsAggregate();
5762
5763 // Replace a single argument with a single argument.
5764 const auto setArg = [&](int paramNum, TIntermTyped* arg) {
5765 if (function.getParamCount() == 1)
5766 arguments = arg;
5767 else {
5768 if (aggregate == nullptr)
5769 arguments = arg;
5770 else
5771 aggregate->getSequence()[paramNum] = arg;
5772 }
5773 };
5774
5775 // Process each argument's conversion
5776 for (int param = 0; param < function.getParamCount(); ++param) {
5777 if (! function[param].type->getQualifier().isParamInput())
5778 continue;
5779
5780 // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
5781 // is the single argument itself or its children are the arguments. Only one argument
5782 // means take 'arguments' itself as the one argument.
5783 TIntermTyped* arg = function.getParamCount() == 1
5784 ? arguments->getAsTyped()
5785 : (aggregate ?
5786 aggregate->getSequence()[param]->getAsTyped() :
5787 arguments->getAsTyped());
5788 if (*function[param].type != arg->getType()) {
5789 // In-qualified arguments just need an extra node added above the argument to
5790 // convert to the correct type.
5791 TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
5792 if (convArg != nullptr)
5793 convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
5794 if (convArg != nullptr)
5795 setArg(param, convArg);
5796 else
5797 error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
5798 } else {
5799 if (wasFlattened(arg)) {
5800 // If both formal and calling arg are to be flattened, leave that to argument
5801 // expansion, not conversion.
5802 if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
5803 // Will make a two-level subtree.
5804 // The deepest will copy member-by-member to build the structure to pass.
5805 // The level above that will be a two-operand EOpComma sequence that follows the copy by the
5806 // object itself.
5807 TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
5808 internalAggregate->getWritableType().getQualifier().makeTemporary();
5809 TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
5810 internalAggregate->getName(),
5811 internalAggregate->getType());
5812 internalSymbolNode->setLoc(arg->getLoc());
5813 // This makes the deepest level, the member-wise copy
5814 TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
5815 internalSymbolNode, arg)->getAsAggregate();
5816
5817 // Now, pair that with the resulting aggregate.
5818 assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
5819 assignAgg->setOperator(EOpComma);
5820 assignAgg->setType(internalAggregate->getType());
5821 setArg(param, assignAgg);
5822 }
5823 }
5824 }
5825 }
5826 }
5827
5828 //
5829 // Add any needed implicit expansion of calling arguments from what the shader listed to what's
5830 // internally needed for the AST (given the constraints downstream).
5831 //
expandArguments(const TSourceLoc & loc,const TFunction & function,TIntermTyped * & arguments)5832 void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
5833 {
5834 TIntermAggregate* aggregate = arguments->getAsAggregate();
5835 int functionParamNumberOffset = 0;
5836
5837 // Replace a single argument with a single argument.
5838 const auto setArg = [&](int paramNum, TIntermTyped* arg) {
5839 if (function.getParamCount() + functionParamNumberOffset == 1)
5840 arguments = arg;
5841 else {
5842 if (aggregate == nullptr)
5843 arguments = arg;
5844 else
5845 aggregate->getSequence()[paramNum] = arg;
5846 }
5847 };
5848
5849 // Replace a single argument with a list of arguments
5850 const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
5851 if (args.size() == 1)
5852 setArg(paramNum, args.front());
5853 else if (args.size() > 1) {
5854 if (function.getParamCount() + functionParamNumberOffset == 1) {
5855 arguments = intermediate.makeAggregate(args.front());
5856 std::for_each(args.begin() + 1, args.end(),
5857 [&](TIntermTyped* arg) {
5858 arguments = intermediate.growAggregate(arguments, arg);
5859 });
5860 } else {
5861 auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
5862 aggregate->getSequence().insert(it, args.begin(), args.end());
5863 }
5864 functionParamNumberOffset += (int)(args.size() - 1);
5865 }
5866 };
5867
5868 // Process each argument's conversion
5869 for (int param = 0; param < function.getParamCount(); ++param) {
5870 // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
5871 // is the single argument itself or its children are the arguments. Only one argument
5872 // means take 'arguments' itself as the one argument.
5873 TIntermTyped* arg = function.getParamCount() == 1
5874 ? arguments->getAsTyped()
5875 : (aggregate ?
5876 aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
5877 arguments->getAsTyped());
5878
5879 if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
5880 // Need to pass the structure members instead of the structure.
5881 TVector<TIntermTyped*> memberArgs;
5882 for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
5883 memberArgs.push_back(flattenAccess(arg, memb));
5884 setArgList(param + functionParamNumberOffset, memberArgs);
5885 }
5886 }
5887
5888 // TODO: if we need both hidden counter args (below) and struct expansion (above)
5889 // the two algorithms need to be merged: Each assumes the list starts out 1:1 between
5890 // parameters and arguments.
5891
5892 // If any argument is a pass-by-reference struct buffer with an associated counter
5893 // buffer, we have to add another hidden parameter for that counter.
5894 if (aggregate)
5895 addStructBuffArguments(loc, aggregate);
5896 }
5897
5898 //
5899 // Add any needed implicit output conversions for function-call arguments. This
5900 // can require a new tree topology, complicated further by whether the function
5901 // has a return value.
5902 //
5903 // Returns a node of a subtree that evaluates to the return value of the function.
5904 //
addOutputArgumentConversions(const TFunction & function,TIntermOperator & intermNode)5905 TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
5906 {
5907 assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
5908
5909 const TSourceLoc& loc = intermNode.getLoc();
5910
5911 TIntermSequence argSequence; // temp sequence for unary node args
5912
5913 if (intermNode.getAsUnaryNode())
5914 argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
5915
5916 TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
5917
5918 const auto needsConversion = [&](int argNum) {
5919 return function[argNum].type->getQualifier().isParamOutput() &&
5920 (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
5921 shouldConvertLValue(arguments[argNum]) ||
5922 wasFlattened(arguments[argNum]->getAsTyped()));
5923 };
5924
5925 // Will there be any output conversions?
5926 bool outputConversions = false;
5927 for (int i = 0; i < function.getParamCount(); ++i) {
5928 if (needsConversion(i)) {
5929 outputConversions = true;
5930 break;
5931 }
5932 }
5933
5934 if (! outputConversions)
5935 return &intermNode;
5936
5937 // Setup for the new tree, if needed:
5938 //
5939 // Output conversions need a different tree topology.
5940 // Out-qualified arguments need a temporary of the correct type, with the call
5941 // followed by an assignment of the temporary to the original argument:
5942 // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
5943 // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
5944 // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
5945 TIntermTyped* conversionTree = nullptr;
5946 TVariable* tempRet = nullptr;
5947 if (intermNode.getBasicType() != EbtVoid) {
5948 // do the "tempRet = function(...), " bit from above
5949 tempRet = makeInternalVariable("tempReturn", intermNode.getType());
5950 TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
5951 conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
5952 } else
5953 conversionTree = &intermNode;
5954
5955 conversionTree = intermediate.makeAggregate(conversionTree);
5956
5957 // Process each argument's conversion
5958 for (int i = 0; i < function.getParamCount(); ++i) {
5959 if (needsConversion(i)) {
5960 // Out-qualified arguments needing conversion need to use the topology setup above.
5961 // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
5962
5963 // Make a temporary for what the function expects the argument to look like.
5964 TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
5965 tempArg->getWritableType().getQualifier().makeTemporary();
5966 TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
5967
5968 // This makes the deepest level, the member-wise copy
5969 TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
5970 tempArgNode);
5971 tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
5972 conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
5973
5974 // replace the argument with another node for the same tempArg variable
5975 arguments[i] = intermediate.addSymbol(*tempArg, loc);
5976 }
5977 }
5978
5979 // Finalize the tree topology (see bigger comment above).
5980 if (tempRet) {
5981 // do the "..., tempRet" bit from above
5982 TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
5983 conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
5984 }
5985
5986 conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
5987
5988 return conversionTree;
5989 }
5990
5991 //
5992 // Add any needed "hidden" counter buffer arguments for function calls.
5993 //
5994 // Modifies the 'aggregate' argument if needed. Otherwise, is no-op.
5995 //
addStructBuffArguments(const TSourceLoc & loc,TIntermAggregate * & aggregate)5996 void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
5997 {
5998 // See if there are any SB types with counters.
5999 const bool hasStructBuffArg =
6000 std::any_of(aggregate->getSequence().begin(),
6001 aggregate->getSequence().end(),
6002 [this](const TIntermNode* node) {
6003 return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
6004 });
6005
6006 // Nothing to do, if we didn't find one.
6007 if (! hasStructBuffArg)
6008 return;
6009
6010 TIntermSequence argsWithCounterBuffers;
6011
6012 for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
6013 argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
6014
6015 if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
6016 const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
6017 if (blockSym != nullptr) {
6018 TType counterType;
6019 counterBufferType(loc, counterType);
6020
6021 const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
6022
6023 TVariable* variable = makeInternalVariable(counterBlockName, counterType);
6024
6025 // Mark this buffer's counter block as being in use
6026 structBufferCounter[counterBlockName] = true;
6027
6028 TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
6029 argsWithCounterBuffers.push_back(sym);
6030 }
6031 }
6032 }
6033
6034 // Swap with the temp list we've built up.
6035 aggregate->getSequence().swap(argsWithCounterBuffers);
6036 }
6037
6038
6039 //
6040 // Do additional checking of built-in function calls that is not caught
6041 // by normal semantic checks on argument type, extension tagging, etc.
6042 //
6043 // Assumes there has been a semantically correct match to a built-in function prototype.
6044 //
builtInOpCheck(const TSourceLoc & loc,const TFunction & fnCandidate,TIntermOperator & callNode)6045 void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
6046 {
6047 // Set up convenience accessors to the argument(s). There is almost always
6048 // multiple arguments for the cases below, but when there might be one,
6049 // check the unaryArg first.
6050 const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
6051 const TIntermTyped* unaryArg = nullptr;
6052 const TIntermTyped* arg0 = nullptr;
6053 if (callNode.getAsAggregate()) {
6054 argp = &callNode.getAsAggregate()->getSequence();
6055 if (argp->size() > 0)
6056 arg0 = (*argp)[0]->getAsTyped();
6057 } else {
6058 assert(callNode.getAsUnaryNode());
6059 unaryArg = callNode.getAsUnaryNode()->getOperand();
6060 arg0 = unaryArg;
6061 }
6062 const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
6063
6064 switch (callNode.getOp()) {
6065 case EOpTextureGather:
6066 case EOpTextureGatherOffset:
6067 case EOpTextureGatherOffsets:
6068 {
6069 // Figure out which variants are allowed by what extensions,
6070 // and what arguments must be constant for which situations.
6071
6072 TString featureString = fnCandidate.getName() + "(...)";
6073 const char* feature = featureString.c_str();
6074 int compArg = -1; // track which argument, if any, is the constant component argument
6075 switch (callNode.getOp()) {
6076 case EOpTextureGather:
6077 // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
6078 // otherwise, need GL_ARB_texture_gather.
6079 if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
6080 fnCandidate[0].type->getSampler().shadow) {
6081 if (! fnCandidate[0].type->getSampler().shadow)
6082 compArg = 2;
6083 }
6084 break;
6085 case EOpTextureGatherOffset:
6086 // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
6087 if (! fnCandidate[0].type->getSampler().shadow)
6088 compArg = 3;
6089 break;
6090 case EOpTextureGatherOffsets:
6091 if (! fnCandidate[0].type->getSampler().shadow)
6092 compArg = 3;
6093 break;
6094 default:
6095 break;
6096 }
6097
6098 if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
6099 if (aggArgs[compArg]->getAsConstantUnion()) {
6100 int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
6101 if (value < 0 || value > 3)
6102 error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
6103 } else
6104 error(loc, "must be a compile-time constant:", feature, "component argument");
6105 }
6106
6107 break;
6108 }
6109
6110 case EOpTextureOffset:
6111 case EOpTextureFetchOffset:
6112 case EOpTextureProjOffset:
6113 case EOpTextureLodOffset:
6114 case EOpTextureProjLodOffset:
6115 case EOpTextureGradOffset:
6116 case EOpTextureProjGradOffset:
6117 {
6118 // Handle texture-offset limits checking
6119 // Pick which argument has to hold constant offsets
6120 int arg = -1;
6121 switch (callNode.getOp()) {
6122 case EOpTextureOffset: arg = 2; break;
6123 case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
6124 case EOpTextureProjOffset: arg = 2; break;
6125 case EOpTextureLodOffset: arg = 3; break;
6126 case EOpTextureProjLodOffset: arg = 3; break;
6127 case EOpTextureGradOffset: arg = 4; break;
6128 case EOpTextureProjGradOffset: arg = 4; break;
6129 default:
6130 assert(0);
6131 break;
6132 }
6133
6134 if (arg > 0) {
6135 if (aggArgs[arg]->getAsConstantUnion() == nullptr)
6136 error(loc, "argument must be compile-time constant", "texel offset", "");
6137 else {
6138 const TType& type = aggArgs[arg]->getAsTyped()->getType();
6139 for (int c = 0; c < type.getVectorSize(); ++c) {
6140 int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
6141 if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
6142 error(loc, "value is out of range:", "texel offset",
6143 "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
6144 }
6145 }
6146 }
6147
6148 break;
6149 }
6150
6151 case EOpTextureQuerySamples:
6152 case EOpImageQuerySamples:
6153 break;
6154
6155 case EOpImageAtomicAdd:
6156 case EOpImageAtomicMin:
6157 case EOpImageAtomicMax:
6158 case EOpImageAtomicAnd:
6159 case EOpImageAtomicOr:
6160 case EOpImageAtomicXor:
6161 case EOpImageAtomicExchange:
6162 case EOpImageAtomicCompSwap:
6163 break;
6164
6165 case EOpInterpolateAtCentroid:
6166 case EOpInterpolateAtSample:
6167 case EOpInterpolateAtOffset:
6168 // TODO(greg-lunarg): Re-enable this check. It currently gives false errors for builtins
6169 // defined and passed as members of a struct. In this case the storage class is showing to be
6170 // Function. See glslang #2584
6171
6172 // Make sure the first argument is an interpolant, or an array element of an interpolant
6173 // if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
6174 // It might still be an array element.
6175 //
6176 // We could check more, but the semantics of the first argument are already met; the
6177 // only way to turn an array into a float/vec* is array dereference and swizzle.
6178 //
6179 // ES and desktop 4.3 and earlier: swizzles may not be used
6180 // desktop 4.4 and later: swizzles may be used
6181 // const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
6182 // if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
6183 // error(loc, "first argument must be an interpolant, or interpolant-array element",
6184 // fnCandidate.getName().c_str(), "");
6185 // }
6186 break;
6187
6188 default:
6189 break;
6190 }
6191 }
6192
6193 //
6194 // Handle seeing something in a grammar production that can be done by calling
6195 // a constructor.
6196 //
6197 // The constructor still must be "handled" by handleFunctionCall(), which will
6198 // then call handleConstructor().
6199 //
makeConstructorCall(const TSourceLoc & loc,const TType & type)6200 TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
6201 {
6202 TOperator op = intermediate.mapTypeToConstructorOp(type);
6203
6204 if (op == EOpNull) {
6205 error(loc, "cannot construct this type", type.getBasicString(), "");
6206 return nullptr;
6207 }
6208
6209 TString empty("");
6210
6211 return new TFunction(&empty, type, op);
6212 }
6213
6214 //
6215 // Handle seeing a "COLON semantic" at the end of a type declaration,
6216 // by updating the type according to the semantic.
6217 //
handleSemantic(TSourceLoc loc,TQualifier & qualifier,TBuiltInVariable builtIn,const TString & upperCase)6218 void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
6219 const TString& upperCase)
6220 {
6221 // Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed
6222 // semantic number is >= limit, errorMsg is issued and 0 is returned.
6223 // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
6224 // accept those in lambda functions.
6225 const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
6226 size_t pos = semantic.find_last_not_of("0123456789");
6227 if (pos == std::string::npos)
6228 return 0u;
6229
6230 unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
6231
6232 if (limit != 0 && semanticNum >= limit) {
6233 error(loc, errorMsg, semantic.c_str(), "");
6234 return 0u;
6235 }
6236
6237 return semanticNum;
6238 };
6239
6240 if (builtIn == EbvNone && hlslDX9Compatible()) {
6241 if (language == EShLangVertex) {
6242 if (qualifier.isParamOutput()) {
6243 if (upperCase == "POSITION") {
6244 builtIn = EbvPosition;
6245 }
6246 if (upperCase == "PSIZE") {
6247 builtIn = EbvPointSize;
6248 }
6249 }
6250 } else if (language == EShLangFragment) {
6251 if (qualifier.isParamInput() && upperCase == "VPOS") {
6252 builtIn = EbvFragCoord;
6253 }
6254 if (qualifier.isParamOutput()) {
6255 if (upperCase.compare(0, 5, "COLOR") == 0) {
6256 qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
6257 nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
6258 }
6259 if (upperCase == "DEPTH") {
6260 builtIn = EbvFragDepth;
6261 }
6262 }
6263 }
6264 }
6265
6266 switch(builtIn) {
6267 case EbvNone:
6268 // Get location numbers from fragment outputs, instead of
6269 // auto-assigning them.
6270 if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
6271 qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
6272 nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
6273 } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
6274 builtIn = EbvClipDistance;
6275 qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
6276 } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
6277 builtIn = EbvCullDistance;
6278 qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
6279 }
6280 break;
6281 case EbvPosition:
6282 // adjust for stage in/out
6283 if (language == EShLangFragment)
6284 builtIn = EbvFragCoord;
6285 break;
6286 case EbvFragStencilRef:
6287 error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
6288 break;
6289 case EbvTessLevelInner:
6290 case EbvTessLevelOuter:
6291 qualifier.patch = true;
6292 break;
6293 default:
6294 break;
6295 }
6296
6297 if (qualifier.builtIn == EbvNone)
6298 qualifier.builtIn = builtIn;
6299 qualifier.semanticName = intermediate.addSemanticName(upperCase);
6300 }
6301
6302 //
6303 // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
6304 //
6305 // 'location' has the "c[Subcomponent]" part.
6306 // 'component' points to the "component" part, or nullptr if not present.
6307 //
handlePackOffset(const TSourceLoc & loc,TQualifier & qualifier,const glslang::TString & location,const glslang::TString * component)6308 void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
6309 const glslang::TString* component)
6310 {
6311 if (location.size() == 0 || location[0] != 'c') {
6312 error(loc, "expected 'c'", "packoffset", "");
6313 return;
6314 }
6315 if (location.size() == 1)
6316 return;
6317 if (! isdigit(location[1])) {
6318 error(loc, "expected number after 'c'", "packoffset", "");
6319 return;
6320 }
6321
6322 qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
6323 if (component != nullptr) {
6324 int componentOffset = 0;
6325 switch ((*component)[0]) {
6326 case 'x': componentOffset = 0; break;
6327 case 'y': componentOffset = 4; break;
6328 case 'z': componentOffset = 8; break;
6329 case 'w': componentOffset = 12; break;
6330 default:
6331 componentOffset = -1;
6332 break;
6333 }
6334 if (componentOffset < 0 || component->size() > 1) {
6335 error(loc, "expected {x, y, z, w} for component", "packoffset", "");
6336 return;
6337 }
6338 qualifier.layoutOffset += componentOffset;
6339 }
6340 }
6341
6342 //
6343 // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
6344 //
6345 // 'profile' points to the shader_profile part, or nullptr if not present.
