1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DIBuilder.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LegacyPassManager.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/Use.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/IR/ValueHandle.h"
89 #include "llvm/InitializePasses.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CBindingWrapping.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CommandLine.h"
94 #include "llvm/Support/Compiler.h"
95 #include "llvm/Support/Debug.h"
96 #include "llvm/Support/DebugCounter.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/InstCombine/InstCombine.h"
101 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cstdint>
106 #include <memory>
107 #include <string>
108 #include <utility>
109
110 using namespace llvm;
111 using namespace llvm::PatternMatch;
112
113 #define DEBUG_TYPE "instcombine"
114
115 STATISTIC(NumCombined , "Number of insts combined");
116 STATISTIC(NumConstProp, "Number of constant folds");
117 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
118 STATISTIC(NumSunkInst , "Number of instructions sunk");
119 STATISTIC(NumExpand, "Number of expansions");
120 STATISTIC(NumFactor , "Number of factorizations");
121 STATISTIC(NumReassoc , "Number of reassociations");
122 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
123 "Controls which instructions are visited");
124
125 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
126 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
127
128 static cl::opt<bool>
129 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
130 cl::init(true));
131
132 static cl::opt<bool>
133 EnableExpensiveCombines("expensive-combines",
134 cl::desc("Enable expensive instruction combines"));
135
136 static cl::opt<unsigned> LimitMaxIterations(
137 "instcombine-max-iterations",
138 cl::desc("Limit the maximum number of instruction combining iterations"),
139 cl::init(InstCombineDefaultMaxIterations));
140
141 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
142 "instcombine-infinite-loop-threshold",
143 cl::desc("Number of instruction combining iterations considered an "
144 "infinite loop"),
145 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
146
147 static cl::opt<unsigned>
148 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
149 cl::desc("Maximum array size considered when doing a combine"));
150
151 // FIXME: Remove this flag when it is no longer necessary to convert
152 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
153 // increases variable availability at the cost of accuracy. Variables that
154 // cannot be promoted by mem2reg or SROA will be described as living in memory
155 // for their entire lifetime. However, passes like DSE and instcombine can
156 // delete stores to the alloca, leading to misleading and inaccurate debug
157 // information. This flag can be removed when those passes are fixed.
158 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
159 cl::Hidden, cl::init(true));
160
EmitGEPOffset(User * GEP)161 Value *InstCombiner::EmitGEPOffset(User *GEP) {
162 return llvm::EmitGEPOffset(&Builder, DL, GEP);
163 }
164
165 /// Return true if it is desirable to convert an integer computation from a
166 /// given bit width to a new bit width.
167 /// We don't want to convert from a legal to an illegal type or from a smaller
168 /// to a larger illegal type. A width of '1' is always treated as a legal type
169 /// because i1 is a fundamental type in IR, and there are many specialized
170 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
171 /// legal to convert to, in order to open up more combining opportunities.
172 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
173 /// from frontend languages.
shouldChangeType(unsigned FromWidth,unsigned ToWidth) const174 bool InstCombiner::shouldChangeType(unsigned FromWidth,
175 unsigned ToWidth) const {
176 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
177 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
178
179 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
180 // shrink types, to prevent infinite loops.
181 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
182 return true;
183
184 // If this is a legal integer from type, and the result would be an illegal
185 // type, don't do the transformation.
186 if (FromLegal && !ToLegal)
187 return false;
188
189 // Otherwise, if both are illegal, do not increase the size of the result. We
190 // do allow things like i160 -> i64, but not i64 -> i160.
191 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
192 return false;
193
194 return true;
195 }
196
197 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
198 /// We don't want to convert from a legal to an illegal type or from a smaller
199 /// to a larger illegal type. i1 is always treated as a legal type because it is
200 /// a fundamental type in IR, and there are many specialized optimizations for
201 /// i1 types.
shouldChangeType(Type * From,Type * To) const202 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
203 // TODO: This could be extended to allow vectors. Datalayout changes might be
204 // needed to properly support that.
205 if (!From->isIntegerTy() || !To->isIntegerTy())
206 return false;
207
208 unsigned FromWidth = From->getPrimitiveSizeInBits();
209 unsigned ToWidth = To->getPrimitiveSizeInBits();
210 return shouldChangeType(FromWidth, ToWidth);
211 }
212
213 // Return true, if No Signed Wrap should be maintained for I.
214 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
215 // where both B and C should be ConstantInts, results in a constant that does
216 // not overflow. This function only handles the Add and Sub opcodes. For
217 // all other opcodes, the function conservatively returns false.
maintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)218 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
219 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
220 if (!OBO || !OBO->hasNoSignedWrap())
221 return false;
222
223 // We reason about Add and Sub Only.
224 Instruction::BinaryOps Opcode = I.getOpcode();
225 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
226 return false;
227
228 const APInt *BVal, *CVal;
229 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
230 return false;
231
232 bool Overflow = false;
233 if (Opcode == Instruction::Add)
234 (void)BVal->sadd_ov(*CVal, Overflow);
235 else
236 (void)BVal->ssub_ov(*CVal, Overflow);
237
238 return !Overflow;
239 }
240
hasNoUnsignedWrap(BinaryOperator & I)241 static bool hasNoUnsignedWrap(BinaryOperator &I) {
242 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
243 return OBO && OBO->hasNoUnsignedWrap();
244 }
245
hasNoSignedWrap(BinaryOperator & I)246 static bool hasNoSignedWrap(BinaryOperator &I) {
247 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
248 return OBO && OBO->hasNoSignedWrap();
249 }
250
251 /// Conservatively clears subclassOptionalData after a reassociation or
252 /// commutation. We preserve fast-math flags when applicable as they can be
253 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)254 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
255 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
256 if (!FPMO) {
257 I.clearSubclassOptionalData();
258 return;
259 }
260
261 FastMathFlags FMF = I.getFastMathFlags();
262 I.clearSubclassOptionalData();
263 I.setFastMathFlags(FMF);
264 }
265
266 /// Combine constant operands of associative operations either before or after a
267 /// cast to eliminate one of the associative operations:
268 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
269 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
simplifyAssocCastAssoc(BinaryOperator * BinOp1)270 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
271 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
272 if (!Cast || !Cast->hasOneUse())
273 return false;
274
275 // TODO: Enhance logic for other casts and remove this check.
276 auto CastOpcode = Cast->getOpcode();
277 if (CastOpcode != Instruction::ZExt)
278 return false;
279
280 // TODO: Enhance logic for other BinOps and remove this check.
281 if (!BinOp1->isBitwiseLogicOp())
282 return false;
283
284 auto AssocOpcode = BinOp1->getOpcode();
285 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
286 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
287 return false;
288
289 Constant *C1, *C2;
290 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
291 !match(BinOp2->getOperand(1), m_Constant(C2)))
292 return false;
293
294 // TODO: This assumes a zext cast.
295 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
296 // to the destination type might lose bits.
297
298 // Fold the constants together in the destination type:
299 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
300 Type *DestTy = C1->getType();
301 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
302 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
303 Cast->setOperand(0, BinOp2->getOperand(0));
304 BinOp1->setOperand(1, FoldedC);
305 return true;
306 }
307
308 /// This performs a few simplifications for operators that are associative or
309 /// commutative:
310 ///
311 /// Commutative operators:
312 ///
313 /// 1. Order operands such that they are listed from right (least complex) to
314 /// left (most complex). This puts constants before unary operators before
315 /// binary operators.
316 ///
317 /// Associative operators:
318 ///
319 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
320 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
321 ///
322 /// Associative and commutative operators:
323 ///
324 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
325 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
326 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
327 /// if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)328 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
329 Instruction::BinaryOps Opcode = I.getOpcode();
330 bool Changed = false;
331
332 do {
333 // Order operands such that they are listed from right (least complex) to
334 // left (most complex). This puts constants before unary operators before
335 // binary operators.
336 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
337 getComplexity(I.getOperand(1)))
338 Changed = !I.swapOperands();
339
340 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
341 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
342
343 if (I.isAssociative()) {
344 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
345 if (Op0 && Op0->getOpcode() == Opcode) {
346 Value *A = Op0->getOperand(0);
347 Value *B = Op0->getOperand(1);
348 Value *C = I.getOperand(1);
349
350 // Does "B op C" simplify?
351 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
352 // It simplifies to V. Form "A op V".
353 I.setOperand(0, A);
354 I.setOperand(1, V);
355 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
356 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
357
358 // Conservatively clear all optional flags since they may not be
359 // preserved by the reassociation. Reset nsw/nuw based on the above
360 // analysis.
361 ClearSubclassDataAfterReassociation(I);
362
363 // Note: this is only valid because SimplifyBinOp doesn't look at
364 // the operands to Op0.
365 if (IsNUW)
366 I.setHasNoUnsignedWrap(true);
367
368 if (IsNSW)
369 I.setHasNoSignedWrap(true);
370
371 Changed = true;
372 ++NumReassoc;
373 continue;
374 }
375 }
376
377 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
378 if (Op1 && Op1->getOpcode() == Opcode) {
379 Value *A = I.getOperand(0);
380 Value *B = Op1->getOperand(0);
381 Value *C = Op1->getOperand(1);
382
383 // Does "A op B" simplify?