6346 // 'desc' is the type# part.
6347 //
handleRegister(const TSourceLoc & loc,TQualifier & qualifier,const glslang::TString * profile,const glslang::TString & desc,int subComponent,const glslang::TString * spaceDesc)6348 void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
6349 const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
6350 {
6351 if (profile != nullptr)
6352 warn(loc, "ignoring shader_profile", "register", "");
6353
6354 if (desc.size() < 1) {
6355 error(loc, "expected register type", "register", "");
6356 return;
6357 }
6358
6359 int regNumber = 0;
6360 if (desc.size() > 1) {
6361 if (isdigit(desc[1]))
6362 regNumber = atoi(desc.substr(1, desc.size()).c_str());
6363 else {
6364 error(loc, "expected register number after register type", "register", "");
6365 return;
6366 }
6367 }
6368
6369 // more information about register types see
6370 // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
6371 const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
6372 switch (std::tolower(desc[0])) {
6373 case 'c':
6374 // c register is the register slot in the global const buffer
6375 // each slot is a vector of 4 32 bit components
6376 qualifier.layoutOffset = regNumber * 4 * 4;
6377 break;
6378 // const buffer register slot
6379 case 'b':
6380 // textrues and structured buffers
6381 case 't':
6382 // samplers
6383 case 's':
6384 // uav resources
6385 case 'u':
6386 // if nothing else has set the binding, do so now
6387 // (other mechanisms override this one)
6388 if (!qualifier.hasBinding())
6389 qualifier.layoutBinding = regNumber + subComponent;
6390
6391 // This handles per-register layout sets numbers. For the global mode which sets
6392 // every symbol to the same value, see setLinkageLayoutSets().
6393 if ((resourceInfo.size() % 3) == 0) {
6394 // Apply per-symbol resource set and binding.
6395 for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
6396 if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
6397 qualifier.layoutSet = atoi(it[1].c_str());
6398 qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
6399 break;
6400 }
6401 }
6402 }
6403 break;
6404 default:
6405 warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
6406 break;
6407 }
6408
6409 // space
6410 unsigned int setNumber;
6411 const auto crackSpace = [&]() -> bool {
6412 const int spaceLen = 5;
6413 if (spaceDesc->size() < spaceLen + 1)
6414 return false;
6415 if (spaceDesc->compare(0, spaceLen, "space") != 0)
6416 return false;
6417 if (! isdigit((*spaceDesc)[spaceLen]))
6418 return false;
6419 setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
6420 return true;
6421 };
6422
6423 // if nothing else has set the set, do so now
6424 // (other mechanisms override this one)
6425 if (spaceDesc && !qualifier.hasSet()) {
6426 if (! crackSpace()) {
6427 error(loc, "expected spaceN", "register", "");
6428 return;
6429 }
6430 qualifier.layoutSet = setNumber;
6431 }
6432 }
6433
6434 // Convert to a scalar boolean, or if not allowed by HLSL semantics,
6435 // report an error and return nullptr.
convertConditionalExpression(const TSourceLoc & loc,TIntermTyped * condition,bool mustBeScalar)6436 TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
6437 bool mustBeScalar)
6438 {
6439 if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
6440 error(loc, "requires a scalar", "conditional expression", "");
6441 return nullptr;
6442 }
6443
6444 return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
6445 condition);
6446 }
6447
6448 //
6449 // Same error message for all places assignments don't work.
6450 //
assignError(const TSourceLoc & loc,const char * op,TString left,TString right)6451 void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
6452 {
6453 error(loc, "", op, "cannot convert from '%s' to '%s'",
6454 right.c_str(), left.c_str());
6455 }
6456
6457 //
6458 // Same error message for all places unary operations don't work.
6459 //
unaryOpError(const TSourceLoc & loc,const char * op,TString operand)6460 void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
6461 {
6462 error(loc, " wrong operand type", op,
6463 "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
6464 op, operand.c_str());
6465 }
6466
6467 //
6468 // Same error message for all binary operations don't work.
6469 //
binaryOpError(const TSourceLoc & loc,const char * op,TString left,TString right)6470 void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
6471 {
6472 error(loc, " wrong operand types:", op,
6473 "no operation '%s' exists that takes a left-hand operand of type '%s' and "
6474 "a right operand of type '%s' (or there is no acceptable conversion)",
6475 op, left.c_str(), right.c_str());
6476 }
6477
6478 //
6479 // A basic type of EbtVoid is a key that the name string was seen in the source, but
6480 // it was not found as a variable in the symbol table. If so, give the error
6481 // message and insert a dummy variable in the symbol table to prevent future errors.
6482 //
variableCheck(TIntermTyped * & nodePtr)6483 void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
6484 {
6485 TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
6486 if (! symbol)
6487 return;
6488
6489 if (symbol->getType().getBasicType() == EbtVoid) {
6490 error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
6491
6492 // Add to symbol table to prevent future error messages on the same name
6493 if (symbol->getName().size() > 0) {
6494 TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
6495 symbolTable.insert(*fakeVariable);
6496
6497 // substitute a symbol node for this new variable
6498 nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
6499 }
6500 }
6501 }
6502
6503 //
6504 // Both test, and if necessary spit out an error, to see if the node is really
6505 // a constant.
6506 //
constantValueCheck(TIntermTyped * node,const char * token)6507 void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
6508 {
6509 if (node->getQualifier().storage != EvqConst)
6510 error(node->getLoc(), "constant expression required", token, "");
6511 }
6512
6513 //
6514 // Both test, and if necessary spit out an error, to see if the node is really
6515 // an integer.
6516 //
integerCheck(const TIntermTyped * node,const char * token)6517 void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
6518 {
6519 if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
6520 return;
6521
6522 error(node->getLoc(), "scalar integer expression required", token, "");
6523 }
6524
6525 //
6526 // Both test, and if necessary spit out an error, to see if we are currently
6527 // globally scoped.
6528 //
globalCheck(const TSourceLoc & loc,const char * token)6529 void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
6530 {
6531 if (! symbolTable.atGlobalLevel())
6532 error(loc, "not allowed in nested scope", token, "");
6533 }
6534
builtInName(const TString &)6535 bool HlslParseContext::builtInName(const TString& /*identifier*/)
6536 {
6537 return false;
6538 }
6539
6540 //
6541 // Make sure there is enough data and not too many arguments provided to the
6542 // constructor to build something of the type of the constructor. Also returns
6543 // the type of the constructor.
6544 //
6545 // Returns true if there was an error in construction.
6546 //
constructorError(const TSourceLoc & loc,TIntermNode * node,TFunction & function,TOperator op,TType & type)6547 bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
6548 TOperator op, TType& type)
6549 {
6550 type.shallowCopy(function.getType());
6551
6552 bool constructingMatrix = false;
6553 switch (op) {
6554 case EOpConstructTextureSampler:
6555 error(loc, "unhandled texture constructor", "constructor", "");
6556 return true;
6557 case EOpConstructMat2x2:
6558 case EOpConstructMat2x3:
6559 case EOpConstructMat2x4:
6560 case EOpConstructMat3x2:
6561 case EOpConstructMat3x3:
6562 case EOpConstructMat3x4:
6563 case EOpConstructMat4x2:
6564 case EOpConstructMat4x3:
6565 case EOpConstructMat4x4:
6566 case EOpConstructDMat2x2:
6567 case EOpConstructDMat2x3:
6568 case EOpConstructDMat2x4:
6569 case EOpConstructDMat3x2:
6570 case EOpConstructDMat3x3:
6571 case EOpConstructDMat3x4:
6572 case EOpConstructDMat4x2:
6573 case EOpConstructDMat4x3:
6574 case EOpConstructDMat4x4:
6575 case EOpConstructIMat2x2:
6576 case EOpConstructIMat2x3:
6577 case EOpConstructIMat2x4:
6578 case EOpConstructIMat3x2:
6579 case EOpConstructIMat3x3:
6580 case EOpConstructIMat3x4:
6581 case EOpConstructIMat4x2:
6582 case EOpConstructIMat4x3:
6583 case EOpConstructIMat4x4:
6584 case EOpConstructUMat2x2:
6585 case EOpConstructUMat2x3:
6586 case EOpConstructUMat2x4:
6587 case EOpConstructUMat3x2:
6588 case EOpConstructUMat3x3:
6589 case EOpConstructUMat3x4:
6590 case EOpConstructUMat4x2:
6591 case EOpConstructUMat4x3:
6592 case EOpConstructUMat4x4:
6593 case EOpConstructBMat2x2:
6594 case EOpConstructBMat2x3:
6595 case EOpConstructBMat2x4:
6596 case EOpConstructBMat3x2:
6597 case EOpConstructBMat3x3:
6598 case EOpConstructBMat3x4:
6599 case EOpConstructBMat4x2:
6600 case EOpConstructBMat4x3:
6601 case EOpConstructBMat4x4:
6602 constructingMatrix = true;
6603 break;
6604 default:
6605 break;
6606 }
6607
6608 //
6609 // Walk the arguments for first-pass checks and collection of information.
6610 //
6611
6612 int size = 0;
6613 bool constType = true;
6614 bool full = false;
6615 bool overFull = false;
6616 bool matrixInMatrix = false;
6617 bool arrayArg = false;
6618 for (int arg = 0; arg < function.getParamCount(); ++arg) {
6619 if (function[arg].type->isArray()) {
6620 if (function[arg].type->isUnsizedArray()) {
6621 // Can't construct from an unsized array.
6622 error(loc, "array argument must be sized", "constructor", "");
6623 return true;
6624 }
6625 arrayArg = true;
6626 }
6627 if (constructingMatrix && function[arg].type->isMatrix())
6628 matrixInMatrix = true;
6629
6630 // 'full' will go to true when enough args have been seen. If we loop
6631 // again, there is an extra argument.
6632 if (full) {
6633 // For vectors and matrices, it's okay to have too many components
6634 // available, but not okay to have unused arguments.
6635 overFull = true;
6636 }
6637
6638 size += function[arg].type->computeNumComponents();
6639 if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
6640 full = true;
6641
6642 if (function[arg].type->getQualifier().storage != EvqConst)
6643 constType = false;
6644 }
6645
6646 if (constType)
6647 type.getQualifier().storage = EvqConst;
6648
6649 if (type.isArray()) {
6650 if (function.getParamCount() == 0) {
6651 error(loc, "array constructor must have at least one argument", "constructor", "");
6652 return true;
6653 }
6654
6655 if (type.isUnsizedArray()) {
6656 // auto adapt the constructor type to the number of arguments
6657 type.changeOuterArraySize(function.getParamCount());
6658 } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
6659 error(loc, "array constructor needs one argument per array element", "constructor", "");
6660 return true;
6661 }
6662
6663 if (type.isArrayOfArrays()) {
6664 // Types have to match, but we're still making the type.
6665 // Finish making the type, and the comparison is done later
6666 // when checking for conversion.
6667 TArraySizes& arraySizes = *type.getArraySizes();
6668
6669 // At least the dimensionalities have to match.
6670 if (! function[0].type->isArray() ||
6671 arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
6672 error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
6673 return true;
6674 }
6675
6676 if (arraySizes.isInnerUnsized()) {
6677 // "Arrays of arrays ..., and the size for any dimension is optional"
6678 // That means we need to adopt (from the first argument) the other array sizes into the type.
6679 for (int d = 1; d < arraySizes.getNumDims(); ++d) {
6680 if (arraySizes.getDimSize(d) == UnsizedArraySize) {
6681 arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
6682 }
6683 }
6684 }
6685 }
6686 }
6687
6688 // Some array -> array type casts are okay
6689 if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
6690 !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
6691 type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
6692 return false;
6693
6694 if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
6695 error(loc, "constructing non-array constituent from array argument", "constructor", "");
6696 return true;
6697 }
6698
6699 if (matrixInMatrix && ! type.isArray()) {
6700 return false;
6701 }
6702
6703 if (overFull) {
6704 error(loc, "too many arguments", "constructor", "");
6705 return true;
6706 }
6707
6708 if (op == EOpConstructStruct && ! type.isArray()) {
6709 if (isScalarConstructor(node))
6710 return false;
6711
6712 // Self-type construction: e.g, we can construct a struct from a single identically typed object.
6713 if (function.getParamCount() == 1 && type == *function[0].type)
6714 return false;
6715
6716 if ((int)type.getStruct()->size() != function.getParamCount()) {
6717 error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
6718 return true;
6719 }
6720 }
6721
6722 if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
6723 (op == EOpConstructStruct && size < type.computeNumComponents())) {
6724 error(loc, "not enough data provided for construction", "constructor", "");
6725 return true;
6726 }
6727
6728 return false;
6729 }
6730
6731 // See if 'node', in the context of constructing aggregates, is a scalar argument
6732 // to a constructor.
6733 //
isScalarConstructor(const TIntermNode * node)6734 bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
6735 {
6736 // Obviously, it must be a scalar, but an aggregate node might not be fully
6737 // completed yet: holding a sequence of initializers under an aggregate
6738 // would not yet be typed, so don't check it's type. This corresponds to
6739 // the aggregate operator also not being set yet. (An aggregate operation
6740 // that legitimately yields a scalar will have a getOp() of that operator,
6741 // not EOpNull.)
6742
6743 return node->getAsTyped() != nullptr &&
6744 node->getAsTyped()->isScalar() &&
6745 (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
6746 }
6747
6748 // Checks to see if a void variable has been declared and raise an error message for such a case
6749 //
6750 // returns true in case of an error
6751 //
voidErrorCheck(const TSourceLoc & loc,const TString & identifier,const TBasicType basicType)6752 bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
6753 {
6754 if (basicType == EbtVoid) {
6755 error(loc, "illegal use of type 'void'", identifier.c_str(), "");
6756 return true;
6757 }
6758
6759 return false;
6760 }
6761
6762 //
6763 // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
6764 //
globalQualifierFix(const TSourceLoc &,TQualifier & qualifier)6765 void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
6766 {
6767 // move from parameter/unknown qualifiers to pipeline in/out qualifiers
6768 switch (qualifier.storage) {
6769 case EvqIn:
6770 qualifier.storage = EvqVaryingIn;
6771 break;
6772 case EvqOut:
6773 qualifier.storage = EvqVaryingOut;
6774 break;
6775 default:
6776 break;
6777 }
6778 }
6779
6780 //
6781 // Merge characteristics of the 'src' qualifier into the 'dst'.
6782 //
mergeQualifiers(TQualifier & dst,const TQualifier & src)6783 void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
6784 {
6785 // Storage qualification
6786 if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
6787 dst.storage = src.storage;
6788 else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
6789 (dst.storage == EvqOut && src.storage == EvqIn))
6790 dst.storage = EvqInOut;
6791 else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
6792 (dst.storage == EvqConst && src.storage == EvqIn))
6793 dst.storage = EvqConstReadOnly;
6794
6795 // Layout qualifiers
6796 mergeObjectLayoutQualifiers(dst, src, false);
6797
6798 // individual qualifiers
6799 #define MERGE_SINGLETON(field) dst.field |= src.field;
6800 MERGE_SINGLETON(invariant);
6801 MERGE_SINGLETON(noContraction);
6802 MERGE_SINGLETON(centroid);
6803 MERGE_SINGLETON(smooth);
6804 MERGE_SINGLETON(flat);
6805 MERGE_SINGLETON(nopersp);
6806 MERGE_SINGLETON(patch);
6807 MERGE_SINGLETON(sample);
6808 MERGE_SINGLETON(coherent);
6809 MERGE_SINGLETON(volatil);
6810 MERGE_SINGLETON(restrict);
6811 MERGE_SINGLETON(readonly);
6812 MERGE_SINGLETON(writeonly);
6813 MERGE_SINGLETON(specConstant);
6814 MERGE_SINGLETON(nonUniform);
6815 }
6816
6817 // used to flatten the sampler type space into a single dimension
6818 // correlates with the declaration of defaultSamplerPrecision[]
computeSamplerTypeIndex(TSampler & sampler)6819 int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
6820 {
6821 int arrayIndex = sampler.arrayed ? 1 : 0;
6822 int shadowIndex = sampler.shadow ? 1 : 0;
6823 int externalIndex = sampler.external ? 1 : 0;
6824
6825 return EsdNumDims *
6826 (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
6827 }
6828
6829 //
6830 // Do size checking for an array type's size.
6831 //
arraySizeCheck(const TSourceLoc & loc,TIntermTyped * expr,TArraySize & sizePair)6832 void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
6833 {
6834 bool isConst = false;
6835 sizePair.size = 1;
6836 sizePair.node = nullptr;
6837
6838 TIntermConstantUnion* constant = expr->getAsConstantUnion();
6839 if (constant) {
6840 // handle true (non-specialization) constant
6841 sizePair.size = constant->getConstArray()[0].getIConst();
6842 isConst = true;
6843 } else {
6844 // see if it's a specialization constant instead
6845 if (expr->getQualifier().isSpecConstant()) {
6846 isConst = true;
6847 sizePair.node = expr;
6848 TIntermSymbol* symbol = expr->getAsSymbolNode();
6849 if (symbol && symbol->getConstArray().size() > 0)
6850 sizePair.size = symbol->getConstArray()[0].getIConst();
6851 }
6852 }
6853
6854 if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
6855 error(loc, "array size must be a constant integer expression", "", "");
6856 return;
6857 }
6858
6859 if (sizePair.size <= 0) {
6860 error(loc, "array size must be a positive integer", "", "");
6861 return;
6862 }
6863 }
6864
6865 //
6866 // Require array to be completely sized
6867 //
arraySizeRequiredCheck(const TSourceLoc & loc,const TArraySizes & arraySizes)6868 void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
6869 {
6870 if (arraySizes.hasUnsized())
6871 error(loc, "array size required", "", "");
6872 }
6873
structArrayCheck(const TSourceLoc &,const TType & type)6874 void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
6875 {
6876 const TTypeList& structure = *type.getStruct();
6877 for (int m = 0; m < (int)structure.size(); ++m) {
6878 const TType& member = *structure[m].type;
6879 if (member.isArray())
6880 arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
6881 }
6882 }
6883
6884 //
6885 // Do all the semantic checking for declaring or redeclaring an array, with and
6886 // without a size, and make the right changes to the symbol table.
6887 //
declareArray(const TSourceLoc & loc,const TString & identifier,const TType & type,TSymbol * & symbol,bool track)6888 void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
6889 TSymbol*& symbol, bool track)
6890 {
6891 if (symbol == nullptr) {
6892 bool currentScope;
6893 symbol = symbolTable.find(identifier, nullptr, ¤tScope);
6894
6895 if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
6896 // bad shader (errors already reported) trying to redeclare a built-in name as an array
6897 return;
6898 }
6899 if (symbol == nullptr || ! currentScope) {
6900 //
6901 // Successfully process a new definition.
6902 // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
6903 //
6904 symbol = new TVariable(&identifier, type);
6905 symbolTable.insert(*symbol);
6906 if (track && symbolTable.atGlobalLevel())
6907 trackLinkage(*symbol);
6908
6909 return;
6910 }
6911 if (symbol->getAsAnonMember()) {
6912 error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
6913 symbol = nullptr;
6914 return;
6915 }
6916 }
6917
6918 //
6919 // Process a redeclaration.