384 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
385 // It simplifies to V. Form "V op C".
386 I.setOperand(0, V);
387 I.setOperand(1, C);
388 // Conservatively clear the optional flags, since they may not be
389 // preserved by the reassociation.
390 ClearSubclassDataAfterReassociation(I);
391 Changed = true;
392 ++NumReassoc;
393 continue;
394 }
395 }
396 }
397
398 if (I.isAssociative() && I.isCommutative()) {
399 if (simplifyAssocCastAssoc(&I)) {
400 Changed = true;
401 ++NumReassoc;
402 continue;
403 }
404
405 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
406 if (Op0 && Op0->getOpcode() == Opcode) {
407 Value *A = Op0->getOperand(0);
408 Value *B = Op0->getOperand(1);
409 Value *C = I.getOperand(1);
410
411 // Does "C op A" simplify?
412 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
413 // It simplifies to V. Form "V op B".
414 I.setOperand(0, V);
415 I.setOperand(1, B);
416 // Conservatively clear the optional flags, since they may not be
417 // preserved by the reassociation.
418 ClearSubclassDataAfterReassociation(I);
419 Changed = true;
420 ++NumReassoc;
421 continue;
422 }
423 }
424
425 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
426 if (Op1 && Op1->getOpcode() == Opcode) {
427 Value *A = I.getOperand(0);
428 Value *B = Op1->getOperand(0);
429 Value *C = Op1->getOperand(1);
430
431 // Does "C op A" simplify?
432 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
433 // It simplifies to V. Form "B op V".
434 I.setOperand(0, B);
435 I.setOperand(1, V);
436 // Conservatively clear the optional flags, since they may not be
437 // preserved by the reassociation.
438 ClearSubclassDataAfterReassociation(I);
439 Changed = true;
440 ++NumReassoc;
441 continue;
442 }
443 }
444
445 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
446 // if C1 and C2 are constants.
447 Value *A, *B;
448 Constant *C1, *C2;
449 if (Op0 && Op1 &&
450 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
451 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
452 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
453 bool IsNUW = hasNoUnsignedWrap(I) &&
454 hasNoUnsignedWrap(*Op0) &&
455 hasNoUnsignedWrap(*Op1);
456 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
457 BinaryOperator::CreateNUW(Opcode, A, B) :
458 BinaryOperator::Create(Opcode, A, B);
459
460 if (isa<FPMathOperator>(NewBO)) {
461 FastMathFlags Flags = I.getFastMathFlags();
462 Flags &= Op0->getFastMathFlags();
463 Flags &= Op1->getFastMathFlags();
464 NewBO->setFastMathFlags(Flags);
465 }
466 InsertNewInstWith(NewBO, I);
467 NewBO->takeName(Op1);
468 I.setOperand(0, NewBO);
469 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
470 // Conservatively clear the optional flags, since they may not be
471 // preserved by the reassociation.
472 ClearSubclassDataAfterReassociation(I);
473 if (IsNUW)
474 I.setHasNoUnsignedWrap(true);
475
476 Changed = true;
477 continue;
478 }
479 }
480
481 // No further simplifications.
482 return Changed;
483 } while (true);
484 }
485
486 /// Return whether "X LOp (Y ROp Z)" is always equal to
487 /// "(X LOp Y) ROp (X LOp Z)".
leftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)488 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
489 Instruction::BinaryOps ROp) {
490 // X & (Y | Z) <--> (X & Y) | (X & Z)
491 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
492 if (LOp == Instruction::And)
493 return ROp == Instruction::Or || ROp == Instruction::Xor;
494
495 // X | (Y & Z) <--> (X | Y) & (X | Z)
496 if (LOp == Instruction::Or)
497 return ROp == Instruction::And;
498
499 // X * (Y + Z) <--> (X * Y) + (X * Z)
500 // X * (Y - Z) <--> (X * Y) - (X * Z)
501 if (LOp == Instruction::Mul)
502 return ROp == Instruction::Add || ROp == Instruction::Sub;
503
504 return false;
505 }
506
507 /// Return whether "(X LOp Y) ROp Z" is always equal to
508 /// "(X ROp Z) LOp (Y ROp Z)".
rightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)509 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
510 Instruction::BinaryOps ROp) {
511 if (Instruction::isCommutative(ROp))
512 return leftDistributesOverRight(ROp, LOp);
513
514 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
515 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
516
517 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
518 // but this requires knowing that the addition does not overflow and other
519 // such subtleties.
520 }
521
522 /// This function returns identity value for given opcode, which can be used to
523 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps Opcode,Value * V)524 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
525 if (isa<Constant>(V))
526 return nullptr;
527
528 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
529 }
530
531 /// This function predicates factorization using distributive laws. By default,
532 /// it just returns the 'Op' inputs. But for special-cases like
533 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
534 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
535 /// allow more factorization opportunities.
536 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)537 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
538 Value *&LHS, Value *&RHS) {
539 assert(Op && "Expected a binary operator");
540 LHS = Op->getOperand(0);
541 RHS = Op->getOperand(1);
542 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
543 Constant *C;
544 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
545 // X << C --> X * (1 << C)
546 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
547 return Instruction::Mul;
548 }
549 // TODO: We can add other conversions e.g. shr => div etc.
550 }
551 return Op->getOpcode();
552 }
553
554 /// This tries to simplify binary operations by factorizing out common terms
555 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)556 Value *InstCombiner::tryFactorization(BinaryOperator &I,
557 Instruction::BinaryOps InnerOpcode,
558 Value *A, Value *B, Value *C, Value *D) {
559 assert(A && B && C && D && "All values must be provided");
560
561 Value *V = nullptr;
562 Value *SimplifiedInst = nullptr;
563 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
564 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
565
566 // Does "X op' Y" always equal "Y op' X"?
567 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
568
569 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
570 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
571 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
572 // commutative case, "(A op' B) op (C op' A)"?
573 if (A == C || (InnerCommutative && A == D)) {
574 if (A != C)
575 std::swap(C, D);
576 // Consider forming "A op' (B op D)".
577 // If "B op D" simplifies then it can be formed with no cost.
578 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
579 // If "B op D" doesn't simplify then only go on if both of the existing
580 // operations "A op' B" and "C op' D" will be zapped as no longer used.
581 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
582 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
583 if (V) {
584 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
585 }
586 }
587
588 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
589 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
590 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
591 // commutative case, "(A op' B) op (B op' D)"?
592 if (B == D || (InnerCommutative && B == C)) {
593 if (B != D)
594 std::swap(C, D);
595 // Consider forming "(A op C) op' B".
596 // If "A op C" simplifies then it can be formed with no cost.
597 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
598
599 // If "A op C" doesn't simplify then only go on if both of the existing
600 // operations "A op' B" and "C op' D" will be zapped as no longer used.
601 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
602 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
603 if (V) {
604 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
605 }
606 }
607
608 if (SimplifiedInst) {
609 ++NumFactor;
610 SimplifiedInst->takeName(&I);
611
612 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
613 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
614 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
615 bool HasNSW = false;
616 bool HasNUW = false;
617 if (isa<OverflowingBinaryOperator>(&I)) {
618 HasNSW = I.hasNoSignedWrap();
619 HasNUW = I.hasNoUnsignedWrap();
620 }
621
622 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
623 HasNSW &= LOBO->hasNoSignedWrap();
624 HasNUW &= LOBO->hasNoUnsignedWrap();
625 }
626
627 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
628 HasNSW &= ROBO->hasNoSignedWrap();
629 HasNUW &= ROBO->hasNoUnsignedWrap();
630 }
631
632 if (TopLevelOpcode == Instruction::Add &&
633 InnerOpcode == Instruction::Mul) {
634 // We can propagate 'nsw' if we know that
635 // %Y = mul nsw i16 %X, C
636 // %Z = add nsw i16 %Y, %X
637 // =>
638 // %Z = mul nsw i16 %X, C+1
639 //
640 // iff C+1 isn't INT_MIN
641 const APInt *CInt;
642 if (match(V, m_APInt(CInt))) {
643 if (!CInt->isMinSignedValue())
644 BO->setHasNoSignedWrap(HasNSW);
645 }
646
647 // nuw can be propagated with any constant or nuw value.
648 BO->setHasNoUnsignedWrap(HasNUW);
649 }
650 }
651 }
652 }
653 return SimplifiedInst;
654 }
655
656 /// This tries to simplify binary operations which some other binary operation
657 /// distributes over either by factorizing out common terms
658 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
659 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
660 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)661 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
662 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
663 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
664 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
665 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
666
667 {
668 // Factorization.
669 Value *A, *B, *C, *D;
670 Instruction::BinaryOps LHSOpcode, RHSOpcode;
671 if (Op0)
672 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
673 if (Op1)
674 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
675
676 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
677 // a common term.
678 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
679 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
680 return V;
681
682 // The instruction has the form "(A op' B) op (C)". Try to factorize common
683 // term.
684 if (Op0)
685 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
686 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
687 return V;
688
689 // The instruction has the form "(B) op (C op' D)". Try to factorize common
690 // term.
691 if (Op1)
692 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
693 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
694 return V;
695 }
696
697 // Expansion.
698 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
699 // The instruction has the form "(A op' B) op C". See if expanding it out
700 // to "(A op C) op' (B op C)" results in simplifications.
701 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
702 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
703
704 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
705 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
706
707 // Do "A op C" and "B op C" both simplify?
708 if (L && R) {
709 // They do! Return "L op' R".
710 ++NumExpand;
711 C = Builder.CreateBinOp(InnerOpcode, L, R);
712 C->takeName(&I);
713 return C;
714 }
715
716 // Does "A op C" simplify to the identity value for the inner opcode?
717 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
718 // They do! Return "B op C".
719 ++NumExpand;
720 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
721 C->takeName(&I);
722 return C;
723 }
724
725 // Does "B op C" simplify to the identity value for the inner opcode?
726 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
727 // They do! Return "A op C".
728 ++NumExpand;
729 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
730 C->takeName(&I);
731 return C;
732 }
733 }
734
735 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
736 // The instruction has the form "A op (B op' C)". See if expanding it out
737 // to "(A op B) op' (A op C)" results in simplifications.
738 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
739 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
740
741 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
742 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
743
744 // Do "A op B" and "A op C" both simplify?
745 if (L && R) {
746 // They do! Return "L op' R".
747 ++NumExpand;
748 A = Builder.CreateBinOp(InnerOpcode, L, R);
749 A->takeName(&I);
750 return A;
751 }
752
753 // Does "A op B" simplify to the identity value for the inner opcode?
754 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
755 // They do! Return "A op C".
756 ++NumExpand;
757 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
758 A->takeName(&I);
759 return A;
760 }
761
762 // Does "A op C" simplify to the identity value for the inner opcode?
763 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
764 // They do! Return "A op B".
765 ++NumExpand;
766 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
767 A->takeName(&I);
768 return A;
769 }
770 }
771
772 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
773 }
774
SimplifySelectsFeedingBinaryOp(BinaryOperator & I,Value * LHS,Value * RHS)775 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
776 Value *LHS, Value *RHS) {
777 Value *A, *B, *C, *D, *E, *F;
778 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
779 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
780 if (!LHSIsSelect && !RHSIsSelect)
781 return nullptr;
782
783 FastMathFlags FMF;
784 BuilderTy::FastMathFlagGuard Guard(Builder);
785 if (isa<FPMathOperator>(&I)) {
786 FMF = I.getFastMathFlags();
787 Builder.setFastMathFlags(FMF);
788 }
789
790 Instruction::BinaryOps Opcode = I.getOpcode();
791 SimplifyQuery Q = SQ.getWithInstruction(&I);
792
793 Value *Cond, *True = nullptr, *False = nullptr;
794 if (LHSIsSelect && RHSIsSelect && A == D) {
795 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
796 Cond = A;
797 True = SimplifyBinOp(Opcode, B, E, FMF, Q);
798 False = SimplifyBinOp(Opcode, C, F, FMF, Q);
799
800 if (LHS->hasOneUse() && RHS->hasOneUse()) {
801 if (False && !True)
802 True = Builder.CreateBinOp(Opcode, B, E);
803 else if (True && !False)
804 False = Builder.CreateBinOp(Opcode, C, F);
805 }
806 } else if (LHSIsSelect && LHS->hasOneUse()) {
807 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
808 Cond = A;
809 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
810 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
811 } else if (RHSIsSelect && RHS->hasOneUse()) {
812 // X op (D ? E : F) -> D ? (X op E) : (X op F)
813 Cond = D;
814 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
815 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
816 }
817
818 if (!True || !False)
819 return nullptr;
820
821 Value *SI = Builder.CreateSelect(Cond, True, False);
822 SI->takeName(&I);
823 return SI;
824 }
825
826 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
827 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const828 Value *InstCombiner::dyn_castNegVal(Value *V) const {
829 Value *NegV;
830 if (match(V, m_Neg(m_Value(NegV))))
831 return NegV;
832
833 // Constants can be considered to be negated values if they can be folded.
834 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
835 return ConstantExpr::getNeg(C);
836
837 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
838 if (C->getType()->getElementType()->isIntegerTy())
839 return ConstantExpr::getNeg(C);
840
841 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
842 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
843 Constant *Elt = CV->getAggregateElement(i);
844 if (!Elt)
845 return nullptr;
846
847 if (isa<UndefValue>(Elt))
848 continue;
849
850 if (!isa<ConstantInt>(Elt))
851 return nullptr;
852 }
853 return ConstantExpr::getNeg(CV);
854 }
855
856 return nullptr;
857 }
858
foldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner::BuilderTy & Builder)859 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
860 InstCombiner::BuilderTy &Builder) {
861 if (auto *Cast = dyn_cast<CastInst>(&I))
862 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
863
864 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
865
866 // Figure out if the constant is the left or the right argument.
867 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
868 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
869
870 if (auto *SOC = dyn_cast<Constant>(SO)) {
871 if (ConstIsRHS)
872 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
873 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
874 }
875
876 Value *Op0 = SO, *Op1 = ConstOperand;
877 if (!ConstIsRHS)
878 std::swap(Op0, Op1);
879
880 auto *BO = cast<BinaryOperator>(&I);
881 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
882 SO->getName() + ".op");
883 auto *FPInst = dyn_cast<Instruction>(RI);
884 if (FPInst && isa<FPMathOperator>(FPInst))
885 FPInst->copyFastMathFlags(BO);
886 return RI;
887 }
888
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)889 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
890 // Don't modify shared select instructions.
891 if (!SI->hasOneUse())
892 return nullptr;
893
894 Value *TV = SI->getTrueValue();
895 Value *FV = SI->getFalseValue();
896 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
897 return nullptr;
898
899 // Bool selects with constant operands can be folded to logical ops.
900 if (SI->getType()->isIntOrIntVectorTy(1))
901 return nullptr;
902
903 // If it's a bitcast involving vectors, make sure it has the same number of
904 // elements on both sides.
905 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
906 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
907 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
908
909 // Verify that either both or neither are vectors.
910 if ((SrcTy == nullptr) != (DestTy == nullptr))
911 return nullptr;
912
913 // If vectors, verify that they have the same number of elements.
914 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
915 return nullptr;
916 }
917
918 // Test if a CmpInst instruction is used exclusively by a select as
919 // part of a minimum or maximum operation. If so, refrain from doing
920 // any other folding. This helps out other analyses which understand
921 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
922 // and CodeGen. And in this case, at least one of the comparison
923 // operands has at least one user besides the compare (the select),
924 // which would often largely negate the benefit of folding anyway.
925 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
926 if (CI->hasOneUse()) {
927 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
928 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
929 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
930 return nullptr;
931 }
932 }
933
934 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
935 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
936 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
937 }
938
foldOperationIntoPhiValue(BinaryOperator * I,Value * InV,InstCombiner::BuilderTy & Builder)939 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
940 InstCombiner::BuilderTy &Builder) {
941 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
942 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
943
944 if (auto *InC = dyn_cast<Constant>(InV)) {
945 if (ConstIsRHS)
946 return ConstantExpr::get(I->getOpcode(), InC, C);
947 return ConstantExpr::get(I->getOpcode(), C, InC);
948 }
949
950 Value *Op0 = InV, *Op1 = C;
951 if (!ConstIsRHS)
952 std::swap(Op0, Op1);
953
954 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
955 auto *FPInst = dyn_cast<Instruction>(RI);
956 if (FPInst && isa<FPMathOperator>(FPInst))
957 FPInst->copyFastMathFlags(I);
958 return RI;
959 }
960
foldOpIntoPhi(Instruction & I,PHINode * PN)961 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
962 unsigned NumPHIValues = PN->getNumIncomingValues();
963 if (NumPHIValues == 0)
964 return nullptr;
965
966 // We normally only transform phis with a single use. However, if a PHI has
967 // multiple uses and they are all the same operation, we can fold *all* of the
968 // uses into the PHI.
969 if (!PN->hasOneUse()) {
970 // Walk the use list for the instruction, comparing them to I.
971 for (User *U : PN->users()) {
972 Instruction *UI = cast<Instruction>(U);
973 if (UI != &I && !I.isIdenticalTo(UI))
974 return nullptr;
975 }
976 // Otherwise, we can replace *all* users with the new PHI we form.
977 }
978
979 // Check to see if all of the operands of the PHI are simple constants
980 // (constantint/constantfp/undef). If there is one non-constant value,
981 // remember the BB it is in. If there is more than one or if *it* is a PHI,
982 // bail out. We don't do arbitrary constant expressions here because moving
983 // their computation can be expensive without a cost model.
984 BasicBlock *NonConstBB = nullptr;
985 for (unsigned i = 0; i != NumPHIValues; ++i) {
986 Value *InVal = PN->getIncomingValue(i);
987 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
988 continue;
989
990 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
991 if (NonConstBB) return nullptr; // More than one non-const value.