6920 //
6921
6922 if (symbol == nullptr) {
6923 error(loc, "array variable name expected", identifier.c_str(), "");
6924 return;
6925 }
6926
6927 // redeclareBuiltinVariable() should have already done the copyUp()
6928 TType& existingType = symbol->getWritableType();
6929
6930 if (existingType.isSizedArray()) {
6931 // be more lenient for input arrays to geometry shaders and tessellation control outputs,
6932 // where the redeclaration is the same size
6933 return;
6934 }
6935
6936 existingType.updateArraySizes(type);
6937 }
6938
6939 //
6940 // Enforce non-initializer type/qualifier rules.
6941 //
fixConstInit(const TSourceLoc & loc,const TString & identifier,TType & type,TIntermTyped * & initializer)6942 void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
6943 TIntermTyped*& initializer)
6944 {
6945 //
6946 // Make the qualifier make sense, given that there is an initializer.
6947 //
6948 if (initializer == nullptr) {
6949 if (type.getQualifier().storage == EvqConst ||
6950 type.getQualifier().storage == EvqConstReadOnly) {
6951 initializer = intermediate.makeAggregate(loc);
6952 warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
6953 }
6954 }
6955 }
6956
6957 //
6958 // See if the identifier is a built-in symbol that can be redeclared, and if so,
6959 // copy the symbol table's read-only built-in variable to the current
6960 // global level, where it can be modified based on the passed in type.
6961 //
6962 // Returns nullptr if no redeclaration took place; meaning a normal declaration still
6963 // needs to occur for it, not necessarily an error.
6964 //
6965 // Returns a redeclared and type-modified variable if a redeclared occurred.
6966 //
redeclareBuiltinVariable(const TSourceLoc &,const TString & identifier,const TQualifier &,const TShaderQualifiers &)6967 TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
6968 const TQualifier& /*qualifier*/,
6969 const TShaderQualifiers& /*publicType*/)
6970 {
6971 if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
6972 return nullptr;
6973
6974 return nullptr;
6975 }
6976
6977 //
6978 // Generate index to the array element in a structure buffer (SSBO)
6979 //
indexStructBufferContent(const TSourceLoc & loc,TIntermTyped * buffer) const6980 TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
6981 {
6982 // Bail out if not a struct buffer
6983 if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
6984 return nullptr;
6985
6986 // Runtime sized array is always the last element.
6987 const TTypeList* bufferStruct = buffer->getType().getStruct();
6988 TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
6989
6990 TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
6991 argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
6992
6993 return argArray;
6994 }
6995
6996 //
6997 // IFF type is a structuredbuffer/byteaddressbuffer type, return the content
6998 // (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr.
6999 //
getStructBufferContentType(const TType & type) const7000 TType* HlslParseContext::getStructBufferContentType(const TType& type) const
7001 {
7002 if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
7003 return nullptr;
7004
7005 const int memberCount = (int)type.getStruct()->size();
7006 assert(memberCount > 0);
7007
7008 TType* contentType = (*type.getStruct())[memberCount-1].type;
7009
7010 return contentType->isUnsizedArray() ? contentType : nullptr;
7011 }
7012
7013 //
7014 // If an existing struct buffer has a sharable type, then share it.
7015 //
shareStructBufferType(TType & type)7016 void HlslParseContext::shareStructBufferType(TType& type)
7017 {
7018 // PackOffset must be equivalent to share types on a per-member basis.
7019 // Note: cannot use auto type due to recursion. Thus, this is a std::function.
7020 const std::function<bool(TType& lhs, TType& rhs)>
7021 compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
7022 if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
7023 return false;
7024
7025 if (lhs.isStruct() != rhs.isStruct())
7026 return false;
7027
7028 if (lhs.getQualifier().builtIn != rhs.getQualifier().builtIn)
7029 return false;
7030
7031 if (lhs.isStruct() && rhs.isStruct()) {
7032 if (lhs.getStruct()->size() != rhs.getStruct()->size())
7033 return false;
7034
7035 for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
7036 if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
7037 return false;
7038 }
7039
7040 return true;
7041 };
7042
7043 // We need to compare certain qualifiers in addition to the type.
7044 const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
7045 if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
7046 return false;
7047
7048 // If both are structures, recursively look for packOffset equality
7049 // as well as type equality.
7050 return compareQualifiers(lhs, rhs) && lhs == rhs;
7051 };
7052
7053 // This is an exhaustive O(N) search, but real world shaders have
7054 // only a small number of these.
7055 for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
7056 // If the deep structure matches, modulo qualifiers, use it
7057 if (typeEqual(*structBufferTypes[idx], type)) {
7058 type.shallowCopy(*structBufferTypes[idx]);
7059 return;
7060 }
7061 }
7062
7063 // Otherwise, remember it:
7064 TType* typeCopy = new TType;
7065 typeCopy->shallowCopy(type);
7066 structBufferTypes.push_back(typeCopy);
7067 }
7068
paramFix(TType & type)7069 void HlslParseContext::paramFix(TType& type)
7070 {
7071 switch (type.getQualifier().storage) {
7072 case EvqConst:
7073 type.getQualifier().storage = EvqConstReadOnly;
7074 break;
7075 case EvqGlobal:
7076 case EvqTemporary:
7077 type.getQualifier().storage = EvqIn;
7078 break;
7079 case EvqBuffer:
7080 {
7081 // SSBO parameter. These do not go through the declareBlock path since they are fn parameters.
7082 correctUniform(type.getQualifier());
7083 TQualifier bufferQualifier = globalBufferDefaults;
7084 mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
7085 bufferQualifier.storage = type.getQualifier().storage;
7086 bufferQualifier.readonly = type.getQualifier().readonly;
7087 bufferQualifier.coherent = type.getQualifier().coherent;
7088 bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
7089 type.getQualifier() = bufferQualifier;
7090 break;
7091 }
7092 default:
7093 break;
7094 }
7095 }
7096
specializationCheck(const TSourceLoc & loc,const TType & type,const char * op)7097 void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
7098 {
7099 if (type.containsSpecializationSize())
7100 error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
7101 }
7102
7103 //
7104 // Layout qualifier stuff.
7105 //
7106
7107 // Put the id's layout qualification into the public type, for qualifiers not having a number set.
7108 // This is before we know any type information for error checking.
setLayoutQualifier(const TSourceLoc & loc,TQualifier & qualifier,TString & id)7109 void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
7110 {
7111 std::transform(id.begin(), id.end(), id.begin(), ::tolower);
7112
7113 if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
7114 qualifier.layoutMatrix = ElmRowMajor;
7115 return;
7116 }
7117 if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
7118 qualifier.layoutMatrix = ElmColumnMajor;
7119 return;
7120 }
7121 if (id == "push_constant") {
7122 requireVulkan(loc, "push_constant");
7123 qualifier.layoutPushConstant = true;
7124 return;
7125 }
7126 if (language == EShLangGeometry || language == EShLangTessEvaluation) {
7127 if (id == TQualifier::getGeometryString(ElgTriangles)) {
7128 // publicType.shaderQualifiers.geometry = ElgTriangles;
7129 warn(loc, "ignored", id.c_str(), "");
7130 return;
7131 }
7132 if (language == EShLangGeometry) {
7133 if (id == TQualifier::getGeometryString(ElgPoints)) {
7134 // publicType.shaderQualifiers.geometry = ElgPoints;
7135 warn(loc, "ignored", id.c_str(), "");
7136 return;
7137 }
7138 if (id == TQualifier::getGeometryString(ElgLineStrip)) {
7139 // publicType.shaderQualifiers.geometry = ElgLineStrip;
7140 warn(loc, "ignored", id.c_str(), "");
7141 return;
7142 }
7143 if (id == TQualifier::getGeometryString(ElgLines)) {
7144 // publicType.shaderQualifiers.geometry = ElgLines;
7145 warn(loc, "ignored", id.c_str(), "");
7146 return;
7147 }
7148 if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
7149 // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
7150 warn(loc, "ignored", id.c_str(), "");
7151 return;
7152 }
7153 if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
7154 // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
7155 warn(loc, "ignored", id.c_str(), "");
7156 return;
7157 }
7158 if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
7159 // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
7160 warn(loc, "ignored", id.c_str(), "");
7161 return;
7162 }
7163 } else {
7164 assert(language == EShLangTessEvaluation);
7165
7166 // input primitive
7167 if (id == TQualifier::getGeometryString(ElgTriangles)) {
7168 // publicType.shaderQualifiers.geometry = ElgTriangles;
7169 warn(loc, "ignored", id.c_str(), "");
7170 return;
7171 }
7172 if (id == TQualifier::getGeometryString(ElgQuads)) {
7173 // publicType.shaderQualifiers.geometry = ElgQuads;
7174 warn(loc, "ignored", id.c_str(), "");
7175 return;
7176 }
7177 if (id == TQualifier::getGeometryString(ElgIsolines)) {
7178 // publicType.shaderQualifiers.geometry = ElgIsolines;
7179 warn(loc, "ignored", id.c_str(), "");
7180 return;
7181 }
7182
7183 // vertex spacing
7184 if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
7185 // publicType.shaderQualifiers.spacing = EvsEqual;
7186 warn(loc, "ignored", id.c_str(), "");
7187 return;
7188 }
7189 if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
7190 // publicType.shaderQualifiers.spacing = EvsFractionalEven;
7191 warn(loc, "ignored", id.c_str(), "");
7192 return;
7193 }
7194 if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
7195 // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
7196 warn(loc, "ignored", id.c_str(), "");
7197 return;
7198 }
7199
7200 // triangle order
7201 if (id == TQualifier::getVertexOrderString(EvoCw)) {
7202 // publicType.shaderQualifiers.order = EvoCw;
7203 warn(loc, "ignored", id.c_str(), "");
7204 return;
7205 }
7206 if (id == TQualifier::getVertexOrderString(EvoCcw)) {
7207 // publicType.shaderQualifiers.order = EvoCcw;
7208 warn(loc, "ignored", id.c_str(), "");
7209 return;
7210 }
7211
7212 // point mode
7213 if (id == "point_mode") {
7214 // publicType.shaderQualifiers.pointMode = true;
7215 warn(loc, "ignored", id.c_str(), "");
7216 return;
7217 }
7218 }
7219 }
7220 if (language == EShLangFragment) {
7221 if (id == "origin_upper_left") {
7222 // publicType.shaderQualifiers.originUpperLeft = true;
7223 warn(loc, "ignored", id.c_str(), "");
7224 return;
7225 }
7226 if (id == "pixel_center_integer") {
7227 // publicType.shaderQualifiers.pixelCenterInteger = true;
7228 warn(loc, "ignored", id.c_str(), "");
7229 return;
7230 }
7231 if (id == "early_fragment_tests") {
7232 // publicType.shaderQualifiers.earlyFragmentTests = true;
7233 warn(loc, "ignored", id.c_str(), "");
7234 return;
7235 }
7236 for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
7237 if (id == TQualifier::getLayoutDepthString(depth)) {
7238 // publicType.shaderQualifiers.layoutDepth = depth;
7239 warn(loc, "ignored", id.c_str(), "");
7240 return;
7241 }
7242 }
7243 if (id.compare(0, 13, "blend_support") == 0) {
7244 bool found = false;
7245 for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
7246 if (id == TQualifier::getBlendEquationString(be)) {
7247 requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
7248 intermediate.addBlendEquation(be);
7249 // publicType.shaderQualifiers.blendEquation = true;
7250 warn(loc, "ignored", id.c_str(), "");
7251 found = true;
7252 break;
7253 }
7254 }
7255 if (! found)
7256 error(loc, "unknown blend equation", "blend_support", "");
7257 return;
7258 }
7259 }
7260 error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
7261 }
7262
7263 // Put the id's layout qualifier value into the public type, for qualifiers having a number set.
7264 // This is before we know any type information for error checking.
setLayoutQualifier(const TSourceLoc & loc,TQualifier & qualifier,TString & id,const TIntermTyped * node)7265 void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
7266 const TIntermTyped* node)
7267 {
7268 const char* feature = "layout-id value";
7269 // const char* nonLiteralFeature = "non-literal layout-id value";
7270
7271 integerCheck(node, feature);
7272 const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
7273 int value = 0;
7274 if (constUnion) {
7275 value = constUnion->getConstArray()[0].getIConst();
7276 }
7277
7278 std::transform(id.begin(), id.end(), id.begin(), ::tolower);
7279
7280 if (id == "offset") {
7281 qualifier.layoutOffset = value;
7282 return;
7283 } else if (id == "align") {
7284 // "The specified alignment must be a power of 2, or a compile-time error results."
7285 if (! IsPow2(value))
7286 error(loc, "must be a power of 2", "align", "");
7287 else
7288 qualifier.layoutAlign = value;
7289 return;
7290 } else if (id == "location") {
7291 if ((unsigned int)value >= TQualifier::layoutLocationEnd)
7292 error(loc, "location is too large", id.c_str(), "");
7293 else
7294 qualifier.layoutLocation = value;
7295 return;
7296 } else if (id == "set") {
7297 if ((unsigned int)value >= TQualifier::layoutSetEnd)
7298 error(loc, "set is too large", id.c_str(), "");
7299 else
7300 qualifier.layoutSet = value;
7301 return;
7302 } else if (id == "binding") {
7303 if ((unsigned int)value >= TQualifier::layoutBindingEnd)
7304 error(loc, "binding is too large", id.c_str(), "");
7305 else
7306 qualifier.layoutBinding = value;
7307 return;
7308 } else if (id == "component") {
7309 if ((unsigned)value >= TQualifier::layoutComponentEnd)
7310 error(loc, "component is too large", id.c_str(), "");
7311 else
7312 qualifier.layoutComponent = value;
7313 return;
7314 } else if (id.compare(0, 4, "xfb_") == 0) {
7315 // "Any shader making any static use (after preprocessing) of any of these
7316 // *xfb_* qualifiers will cause the shader to be in a transform feedback
7317 // capturing mode and hence responsible for describing the transform feedback
7318 // setup."
7319 intermediate.setXfbMode();
7320 if (id == "xfb_buffer") {
7321 // "It is a compile-time error to specify an *xfb_buffer* that is greater than
7322 // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
7323 if (value >= resources.maxTransformFeedbackBuffers)
7324 error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
7325 resources.maxTransformFeedbackBuffers);
7326 if (value >= (int)TQualifier::layoutXfbBufferEnd)
7327 error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
7328 else
7329 qualifier.layoutXfbBuffer = value;
7330 return;
7331 } else if (id == "xfb_offset") {
7332 if (value >= (int)TQualifier::layoutXfbOffsetEnd)
7333 error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
7334 else
7335 qualifier.layoutXfbOffset = value;
7336 return;
7337 } else if (id == "xfb_stride") {
7338 // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
7339 // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
7340 if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
7341 error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
7342 resources.maxTransformFeedbackInterleavedComponents);
7343 else if (value >= (int)TQualifier::layoutXfbStrideEnd)
7344 error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
7345 if (value < (int)TQualifier::layoutXfbStrideEnd)
7346 qualifier.layoutXfbStride = value;
7347 return;
7348 }
7349 }
7350
7351 if (id == "input_attachment_index") {
7352 requireVulkan(loc, "input_attachment_index");
7353 if (value >= (int)TQualifier::layoutAttachmentEnd)
7354 error(loc, "attachment index is too large", id.c_str(), "");
7355 else
7356 qualifier.layoutAttachment = value;
7357 return;
7358 }
7359 if (id == "constant_id") {
7360 setSpecConstantId(loc, qualifier, value);
7361 return;
7362 }
7363
7364 switch (language) {
7365 case EShLangVertex:
7366 break;
7367
7368 case EShLangTessControl:
7369 if (id == "vertices") {
7370 if (value == 0)
7371 error(loc, "must be greater than 0", "vertices", "");
7372 else
7373 // publicType.shaderQualifiers.vertices = value;
7374 warn(loc, "ignored", id.c_str(), "");
7375 return;
7376 }
7377 break;
7378
7379 case EShLangTessEvaluation:
7380 break;
7381
7382 case EShLangGeometry:
7383 if (id == "invocations") {
7384 if (value == 0)
7385 error(loc, "must be at least 1", "invocations", "");
7386 else
7387 // publicType.shaderQualifiers.invocations = value;
7388 warn(loc, "ignored", id.c_str(), "");
7389 return;
7390 }
7391 if (id == "max_vertices") {
7392 // publicType.shaderQualifiers.vertices = value;
7393 warn(loc, "ignored", id.c_str(), "");
7394 if (value > resources.maxGeometryOutputVertices)
7395 error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
7396 return;
7397 }
7398 if (id == "stream") {
7399 qualifier.layoutStream = value;
7400 return;
7401 }
7402 break;
7403
7404 case EShLangFragment:
7405 if (id == "index") {
7406 qualifier.layoutIndex = value;
7407 return;
7408 }
7409 break;
7410
7411 case EShLangCompute:
7412 if (id.compare(0, 11, "local_size_") == 0) {
7413 if (id == "local_size_x") {
7414 // publicType.shaderQualifiers.localSize[0] = value;
7415 warn(loc, "ignored", id.c_str(), "");
7416 return;
7417 }
7418 if (id == "local_size_y") {
7419 // publicType.shaderQualifiers.localSize[1] = value;
7420 warn(loc, "ignored", id.c_str(), "");
7421 return;
7422 }
7423 if (id == "local_size_z") {
7424 // publicType.shaderQualifiers.localSize[2] = value;
7425 warn(loc, "ignored", id.c_str(), "");
7426 return;
7427 }
7428 if (spvVersion.spv != 0) {
7429 if (id == "local_size_x_id") {
7430 // publicType.shaderQualifiers.localSizeSpecId[0] = value;
7431 warn(loc, "ignored", id.c_str(), "");
7432 return;
7433 }
7434 if (id == "local_size_y_id") {
7435 // publicType.shaderQualifiers.localSizeSpecId[1] = value;
7436 warn(loc, "ignored", id.c_str(), "");
7437 return;
7438 }
7439 if (id == "local_size_z_id") {
7440 // publicType.shaderQualifiers.localSizeSpecId[2] = value;
7441 warn(loc, "ignored", id.c_str(), "");
7442 return;
7443 }
7444 }
7445 }
7446 break;
7447
7448 default:
7449 break;
7450 }
7451
7452 error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
7453 }
7454
setSpecConstantId(const TSourceLoc & loc,TQualifier & qualifier,int value)7455 void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
7456 {
7457 if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
7458 error(loc, "specialization-constant id is too large", "constant_id", "");
7459 } else {
7460 qualifier.layoutSpecConstantId = value;
7461 qualifier.specConstant = true;
7462 if (! intermediate.addUsedConstantId(value))
7463 error(loc, "specialization-constant id already used", "constant_id", "");
7464 }
7465 return;
7466 }
7467
7468 // Merge any layout qualifier information from src into dst, leaving everything else in dst alone
7469 //
7470 // "More than one layout qualifier may appear in a single declaration.
7471 // Additionally, the same layout-qualifier-name can occur multiple times
7472 // within a layout qualifier or across multiple layout qualifiers in the
7473 // same declaration. When the same layout-qualifier-name occurs
7474 // multiple times, in a single declaration, the last occurrence overrides
7475 // the former occurrence(s). Further, if such a layout-qualifier-name
7476 // will effect subsequent declarations or other observable behavior, it
7477 // is only the last occurrence that will have any effect, behaving as if
7478 // the earlier occurrence(s) within the declaration are not present.