992
993 NonConstBB = PN->getIncomingBlock(i);
994
995 // If the InVal is an invoke at the end of the pred block, then we can't
996 // insert a computation after it without breaking the edge.
997 if (isa<InvokeInst>(InVal))
998 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
999 return nullptr;
1000
1001 // If the incoming non-constant value is in I's block, we will remove one
1002 // instruction, but insert another equivalent one, leading to infinite
1003 // instcombine.
1004 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1005 return nullptr;
1006 }
1007
1008 // If there is exactly one non-constant value, we can insert a copy of the
1009 // operation in that block. However, if this is a critical edge, we would be
1010 // inserting the computation on some other paths (e.g. inside a loop). Only
1011 // do this if the pred block is unconditionally branching into the phi block.
1012 if (NonConstBB != nullptr) {
1013 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1014 if (!BI || !BI->isUnconditional()) return nullptr;
1015 }
1016
1017 // Okay, we can do the transformation: create the new PHI node.
1018 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1019 InsertNewInstBefore(NewPN, *PN);
1020 NewPN->takeName(PN);
1021
1022 // If we are going to have to insert a new computation, do so right before the
1023 // predecessor's terminator.
1024 if (NonConstBB)
1025 Builder.SetInsertPoint(NonConstBB->getTerminator());
1026
1027 // Next, add all of the operands to the PHI.
1028 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1029 // We only currently try to fold the condition of a select when it is a phi,
1030 // not the true/false values.
1031 Value *TrueV = SI->getTrueValue();
1032 Value *FalseV = SI->getFalseValue();
1033 BasicBlock *PhiTransBB = PN->getParent();
1034 for (unsigned i = 0; i != NumPHIValues; ++i) {
1035 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1036 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1037 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1038 Value *InV = nullptr;
1039 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1040 // even if currently isNullValue gives false.
1041 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1042 // For vector constants, we cannot use isNullValue to fold into
1043 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1044 // elements in the vector, we will incorrectly fold InC to
1045 // `TrueVInPred`.
1046 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1047 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1048 else {
1049 // Generate the select in the same block as PN's current incoming block.
1050 // Note: ThisBB need not be the NonConstBB because vector constants
1051 // which are constants by definition are handled here.
1052 // FIXME: This can lead to an increase in IR generation because we might
1053 // generate selects for vector constant phi operand, that could not be
1054 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1055 // non-vector phis, this transformation was always profitable because
1056 // the select would be generated exactly once in the NonConstBB.
1057 Builder.SetInsertPoint(ThisBB->getTerminator());
1058 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1059 FalseVInPred, "phitmp");
1060 }
1061 NewPN->addIncoming(InV, ThisBB);
1062 }
1063 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1064 Constant *C = cast<Constant>(I.getOperand(1));
1065 for (unsigned i = 0; i != NumPHIValues; ++i) {
1066 Value *InV = nullptr;
1067 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1068 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1069 else if (isa<ICmpInst>(CI))
1070 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
1071 C, "phitmp");
1072 else
1073 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1074 C, "phitmp");
1075 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1076 }
1077 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1078 for (unsigned i = 0; i != NumPHIValues; ++i) {
1079 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1080 Builder);
1081 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1082 }
1083 } else {
1084 CastInst *CI = cast<CastInst>(&I);
1085 Type *RetTy = CI->getType();
1086 for (unsigned i = 0; i != NumPHIValues; ++i) {
1087 Value *InV;
1088 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1089 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1090 else
1091 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1092 I.getType(), "phitmp");
1093 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1094 }
1095 }
1096
1097 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1098 Instruction *User = cast<Instruction>(*UI++);
1099 if (User == &I) continue;
1100 replaceInstUsesWith(*User, NewPN);
1101 eraseInstFromFunction(*User);
1102 }
1103 return replaceInstUsesWith(I, NewPN);
1104 }
1105
foldBinOpIntoSelectOrPhi(BinaryOperator & I)1106 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1107 if (!isa<Constant>(I.getOperand(1)))
1108 return nullptr;
1109
1110 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1111 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1112 return NewSel;
1113 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1114 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1115 return NewPhi;
1116 }
1117 return nullptr;
1118 }
1119
1120 /// Given a pointer type and a constant offset, determine whether or not there
1121 /// is a sequence of GEP indices into the pointed type that will land us at the
1122 /// specified offset. If so, fill them into NewIndices and return the resultant
1123 /// element type, otherwise return null.
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)1124 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1125 SmallVectorImpl<Value *> &NewIndices) {
1126 Type *Ty = PtrTy->getElementType();
1127 if (!Ty->isSized())
1128 return nullptr;
1129
1130 // Start with the index over the outer type. Note that the type size
1131 // might be zero (even if the offset isn't zero) if the indexed type
1132 // is something like [0 x {int, int}]
1133 Type *IndexTy = DL.getIndexType(PtrTy);
1134 int64_t FirstIdx = 0;
1135 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1136 FirstIdx = Offset/TySize;
1137 Offset -= FirstIdx*TySize;
1138
1139 // Handle hosts where % returns negative instead of values [0..TySize).
1140 if (Offset < 0) {
1141 --FirstIdx;
1142 Offset += TySize;
1143 assert(Offset >= 0);
1144 }
1145 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1146 }
1147
1148 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1149
1150 // Index into the types. If we fail, set OrigBase to null.
1151 while (Offset) {
1152 // Indexing into tail padding between struct/array elements.
1153 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1154 return nullptr;
1155
1156 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1157 const StructLayout *SL = DL.getStructLayout(STy);
1158 assert(Offset < (int64_t)SL->getSizeInBytes() &&
1159 "Offset must stay within the indexed type");
1160
1161 unsigned Elt = SL->getElementContainingOffset(Offset);
1162 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1163 Elt));
1164
1165 Offset -= SL->getElementOffset(Elt);
1166 Ty = STy->getElementType(Elt);
1167 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1168 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1169 assert(EltSize && "Cannot index into a zero-sized array");
1170 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1171 Offset %= EltSize;
1172 Ty = AT->getElementType();
1173 } else {
1174 // Otherwise, we can't index into the middle of this atomic type, bail.
1175 return nullptr;
1176 }
1177 }
1178
1179 return Ty;
1180 }
1181
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)1182 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1183 // If this GEP has only 0 indices, it is the same pointer as
1184 // Src. If Src is not a trivial GEP too, don't combine
1185 // the indices.
1186 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1187 !Src.hasOneUse())
1188 return false;
1189 return true;
1190 }
1191
1192 /// Return a value X such that Val = X * Scale, or null if none.
1193 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)1194 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1195 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1196 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1197 Scale.getBitWidth() && "Scale not compatible with value!");
1198
1199 // If Val is zero or Scale is one then Val = Val * Scale.
1200 if (match(Val, m_Zero()) || Scale == 1) {
1201 NoSignedWrap = true;
1202 return Val;
1203 }
1204
1205 // If Scale is zero then it does not divide Val.
1206 if (Scale.isMinValue())
1207 return nullptr;
1208
1209 // Look through chains of multiplications, searching for a constant that is
1210 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1211 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1212 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1213 // down from Val:
1214 //
1215 // Val = M1 * X || Analysis starts here and works down
1216 // M1 = M2 * Y || Doesn't descend into terms with more
1217 // M2 = Z * 4 \/ than one use
1218 //
1219 // Then to modify a term at the bottom:
1220 //
1221 // Val = M1 * X
1222 // M1 = Z * Y || Replaced M2 with Z
1223 //
1224 // Then to work back up correcting nsw flags.
1225
1226 // Op - the term we are currently analyzing. Starts at Val then drills down.
1227 // Replaced with its descaled value before exiting from the drill down loop.
1228 Value *Op = Val;
1229
1230 // Parent - initially null, but after drilling down notes where Op came from.
1231 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1232 // 0'th operand of Val.
1233 std::pair<Instruction *, unsigned> Parent;
1234
1235 // Set if the transform requires a descaling at deeper levels that doesn't
1236 // overflow.
1237 bool RequireNoSignedWrap = false;
1238
1239 // Log base 2 of the scale. Negative if not a power of 2.
1240 int32_t logScale = Scale.exactLogBase2();
1241
1242 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1243 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1244 // If Op is a constant divisible by Scale then descale to the quotient.
1245 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1246 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1247 if (!Remainder.isMinValue())
1248 // Not divisible by Scale.
1249 return nullptr;
1250 // Replace with the quotient in the parent.
1251 Op = ConstantInt::get(CI->getType(), Quotient);
1252 NoSignedWrap = true;
1253 break;
1254 }
1255
1256 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1257 if (BO->getOpcode() == Instruction::Mul) {
1258 // Multiplication.
1259 NoSignedWrap = BO->hasNoSignedWrap();
1260 if (RequireNoSignedWrap && !NoSignedWrap)
1261 return nullptr;
1262
1263 // There are three cases for multiplication: multiplication by exactly
1264 // the scale, multiplication by a constant different to the scale, and
1265 // multiplication by something else.