7479 // This is also true for overriding layout-qualifier-names, where one
7480 // overrides the other (e.g., row_major vs. column_major); only the last
7481 // occurrence has any effect."
7482 //
mergeObjectLayoutQualifiers(TQualifier & dst,const TQualifier & src,bool inheritOnly)7483 void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
7484 {
7485 if (src.hasMatrix())
7486 dst.layoutMatrix = src.layoutMatrix;
7487 if (src.hasPacking())
7488 dst.layoutPacking = src.layoutPacking;
7489
7490 if (src.hasStream())
7491 dst.layoutStream = src.layoutStream;
7492
7493 if (src.hasFormat())
7494 dst.layoutFormat = src.layoutFormat;
7495
7496 if (src.hasXfbBuffer())
7497 dst.layoutXfbBuffer = src.layoutXfbBuffer;
7498
7499 if (src.hasAlign())
7500 dst.layoutAlign = src.layoutAlign;
7501
7502 if (! inheritOnly) {
7503 if (src.hasLocation())
7504 dst.layoutLocation = src.layoutLocation;
7505 if (src.hasComponent())
7506 dst.layoutComponent = src.layoutComponent;
7507 if (src.hasIndex())
7508 dst.layoutIndex = src.layoutIndex;
7509
7510 if (src.hasOffset())
7511 dst.layoutOffset = src.layoutOffset;
7512
7513 if (src.hasSet())
7514 dst.layoutSet = src.layoutSet;
7515 if (src.layoutBinding != TQualifier::layoutBindingEnd)
7516 dst.layoutBinding = src.layoutBinding;
7517
7518 if (src.hasXfbStride())
7519 dst.layoutXfbStride = src.layoutXfbStride;
7520 if (src.hasXfbOffset())
7521 dst.layoutXfbOffset = src.layoutXfbOffset;
7522 if (src.hasAttachment())
7523 dst.layoutAttachment = src.layoutAttachment;
7524 if (src.hasSpecConstantId())
7525 dst.layoutSpecConstantId = src.layoutSpecConstantId;
7526
7527 if (src.layoutPushConstant)
7528 dst.layoutPushConstant = true;
7529 }
7530 }
7531
7532
7533 //
7534 // Look up a function name in the symbol table, and make sure it is a function.
7535 //
7536 // First, look for an exact match. If there is none, use the generic selector
7537 // TParseContextBase::selectFunction() to find one, parameterized by the
7538 // convertible() and better() predicates defined below.
7539 //
7540 // Return the function symbol if found, otherwise nullptr.
7541 //
findFunction(const TSourceLoc & loc,TFunction & call,bool & builtIn,int & thisDepth,TIntermTyped * & args)7542 const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
7543 TIntermTyped*& args)
7544 {
7545 if (symbolTable.isFunctionNameVariable(call.getName())) {
7546 error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
7547 return nullptr;
7548 }
7549
7550 // first, look for an exact match
7551 bool dummyScope;
7552 TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
7553 if (symbol)
7554 return symbol->getAsFunction();
7555
7556 // no exact match, use the generic selector, parameterized by the GLSL rules
7557
7558 // create list of candidates to send
7559 TVector<const TFunction*> candidateList;
7560 symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
7561
7562 // These built-in ops can accept any type, so we bypass the argument selection
7563 if (candidateList.size() == 1 && builtIn &&
7564 (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
7565 candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
7566 candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
7567 candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
7568 candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
7569 candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
7570 return candidateList[0];
7571 }
7572
7573 bool allowOnlyUpConversions = true;
7574
7575 // can 'from' convert to 'to'?
7576 const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
7577 if (from == to)
7578 return true;
7579
7580 // no aggregate conversions
7581 if (from.isArray() || to.isArray() ||
7582 from.isStruct() || to.isStruct())
7583 return false;
7584
7585 switch (op) {
7586 case EOpInterlockedAdd:
7587 case EOpInterlockedAnd:
7588 case EOpInterlockedCompareExchange:
7589 case EOpInterlockedCompareStore:
7590 case EOpInterlockedExchange:
7591 case EOpInterlockedMax:
7592 case EOpInterlockedMin:
7593 case EOpInterlockedOr:
7594 case EOpInterlockedXor:
7595 // We do not promote the texture or image type for these ocodes. Normally that would not
7596 // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
7597 // stage it's merely e.g, a basic integer type.
7598 //
7599 // Instead, we want to promote other arguments, but stay within the same family. In other
7600 // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
7601 // but it is allowed to promote its other arguments.
7602 if (arg == 0)
7603 return false;
7604 break;
7605 case EOpMethodSample:
7606 case EOpMethodSampleBias:
7607 case EOpMethodSampleCmp:
7608 case EOpMethodSampleCmpLevelZero:
7609 case EOpMethodSampleGrad:
7610 case EOpMethodSampleLevel:
7611 case EOpMethodLoad:
7612 case EOpMethodGetDimensions:
7613 case EOpMethodGetSamplePosition:
7614 case EOpMethodGather:
7615 case EOpMethodCalculateLevelOfDetail:
7616 case EOpMethodCalculateLevelOfDetailUnclamped:
7617 case EOpMethodGatherRed:
7618 case EOpMethodGatherGreen:
7619 case EOpMethodGatherBlue:
7620 case EOpMethodGatherAlpha:
7621 case EOpMethodGatherCmp:
7622 case EOpMethodGatherCmpRed:
7623 case EOpMethodGatherCmpGreen:
7624 case EOpMethodGatherCmpBlue:
7625 case EOpMethodGatherCmpAlpha:
7626 case EOpMethodAppend:
7627 case EOpMethodRestartStrip:
7628 // those are method calls, the object type can not be changed
7629 // they are equal if the dim and type match (is dim sufficient?)
7630 if (arg == 0)
7631 return from.getSampler().type == to.getSampler().type &&
7632 from.getSampler().arrayed == to.getSampler().arrayed &&
7633 from.getSampler().shadow == to.getSampler().shadow &&
7634 from.getSampler().ms == to.getSampler().ms &&
7635 from.getSampler().dim == to.getSampler().dim;
7636 break;
7637 default:
7638 break;
7639 }
7640
7641 // basic types have to be convertible
7642 if (allowOnlyUpConversions)
7643 if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
7644 return false;
7645
7646 // shapes have to be convertible
7647 if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
7648 (from.isScalarOrVec1() && to.isVector()) ||
7649 (from.isScalarOrVec1() && to.isMatrix()) ||
7650 (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
7651 return true;
7652
7653 // TODO: what are the matrix rules? they go here
7654
7655 return false;
7656 };
7657
7658 // Is 'to2' a better conversion than 'to1'?
7659 // Ties should not be considered as better.
7660 // Assumes 'convertible' already said true.
7661 const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
7662 // exact match is always better than mismatch
7663 if (from == to2)
7664 return from != to1;
7665 if (from == to1)
7666 return false;
7667
7668 // shape changes are always worse
7669 if (from.isScalar() || from.isVector()) {
7670 if (from.getVectorSize() == to2.getVectorSize() &&
7671 from.getVectorSize() != to1.getVectorSize())
7672 return true;
7673 if (from.getVectorSize() == to1.getVectorSize() &&
7674 from.getVectorSize() != to2.getVectorSize())
7675 return false;
7676 }
7677
7678 // Handle sampler betterness: An exact sampler match beats a non-exact match.
7679 // (If we just looked at basic type, all EbtSamplers would look the same).
7680 // If any type is not a sampler, just use the linearize function below.
7681 if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
7682 // We can ignore the vector size in the comparison.
7683 TSampler to1Sampler = to1.getSampler();
7684 TSampler to2Sampler = to2.getSampler();
7685
7686 to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
7687
7688 if (from.getSampler() == to2Sampler)
7689 return from.getSampler() != to1Sampler;
7690 if (from.getSampler() == to1Sampler)
7691 return false;
7692 }
7693
7694 // Might or might not be changing shape, which means basic type might
7695 // or might not match, so within that, the question is how big a
7696 // basic-type conversion is being done.
7697 //
7698 // Use a hierarchy of domains, translated to order of magnitude
7699 // in a linearized view:
7700 // - floating-point vs. integer
7701 // - 32 vs. 64 bit (or width in general)
7702 // - bool vs. non bool
7703 // - signed vs. not signed
7704 const auto linearize = [](const TBasicType& basicType) -> int {
7705 switch (basicType) {
7706 case EbtBool: return 1;
7707 case EbtInt: return 10;
7708 case EbtUint: return 11;
7709 case EbtInt64: return 20;
7710 case EbtUint64: return 21;
7711 case EbtFloat: return 100;
7712 case EbtDouble: return 110;
7713 default: return 0;
7714 }
7715 };
7716
7717 return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
7718 abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
7719 };
7720
7721 // for ambiguity reporting
7722 bool tie = false;
7723
7724 // send to the generic selector
7725 const TFunction* bestMatch = nullptr;
7726
7727 // printf has var args and is in the symbol table as "printf()",
7728 // mangled to "printf("
7729 if (call.getName() == "printf") {
7730 TSymbol* symbol = symbolTable.find("printf(", &builtIn);
7731 if (symbol)
7732 return symbol->getAsFunction();
7733 }
7734
7735 bestMatch = selectFunction(candidateList, call, convertible, better, tie);
7736
7737 if (bestMatch == nullptr) {
7738 // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
7739 // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
7740 // upconversions possible.
7741 allowOnlyUpConversions = false;
7742 bestMatch = selectFunction(candidateList, call, convertible, better, tie);
7743 }
7744
7745 if (bestMatch == nullptr) {
7746 error(loc, "no matching overloaded function found", call.getName().c_str(), "");
7747 return nullptr;
7748 }
7749
7750 // For built-ins, we can convert across the arguments. This will happen in several steps:
7751 // Step 1: If there's an exact match, use it.
7752 // Step 2a: Otherwise, get the operator from the best match and promote arguments:
7753 // Step 2b: reconstruct the TFunction based on the new arg types
7754 // Step 3: Re-select after type promotion is applied, to find proper candidate.
7755 if (builtIn) {
7756 // Step 1: If there's an exact match, use it.
7757 if (call.getMangledName() == bestMatch->getMangledName())
7758 return bestMatch;
7759
7760 // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
7761 // are that kind of operator.
7762 if (args != nullptr) {
7763 // The arg list can be a unary node, or an aggregate. We have to handle both.
7764 // We will use the normal promote() facilities, which require an interm node.
7765 TIntermOperator* promote = nullptr;
7766
7767 if (call.getParamCount() == 1) {
7768 promote = new TIntermUnary(bestMatch->getBuiltInOp());
7769 promote->getAsUnaryNode()->setOperand(args->getAsTyped());
7770 } else {
7771 promote = new TIntermAggregate(bestMatch->getBuiltInOp());
7772 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
7773 }
7774
7775 if (! intermediate.promote(promote))
7776 return nullptr;
7777
7778 // Obtain the promoted arg list.
7779 if (call.getParamCount() == 1) {
7780 args = promote->getAsUnaryNode()->getOperand();
7781 } else {
7782 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
7783 }
7784 }
7785
7786 // Step 2b: reconstruct the TFunction based on the new arg types
7787 TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
7788
7789 if (args->getAsAggregate()) {
7790 // Handle aggregates: put all args into the new function call
7791 for (int arg = 0; arg < int(args->getAsAggregate()->getSequence().size()); ++arg) {
7792 // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
7793 TParameter param = { nullptr, new TType, nullptr };
7794 param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
7795 convertedCall.addParameter(param);
7796 }
7797 } else if (args->getAsUnaryNode()) {
7798 // Handle unaries: put all args into the new function call
7799 TParameter param = { nullptr, new TType, nullptr };
7800 param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
7801 convertedCall.addParameter(param);
7802 } else if (args->getAsTyped()) {
7803 // Handle bare e.g, floats, not in an aggregate.
7804 TParameter param = { nullptr, new TType, nullptr };
7805 param.type->shallowCopy(args->getAsTyped()->getType());
7806 convertedCall.addParameter(param);
7807 } else {
7808 assert(0); // unknown argument list.
7809 return nullptr;
7810 }
7811
7812 // Step 3: Re-select after type promotion, to find proper candidate
7813 // send to the generic selector
7814 bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
7815
7816 // At this point, there should be no tie.
7817 }
7818
7819 if (tie)
7820 error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
7821
7822 // Append default parameter values if needed
7823 if (!tie && bestMatch != nullptr) {
7824 for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
7825 handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
7826 }
7827 }
7828
7829 return bestMatch;
7830 }
7831
7832 //
7833 // Do everything necessary to handle a typedef declaration, for a single symbol.
7834 //
7835 // 'parseType' is the type part of the declaration (to the left)
7836 // 'arraySizes' is the arrayness tagged on the identifier (to the right)
7837 //
declareTypedef(const TSourceLoc & loc,const TString & identifier,const TType & parseType)7838 void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
7839 {
7840 TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
7841 if (! symbolTable.insert(*typeSymbol))
7842 error(loc, "name already defined", "typedef", identifier.c_str());
7843 }
7844
7845 // Do everything necessary to handle a struct declaration, including
7846 // making IO aliases because HLSL allows mixed IO in a struct that specializes
7847 // based on the usage (input, output, uniform, none).
declareStruct(const TSourceLoc & loc,TString & structName,TType & type)7848 void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
7849 {
7850 // If it was named, which means the type can be reused later, add
7851 // it to the symbol table. (Unless it's a block, in which
7852 // case the name is not a type.)
7853 if (type.getBasicType() == EbtBlock || structName.size() == 0)
7854 return;
7855
7856 TVariable* userTypeDef = new TVariable(&structName, type, true);
7857 if (! symbolTable.insert(*userTypeDef)) {
7858 error(loc, "redefinition", structName.c_str(), "struct");
7859 return;
7860 }
7861
7862 // See if we need IO aliases for the structure typeList
7863
7864 const auto condAlloc = [](bool pred, TTypeList*& list) {
7865 if (pred && list == nullptr)
7866 list = new TTypeList;
7867 };
7868
7869 tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
7870 for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
7871 condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
7872 condAlloc( hasInput(member->type->getQualifier()), newLists.input);
7873 condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
7874
7875 if (member->type->isStruct()) {
7876 auto it = ioTypeMap.find(member->type->getStruct());
7877 if (it != ioTypeMap.end()) {
7878 condAlloc(it->second.uniform != nullptr, newLists.uniform);
7879 condAlloc(it->second.input != nullptr, newLists.input);
7880 condAlloc(it->second.output != nullptr, newLists.output);
7881 }
7882 }
7883 }
7884 if (newLists.uniform == nullptr &&
7885 newLists.input == nullptr &&
7886 newLists.output == nullptr) {
7887 // Won't do any IO caching, clear up the type and get out now.
7888 for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
7889 clearUniformInputOutput(member->type->getQualifier());
7890 return;
7891 }
7892
7893 // We have IO involved.
7894
7895 // Make a pure typeList for the symbol table, and cache side copies of IO versions.
7896 for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
7897 const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
7898 if (s != nullptr) {
7899 ioMember.type = new TType;
7900 ioMember.type->shallowCopy(*member->type);
7901 ioMember.type->setStruct(s);
7902 }
7903 };
7904 const auto newMember = [&](TTypeLoc& m) {
7905 if (m.type == nullptr) {
7906 m.type = new TType;
7907 m.type->shallowCopy(*member->type);
7908 }
7909 };
7910
7911 TTypeLoc newUniformMember = { nullptr, member->loc };
7912 TTypeLoc newInputMember = { nullptr, member->loc };
7913 TTypeLoc newOutputMember = { nullptr, member->loc };
7914 if (member->type->isStruct()) {
7915 // swap in an IO child if there is one
7916 auto it = ioTypeMap.find(member->type->getStruct());
7917 if (it != ioTypeMap.end()) {
7918 inheritStruct(it->second.uniform, newUniformMember);
7919 inheritStruct(it->second.input, newInputMember);
7920 inheritStruct(it->second.output, newOutputMember);
7921 }
7922 }
7923 if (newLists.uniform) {
7924 newMember(newUniformMember);
7925
7926 // inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
7927 if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
7928 newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
7929
7930 correctUniform(newUniformMember.type->getQualifier());
7931 newLists.uniform->push_back(newUniformMember);
7932 }
7933 if (newLists.input) {
7934 newMember(newInputMember);
7935 correctInput(newInputMember.type->getQualifier());
7936 newLists.input->push_back(newInputMember);
7937 }
7938 if (newLists.output) {
7939 newMember(newOutputMember);
7940 correctOutput(newOutputMember.type->getQualifier());
7941 newLists.output->push_back(newOutputMember);
7942 }
7943
7944 // make original pure
7945 clearUniformInputOutput(member->type->getQualifier());
7946 }
7947 ioTypeMap[type.getStruct()] = newLists;
7948 }
7949
7950 // Lookup a user-type by name.
7951 // If found, fill in the type and return the defining symbol.
7952 // If not found, return nullptr.
lookupUserType(const TString & typeName,TType & type)7953 TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
7954 {
7955 TSymbol* symbol = symbolTable.find(typeName);
7956 if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
7957 type.shallowCopy(symbol->getType());
7958 return symbol;
7959 } else
7960 return nullptr;
7961 }
7962
7963 //
7964 // Do everything necessary to handle a variable (non-block) declaration.
7965 // Either redeclaring a variable, or making a new one, updating the symbol
7966 // table, and all error checking.
7967 //
7968 // Returns a subtree node that computes an initializer, if needed.
7969 // Returns nullptr if there is no code to execute for initialization.
7970 //
7971 // 'parseType' is the type part of the declaration (to the left)
7972 // 'arraySizes' is the arrayness tagged on the identifier (to the right)
7973 //
declareVariable(const TSourceLoc & loc,const TString & identifier,TType & type,TIntermTyped * initializer)7974 TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
7975 TIntermTyped* initializer)
7976 {
7977 if (voidErrorCheck(loc, identifier, type.getBasicType()))
7978 return nullptr;
7979
7980 // Global consts with initializers that are non-const act like EvqGlobal in HLSL.
7981 // This test is implicitly recursive, because initializers propagate constness
7982 // up the aggregate node tree during creation. E.g, for:
7983 // { { 1, 2 }, { 3, 4 } }
7984 // the initializer list is marked EvqConst at the top node, and remains so here. However:
7985 // { 1, { myvar, 2 }, 3 }
7986 // is not a const intializer, and still becomes EvqGlobal here.
7987
7988 const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
7989
7990 if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
7991 // Force to global
7992 type.getQualifier().storage = EvqGlobal;
7993 }
7994
7995 // make const and initialization consistent
7996 fixConstInit(loc, identifier, type, initializer);
7997
7998 // Check for redeclaration of built-ins and/or attempting to declare a reserved name
7999 TSymbol* symbol = nullptr;
8000
8001 inheritGlobalDefaults(type.getQualifier());
8002
8003 const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
8004
8005 // correct IO in the type
8006 switch (type.getQualifier().storage) {
8007 case EvqGlobal:
8008 case EvqTemporary:
8009 clearUniformInputOutput(type.getQualifier());
8010 break;
8011 case EvqUniform:
8012 case EvqBuffer:
8013 correctUniform(type.getQualifier());
8014 if (type.isStruct()) {
8015 auto it = ioTypeMap.find(type.getStruct());
8016 if (it != ioTypeMap.end())
8017 type.setStruct(it->second.uniform);
8018 }
8019
8020 break;
8021 default:
8022 break;
8023 }
8024
8025 // Declare the variable
8026 if (type.isArray()) {
8027 // array case
8028 declareArray(loc, identifier, type, symbol, !flattenVar);
8029 } else {
8030 // non-array case
8031 if (symbol == nullptr)
8032 symbol = declareNonArray(loc, identifier, type, !flattenVar);
8033 else if (type != symbol->getType())
8034 error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
8035 }
8036
8037 if (symbol == nullptr)
8038 return nullptr;
8039
8040 if (flattenVar)
8041 flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
8042
8043 TVariable* variable = symbol->getAsVariable();
8044
8045 if (initializer == nullptr) {
8046 if (intermediate.getDebugInfo())
8047 return executeDeclaration(loc, variable);
8048 else
8049 return nullptr;
8050 }
8051
8052 // Deal with initializer
8053 if (variable == nullptr) {
8054 error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
8055 return nullptr;
8056 }
8057 return executeInitializer(loc, initializer, variable);
8058 }
8059
8060 // Pick up global defaults from the provide global defaults into dst.
inheritGlobalDefaults(TQualifier & dst) const8061 void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
8062 {
8063 if (dst.storage == EvqVaryingOut) {
8064 if (! dst.hasStream() && language == EShLangGeometry)
8065 dst.layoutStream = globalOutputDefaults.layoutStream;
8066 if (! dst.hasXfbBuffer())
8067 dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
8068 }
8069 }
8070
8071 //
8072 // Make an internal-only variable whose name is for debug purposes only
8073 // and won't be searched for. Callers will only use the return value to use
8074 // the variable, not the name to look it up. It is okay if the name
8075 // is the same as other names; there won't be any conflict.
8076 //
makeInternalVariable(const char * name,const TType & type) const8077 TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
8078 {
8079 TString* nameString = NewPoolTString(name);
8080 TVariable* variable = new TVariable(nameString, type);
8081 symbolTable.makeInternalVariable(*variable);
8082
8083 return variable;
8084 }
8085
8086 // Make a symbol node holding a new internal temporary variable.
makeInternalVariableNode(const TSourceLoc & loc,const char * name,const TType & type) const8087 TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
8088 const TType& type) const
8089 {
8090 TVariable* tmpVar = makeInternalVariable(name, type);
8091 tmpVar->getWritableType().getQualifier().makeTemporary();
8092
8093 return intermediate.addSymbol(*tmpVar, loc);
8094 }
8095
8096 //
8097 // Declare a non-array variable, the main point being there is no redeclaration
8098 // for resizing allowed.
8099 //
8100 // Return the successfully declared variable.
8101 //
declareNonArray(const TSourceLoc & loc,const TString & identifier,const TType & type,bool track)8102 TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
8103 bool track)
8104 {
8105 // make a new variable
8106 TVariable* variable = new TVariable(&identifier, type);
8107
8108 // add variable to symbol table
8109 if (symbolTable.insert(*variable)) {
8110 if (track && symbolTable.atGlobalLevel())
8111 trackLinkage(*variable);
8112 return variable;
8113 }
8114
8115 error(loc, "redefinition", variable->getName().c_str(), "");
8116 return nullptr;
8117 }
8118
8119 // Return a declaration of a temporary variable
8120 //
8121 // This is used to force a variable to be declared in the correct scope
8122 // when debug information is being generated.
8123
executeDeclaration(const TSourceLoc & loc,TVariable * variable)8124 TIntermNode* HlslParseContext::executeDeclaration(const TSourceLoc& loc, TVariable* variable)
8125 {
8126 //
8127 // Identifier must be of type temporary.
8128 //
8129 TStorageQualifier qualifier = variable->getType().getQualifier().storage;
8130 if (qualifier != EvqTemporary)
8131 return nullptr;
8132
8133 TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
8134 return handleDeclare(loc, intermSymbol);
8135 }
8136
8137 //
8138 // Handle all types of initializers from the grammar.
8139 //
8140 // Returning nullptr just means there is no code to execute to handle the
8141 // initializer, which will, for example, be the case for constant initializers.
8142 //
8143 // Returns a subtree that accomplished the initialization.
8144 //
executeInitializer(const TSourceLoc & loc,TIntermTyped * initializer,TVariable * variable)8145 TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
8146 {
8147 //
8148 // Identifier must be of type constant, a global, or a temporary, and
8149 // starting at version 120, desktop allows uniforms to have initializers.
8150 //
8151 TStorageQualifier qualifier = variable->getType().getQualifier().storage;
8152
8153 //
8154 // If the initializer was from braces { ... }, we convert the whole subtree to a
8155 // constructor-style subtree, allowing the rest of the code to operate
8156 // identically for both kinds of initializers.
8157 //
8158 //
8159 // Type can't be deduced from the initializer list, so a skeletal type to
8160 // follow has to be passed in. Constness and specialization-constness
8161 // should be deduced bottom up, not dictated by the skeletal type.
8162 //
8163 TType skeletalType;
8164 skeletalType.shallowCopy(variable->getType());
8165 skeletalType.getQualifier().makeTemporary();
8166 if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
8167 initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
8168 if (initializer == nullptr) {
8169 // error recovery; don't leave const without constant values
8170 if (qualifier == EvqConst)
8171 variable->getWritableType().getQualifier().storage = EvqTemporary;
8172 return nullptr;
8173 }
8174
8175 // Fix outer arrayness if variable is unsized, getting size from the initializer
8176 if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
8177 variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
8178
8179 // Inner arrayness can also get set by an initializer
8180 if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
8181 initializer->getType().getArraySizes()->getNumDims() ==
8182 variable->getType().getArraySizes()->getNumDims()) {
8183 // adopt unsized sizes from the initializer's sizes
8184 for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
8185 if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
8186 variable->getWritableType().getArraySizes()->setDimSize(d,
8187 initializer->getType().getArraySizes()->getDimSize(d));
8188 }
8189 }
8190 }
8191
8192 // Uniform and global consts require a constant initializer
8193 if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
8194 error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
8195 variable->getWritableType().getQualifier().storage = EvqTemporary;
8196 return nullptr;
8197 }
8198
8199 // Const variables require a constant initializer
8200 if (qualifier == EvqConst) {
8201 if (initializer->getType().getQualifier().storage != EvqConst) {
8202 variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
8203 qualifier = EvqConstReadOnly;
8204 }
8205 }
8206
8207 if (qualifier == EvqConst || qualifier == EvqUniform) {
8208 // Compile-time tagging of the variable with its constant value...
8209
8210 initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
8211 if (initializer != nullptr && variable->getType() != initializer->getType())
8212 initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
8213 if (initializer == nullptr || !initializer->getAsConstantUnion() ||
8214 variable->getType() != initializer->getType()) {
8215 error(loc, "non-matching or non-convertible constant type for const initializer",
8216 variable->getType().getStorageQualifierString(), "");
8217 variable->getWritableType().getQualifier().storage = EvqTemporary;
8218 return nullptr;
8219 }
8220
8221 variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
8222 } else {
8223 // normal assigning of a value to a variable...
8224 specializationCheck(loc, initializer->getType(), "initializer");
8225 TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
8226 TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
8227 if (initNode == nullptr)
8228 assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
8229 return initNode;
8230 }
8231
8232 return nullptr;
8233 }
8234
8235 //
8236 // Reprocess any initializer-list { ... } parts of the initializer.
8237 // Need to hierarchically assign correct types and implicit
8238 // conversions. Will do this mimicking the same process used for
8239 // creating a constructor-style initializer, ensuring we get the
8240 // same form.
8241 //
8242 // Returns a node representing an expression for the initializer list expressed
8243 // as the correct type.
8244 //
8245 // Returns nullptr if there is an error.
8246 //
convertInitializerList(const TSourceLoc & loc,const TType & type,TIntermTyped * initializer,TIntermTyped * scalarInit)8247 TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
8248 TIntermTyped* initializer, TIntermTyped* scalarInit)
8249 {
8250 // Will operate recursively. Once a subtree is found that is constructor style,
8251 // everything below it is already good: Only the "top part" of the initializer
8252 // can be an initializer list, where "top part" can extend for several (or all) levels.
8253
8254 // see if we have bottomed out in the tree within the initializer-list part
8255 TIntermAggregate* initList = initializer->getAsAggregate();
8256 if (initList == nullptr || initList->getOp() != EOpNull) {
8257 // We don't have a list, but if it's a scalar and the 'type' is a
8258 // composite, we need to lengthen below to make it useful.
8259 // Otherwise, this is an already formed object to initialize with.
8260 if (type.isScalar() || !initializer->getType().isScalar())
8261 return initializer;
8262 else
8263 initList = intermediate.makeAggregate(initializer);
8264 }
8265
8266 // Of the initializer-list set of nodes, need to process bottom up,
8267 // so recurse deep, then process on the way up.
8268
8269 // Go down the tree here...
8270 if (type.isArray()) {
8271 // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
8272 // Later on, initializer execution code will deal with array size logic.
8273 TType arrayType;
8274 arrayType.shallowCopy(type); // sharing struct stuff is fine
8275 arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
8276
8277 // edit array sizes to fill in unsized dimensions
8278 if (type.isUnsizedArray())
8279 arrayType.changeOuterArraySize((int)initList->getSequence().size());
8280
8281 // set unsized array dimensions that can be derived from the initializer's first element
8282 if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
8283 TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
8284 if (firstInit->getType().isArray() &&
8285 arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
8286 for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
8287 if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
8288 arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
8289 }
8290 }
8291 }
8292
8293 // lengthen list to be long enough
8294 lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
8295
8296 // recursively process each element
8297 TType elementType(arrayType, 0); // dereferenced type
8298 for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
8299 initList->getSequence()[i] = convertInitializerList(loc, elementType,
8300 initList->getSequence()[i]->getAsTyped(), scalarInit);
8301 if (initList->getSequence()[i] == nullptr)
8302 return nullptr;
8303 }
8304
8305 return addConstructor(loc, initList, arrayType);
8306 } else if (type.isStruct()) {
8307 // do we have implicit assignments to opaques?
8308 for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
8309 if ((*type.getStruct())[i].type->containsOpaque()) {
8310 error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
8311 return nullptr;
8312 }
8313 }
8314
8315 // lengthen list to be long enough
8316 lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
8317
8318 if (type.getStruct()->size() != initList->getSequence().size()) {
8319 error(loc, "wrong number of structure members", "initializer list", "");
8320 return nullptr;
8321 }
8322 for (size_t i = 0; i < type.getStruct()->size(); ++i) {
8323 initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
8324 initList->getSequence()[i]->getAsTyped(), scalarInit);
8325 if (initList->getSequence()[i] == nullptr)
8326 return nullptr;
8327 }
8328 } else if (type.isMatrix()) {
8329 if (type.computeNumComponents() == (int)initList->getSequence().size()) {
8330 // This means the matrix is initialized component-wise, rather than as
8331 // a series of rows and columns. We can just use the list directly as
8332 // a constructor; no further processing needed.
8333 } else {
8334 // lengthen list to be long enough
8335 lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
8336
8337 if (type.getMatrixCols() != (int)initList->getSequence().size()) {
8338 error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
8339 return nullptr;
8340 }
8341 TType vectorType(type, 0); // dereferenced type
8342 for (int i = 0; i < type.getMatrixCols(); ++i) {
8343 initList->getSequence()[i] = convertInitializerList(loc, vectorType,
8344 initList->getSequence()[i]->getAsTyped(), scalarInit);
8345 if (initList->getSequence()[i] == nullptr)
8346 return nullptr;
8347 }
8348 }
8349 } else if (type.isVector()) {
8350 // lengthen list to be long enough
8351 lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
8352
8353 // error check; we're at bottom, so work is finished below
8354 if (type.getVectorSize() != (int)initList->getSequence().size()) {
8355 error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
8356 type.getCompleteString().c_str());
8357 return nullptr;
8358 }
8359 } else if (type.isScalar()) {
8360 // lengthen list to be long enough
8361 lengthenList(loc, initList->getSequence(), 1, scalarInit);
8362
8363 if ((int)initList->getSequence().size() != 1) {
8364 error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
8365 return nullptr;
8366 }
8367 } else {
8368 error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
8369 return nullptr;
8370 }
8371
8372 // Now that the subtree is processed, process this node as if the
8373 // initializer list is a set of arguments to a constructor.
8374 TIntermTyped* emulatedConstructorArguments;
8375 if (initList->getSequence().size() == 1)
8376 emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
8377 else
8378 emulatedConstructorArguments = initList;
8379
8380 return addConstructor(loc, emulatedConstructorArguments, type);
8381 }
8382
8383 // Lengthen list to be long enough to cover any gap from the current list size
8384 // to 'size'. If the list is longer, do nothing.
8385 // The value to lengthen with is the default for short lists.
8386 //
8387 // By default, lists that are too short due to lack of initializers initialize to zero.
8388 // Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
8389 // based on whether something is passed in as 'scalarInit'.
8390 //
8391 // 'scalarInit' must be safe to use each time this is called (no side effects replication).
8392 //
lengthenList(const TSourceLoc & loc,TIntermSequence & list,int size,TIntermTyped * scalarInit)8393 void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
8394 {
8395 for (int c = (int)list.size(); c < size; ++c) {
8396 if (scalarInit == nullptr)
8397 list.push_back(intermediate.addConstantUnion(0, loc));
8398 else
8399 list.push_back(scalarInit);
8400 }
8401 }
8402
8403 //
8404 // Test for the correctness of the parameters passed to various constructor functions
8405 // and also convert them to the right data type, if allowed and required.
8406 //
8407 // Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
8408 //
handleConstructor(const TSourceLoc & loc,TIntermTyped * node,const TType & type)8409 TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
8410 {
8411 if (node == nullptr)
8412 return nullptr;
8413
8414 // Construct identical type
8415 if (type == node->getType())
8416 return node;
8417
8418 // Handle the idiom "(struct type)<scalar value>"
8419 if (type.isStruct() && isScalarConstructor(node)) {
8420 // 'node' will almost always get used multiple times, so should not be used directly,
8421 // it would create a DAG instead of a tree, which might be okay (would
8422 // like to formalize that for constants and symbols), but if it has
8423 // side effects, they would get executed multiple times, which is not okay.
8424 if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
8425 TIntermAggregate* seq = intermediate.makeAggregate(loc);
8426 TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
8427 seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
8428 seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
8429 seq->setOp(EOpComma);
8430 seq->setType(type);
8431 return seq;
8432 } else
8433 return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
8434 }
8435
8436 return addConstructor(loc, node, type);
8437 }
8438
8439 // Add a constructor, either from the grammar, or other programmatic reasons.
8440 //
8441 // 'node' is what to construct from.
8442 // 'type' is what type to construct.
8443 //
8444 // Returns the constructed object.
8445 // Return nullptr if it can't be done.
8446 //
addConstructor(const TSourceLoc & loc,TIntermTyped * node,const TType & type)8447 TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
8448 {
8449 TIntermAggregate* aggrNode = node->getAsAggregate();
8450 TOperator op = intermediate.mapTypeToConstructorOp(type);
8451
8452 if (op == EOpConstructTextureSampler)
8453 return intermediate.setAggregateOperator(aggrNode, op, type, loc);
8454
8455 TTypeList::const_iterator memberTypes;
8456 if (op == EOpConstructStruct)
8457 memberTypes = type.getStruct()->begin();
8458
8459 TType elementType;
8460 if (type.isArray()) {
8461 TType dereferenced(type, 0);
8462 elementType.shallowCopy(dereferenced);
8463 } else
8464 elementType.shallowCopy(type);
8465
8466 bool singleArg;
8467 if (aggrNode != nullptr) {
8468 if (aggrNode->getOp() != EOpNull)
8469 singleArg = true;
8470 else
8471 singleArg = false;
8472 } else
8473 singleArg = true;
8474
8475 TIntermTyped *newNode;
8476 if (singleArg) {
8477 // Handle array -> array conversion
8478 // Constructing an array of one type from an array of another type is allowed,
8479 // assuming there are enough components available (semantic-checked earlier).
8480 if (type.isArray() && node->isArray())
8481 newNode = convertArray(node, type);
8482
8483 // If structure constructor or array constructor is being called
8484 // for only one parameter inside the aggregate, we need to call constructAggregate function once.
8485 else if (type.isArray())
8486 newNode = constructAggregate(node, elementType, 1, node->getLoc());
8487 else if (op == EOpConstructStruct)
8488 newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
8489 else {
8490 // shape conversion for matrix constructor from scalar. HLSL semantics are: scalar
8491 // is replicated into every element of the matrix (not just the diagnonal), so
8492 // that is handled specially here.
8493 if (type.isMatrix() && node->getType().isScalarOrVec1())
8494 node = intermediate.addShapeConversion(type, node);
8495
8496 newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
8497 }
8498
8499 if (newNode && (type.isArray() || op == EOpConstructStruct))
8500 newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
8501
8502 return newNode;
8503 }
8504
8505 //
8506 // Handle list of arguments.
8507 //
8508 TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
8509 // if the structure constructor contains more than one parameter, then construct
8510 // each parameter
8511
8512 int paramCount = 0; // keeps a track of the constructor parameter number being checked
8513
8514 // for each parameter to the constructor call, check to see if the right type is passed or convert them
8515 // to the right type if possible (and allowed).
8516 // for structure constructors, just check if the right type is passed, no conversion is allowed.
8517
8518 for (TIntermSequence::iterator p = sequenceVector.begin();
8519 p != sequenceVector.end(); p++, paramCount++) {
8520 if (type.isArray())
8521 newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
8522 else if (op == EOpConstructStruct)
8523 newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
8524 else
8525 newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
8526
8527 if (newNode)
8528 *p = newNode;
8529 else
8530 return nullptr;
8531 }
8532
8533 TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
8534
8535 return constructor;
8536 }
8537
8538 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
8539 // for the parameter to the constructor (passed to this function). Essentially, it converts
8540 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
8541 // float, then float is converted to int.
8542 //
8543 // Returns nullptr for an error or the constructed node.
8544 //
constructBuiltIn(const TType & type,TOperator op,TIntermTyped * node,const TSourceLoc & loc,bool subset)8545 TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
8546 const TSourceLoc& loc, bool subset)
8547 {
8548 TIntermTyped* newNode;
8549 TOperator basicOp;
8550
8551 //
8552 // First, convert types as needed.