1266 Value *LHS = BO->getOperand(0);
1267 Value *RHS = BO->getOperand(1);
1268
1269 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1270 // Multiplication by a constant.
1271 if (CI->getValue() == Scale) {
1272 // Multiplication by exactly the scale, replace the multiplication
1273 // by its left-hand side in the parent.
1274 Op = LHS;
1275 break;
1276 }
1277
1278 // Otherwise drill down into the constant.
1279 if (!Op->hasOneUse())
1280 return nullptr;
1281
1282 Parent = std::make_pair(BO, 1);
1283 continue;
1284 }
1285
1286 // Multiplication by something else. Drill down into the left-hand side
1287 // since that's where the reassociate pass puts the good stuff.
1288 if (!Op->hasOneUse())
1289 return nullptr;
1290
1291 Parent = std::make_pair(BO, 0);
1292 continue;
1293 }
1294
1295 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1296 isa<ConstantInt>(BO->getOperand(1))) {
1297 // Multiplication by a power of 2.
1298 NoSignedWrap = BO->hasNoSignedWrap();
1299 if (RequireNoSignedWrap && !NoSignedWrap)
1300 return nullptr;
1301
1302 Value *LHS = BO->getOperand(0);
1303 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1304 getLimitedValue(Scale.getBitWidth());
1305 // Op = LHS << Amt.
1306
1307 if (Amt == logScale) {
1308 // Multiplication by exactly the scale, replace the multiplication
1309 // by its left-hand side in the parent.
1310 Op = LHS;
1311 break;
1312 }
1313 if (Amt < logScale || !Op->hasOneUse())
1314 return nullptr;
1315
1316 // Multiplication by more than the scale. Reduce the multiplying amount
1317 // by the scale in the parent.
1318 Parent = std::make_pair(BO, 1);
1319 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1320 break;
1321 }
1322 }
1323
1324 if (!Op->hasOneUse())
1325 return nullptr;
1326
1327 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1328 if (Cast->getOpcode() == Instruction::SExt) {
1329 // Op is sign-extended from a smaller type, descale in the smaller type.
1330 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1331 APInt SmallScale = Scale.trunc(SmallSize);
1332 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1333 // descale Op as (sext Y) * Scale. In order to have
1334 // sext (Y * SmallScale) = (sext Y) * Scale
1335 // some conditions need to hold however: SmallScale must sign-extend to
1336 // Scale and the multiplication Y * SmallScale should not overflow.
1337 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1338 // SmallScale does not sign-extend to Scale.
1339 return nullptr;
1340 assert(SmallScale.exactLogBase2() == logScale);
1341 // Require that Y * SmallScale must not overflow.
1342 RequireNoSignedWrap = true;
1343
1344 // Drill down through the cast.
1345 Parent = std::make_pair(Cast, 0);
1346 Scale = SmallScale;
1347 continue;
1348 }
1349
1350 if (Cast->getOpcode() == Instruction::Trunc) {
1351 // Op is truncated from a larger type, descale in the larger type.
1352 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1353 // trunc (Y * sext Scale) = (trunc Y) * Scale
1354 // always holds. However (trunc Y) * Scale may overflow even if
1355 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1356 // from this point up in the expression (see later).
1357 if (RequireNoSignedWrap)
1358 return nullptr;
1359
1360 // Drill down through the cast.
1361 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1362 Parent = std::make_pair(Cast, 0);
1363 Scale = Scale.sext(LargeSize);
1364 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1365 logScale = -1;
1366 assert(Scale.exactLogBase2() == logScale);
1367 continue;
1368 }
1369 }
1370
1371 // Unsupported expression, bail out.
1372 return nullptr;
1373 }
1374
1375 // If Op is zero then Val = Op * Scale.
1376 if (match(Op, m_Zero())) {
1377 NoSignedWrap = true;
1378 return Op;
1379 }
1380
1381 // We know that we can successfully descale, so from here on we can safely
1382 // modify the IR. Op holds the descaled version of the deepest term in the
1383 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1384 // not to overflow.
1385
1386 if (!Parent.first)
1387 // The expression only had one term.
1388 return Op;
1389
1390 // Rewrite the parent using the descaled version of its operand.
1391 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1392 assert(Op != Parent.first->getOperand(Parent.second) &&
1393 "Descaling was a no-op?");
1394 Parent.first->setOperand(Parent.second, Op);
1395 Worklist.Add(Parent.first);
1396
1397 // Now work back up the expression correcting nsw flags. The logic is based
1398 // on the following observation: if X * Y is known not to overflow as a signed
1399 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1400 // then X * Z will not overflow as a signed multiplication either. As we work
1401 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1402 // current level has strictly smaller absolute value than the original.
1403 Instruction *Ancestor = Parent.first;
1404 do {
1405 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1406 // If the multiplication wasn't nsw then we can't say anything about the
1407 // value of the descaled multiplication, and we have to clear nsw flags
1408 // from this point on up.
1409 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1410 NoSignedWrap &= OpNoSignedWrap;
1411 if (NoSignedWrap != OpNoSignedWrap) {
1412 BO->setHasNoSignedWrap(NoSignedWrap);
1413 Worklist.Add(Ancestor);
1414 }
1415 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1416 // The fact that the descaled input to the trunc has smaller absolute
1417 // value than the original input doesn't tell us anything useful about
1418 // the absolute values of the truncations.
1419 NoSignedWrap = false;
1420 }
1421 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1422 "Failed to keep proper track of nsw flags while drilling down?");
1423
1424 if (Ancestor == Val)
1425 // Got to the top, all done!
1426 return Val;
1427
1428 // Move up one level in the expression.
1429 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1430 Ancestor = Ancestor->user_back();
1431 } while (true);
1432 }
1433
foldVectorBinop(BinaryOperator & Inst)1434 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1435 if (!Inst.getType()->isVectorTy()) return nullptr;
1436
1437 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1438 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
1439 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1440 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
1441 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
1442
1443 // If both operands of the binop are vector concatenations, then perform the
1444 // narrow binop on each pair of the source operands followed by concatenation
1445 // of the results.
1446 Value *L0, *L1, *R0, *R1;
1447 Constant *Mask;
1448 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
1449 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
1450 LHS->hasOneUse() && RHS->hasOneUse() &&
1451 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1452 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1453 // This transform does not have the speculative execution constraint as
1454 // below because the shuffle is a concatenation. The new binops are
1455 // operating on exactly the same elements as the existing binop.
1456 // TODO: We could ease the mask requirement to allow different undef lanes,
1457 // but that requires an analysis of the binop-with-undef output value.
1458 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1459 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1460 BO->copyIRFlags(&Inst);
1461 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1462 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1463 BO->copyIRFlags(&Inst);
1464 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1465 }
1466
1467 // It may not be safe to reorder shuffles and things like div, urem, etc.
1468 // because we may trap when executing those ops on unknown vector elements.
1469 // See PR20059.
1470 if (!isSafeToSpeculativelyExecute(&Inst))
1471 return nullptr;
1472
1473 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1474 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1475 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1476 BO->copyIRFlags(&Inst);
1477 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1478 };
1479
1480 // If both arguments of the binary operation are shuffles that use the same
1481 // mask and shuffle within a single vector, move the shuffle after the binop.
1482 Value *V1, *V2;
1483 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1484 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1485 V1->getType() == V2->getType() &&
1486 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1487 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1488 return createBinOpShuffle(V1, V2, Mask);
1489 }
1490
1491 // If both arguments of a commutative binop are select-shuffles that use the
1492 // same mask with commuted operands, the shuffles are unnecessary.
1493 if (Inst.isCommutative() &&
1494 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
1495 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
1496 m_Specific(Mask)))) {
1497 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1498 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1499 // TODO: Allow shuffles that contain undefs in the mask?
1500 // That is legal, but it reduces undef knowledge.
1501 // TODO: Allow arbitrary shuffles by shuffling after binop?
1502 // That might be legal, but we have to deal with poison.
1503 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
1504 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
1505 // Example:
1506 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1507 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1508 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1509 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1510 NewBO->copyIRFlags(&Inst);
1511 return NewBO;
1512 }
1513 }
1514
1515 // If one argument is a shuffle within one vector and the other is a constant,
1516 // try moving the shuffle after the binary operation. This canonicalization
1517 // intends to move shuffles closer to other shuffles and binops closer to
1518 // other binops, so they can be folded. It may also enable demanded elements
1519 // transforms.
1520 Constant *C;
1521 if (match(&Inst, m_c_BinOp(
1522 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
1523 m_Constant(C))) &&
1524 V1->getType()->getVectorNumElements() <= NumElts) {
1525 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1526 "Shuffle should not change scalar type");
1527
1528 // Find constant NewC that has property:
1529 // shuffle(NewC, ShMask) = C
1530 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1531 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1532 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1533 bool ConstOp1 = isa<Constant>(RHS);
1534 SmallVector<int, 16> ShMask;
1535 ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1536 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
1537 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1538 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1539 bool MayChange = true;
1540 for (unsigned I = 0; I < NumElts; ++I) {
1541 Constant *CElt = C->getAggregateElement(I);
1542 if (ShMask[I] >= 0) {
1543 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1544 Constant *NewCElt = NewVecC[ShMask[I]];
1545 // Bail out if:
1546 // 1. The constant vector contains a constant expression.