8553 //
8554 switch (op) {
8555 case EOpConstructF16Vec2:
8556 case EOpConstructF16Vec3:
8557 case EOpConstructF16Vec4:
8558 case EOpConstructF16Mat2x2:
8559 case EOpConstructF16Mat2x3:
8560 case EOpConstructF16Mat2x4:
8561 case EOpConstructF16Mat3x2:
8562 case EOpConstructF16Mat3x3:
8563 case EOpConstructF16Mat3x4:
8564 case EOpConstructF16Mat4x2:
8565 case EOpConstructF16Mat4x3:
8566 case EOpConstructF16Mat4x4:
8567 case EOpConstructFloat16:
8568 basicOp = EOpConstructFloat16;
8569 break;
8570
8571 case EOpConstructVec2:
8572 case EOpConstructVec3:
8573 case EOpConstructVec4:
8574 case EOpConstructMat2x2:
8575 case EOpConstructMat2x3:
8576 case EOpConstructMat2x4:
8577 case EOpConstructMat3x2:
8578 case EOpConstructMat3x3:
8579 case EOpConstructMat3x4:
8580 case EOpConstructMat4x2:
8581 case EOpConstructMat4x3:
8582 case EOpConstructMat4x4:
8583 case EOpConstructFloat:
8584 basicOp = EOpConstructFloat;
8585 break;
8586
8587 case EOpConstructDVec2:
8588 case EOpConstructDVec3:
8589 case EOpConstructDVec4:
8590 case EOpConstructDMat2x2:
8591 case EOpConstructDMat2x3:
8592 case EOpConstructDMat2x4:
8593 case EOpConstructDMat3x2:
8594 case EOpConstructDMat3x3:
8595 case EOpConstructDMat3x4:
8596 case EOpConstructDMat4x2:
8597 case EOpConstructDMat4x3:
8598 case EOpConstructDMat4x4:
8599 case EOpConstructDouble:
8600 basicOp = EOpConstructDouble;
8601 break;
8602
8603 case EOpConstructI16Vec2:
8604 case EOpConstructI16Vec3:
8605 case EOpConstructI16Vec4:
8606 case EOpConstructInt16:
8607 basicOp = EOpConstructInt16;
8608 break;
8609
8610 case EOpConstructIVec2:
8611 case EOpConstructIVec3:
8612 case EOpConstructIVec4:
8613 case EOpConstructIMat2x2:
8614 case EOpConstructIMat2x3:
8615 case EOpConstructIMat2x4:
8616 case EOpConstructIMat3x2:
8617 case EOpConstructIMat3x3:
8618 case EOpConstructIMat3x4:
8619 case EOpConstructIMat4x2:
8620 case EOpConstructIMat4x3:
8621 case EOpConstructIMat4x4:
8622 case EOpConstructInt:
8623 basicOp = EOpConstructInt;
8624 break;
8625
8626 case EOpConstructU16Vec2:
8627 case EOpConstructU16Vec3:
8628 case EOpConstructU16Vec4:
8629 case EOpConstructUint16:
8630 basicOp = EOpConstructUint16;
8631 break;
8632
8633 case EOpConstructUVec2:
8634 case EOpConstructUVec3:
8635 case EOpConstructUVec4:
8636 case EOpConstructUMat2x2:
8637 case EOpConstructUMat2x3:
8638 case EOpConstructUMat2x4:
8639 case EOpConstructUMat3x2:
8640 case EOpConstructUMat3x3:
8641 case EOpConstructUMat3x4:
8642 case EOpConstructUMat4x2:
8643 case EOpConstructUMat4x3:
8644 case EOpConstructUMat4x4:
8645 case EOpConstructUint:
8646 basicOp = EOpConstructUint;
8647 break;
8648
8649 case EOpConstructBVec2:
8650 case EOpConstructBVec3:
8651 case EOpConstructBVec4:
8652 case EOpConstructBMat2x2:
8653 case EOpConstructBMat2x3:
8654 case EOpConstructBMat2x4:
8655 case EOpConstructBMat3x2:
8656 case EOpConstructBMat3x3:
8657 case EOpConstructBMat3x4:
8658 case EOpConstructBMat4x2:
8659 case EOpConstructBMat4x3:
8660 case EOpConstructBMat4x4:
8661 case EOpConstructBool:
8662 basicOp = EOpConstructBool;
8663 break;
8664
8665 default:
8666 error(loc, "unsupported construction", "", "");
8667
8668 return nullptr;
8669 }
8670 newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
8671 if (newNode == nullptr) {
8672 error(loc, "can't convert", "constructor", "");
8673 return nullptr;
8674 }
8675
8676 //
8677 // Now, if there still isn't an operation to do the construction, and we need one, add one.
8678 //
8679
8680 // Otherwise, skip out early.
8681 if (subset || (newNode != node && newNode->getType() == type))
8682 return newNode;
8683
8684 // setAggregateOperator will insert a new node for the constructor, as needed.
8685 return intermediate.setAggregateOperator(newNode, op, type, loc);
8686 }
8687
8688 // Convert the array in node to the requested type, which is also an array.
8689 // Returns nullptr on failure, otherwise returns aggregate holding the list of
8690 // elements needed to construct the array.
convertArray(TIntermTyped * node,const TType & type)8691 TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
8692 {
8693 assert(node->isArray() && type.isArray());
8694 if (node->getType().computeNumComponents() < type.computeNumComponents())
8695 return nullptr;
8696
8697 // TODO: write an argument replicator, for the case the argument should not be
8698 // executed multiple times, yet multiple copies are needed.
8699
8700 TIntermTyped* constructee = node->getAsTyped();
8701 // track where we are in consuming the argument
8702 int constructeeElement = 0;
8703 int constructeeComponent = 0;
8704
8705 // bump up to the next component to consume
8706 const auto getNextComponent = [&]() {
8707 TIntermTyped* component;
8708 component = handleBracketDereference(node->getLoc(), constructee,
8709 intermediate.addConstantUnion(constructeeElement, node->getLoc()));
8710 if (component->isVector())
8711 component = handleBracketDereference(node->getLoc(), component,
8712 intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
8713 // bump component pointer up
8714 ++constructeeComponent;
8715 if (constructeeComponent == constructee->getVectorSize()) {
8716 constructeeComponent = 0;
8717 ++constructeeElement;
8718 }
8719 return component;
8720 };
8721
8722 // make one subnode per constructed array element
8723 TIntermAggregate* constructor = nullptr;
8724 TType derefType(type, 0);
8725 TType speculativeComponentType(derefType, 0);
8726 TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
8727 TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
8728 TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
8729 for (int e = 0; e < type.getOuterArraySize(); ++e) {
8730 // construct an element
8731 TIntermTyped* elementArg;
8732 if (type.getVectorSize() == constructee->getVectorSize()) {
8733 // same element shape
8734 elementArg = handleBracketDereference(node->getLoc(), constructee,
8735 intermediate.addConstantUnion(e, node->getLoc()));
8736 } else {
8737 // mismatched element shapes
8738 if (type.getVectorSize() == 1)
8739 elementArg = getNextComponent();
8740 else {
8741 // make a vector
8742 TIntermAggregate* elementConstructee = nullptr;
8743 for (int c = 0; c < type.getVectorSize(); ++c)
8744 elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
8745 elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
8746 }
8747 }
8748 // convert basic types
8749 elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
8750 if (elementArg == nullptr)
8751 return nullptr;
8752 // combine with top-level constructor
8753 constructor = intermediate.growAggregate(constructor, elementArg);
8754 }
8755
8756 return constructor;
8757 }
8758
8759 // This function tests for the type of the parameters to the structure or array constructor. Raises
8760 // an error message if the expected type does not match the parameter passed to the constructor.
8761 //
8762 // Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
8763 //
constructAggregate(TIntermNode * node,const TType & type,int paramCount,const TSourceLoc & loc)8764 TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
8765 const TSourceLoc& loc)
8766 {
8767 // Handle cases that map more 1:1 between constructor arguments and constructed.
8768 TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
8769 if (converted == nullptr || converted->getType() != type) {
8770 error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
8771 node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
8772
8773 return nullptr;
8774 }
8775
8776 return converted;
8777 }
8778
8779 //
8780 // Do everything needed to add an interface block.
8781 //
declareBlock(const TSourceLoc & loc,TType & type,const TString * instanceName)8782 void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
8783 {
8784 assert(type.getWritableStruct() != nullptr);
8785
8786 // Clean up top-level decorations that don't belong.
8787 switch (type.getQualifier().storage) {
8788 case EvqUniform:
8789 case EvqBuffer:
8790 correctUniform(type.getQualifier());
8791 break;
8792 case EvqVaryingIn:
8793 correctInput(type.getQualifier());
8794 break;
8795 case EvqVaryingOut:
8796 correctOutput(type.getQualifier());
8797 break;
8798 default:
8799 break;
8800 }
8801
8802 TTypeList& typeList = *type.getWritableStruct();
8803 // fix and check for member storage qualifiers and types that don't belong within a block
8804 for (unsigned int member = 0; member < typeList.size(); ++member) {
8805 TType& memberType = *typeList[member].type;
8806 TQualifier& memberQualifier = memberType.getQualifier();
8807 const TSourceLoc& memberLoc = typeList[member].loc;
8808 globalQualifierFix(memberLoc, memberQualifier);
8809 memberQualifier.storage = type.getQualifier().storage;
8810
8811 if (memberType.isStruct()) {
8812 // clean up and pick up the right set of decorations
8813 auto it = ioTypeMap.find(memberType.getStruct());
8814 switch (type.getQualifier().storage) {
8815 case EvqUniform:
8816 case EvqBuffer:
8817 correctUniform(type.getQualifier());
8818 if (it != ioTypeMap.end() && it->second.uniform)
8819 memberType.setStruct(it->second.uniform);
8820 break;
8821 case EvqVaryingIn:
8822 correctInput(type.getQualifier());
8823 if (it != ioTypeMap.end() && it->second.input)
8824 memberType.setStruct(it->second.input);
8825 break;
8826 case EvqVaryingOut:
8827 correctOutput(type.getQualifier());
8828 if (it != ioTypeMap.end() && it->second.output)
8829 memberType.setStruct(it->second.output);
8830 break;
8831 default:
8832 break;
8833 }
8834 }
8835 }
8836
8837 // Make default block qualification, and adjust the member qualifications
8838
8839 TQualifier defaultQualification;
8840 switch (type.getQualifier().storage) {
8841 case EvqUniform: defaultQualification = globalUniformDefaults; break;
8842 case EvqBuffer: defaultQualification = globalBufferDefaults; break;
8843 case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
8844 case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
8845 default: defaultQualification.clear(); break;
8846 }
8847
8848 // Special case for "push_constant uniform", which has a default of std430,
8849 // contrary to normal uniform defaults, and can't have a default tracked for it.
8850 if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
8851 type.getQualifier().layoutPacking = ElpStd430;
8852
8853 // fix and check for member layout qualifiers
8854
8855 mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
8856
8857 bool memberWithLocation = false;
8858 bool memberWithoutLocation = false;
8859 for (unsigned int member = 0; member < typeList.size(); ++member) {
8860 TQualifier& memberQualifier = typeList[member].type->getQualifier();
8861 const TSourceLoc& memberLoc = typeList[member].loc;
8862 if (memberQualifier.hasStream()) {
8863 if (defaultQualification.layoutStream != memberQualifier.layoutStream)
8864 error(memberLoc, "member cannot contradict block", "stream", "");
8865 }
8866
8867 // "This includes a block's inheritance of the
8868 // current global default buffer, a block member's inheritance of the block's
8869 // buffer, and the requirement that any *xfb_buffer* declared on a block
8870 // member must match the buffer inherited from the block."
8871 if (memberQualifier.hasXfbBuffer()) {
8872 if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
8873 error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
8874 }
8875
8876 if (memberQualifier.hasLocation()) {
8877 switch (type.getQualifier().storage) {
8878 case EvqVaryingIn:
8879 case EvqVaryingOut:
8880 memberWithLocation = true;
8881 break;
8882 default:
8883 break;
8884 }
8885 } else
8886 memberWithoutLocation = true;
8887
8888 TQualifier newMemberQualification = defaultQualification;
8889 mergeQualifiers(newMemberQualification, memberQualifier);
8890 memberQualifier = newMemberQualification;
8891 }
8892
8893 // Process the members
8894 fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
8895 fixXfbOffsets(type.getQualifier(), typeList);
8896 fixBlockUniformOffsets(type.getQualifier(), typeList);
8897
8898 // reverse merge, so that currentBlockQualifier now has all layout information
8899 // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
8900 mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
8901
8902 //
8903 // Build and add the interface block as a new type named 'blockName'
8904 //
8905
8906 // Use the instance name as the interface name if one exists, else the block name.
8907 const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
8908
8909 TType blockType(&typeList, interfaceName, type.getQualifier());
8910 if (type.isArray())
8911 blockType.transferArraySizes(type.getArraySizes());
8912
8913 // Add the variable, as anonymous or named instanceName.
8914 // Make an anonymous variable if no name was provided.
8915 if (instanceName == nullptr)
8916 instanceName = NewPoolTString("");
8917
8918 TVariable& variable = *new TVariable(instanceName, blockType);
8919 if (! symbolTable.insert(variable)) {
8920 if (*instanceName == "")
8921 error(loc, "nameless block contains a member that already has a name at global scope",
8922 "" /* blockName->c_str() */, "");
8923 else
8924 error(loc, "block instance name redefinition", variable.getName().c_str(), "");
8925
8926 return;
8927 }
8928
8929 // Save it in the AST for linker use.
8930 if (symbolTable.atGlobalLevel())
8931 trackLinkage(variable);
8932 }
8933
8934 //
8935 // "For a block, this process applies to the entire block, or until the first member
8936 // is reached that has a location layout qualifier. When a block member is declared with a location
8937 // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
8938 // declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
8939 // until the next member declared with a location qualifier. The values used for locations do not have to be
8940 // declared in increasing order."
fixBlockLocations(const TSourceLoc & loc,TQualifier & qualifier,TTypeList & typeList,bool memberWithLocation,bool memberWithoutLocation)8941 void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
8942 {
8943 // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
8944 // have a location layout qualifier, or a compile-time error results."
8945 if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
8946 error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
8947 else {
8948 if (memberWithLocation) {
8949 // remove any block-level location and make it per *every* member
8950 int nextLocation = 0; // by the rule above, initial value is not relevant
8951 if (qualifier.hasAnyLocation()) {
8952 nextLocation = qualifier.layoutLocation;
8953 qualifier.layoutLocation = TQualifier::layoutLocationEnd;
8954 if (qualifier.hasComponent()) {
8955 // "It is a compile-time error to apply the *component* qualifier to a ... block"
8956 error(loc, "cannot apply to a block", "component", "");
8957 }
8958 if (qualifier.hasIndex()) {
8959 error(loc, "cannot apply to a block", "index", "");
8960 }
8961 }
8962 for (unsigned int member = 0; member < typeList.size(); ++member) {
8963 TQualifier& memberQualifier = typeList[member].type->getQualifier();
8964 const TSourceLoc& memberLoc = typeList[member].loc;
8965 if (! memberQualifier.hasLocation()) {
8966 if (nextLocation >= (int)TQualifier::layoutLocationEnd)
8967 error(memberLoc, "location is too large", "location", "");
8968 memberQualifier.layoutLocation = nextLocation;
8969 memberQualifier.layoutComponent = 0;
8970 }
8971 nextLocation = memberQualifier.layoutLocation +
8972 intermediate.computeTypeLocationSize(*typeList[member].type, language);
8973 }
8974 }
8975 }
8976 }
8977
fixXfbOffsets(TQualifier & qualifier,TTypeList & typeList)8978 void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
8979 {
8980 // "If a block is qualified with xfb_offset, all its
8981 // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
8982 // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
8983 // offsets."
8984
8985 if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
8986 return;
8987
8988 int nextOffset = qualifier.layoutXfbOffset;
8989 for (unsigned int member = 0; member < typeList.size(); ++member) {
8990 TQualifier& memberQualifier = typeList[member].type->getQualifier();
8991 bool contains64BitType = false;
8992 bool contains32BitType = false;
8993 bool contains16BitType = false;
8994 int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
8995 // see if we need to auto-assign an offset to this member
8996 if (! memberQualifier.hasXfbOffset()) {
8997 // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
8998 if (contains64BitType)
8999 RoundToPow2(nextOffset, 8);
9000 else if (contains32BitType)
9001 RoundToPow2(nextOffset, 4);
9002 // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
9003 else if (contains16BitType)
9004 RoundToPow2(nextOffset, 2);
9005 memberQualifier.layoutXfbOffset = nextOffset;
9006 } else
9007 nextOffset = memberQualifier.layoutXfbOffset;
9008 nextOffset += memberSize;
9009 }
9010
9011 // The above gave all block members an offset, so we can take it off the block now,
9012 // which will avoid double counting the offset usage.
9013 qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
9014 }
9015
9016 // Calculate and save the offset of each block member, using the recursively
9017 // defined block offset rules and the user-provided offset and align.
9018 //
9019 // Also, compute and save the total size of the block. For the block's size, arrayness
9020 // is not taken into account, as each element is backed by a separate buffer.
9021 //
fixBlockUniformOffsets(const TQualifier & qualifier,TTypeList & typeList)9022 void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
9023 {
9024 if (! qualifier.isUniformOrBuffer())
9025 return;
9026 if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
9027 return;
9028
9029 int offset = 0;
9030 int memberSize;
9031 for (unsigned int member = 0; member < typeList.size(); ++member) {
9032 TQualifier& memberQualifier = typeList[member].type->getQualifier();
9033 const TSourceLoc& memberLoc = typeList[member].loc;
9034
9035 // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
9036
9037 // modify just the children's view of matrix layout, if there is one for this member
9038 TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
9039 int dummyStride;
9040 int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
9041 qualifier.layoutPacking,
9042 subMatrixLayout != ElmNone
9043 ? subMatrixLayout == ElmRowMajor
9044 : qualifier.layoutMatrix == ElmRowMajor);
9045 if (memberQualifier.hasOffset()) {
9046 // "The specified offset must be a multiple
9047 // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
9048 if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
9049 error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
9050
9051 // "The offset qualifier forces the qualified member to start at or after the specified
9052 // integral-constant expression, which will be its byte offset from the beginning of the buffer.
9053 // "The actual offset of a member is computed as
9054 // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
9055 offset = std::max(offset, memberQualifier.layoutOffset);
9056 }
9057
9058 // "The actual alignment of a member will be the greater of the specified align alignment and the standard
9059 // (e.g., std140) base alignment for the member's type."
9060 if (memberQualifier.hasAlign())
9061 memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
9062
9063 // "If the resulting offset is not a multiple of the actual alignment,
9064 // increase it to the first offset that is a multiple of
9065 // the actual alignment."
9066 RoundToPow2(offset, memberAlignment);
9067 typeList[member].type->getQualifier().layoutOffset = offset;
9068 offset += memberSize;
9069 }
9070 }
9071
9072 // For an identifier that is already declared, add more qualification to it.
addQualifierToExisting(const TSourceLoc & loc,TQualifier qualifier,const TString & identifier)9073 void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
9074 {
9075 TSymbol* symbol = symbolTable.find(identifier);
9076 if (symbol == nullptr) {
9077 error(loc, "identifier not previously declared", identifier.c_str(), "");
9078 return;
9079 }
9080 if (symbol->getAsFunction()) {
9081 error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
9082 return;
9083 }
9084
9085 if (qualifier.isAuxiliary() ||
9086 qualifier.isMemory() ||
9087 qualifier.isInterpolation() ||
9088 qualifier.hasLayout() ||
9089 qualifier.storage != EvqTemporary ||
9090 qualifier.precision != EpqNone) {
9091 error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
9092 return;
9093 }
9094
9095 // For read-only built-ins, add a new symbol for holding the modified qualifier.
9096 // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
9097 if (symbol->isReadOnly())
9098 symbol = symbolTable.copyUp(symbol);
9099
9100 if (qualifier.invariant) {
9101 if (intermediate.inIoAccessed(identifier))
9102 error(loc, "cannot change qualification after use", "invariant", "");
9103 symbol->getWritableType().getQualifier().invariant = true;
9104 } else if (qualifier.noContraction) {
9105 if (intermediate.inIoAccessed(identifier))
9106 error(loc, "cannot change qualification after use", "precise", "");
9107 symbol->getWritableType().getQualifier().noContraction = true;
9108 } else if (qualifier.specConstant) {
9109 symbol->getWritableType().getQualifier().makeSpecConstant();
9110 if (qualifier.hasSpecConstantId())
9111 symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
9112 } else
9113 warn(loc, "unknown requalification", "", "");
9114 }
9115
addQualifierToExisting(const TSourceLoc & loc,TQualifier qualifier,TIdentifierList & identifiers)9116 void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
9117 {
9118 for (unsigned int i = 0; i < identifiers.size(); ++i)
9119 addQualifierToExisting(loc, qualifier, *identifiers[i]);
9120 }
9121
9122 //
9123 // Update the intermediate for the given input geometry
9124 //
handleInputGeometry(const TSourceLoc & loc,const TLayoutGeometry & geometry)9125 bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
9126 {
9127 // these can be declared on non-entry-points, in which case they lose their meaning
9128 if (! parsingEntrypointParameters)
9129 return true;
9130
9131 switch (geometry) {
9132 case ElgPoints: // fall through
9133 case ElgLines: // ...
9134 case ElgTriangles: // ...
9135 case ElgLinesAdjacency: // ...
9136 case ElgTrianglesAdjacency: // ...
9137 if (! intermediate.setInputPrimitive(geometry)) {
9138 error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
9139 return false;
9140 }
9141 break;
9142
9143 default:
9144 error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
9145 return false;
9146 }
9147
9148 return true;
9149 }
9150
9151 //
9152 // Update the intermediate for the given output geometry
9153 //
handleOutputGeometry(const TSourceLoc & loc,const TLayoutGeometry & geometry)9154 bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
9155 {
9156 // If this is not a geometry shader, ignore. It might be a mixed shader including several stages.
9157 // Since that's an OK situation, return true for success.
9158 if (language != EShLangGeometry)
9159 return true;
9160
9161 // these can be declared on non-entry-points, in which case they lose their meaning
9162 if (! parsingEntrypointParameters)
9163 return true;
9164
9165 switch (geometry) {
9166 case ElgPoints:
9167 case ElgLineStrip:
9168 case ElgTriangleStrip:
9169 if (! intermediate.setOutputPrimitive(geometry)) {
9170 error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
9171 return false;
9172 }
9173 break;
9174 default:
9175 error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
9176 return false;
9177 }
9178
9179 return true;
9180 }
9181
9182 //
9183 // Selection attributes
9184 //
handleSelectionAttributes(const TSourceLoc & loc,TIntermSelection * selection,const TAttributes & attributes)9185 void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
9186 const TAttributes& attributes)
9187 {
9188 if (selection == nullptr)
9189 return;
9190
9191 for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9192 switch (it->name) {
9193 case EatFlatten:
9194 selection->setFlatten();
9195 break;
9196 case EatBranch:
9197 selection->setDontFlatten();
9198 break;
9199 default:
9200 warn(loc, "attribute does not apply to a selection", "", "");
9201 break;
9202 }
9203 }
9204 }
9205
9206 //
9207 // Switch attributes
9208 //
handleSwitchAttributes(const TSourceLoc & loc,TIntermSwitch * selection,const TAttributes & attributes)9209 void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
9210 const TAttributes& attributes)
9211 {
9212 if (selection == nullptr)
9213 return;
9214
9215 for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9216 switch (it->name) {
9217 case EatFlatten:
9218 selection->setFlatten();
9219 break;
9220 case EatBranch:
9221 selection->setDontFlatten();
9222 break;
9223 default:
9224 warn(loc, "attribute does not apply to a switch", "", "");
9225 break;
9226 }
9227 }
9228 }
9229
9230 //
9231 // Loop attributes
9232 //
handleLoopAttributes(const TSourceLoc & loc,TIntermLoop * loop,const TAttributes & attributes)9233 void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
9234 const TAttributes& attributes)
9235 {
9236 if (loop == nullptr)
9237 return;
9238
9239 for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9240 switch (it->name) {
9241 case EatUnroll:
9242 loop->setUnroll();
9243 break;
9244 case EatLoop:
9245 loop->setDontUnroll();
9246 break;
9247 default:
9248 warn(loc, "attribute does not apply to a loop", "", "");
9249 break;
9250 }
9251 }
9252 }
9253
9254 //
9255 // Updating default qualifier for the case of a declaration with just a qualifier,
9256 // no type, block, or identifier.
9257 //
updateStandaloneQualifierDefaults(const TSourceLoc & loc,const TPublicType & publicType)9258 void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
9259 {
9260 if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
9261 assert(language == EShLangTessControl || language == EShLangGeometry);
9262 // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
9263 }
9264 if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
9265 if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
9266 error(loc, "cannot change previously set layout value", "invocations", "");
9267 }
9268 if (publicType.shaderQualifiers.geometry != ElgNone) {
9269 if (publicType.qualifier.storage == EvqVaryingIn) {
9270 switch (publicType.shaderQualifiers.geometry) {
9271 case ElgPoints:
9272 case ElgLines:
9273 case ElgLinesAdjacency:
9274 case ElgTriangles:
9275 case ElgTrianglesAdjacency:
9276 case ElgQuads:
9277 case ElgIsolines:
9278 break;
9279 default:
9280 error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
9281 "");
9282 }
9283 } else if (publicType.qualifier.storage == EvqVaryingOut) {
9284 handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
9285 } else
9286 error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
9287 GetStorageQualifierString(publicType.qualifier.storage));
9288 }
9289 if (publicType.shaderQualifiers.spacing != EvsNone)
9290 intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
9291 if (publicType.shaderQualifiers.order != EvoNone)
9292 intermediate.setVertexOrder(publicType.shaderQualifiers.order);
9293 if (publicType.shaderQualifiers.pointMode)
9294 intermediate.setPointMode();
9295 for (int i = 0; i < 3; ++i) {
9296 if (publicType.shaderQualifiers.localSize[i] > 1) {
9297 int max = 0;
9298 switch (i) {
9299 case 0: max = resources.maxComputeWorkGroupSizeX; break;
9300 case 1: max = resources.maxComputeWorkGroupSizeY; break;
9301 case 2: max = resources.maxComputeWorkGroupSizeZ; break;
9302 default: break;
9303 }
9304 if (intermediate.getLocalSize(i) > (unsigned int)max)
9305 error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
9306
9307 // Fix the existing constant gl_WorkGroupSize with this new information.
9308 TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
9309 workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
9310 }
9311 if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
9312 intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
9313 // Set the workgroup built-in variable as a specialization constant
9314 TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
9315 workGroupSize->getWritableType().getQualifier().specConstant = true;
9316 }
9317 }
9318 if (publicType.shaderQualifiers.earlyFragmentTests)
9319 intermediate.setEarlyFragmentTests();
9320
9321 const TQualifier& qualifier = publicType.qualifier;
9322
9323 switch (qualifier.storage) {
9324 case EvqUniform:
9325 if (qualifier.hasMatrix())
9326 globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
9327 if (qualifier.hasPacking())
9328 globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
9329 break;
9330 case EvqBuffer:
9331 if (qualifier.hasMatrix())
9332 globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
9333 if (qualifier.hasPacking())
9334 globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
9335 break;
9336 case EvqVaryingIn:
9337 break;
9338 case EvqVaryingOut:
9339 if (qualifier.hasStream())
9340 globalOutputDefaults.layoutStream = qualifier.layoutStream;
9341 if (qualifier.hasXfbBuffer())
9342 globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
9343 if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
9344 if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
9345 error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
9346 qualifier.layoutXfbBuffer);
9347 }
9348 break;
9349 default:
9350 error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
9351 return;
9352 }
9353 }
9354
9355 //
9356 // Take the sequence of statements that has been built up since the last case/default,
9357 // put it on the list of top-level nodes for the current (inner-most) switch statement,
9358 // and follow that by the case/default we are on now. (See switch topology comment on
9359 // TIntermSwitch.)
9360 //
wrapupSwitchSubsequence(TIntermAggregate * statements,TIntermNode * branchNode)9361 void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
9362 {
9363 TIntermSequence* switchSequence = switchSequenceStack.back();
9364
9365 if (statements) {
9366 statements->setOperator(EOpSequence);
9367 switchSequence->push_back(statements);
9368 }
9369 if (branchNode) {
9370 // check all previous cases for the same label (or both are 'default')
9371 for (unsigned int s = 0; s < switchSequence->size(); ++s) {
9372 TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
9373 if (prevBranch) {
9374 TIntermTyped* prevExpression = prevBranch->getExpression();
9375 TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
9376 if (prevExpression == nullptr && newExpression == nullptr)
9377 error(branchNode->getLoc(), "duplicate label", "default", "");
9378 else if (prevExpression != nullptr &&
9379 newExpression != nullptr &&
9380 prevExpression->getAsConstantUnion() &&
9381 newExpression->getAsConstantUnion() &&
9382 prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
9383 newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
9384 error(branchNode->getLoc(), "duplicated value", "case", "");
9385 }
9386 }
9387 switchSequence->push_back(branchNode);
9388 }
9389 }
9390
9391 //
9392 // Turn the top-level node sequence built up of wrapupSwitchSubsequence
9393 // into a switch node.
9394 //
addSwitch(const TSourceLoc & loc,TIntermTyped * expression,TIntermAggregate * lastStatements,const TAttributes & attributes)9395 TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
9396 TIntermAggregate* lastStatements, const TAttributes& attributes)
9397 {
9398 wrapupSwitchSubsequence(lastStatements, nullptr);
9399
9400 if (expression == nullptr ||
9401 (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
9402 expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
9403 error(loc, "condition must be a scalar integer expression", "switch", "");
9404
9405 // If there is nothing to do, drop the switch but still execute the expression
9406 TIntermSequence* switchSequence = switchSequenceStack.back();
9407 if (switchSequence->size() == 0)
9408 return expression;
9409
9410 if (lastStatements == nullptr) {
9411 // emulate a break for error recovery
9412 lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
9413 lastStatements->setOperator(EOpSequence);
9414 switchSequence->push_back(lastStatements);
9415 }
9416
9417 TIntermAggregate* body = new TIntermAggregate(EOpSequence);
9418 body->getSequence() = *switchSequenceStack.back();
9419 body->setLoc(loc);
9420
9421 TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
9422 switchNode->setLoc(loc);
9423 handleSwitchAttributes(loc, switchNode, attributes);
9424
9425 return switchNode;
9426 }
9427
9428 // Make a new symbol-table level that is made out of the members of a structure.
9429 // This should be done as an anonymous struct (name is "") so that the symbol table
9430 // finds the members with no explicit reference to a 'this' variable.
pushThisScope(const TType & thisStruct,const TVector<TFunctionDeclarator> & functionDeclarators)9431 void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
9432 {
9433 // member variables
9434 TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
9435 symbolTable.pushThis(thisVariable);
9436
9437 // member functions
9438 for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
9439 // member should have a prefix matching currentTypePrefix.back()
9440 // but, symbol lookup within the class scope will just use the
9441 // unprefixed name. Hence, there are two: one fully prefixed and
9442 // one with no prefix.
9443 TFunction& member = *it->function->clone();
9444 member.removePrefix(currentTypePrefix.back());
9445 symbolTable.insert(member);
9446 }
9447 }
9448
9449 // Track levels of class/struct/namespace nesting with a prefix string using
9450 // the type names separated by the scoping operator. E.g., two levels
9451 // would look like:
9452 //
9453 // outer::inner
9454 //
9455 // The string is empty when at normal global level.
9456 //
pushNamespace(const TString & typeName)9457 void HlslParseContext::pushNamespace(const TString& typeName)
9458 {
9459 // make new type prefix
9460 TString newPrefix;
9461 if (currentTypePrefix.size() > 0)
9462 newPrefix = currentTypePrefix.back();
9463 newPrefix.append(typeName);
9464 newPrefix.append(scopeMangler);
9465 currentTypePrefix.push_back(newPrefix);
9466 }
9467
9468 // Opposite of pushNamespace(), see above
popNamespace()9469 void HlslParseContext::popNamespace()
9470 {
9471 currentTypePrefix.pop_back();
9472 }
9473
9474 // Use the class/struct nesting string to create a global name for
9475 // a member of a class/struct.
getFullNamespaceName(TString * & name) const9476 void HlslParseContext::getFullNamespaceName(TString*& name) const
9477 {
9478 if (currentTypePrefix.size() == 0)
9479 return;
9480
9481 TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
9482 fullName->append(*name);
9483 name = fullName;
9484 }
9485
9486 // Helper function to add the namespace scope mangling syntax to a string.
addScopeMangler(TString & name)9487 void HlslParseContext::addScopeMangler(TString& name)
9488 {
9489 name.append(scopeMangler);
9490 }
9491
9492 // Return true if this has uniform-interface like decorations.
hasUniform(const TQualifier & qualifier) const9493 bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
9494 {
9495 return qualifier.hasUniformLayout() ||
9496 qualifier.layoutPushConstant;
9497 }
9498
9499 // Potentially not the opposite of hasUniform(), as if some characteristic is
9500 // ever used for more than one thing (e.g., uniform or input), hasUniform() should
9501 // say it exists, but clearUniform() should leave it in place.
clearUniform(TQualifier & qualifier)9502 void HlslParseContext::clearUniform(TQualifier& qualifier)
9503 {
9504 qualifier.clearUniformLayout();
9505 qualifier.layoutPushConstant = false;
9506 }
9507
9508 // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
isInputBuiltIn(const TQualifier & qualifier) const9509 bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
9510 {
9511 switch (qualifier.builtIn) {
9512 case EbvPosition:
9513 case EbvPointSize:
9514 return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
9515 case EbvClipDistance:
9516 case EbvCullDistance:
9517 return language != EShLangVertex && language != EShLangCompute;
9518 case EbvFragCoord:
9519 case EbvFace:
9520 case EbvHelperInvocation:
9521 case EbvLayer:
9522 case EbvPointCoord:
9523 case EbvSampleId:
9524 case EbvSampleMask:
9525 case EbvSamplePosition:
9526 case EbvViewportIndex:
9527 return language == EShLangFragment;
9528 case EbvGlobalInvocationId:
9529 case EbvLocalInvocationIndex:
9530 case EbvLocalInvocationId:
9531 case EbvNumWorkGroups:
9532 case EbvWorkGroupId:
9533 case EbvWorkGroupSize:
9534 return language == EShLangCompute;
9535 case EbvInvocationId:
9536 return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
9537 case EbvPatchVertices:
9538 return language == EShLangTessControl || language == EShLangTessEvaluation;
9539 case EbvInstanceId:
9540 case EbvInstanceIndex:
9541 case EbvVertexId:
9542 case EbvVertexIndex:
9543 return language == EShLangVertex;
9544 case EbvPrimitiveId:
9545 return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
9546 case EbvTessLevelInner:
9547 case EbvTessLevelOuter:
9548 return language == EShLangTessEvaluation;
9549 case EbvTessCoord:
9550 return language == EShLangTessEvaluation;
9551 default:
9552 return false;
9553 }
9554 }
9555
9556 // Return true if there are decorations to preserve for input-like storage.
hasInput(const TQualifier & qualifier) const9557 bool HlslParseContext::hasInput(const TQualifier& qualifier) const
9558 {
9559 if (qualifier.hasAnyLocation())
9560 return true;
9561
9562 if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
9563 return true;
9564
9565 if (language == EShLangTessEvaluation && qualifier.patch)
9566 return true;
9567
9568 if (isInputBuiltIn(qualifier))
9569 return true;
9570
9571 return false;
9572 }
9573
9574 // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
isOutputBuiltIn(const TQualifier & qualifier) const9575 bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
9576 {
9577 switch (qualifier.builtIn) {
9578 case EbvPosition:
9579 case EbvPointSize:
9580 case EbvClipVertex:
9581 case EbvClipDistance:
9582 case EbvCullDistance:
9583 return language != EShLangFragment && language != EShLangCompute;
9584 case EbvFragDepth:
9585 case EbvFragDepthGreater:
9586 case EbvFragDepthLesser:
9587 case EbvSampleMask:
9588 return language == EShLangFragment;
9589 case EbvLayer:
9590 case EbvViewportIndex:
9591 return language == EShLangGeometry || language == EShLangVertex;
9592 case EbvPrimitiveId:
9593 return language == EShLangGeometry;
9594 case EbvTessLevelInner:
9595 case EbvTessLevelOuter:
9596 return language == EShLangTessControl;
9597 default:
9598 return false;
9599 }
9600 }
9601
9602 // Return true if there are decorations to preserve for output-like storage.
hasOutput(const TQualifier & qualifier) const9603 bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
9604 {
9605 if (qualifier.hasAnyLocation())
9606 return true;
9607
9608 if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
9609 return true;
9610
9611 if (language == EShLangTessControl && qualifier.patch)
9612 return true;
9613
9614 if (language == EShLangGeometry && qualifier.hasStream())
9615 return true;
9616
9617 if (isOutputBuiltIn(qualifier))
9618 return true;
9619
9620 return false;
9621 }
9622
9623 // Make the IO decorations etc. be appropriate only for an input interface.
correctInput(TQualifier & qualifier)9624 void HlslParseContext::correctInput(TQualifier& qualifier)
9625 {
9626 clearUniform(qualifier);
9627 if (language == EShLangVertex)
9628 qualifier.clearInterstage();
9629 if (language != EShLangTessEvaluation)
9630 qualifier.patch = false;
9631 if (language != EShLangFragment) {
9632 qualifier.clearInterpolation();
9633 qualifier.sample = false;
9634 }
9635
9636 qualifier.clearStreamLayout();
9637 qualifier.clearXfbLayout();
9638
9639 if (! isInputBuiltIn(qualifier))
9640 qualifier.builtIn = EbvNone;
9641 }
9642
9643 // Make the IO decorations etc. be appropriate only for an output interface.
correctOutput(TQualifier & qualifier)9644 void HlslParseContext::correctOutput(TQualifier& qualifier)
9645 {
9646 clearUniform(qualifier);
9647 if (language == EShLangFragment)
9648 qualifier.clearInterstage();
9649 if (language != EShLangGeometry)
9650 qualifier.clearStreamLayout();
9651 if (language == EShLangFragment)
9652 qualifier.clearXfbLayout();
9653 if (language != EShLangTessControl)
9654 qualifier.patch = false;
9655
9656 switch (qualifier.builtIn) {
9657 case EbvFragDepth:
9658 intermediate.setDepthReplacing();
9659 intermediate.setDepth(EldAny);
9660 break;
9661 case EbvFragDepthGreater:
9662 intermediate.setDepthReplacing();
9663 intermediate.setDepth(EldGreater);
9664 qualifier.builtIn = EbvFragDepth;
9665 break;
9666 case EbvFragDepthLesser:
9667 intermediate.setDepthReplacing();
9668 intermediate.setDepth(EldLess);
9669 qualifier.builtIn = EbvFragDepth;
9670 break;
9671 default:
9672 break;
9673 }
9674
9675 if (! isOutputBuiltIn(qualifier))
9676 qualifier.builtIn = EbvNone;
9677 }
9678
9679 // Make the IO decorations etc. be appropriate only for uniform type interfaces.
correctUniform(TQualifier & qualifier)9680 void HlslParseContext::correctUniform(TQualifier& qualifier)
9681 {
9682 if (qualifier.declaredBuiltIn == EbvNone)
9683 qualifier.declaredBuiltIn = qualifier.builtIn;
9684
9685 qualifier.builtIn = EbvNone;
9686 qualifier.clearInterstage();
9687 qualifier.clearInterstageLayout();
9688 }
9689
9690 // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
clearUniformInputOutput(TQualifier & qualifier)9691 void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
9692 {
9693 clearUniform(qualifier);
9694 correctUniform(qualifier);
9695 }
9696
9697
9698 // Set texture return type. Returns success (not all types are valid).
setTextureReturnType(TSampler & sampler,const TType & retType,const TSourceLoc & loc)9699 bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
9700 {
9701 // Seed the output with an invalid index. We will set it to a valid one if we can.