1547 // 2. The shuffle needs an element of the constant vector that can't
1548 // be mapped to a new constant vector.
1549 // 3. This is a widening shuffle that copies elements of V1 into the
1550 // extended elements (extending with undef is allowed).
1551 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1552 I >= SrcVecNumElts) {
1553 MayChange = false;
1554 break;
1555 }
1556 NewVecC[ShMask[I]] = CElt;
1557 }
1558 // If this is a widening shuffle, we must be able to extend with undef
1559 // elements. If the original binop does not produce an undef in the high
1560 // lanes, then this transform is not safe.
1561 // Similarly for undef lanes due to the shuffle mask, we can only
1562 // transform binops that preserve undef.
1563 // TODO: We could shuffle those non-undef constant values into the
1564 // result by using a constant vector (rather than an undef vector)
1565 // as operand 1 of the new binop, but that might be too aggressive
1566 // for target-independent shuffle creation.
1567 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1568 Constant *MaybeUndef =
1569 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1570 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1571 if (!isa<UndefValue>(MaybeUndef)) {
1572 MayChange = false;
1573 break;
1574 }
1575 }
1576 }
1577 if (MayChange) {
1578 Constant *NewC = ConstantVector::get(NewVecC);
1579 // It may not be safe to execute a binop on a vector with undef elements
1580 // because the entire instruction can be folded to undef or create poison
1581 // that did not exist in the original code.
1582 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1583 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1584
1585 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1586 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1587 Value *NewLHS = ConstOp1 ? V1 : NewC;
1588 Value *NewRHS = ConstOp1 ? NewC : V1;
1589 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1590 }
1591 }
1592
1593 return nullptr;
1594 }
1595
1596 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1597 /// of a value. This requires a potentially expensive known bits check to make
1598 /// sure the narrow op does not overflow.
narrowMathIfNoOverflow(BinaryOperator & BO)1599 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1600 // We need at least one extended operand.
1601 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1602
1603 // If this is a sub, we swap the operands since we always want an extension
1604 // on the RHS. The LHS can be an extension or a constant.
1605 if (BO.getOpcode() == Instruction::Sub)
1606 std::swap(Op0, Op1);
1607
1608 Value *X;
1609 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1610 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1611 return nullptr;
1612
1613 // If both operands are the same extension from the same source type and we
1614 // can eliminate at least one (hasOneUse), this might work.
1615 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1616 Value *Y;
1617 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1618 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1619 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1620 // If that did not match, see if we have a suitable constant operand.
1621 // Truncating and extending must produce the same constant.
1622 Constant *WideC;
1623 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1624 return nullptr;
1625 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1626 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1627 return nullptr;
1628 Y = NarrowC;
1629 }
1630
1631 // Swap back now that we found our operands.
1632 if (BO.getOpcode() == Instruction::Sub)
1633 std::swap(X, Y);
1634
1635 // Both operands have narrow versions. Last step: the math must not overflow
1636 // in the narrow width.
1637 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1638 return nullptr;
1639
1640 // bo (ext X), (ext Y) --> ext (bo X, Y)
1641 // bo (ext X), C --> ext (bo X, C')
1642 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1643 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1644 if (IsSext)
1645 NewBinOp->setHasNoSignedWrap();
1646 else
1647 NewBinOp->setHasNoUnsignedWrap();
1648 }
1649 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1650 }
1651
isMergedGEPInBounds(GEPOperator & GEP1,GEPOperator & GEP2)1652 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1653 // At least one GEP must be inbounds.
1654 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1655 return false;
1656
1657 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1658 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1659 }
1660
visitGetElementPtrInst(GetElementPtrInst & GEP)1661 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1662 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1663 Type *GEPType = GEP.getType();
1664 Type *GEPEltType = GEP.getSourceElementType();
1665 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1666 return replaceInstUsesWith(GEP, V);
1667
1668 // For vector geps, use the generic demanded vector support.
1669 if (GEP.getType()->isVectorTy()) {
1670 auto VWidth = GEP.getType()->getVectorNumElements();
1671 APInt UndefElts(VWidth, 0);
1672 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1673 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1674 UndefElts)) {
1675 if (V != &GEP)
1676 return replaceInstUsesWith(GEP, V);
1677 return &GEP;
1678 }
1679
1680 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1681 // possible (decide on canonical form for pointer broadcast), 3) exploit
1682 // undef elements to decrease demanded bits
1683 }
1684
1685 Value *PtrOp = GEP.getOperand(0);
1686
1687 // Eliminate unneeded casts for indices, and replace indices which displace
1688 // by multiples of a zero size type with zero.
1689 bool MadeChange = false;
1690
1691 // Index width may not be the same width as pointer width.
1692 // Data layout chooses the right type based on supported integer types.
1693 Type *NewScalarIndexTy =
1694 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1695
1696 gep_type_iterator GTI = gep_type_begin(GEP);
1697 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1698 ++I, ++GTI) {
1699 // Skip indices into struct types.
1700 if (GTI.isStruct())
1701 continue;
1702
1703 Type *IndexTy = (*I)->getType();
1704 Type *NewIndexType =
1705 IndexTy->isVectorTy()
1706 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1707 : NewScalarIndexTy;
1708
1709 // If the element type has zero size then any index over it is equivalent
1710 // to an index of zero, so replace it with zero if it is not zero already.
1711 Type *EltTy = GTI.getIndexedType();
1712 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1713 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1714 *I = Constant::getNullValue(NewIndexType);
1715 MadeChange = true;
1716 }
1717
1718 if (IndexTy != NewIndexType) {
1719 // If we are using a wider index than needed for this platform, shrink
1720 // it to what we need. If narrower, sign-extend it to what we need.
1721 // This explicit cast can make subsequent optimizations more obvious.
1722 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1723 MadeChange = true;
1724 }
1725 }
1726 if (MadeChange)
1727 return &GEP;
1728
1729 // Check to see if the inputs to the PHI node are getelementptr instructions.
1730 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1731 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1732 if (!Op1)
1733 return nullptr;
1734
1735 // Don't fold a GEP into itself through a PHI node. This can only happen
1736 // through the back-edge of a loop. Folding a GEP into itself means that
1737 // the value of the previous iteration needs to be stored in the meantime,
1738 // thus requiring an additional register variable to be live, but not
1739 // actually achieving anything (the GEP still needs to be executed once per
1740 // loop iteration).
1741 if (Op1 == &GEP)
1742 return nullptr;
1743
1744 int DI = -1;
1745
1746 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1747 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1748 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1749 return nullptr;
1750
1751 // As for Op1 above, don't try to fold a GEP into itself.
1752 if (Op2 == &GEP)
1753 return nullptr;
1754
1755 // Keep track of the type as we walk the GEP.
1756 Type *CurTy = nullptr;
1757
1758 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1759 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1760 return nullptr;
1761
1762 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1763 if (DI == -1) {
1764 // We have not seen any differences yet in the GEPs feeding the
1765 // PHI yet, so we record this one if it is allowed to be a
1766 // variable.
1767
1768 // The first two arguments can vary for any GEP, the rest have to be
1769 // static for struct slots
1770 if (J > 1) {
1771 assert(CurTy && "No current type?");
1772 if (CurTy->isStructTy())
1773 return nullptr;
1774 }
1775
1776 DI = J;
1777 } else {
1778 // The GEP is different by more than one input. While this could be
1779 // extended to support GEPs that vary by more than one variable it
1780 // doesn't make sense since it greatly increases the complexity and
1781 // would result in an R+R+R addressing mode which no backend
1782 // directly supports and would need to be broken into several
1783 // simpler instructions anyway.
1784 return nullptr;
1785 }
1786 }
1787
1788 // Sink down a layer of the type for the next iteration.
1789 if (J > 0) {
1790 if (J == 1) {
1791 CurTy = Op1->getSourceElementType();
1792 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
1793 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1794 } else {
1795 CurTy = nullptr;
1796 }
1797 }
1798 }
1799 }
1800
1801 // If not all GEPs are identical we'll have to create a new PHI node.
1802 // Check that the old PHI node has only one use so that it will get
1803 // removed.
1804 if (DI != -1 && !PN->hasOneUse())
1805 return nullptr;
1806
1807 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1808 if (DI == -1) {
1809 // All the GEPs feeding the PHI are identical. Clone one down into our
1810 // BB so that it can be merged with the current GEP.
1811 GEP.getParent()->getInstList().insert(
1812 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1813 } else {
1814 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1815 // into the current block so it can be merged, and create a new PHI to
1816 // set that index.