9702 sampler.structReturnIndex = TSampler::noReturnStruct;
9703
9704 // Arrays aren't supported.
9705 if (retType.isArray()) {
9706 error(loc, "Arrays not supported in texture template types", "", "");
9707 return false;
9708 }
9709
9710 // If return type is a vector, remember the vector size in the sampler, and return.
9711 if (retType.isVector() || retType.isScalar()) {
9712 sampler.vectorSize = retType.getVectorSize();
9713 return true;
9714 }
9715
9716 // If it wasn't a vector, it must be a struct meeting certain requirements. The requirements
9717 // are checked below: just check for struct-ness here.
9718 if (!retType.isStruct()) {
9719 error(loc, "Invalid texture template type", "", "");
9720 return false;
9721 }
9722
9723 // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
9724 if (sampler.isSubpass()) {
9725 error(loc, "Unimplemented: structure template type in subpass input", "", "");
9726 return false;
9727 }
9728
9729 TTypeList* members = retType.getWritableStruct();
9730
9731 // Check for too many or not enough structure members.
9732 if (members->size() > 4 || members->size() == 0) {
9733 error(loc, "Invalid member count in texture template structure", "", "");
9734 return false;
9735 }
9736
9737 // Error checking: We must have <= 4 total components, all of the same basic type.
9738 unsigned totalComponents = 0;
9739 for (unsigned m = 0; m < members->size(); ++m) {
9740 // Check for bad member types
9741 if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
9742 error(loc, "Invalid texture template struct member type", "", "");
9743 return false;
9744 }
9745
9746 const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
9747 totalComponents += memberVectorSize;
9748
9749 // too many total member components
9750 if (totalComponents > 4) {
9751 error(loc, "Too many components in texture template structure type", "", "");
9752 return false;
9753 }
9754
9755 // All members must be of a common basic type
9756 if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
9757 error(loc, "Texture template structure members must same basic type", "", "");
9758 return false;
9759 }
9760 }
9761
9762 // If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make
9763 // a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large.
9764 for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
9765 if (textureReturnStruct[idx] == members) {
9766 sampler.structReturnIndex = idx;
9767 return true;
9768 }
9769 }
9770
9771 // It wasn't found as an existing entry. See if we have room for a new one.
9772 if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
9773 error(loc, "Texture template struct return slots exceeded", "", "");
9774 return false;
9775 }
9776
9777 // Insert it in the vector that tracks struct return types.
9778 sampler.structReturnIndex = unsigned(textureReturnStruct.size());
9779 textureReturnStruct.push_back(members);
9780
9781 // Success!
9782 return true;
9783 }
9784
9785 // Return the sampler return type in retType.
getTextureReturnType(const TSampler & sampler,TType & retType) const9786 void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
9787 {
9788 if (sampler.hasReturnStruct()) {
9789 assert(textureReturnStruct.size() >= sampler.structReturnIndex);
9790
9791 // We land here if the texture return is a structure.
9792 TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
9793
9794 const TType resultType(blockStruct, "");
9795 retType.shallowCopy(resultType);
9796 } else {
9797 // We land here if the texture return is a vector or scalar.
9798 const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
9799 retType.shallowCopy(resultType);
9800 }
9801 }
9802
9803
9804 // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
findTessLinkageSymbol(TBuiltInVariable biType) const9805 TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
9806 {
9807 const auto it = builtInTessLinkageSymbols.find(biType);
9808 if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr
9809 return nullptr;
9810
9811 return intermediate.addSymbol(*it->second->getAsVariable());
9812 }
9813
9814 // Find the patch constant function (issues error, returns nullptr if not found)
findPatchConstantFunction(const TSourceLoc & loc)9815 const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
9816 {
9817 if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
9818 error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
9819 return nullptr;
9820 }
9821
9822 const TString mangledName = patchConstantFunctionName + "(";
9823
9824 // create list of PCF candidates
9825 TVector<const TFunction*> candidateList;
9826 bool builtIn;
9827 symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
9828
9829 // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
9830 // allow any disambiguation of overloads.
9831 if (candidateList.empty()) {
9832 error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
9833 return nullptr;
9834 }
9835
9836 // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
9837 // HLSL picks the last one in shader source order. Since that isn't yet implemented here, error
9838 // out if there is more than one candidate.
9839 if (candidateList.size() > 1) {
9840 error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
9841 return nullptr;
9842 }
9843
9844 return candidateList[0];
9845 }
9846
9847 // Finalization step: Add patch constant function invocation
addPatchConstantInvocation()9848 void HlslParseContext::addPatchConstantInvocation()
9849 {
9850 TSourceLoc loc;
9851 loc.init();
9852
9853 // If there's no patch constant function, or we're not a HS, do nothing.
9854 if (patchConstantFunctionName.empty() || language != EShLangTessControl)
9855 return;
9856
9857 // Look for built-in variables in a function's parameter list.
9858 const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
9859 for (int p=0; p<function.getParamCount(); ++p) {
9860 TStorageQualifier storage = function[p].type->getQualifier().storage;
9861
9862 if (storage == EvqConstReadOnly) // treated identically to input
9863 storage = EvqIn;
9864
9865 if (function[p].getDeclaredBuiltIn() != EbvNone)
9866 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
9867 else
9868 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
9869 }
9870 };
9871
9872 // If we synthesize a built-in interface variable, we must add it to the linkage.
9873 const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
9874 if (name == nullptr) {
9875 error(loc, "unable to locate patch function parameter name", "", "");
9876 return;
9877 } else {
9878 TVariable& variable = *new TVariable(name, type);
9879 if (! symbolTable.insert(variable)) {
9880 error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
9881 return;
9882 }
9883
9884 globalQualifierFix(loc, variable.getWritableType().getQualifier());
9885
9886 if (symbolNode != nullptr)
9887 *symbolNode = intermediate.addSymbol(variable);
9888
9889 trackLinkage(variable);
9890 }
9891 };
9892
9893 const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
9894 const TType& type = *patchConstantFunction[param].type;
9895 const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
9896
9897 return type.isSizedArray() && biType == EbvOutputPatch;
9898 };
9899
9900 // We will perform these steps. Each is in a scoped block for separation: they could
9901 // become separate functions to make addPatchConstantInvocation shorter.
9902 //
9903 // 1. Union the interfaces, and create built-ins for anything present in the PCF and
9904 // declared as a built-in variable that isn't present in the entry point's signature.
9905 //
9906 // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
9907 // or the ones we created. Matching is based on built-in type. We may use synthesized
9908 // variables from (1) above.
9909 //
9910 // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
9911 //
9912 // 3. Create a return sequence: copy the return value (if any) from the PCF to a
9913 // (non-sanitized) output variable. In case this may involve multiple copies, such as for
9914 // an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
9915 // indirections into a complex R-value coming from the call to the PCF.
9916 //
9917 // 4. Create a barrier.
9918 //
9919 // 5/5B. Call the PCF inside an if test for (invocation id == 0).
9920
9921 TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
9922
9923 if (patchConstantFunctionPtr == nullptr)
9924 return;
9925
9926 TFunction& patchConstantFunction = *patchConstantFunctionPtr;
9927
9928 const int pcfParamCount = patchConstantFunction.getParamCount();
9929 TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
9930 TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
9931
9932 int outPatchParam = -1; // -1 means there isn't one.
9933
9934 // ================ Step 1A: Union Interfaces ================
9935 // Our patch constant function.
9936 {
9937 std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins
9938 std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins
9939
9940 assert(entryPointFunction);
9941 assert(entryPointFunctionBody);
9942
9943 findBuiltIns(patchConstantFunction, pcfBuiltIns);
9944 findBuiltIns(*entryPointFunction, epfBuiltIns);
9945
9946 // Find the set of built-ins in the PCF that are not present in the entry point.
9947 std::set<tInterstageIoData> notInEntryPoint;
9948
9949 notInEntryPoint = pcfBuiltIns;
9950
9951 // std::set_difference not usable on unordered containers
9952 for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
9953 notInEntryPoint.erase(*bi);
9954
9955 // Now we'll add those to the entry and to the linkage.
9956 for (int p=0; p<pcfParamCount; ++p) {
9957 const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
9958 TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
9959
9960 // Track whether there is an output patch param
9961 if (isOutputPatch(patchConstantFunction, p)) {
9962 if (outPatchParam >= 0) {
9963 // Presently we only support one per ctrl pt input.
9964 error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
9965 return;
9966 }
9967 outPatchParam = p;
9968 }
9969
9970 if (biType != EbvNone) {
9971 TType* paramType = patchConstantFunction[p].type->clone();
9972
9973 if (storage == EvqConstReadOnly) // treated identically to input
9974 storage = EvqIn;
9975
9976 // Presently, the only non-built-in we support is InputPatch, which is treated as
9977 // a pseudo-built-in.
9978 if (biType == EbvInputPatch) {
9979 builtInTessLinkageSymbols[biType] = inputPatch;
9980 } else if (biType == EbvOutputPatch) {
9981 // Nothing...
9982 } else {
9983 // Use the original declaration type for the linkage
9984 paramType->getQualifier().builtIn = biType;
9985 if (biType == EbvTessLevelInner || biType == EbvTessLevelOuter)
9986 paramType->getQualifier().patch = true;
9987
9988 if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
9989 addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
9990 }
9991 }
9992 }
9993
9994 // If we didn't find it because the shader made one, add our own.
9995 if (invocationIdSym == nullptr) {
9996 TType invocationIdType(EbtUint, EvqIn, 1);
9997 TString* invocationIdName = NewPoolTString("InvocationId");
9998 invocationIdType.getQualifier().builtIn = EbvInvocationId;
9999 addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
10000 }
10001
10002 assert(invocationIdSym);
10003 }
10004
10005 TIntermTyped* pcfArguments = nullptr;
10006 TVariable* perCtrlPtVar = nullptr;
10007
10008 // ================ Step 1B: Argument synthesis ================
10009 // Create pcfArguments for synthesis of patchconstantfunction invocation
10010 {
10011 for (int p=0; p<pcfParamCount; ++p) {
10012 TIntermTyped* inputArg = nullptr;
10013
10014 if (p == outPatchParam) {
10015 if (perCtrlPtVar == nullptr) {
10016 perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
10017 *patchConstantFunction[outPatchParam].type);
10018
10019 perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
10020 }
10021 inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
10022 } else {
10023 // find which built-in it is
10024 const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
10025
10026 if (biType == EbvInputPatch && inputPatch == nullptr) {
10027 error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
10028 return;
10029 }
10030
10031 inputArg = findTessLinkageSymbol(biType);
10032
10033 if (inputArg == nullptr) {
10034 error(loc, "unable to find patch constant function built-in variable", "", "");
10035 return;
10036 }
10037 }
10038
10039 if (pcfParamCount == 1)
10040 pcfArguments = inputArg;
10041 else
10042 pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
10043 }
10044 }
10045
10046 // ================ Step 2: Synthesize call to PCF ================
10047 TIntermAggregate* pcfCallSequence = nullptr;
10048 TIntermTyped* pcfCall = nullptr;
10049
10050 {
10051 // Create a function call to the patchconstantfunction
10052 if (pcfArguments)
10053 addInputArgumentConversions(patchConstantFunction, pcfArguments);
10054
10055 // Synthetic call.
10056 pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
10057 pcfCall->getAsAggregate()->setUserDefined();
10058 pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
10059 intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
10060 patchConstantFunction.getMangledName());
10061
10062 if (pcfCall->getAsAggregate()) {
10063 TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
10064 for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
10065 TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
10066 qualifierList.push_back(qual);
10067 }
10068 pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
10069 }
10070 }
10071
10072 // ================ Step 2B: Per Control Point synthesis ================
10073 // If there is per control point data, we must either emulate that with multiple
10074 // invocations of the entry point to build up an array, or (TODO:) use a yet
10075 // unavailable extension to look across the SIMD lanes. This is the former
10076 // as a placeholder for the latter.
10077 if (outPatchParam >= 0) {
10078 // We must introduce a local temp variable of the type wanted by the PCF input.
10079 const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
10080
10081 if (entryPointFunction->getType().getBasicType() == EbtVoid) {
10082 error(loc, "entry point must return a value for use with patch constant function", "", "");
10083 return;
10084 }
10085
10086 // Create calls to wrapped main to fill in the array. We will substitute fixed values
10087 // of invocation ID when calling the wrapped main.
10088
10089 // This is the type of the each member of the per ctrl point array.
10090 const TType derefType(perCtrlPtVar->getType(), 0);
10091
10092 for (int cpt = 0; cpt < arraySize; ++cpt) {
10093 // TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
10094 // for this function.
10095 const TString origName = entryPointFunction->getName().substr(1);
10096 TFunction callee(&origName, TType(EbtVoid));
10097 TIntermTyped* callingArgs = nullptr;
10098
10099 for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
10100 TParameter& param = (*entryPointFunction)[i];
10101 TType& paramType = *param.type;
10102
10103 if (paramType.getQualifier().isParamOutput()) {
10104 error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
10105 return;
10106 }
10107
10108 if (paramType.getQualifier().isParamInput()) {
10109 TIntermTyped* arg = nullptr;
10110 if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
10111 // substitute invocation ID with the array element ID
10112 arg = intermediate.addConstantUnion(cpt, loc);
10113 } else {
10114 TVariable* argVar = makeInternalVariable(*param.name, *param.type);
10115 argVar->getWritableType().getQualifier().makeTemporary();
10116 arg = intermediate.addSymbol(*argVar);
10117 }
10118
10119 handleFunctionArgument(&callee, callingArgs, arg);
10120 }
10121 }
10122
10123 // Call and assign to per ctrl point variable
10124 currentCaller = intermediate.getEntryPointMangledName().c_str();
10125 TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
10126 TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
10127 TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
10128 TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
10129 element->setType(derefType);
10130 element->setLoc(loc);
10131
10132 pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
10133 handleAssign(loc, EOpAssign, element, callReturn));
10134 }
10135 }
10136
10137 // ================ Step 3: Create return Sequence ================
10138 // Return sequence: copy PCF result to a temporary, then to shader output variable.
10139 if (pcfCall->getBasicType() != EbtVoid) {
10140 const TType* retType = &patchConstantFunction.getType(); // return type from the PCF
10141 TType outType; // output type that goes with the return type.
10142 outType.shallowCopy(*retType);
10143
10144 // substitute the output type
10145 const auto newLists = ioTypeMap.find(retType->getStruct());
10146 if (newLists != ioTypeMap.end())
10147 outType.setStruct(newLists->second.output);
10148
10149 // Substitute the top level type's built-in type
10150 if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
10151 outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
10152
10153 outType.getQualifier().patch = true; // make it a per-patch variable
10154
10155 TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
10156 pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
10157
10158 if (pcfOutput->getType().isStruct())
10159 flatten(*pcfOutput, false);
10160
10161 assignToInterface(*pcfOutput);
10162
10163 TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
10164
10165 // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
10166 // repeated calls to the PCF:
10167 TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
10168 pcfCallResult->getWritableType().getQualifier().makeTemporary();
10169
10170 TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
10171 TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
10172 TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
10173 intermediate.addSymbol(*pcfCallResult, loc));
10174
10175 pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
10176 pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
10177 } else {
10178 pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
10179 }
10180
10181 // ================ Step 4: Barrier ================
10182 TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
10183 barrier->setLoc(loc);
10184 barrier->setType(TType(EbtVoid));
10185 epBodySeq.insert(epBodySeq.end(), barrier);
10186
10187 // ================ Step 5: Test on invocation ID ================
10188 TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
10189 TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
10190
10191
10192 // ================ Step 5B: Create if statement on Invocation ID == 0 ================
10193 intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
10194 TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
10195 invocationIdTest->setLoc(loc);
10196
10197 // add our test sequence before the return.
10198 epBodySeq.insert(epBodySeq.end(), invocationIdTest);
10199 }
10200
10201 // Finalization step: remove unused buffer blocks from linkage (we don't know until the
10202 // shader is entirely compiled).
10203 // Preserve order of remaining symbols.
removeUnusedStructBufferCounters()10204 void HlslParseContext::removeUnusedStructBufferCounters()
10205 {
10206 const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
10207 [this](const TSymbol* sym) {
10208 const auto sbcIt = structBufferCounter.find(sym->getName());
10209 return sbcIt != structBufferCounter.end() && !sbcIt->second;
10210 });
10211
10212 linkageSymbols.erase(endIt, linkageSymbols.end());
10213 }
10214
10215 // Finalization step: patch texture shadow modes to match samplers they were combined with
fixTextureShadowModes()10216 void HlslParseContext::fixTextureShadowModes()
10217 {
10218 for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
10219 TSampler& sampler = (*symbol)->getWritableType().getSampler();
10220
10221 if (sampler.isTexture()) {
10222 const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
10223 if (shadowMode != textureShadowVariant.end()) {
10224
10225 if (shadowMode->second->overloaded())
10226 // Texture needs legalization if it's been seen with both shadow and non-shadow modes.
10227 intermediate.setNeedsLegalization();
10228
10229 sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
10230 }
10231 }
10232 }
10233 }
10234
10235 // Finalization step: patch append methods to use proper stream output, which isn't known until
10236 // main is parsed, which could happen after the append method is parsed.
finalizeAppendMethods()10237 void HlslParseContext::finalizeAppendMethods()
10238 {
10239 TSourceLoc loc;
10240 loc.init();
10241
10242 // Nothing to do: bypass test for valid stream output.
10243 if (gsAppends.empty())
10244 return;
10245
10246 if (gsStreamOutput == nullptr) {
10247 error(loc, "unable to find output symbol for Append()", "", "");
10248 return;
10249 }
10250
10251 // Patch append sequences, now that we know the stream output symbol.
10252 for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
10253 append->node->getSequence()[0] =
10254 handleAssign(append->loc, EOpAssign,
10255 intermediate.addSymbol(*gsStreamOutput, append->loc),
10256 append->node->getSequence()[0]->getAsTyped());
10257 }
10258 }
10259
10260 // post-processing
finish()10261 void HlslParseContext::finish()
10262 {
10263 // Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so
10264 // cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful.
10265 if (! mipsOperatorMipArg.empty()) {
10266 error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
10267 }
10268
10269 removeUnusedStructBufferCounters();
10270 addPatchConstantInvocation();
10271 fixTextureShadowModes();
10272 finalizeAppendMethods();
10273
10274 // Communicate out (esp. for command line) that we formed AST that will make
10275 // illegal AST SPIR-V and it needs transforms to legalize it.
10276 if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
10277 infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
10278
10279 TParseContextBase::finish();
10280 }
10281
10282 } // end namespace glslang
10283