1817 PHINode *NewPN;
1818 {
1819 IRBuilderBase::InsertPointGuard Guard(Builder);
1820 Builder.SetInsertPoint(PN);
1821 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1822 PN->getNumOperands());
1823 }
1824
1825 for (auto &I : PN->operands())
1826 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1827 PN->getIncomingBlock(I));
1828
1829 NewGEP->setOperand(DI, NewPN);
1830 GEP.getParent()->getInstList().insert(
1831 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1832 NewGEP->setOperand(DI, NewPN);
1833 }
1834
1835 GEP.setOperand(0, NewGEP);
1836 PtrOp = NewGEP;
1837 }
1838
1839 // Combine Indices - If the source pointer to this getelementptr instruction
1840 // is a getelementptr instruction, combine the indices of the two
1841 // getelementptr instructions into a single instruction.
1842 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1843 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1844 return nullptr;
1845
1846 // Try to reassociate loop invariant GEP chains to enable LICM.
1847 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1848 Src->hasOneUse()) {
1849 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1850 Value *GO1 = GEP.getOperand(1);
1851 Value *SO1 = Src->getOperand(1);
1852 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1853 // invariant: this breaks the dependence between GEPs and allows LICM
1854 // to hoist the invariant part out of the loop.
1855 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1856 // We have to be careful here.
1857 // We have something like:
1858 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1859 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1860 // If we just swap idx & idx2 then we could inadvertantly
1861 // change %src from a vector to a scalar, or vice versa.
1862 // Cases:
1863 // 1) %base a scalar & idx a scalar & idx2 a vector
1864 // => Swapping idx & idx2 turns %src into a vector type.
1865 // 2) %base a scalar & idx a vector & idx2 a scalar
1866 // => Swapping idx & idx2 turns %src in a scalar type
1867 // 3) %base, %idx, and %idx2 are scalars
1868 // => %src & %gep are scalars
1869 // => swapping idx & idx2 is safe
1870 // 4) %base a vector
1871 // => %src is a vector
1872 // => swapping idx & idx2 is safe.
1873 auto *SO0 = Src->getOperand(0);
1874 auto *SO0Ty = SO0->getType();
1875 if (!isa<VectorType>(GEPType) || // case 3
1876 isa<VectorType>(SO0Ty)) { // case 4
1877 Src->setOperand(1, GO1);
1878 GEP.setOperand(1, SO1);
1879 return &GEP;
1880 } else {
1881 // Case 1 or 2
1882 // -- have to recreate %src & %gep
1883 // put NewSrc at same location as %src
1884 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1885 auto *NewSrc = cast<GetElementPtrInst>(
1886 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1887 NewSrc->setIsInBounds(Src->isInBounds());
1888 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1889 NewGEP->setIsInBounds(GEP.isInBounds());
1890 return NewGEP;
1891 }
1892 }
1893 }
1894 }
1895
1896 // Note that if our source is a gep chain itself then we wait for that
1897 // chain to be resolved before we perform this transformation. This
1898 // avoids us creating a TON of code in some cases.
1899 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1900 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1901 return nullptr; // Wait until our source is folded to completion.
1902
1903 SmallVector<Value*, 8> Indices;
1904
1905 // Find out whether the last index in the source GEP is a sequential idx.
1906 bool EndsWithSequential = false;
1907 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1908 I != E; ++I)
1909 EndsWithSequential = I.isSequential();
1910
1911 // Can we combine the two pointer arithmetics offsets?
1912 if (EndsWithSequential) {
1913 // Replace: gep (gep %P, long B), long A, ...
1914 // With: T = long A+B; gep %P, T, ...
1915 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1916 Value *GO1 = GEP.getOperand(1);
1917
1918 // If they aren't the same type, then the input hasn't been processed
1919 // by the loop above yet (which canonicalizes sequential index types to
1920 // intptr_t). Just avoid transforming this until the input has been
1921 // normalized.
1922 if (SO1->getType() != GO1->getType())
1923 return nullptr;
1924
1925 Value *Sum =
1926 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1927 // Only do the combine when we are sure the cost after the
1928 // merge is never more than that before the merge.
1929 if (Sum == nullptr)
1930 return nullptr;
1931
1932 // Update the GEP in place if possible.
1933 if (Src->getNumOperands() == 2) {
1934 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
1935 GEP.setOperand(0, Src->getOperand(0));
1936 GEP.setOperand(1, Sum);
1937 return &GEP;
1938 }
1939 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1940 Indices.push_back(Sum);
1941 Indices.append(GEP.op_begin()+2, GEP.op_end());
1942 } else if (isa<Constant>(*GEP.idx_begin()) &&
1943 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1944 Src->getNumOperands() != 1) {
1945 // Otherwise we can do the fold if the first index of the GEP is a zero
1946 Indices.append(Src->op_begin()+1, Src->op_end());
1947 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1948 }
1949
1950 if (!Indices.empty())
1951 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
1952 ? GetElementPtrInst::CreateInBounds(
1953 Src->getSourceElementType(), Src->getOperand(0), Indices,
1954 GEP.getName())
1955 : GetElementPtrInst::Create(Src->getSourceElementType(),
1956 Src->getOperand(0), Indices,
1957 GEP.getName());
1958 }
1959
1960 if (GEP.getNumIndices() == 1) {
1961 unsigned AS = GEP.getPointerAddressSpace();
1962 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1963 DL.getIndexSizeInBits(AS)) {
1964 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
1965
1966 bool Matched = false;
1967 uint64_t C;
1968 Value *V = nullptr;
1969 if (TyAllocSize == 1) {
1970 V = GEP.getOperand(1);
1971 Matched = true;
1972 } else if (match(GEP.getOperand(1),
1973 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1974 if (TyAllocSize == 1ULL << C)
1975 Matched = true;
1976 } else if (match(GEP.getOperand(1),
1977 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1978 if (TyAllocSize == C)
1979 Matched = true;
1980 }
1981
1982 if (Matched) {
1983 // Canonicalize (gep i8* X, -(ptrtoint Y))
1984 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1985 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1986 // pointer arithmetic.
1987 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1988 Operator *Index = cast<Operator>(V);
1989 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
1990 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
1991 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
1992 }
1993 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1994 // to (bitcast Y)
1995 Value *Y;
1996 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1997 m_PtrToInt(m_Specific(GEP.getOperand(0))))))
1998 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
1999 }
2000 }
2001 }
2002
2003 // We do not handle pointer-vector geps here.
2004 if (GEPType->isVectorTy())
2005 return nullptr;
2006
2007 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2008 Value *StrippedPtr = PtrOp->stripPointerCasts();
2009 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2010
2011 if (StrippedPtr != PtrOp) {
2012 bool HasZeroPointerIndex = false;
2013 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2014
2015 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2016 HasZeroPointerIndex = C->isZero();
2017
2018 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2019 // into : GEP [10 x i8]* X, i32 0, ...
2020 //
2021 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2022 // into : GEP i8* X, ...
2023 //
2024 // This occurs when the program declares an array extern like "int X[];"
2025 if (HasZeroPointerIndex) {
2026 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2027 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2028 if (CATy->getElementType() == StrippedPtrEltTy) {
2029 // -> GEP i8* X, ...
2030 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2031 GetElementPtrInst *Res = GetElementPtrInst::Create(
2032 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2033 Res->setIsInBounds(GEP.isInBounds());
2034 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2035 return Res;
2036 // Insert Res, and create an addrspacecast.
2037 // e.g.,
2038 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2039 // ->
2040 // %0 = GEP i8 addrspace(1)* X, ...
2041 // addrspacecast i8 addrspace(1)* %0 to i8*
2042 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2043 }
2044
2045 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2046 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2047 if (CATy->getElementType() == XATy->getElementType()) {
2048 // -> GEP [10 x i8]* X, i32 0, ...
2049 // At this point, we know that the cast source type is a pointer
2050 // to an array of the same type as the destination pointer
2051 // array. Because the array type is never stepped over (there
2052 // is a leading zero) we can fold the cast into this GEP.
2053 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2054 GEP.setOperand(0, StrippedPtr);
2055 GEP.setSourceElementType(XATy);
2056 return &GEP;
2057 }
2058 // Cannot replace the base pointer directly because StrippedPtr's
2059 // address space is different. Instead, create a new GEP followed by
2060 // an addrspacecast.
2061 // e.g.,
2062 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2063 // i32 0, ...
2064 // ->
2065 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2066 // addrspacecast i8 addrspace(1)* %0 to i8*
2067 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2068 Value *NewGEP =
2069 GEP.isInBounds()
2070 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2071 Idx, GEP.getName())
2072 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2073 GEP.getName());
2074 return new AddrSpaceCastInst(NewGEP, GEPType);
2075 }
2076 }
2077 }
2078 } else if (GEP.getNumOperands() == 2) {
2079 // Transform things like:
2080 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
2081 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
2082 if (StrippedPtrEltTy->isArrayTy() &&
2083 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2084 DL.getTypeAllocSize(GEPEltType)) {
2085 Type *IdxType = DL.getIndexType(GEPType);
2086 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2087 Value *NewGEP =
2088 GEP.isInBounds()
2089 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2090 GEP.getName())
2091 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2092 GEP.getName());
2093
2094 // V and GEP are both pointer types --> BitCast
2095 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2096 }
2097
2098 // Transform things like:
2099 // %V = mul i64 %N, 4
2100 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2101 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2102 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2103 // Check that changing the type amounts to dividing the index by a scale
2104 // factor.
2105 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2106 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
2107 if (ResSize && SrcSize % ResSize == 0) {
2108 Value *Idx = GEP.getOperand(1);
2109 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2110 uint64_t Scale = SrcSize / ResSize;
2111
2112 // Earlier transforms ensure that the index has the right type
2113 // according to Data Layout, which considerably simplifies the
2114 // logic by eliminating implicit casts.
2115 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2116 "Index type does not match the Data Layout preferences");
2117
2118 bool NSW;
2119 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2120 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2121 // If the multiplication NewIdx * Scale may overflow then the new
2122 // GEP may not be "inbounds".
2123 Value *NewGEP =
2124 GEP.isInBounds() && NSW
2125 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2126 NewIdx, GEP.getName())
2127 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2128 GEP.getName());
2129
2130 // The NewGEP must be pointer typed, so must the old one -> BitCast
2131 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2132 GEPType);
2133 }
2134 }
2135 }
2136
2137 // Similarly, transform things like:
2138 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2139 // (where tmp = 8*tmp2) into:
2140 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2141 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2142 StrippedPtrEltTy->isArrayTy()) {
2143 // Check that changing to the array element type amounts to dividing the
2144 // index by a scale factor.
2145 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2146 uint64_t ArrayEltSize =
2147 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
2148 if (ResSize && ArrayEltSize % ResSize == 0) {
2149 Value *Idx = GEP.getOperand(1);
2150 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2151 uint64_t Scale = ArrayEltSize / ResSize;
2152
2153 // Earlier transforms ensure that the index has the right type
2154 // according to the Data Layout, which considerably simplifies
2155 // the logic by eliminating implicit casts.
2156 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2157 "Index type does not match the Data Layout preferences");
2158
2159 bool NSW;
2160 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2161 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2162 // If the multiplication NewIdx * Scale may overflow then the new
2163 // GEP may not be "inbounds".
2164 Type *IndTy = DL.getIndexType(GEPType);
2165 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2166
2167 Value *NewGEP =
2168 GEP.isInBounds() && NSW
2169 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2170 Off, GEP.getName())
2171 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2172 GEP.getName());
2173 // The NewGEP must be pointer typed, so must the old one -> BitCast
2174 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2175 GEPType);
2176 }
2177 }
2178 }
2179 }
2180 }
2181
2182 // addrspacecast between types is canonicalized as a bitcast, then an
2183 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2184 // through the addrspacecast.
2185 Value *ASCStrippedPtrOp = PtrOp;
2186 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2187 // X = bitcast A addrspace(1)* to B addrspace(1)*
2188 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2189 // Z = gep Y, <...constant indices...>
2190 // Into an addrspacecasted GEP of the struct.
2191 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2192 ASCStrippedPtrOp = BC;
2193 }
2194
2195 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2196 Value *SrcOp = BCI->getOperand(0);
2197 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2198 Type *SrcEltType = SrcType->getElementType();
2199
2200 // GEP directly using the source operand if this GEP is accessing an element
2201 // of a bitcasted pointer to vector or array of the same dimensions:
2202 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2203 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2204 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2205 const DataLayout &DL) {
2206 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
2207 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements() &&
2208 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2209 };
2210 if (GEP.getNumOperands() == 3 &&
2211 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2212 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2213 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2214 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2215
2216 // Create a new GEP here, as using `setOperand()` followed by
2217 // `setSourceElementType()` won't actually update the type of the
2218 // existing GEP Value. Causing issues if this Value is accessed when
2219 // constructing an AddrSpaceCastInst
2220 Value *NGEP =
2221 GEP.isInBounds()
2222 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2223 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2224 NGEP->takeName(&GEP);
2225
2226 // Preserve GEP address space to satisfy users
2227 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2228 return new AddrSpaceCastInst(NGEP, GEPType);
2229
2230 return replaceInstUsesWith(GEP, NGEP);
2231 }
2232
2233 // See if we can simplify:
2234 // X = bitcast A* to B*
2235 // Y = gep X, <...constant indices...>
2236 // into a gep of the original struct. This is important for SROA and alias
2237 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2238 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2239 APInt Offset(OffsetBits, 0);
2240 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2241 // If this GEP instruction doesn't move the pointer, just replace the GEP
2242 // with a bitcast of the real input to the dest type.
2243 if (!Offset) {
2244 // If the bitcast is of an allocation, and the allocation will be
2245 // converted to match the type of the cast, don't touch this.
2246 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2247 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2248 if (Instruction *I = visitBitCast(*BCI)) {
2249 if (I != BCI) {
2250 I->takeName(BCI);
2251 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2252 replaceInstUsesWith(*BCI, I);
2253 }
2254 return &GEP;
2255 }
2256 }
2257
2258 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2259 return new AddrSpaceCastInst(SrcOp, GEPType);
2260 return new BitCastInst(SrcOp, GEPType);
2261 }
2262
2263 // Otherwise, if the offset is non-zero, we need to find out if there is a
2264 // field at Offset in 'A's type. If so, we can pull the cast through the
2265 // GEP.
2266 SmallVector<Value*, 8> NewIndices;
2267 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2268 Value *NGEP =
2269 GEP.isInBounds()
2270 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2271 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2272
2273 if (NGEP->getType() == GEPType)
2274 return replaceInstUsesWith(GEP, NGEP);
2275 NGEP->takeName(&GEP);
2276
2277 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2278 return new AddrSpaceCastInst(NGEP, GEPType);
2279 return new BitCastInst(NGEP, GEPType);
2280 }
2281 }
2282 }
2283
2284 if (!GEP.isInBounds()) {
2285 unsigned IdxWidth =
2286 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2287 APInt BasePtrOffset(IdxWidth, 0);
2288 Value *UnderlyingPtrOp =
2289 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2290 BasePtrOffset);
2291 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2292 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2293 BasePtrOffset.isNonNegative()) {
2294 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2295 if (BasePtrOffset.ule(AllocSize)) {
2296 return GetElementPtrInst::CreateInBounds(
2297 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2298 GEP.getName());
2299 }
2300 }
2301 }
2302 }
2303
2304 return nullptr;
2305 }
2306
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo * TLI,Instruction * AI)2307 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2308 Instruction *AI) {
2309 if (isa<ConstantPointerNull>(V))
2310 return true;
2311 if (auto *LI = dyn_cast<LoadInst>(V))
2312 return isa<GlobalVariable>(LI->getPointerOperand());
2313 // Two distinct allocations will never be equal.
2314 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2315 // through bitcasts of V can cause
2316 // the result statement below to be true, even when AI and V (ex:
2317 // i8* ->i32* ->i8* of AI) are the same allocations.
2318 return isAllocLikeFn(V, TLI) && V != AI;
2319 }
2320
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakTrackingVH> & Users,const TargetLibraryInfo * TLI)2321 static bool isAllocSiteRemovable(Instruction *AI,
2322 SmallVectorImpl<WeakTrackingVH> &Users,
2323 const TargetLibraryInfo *TLI) {
2324 SmallVector<Instruction*, 4> Worklist;
2325 Worklist.push_back(AI);
2326
2327 do {
2328 Instruction *PI = Worklist.pop_back_val();
2329 for (User *U : PI->users()) {
2330 Instruction *I = cast<Instruction>(U);
2331 switch (I->getOpcode()) {
2332 default:
2333 // Give up the moment we see something we can't handle.
2334 return false;
2335
2336 case Instruction::AddrSpaceCast:
2337 case Instruction::BitCast:
2338 case Instruction::GetElementPtr:
2339 Users.emplace_back(I);
2340 Worklist.push_back(I);
2341 continue;
2342
2343 case Instruction::ICmp: {
2344 ICmpInst *ICI = cast<ICmpInst>(I);
2345 // We can fold eq/ne comparisons with null to false/true, respectively.
2346 // We also fold comparisons in some conditions provided the alloc has
2347 // not escaped (see isNeverEqualToUnescapedAlloc).
2348 if (!ICI->isEquality())
2349 return false;
2350 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2351 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2352 return false;
2353 Users.emplace_back(I);
2354 continue;
2355 }
2356
2357 case Instruction::Call:
2358 // Ignore no-op and store intrinsics.
2359 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2360 switch (II->getIntrinsicID()) {
2361 default:
2362 return false;
2363
2364 case Intrinsic::memmove:
2365 case Intrinsic::memcpy:
2366 case Intrinsic::memset: {
2367 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2368 if (MI->isVolatile() || MI->getRawDest() != PI)
2369 return false;
2370 LLVM_FALLTHROUGH;
2371 }
2372 case Intrinsic::invariant_start:
2373 case Intrinsic::invariant_end:
2374 case Intrinsic::lifetime_start:
2375 case Intrinsic::lifetime_end:
2376 case Intrinsic::objectsize:
2377 Users.emplace_back(I);
2378 continue;
2379 }
2380 }
2381
2382 if (isFreeCall(I, TLI)) {
2383 Users.emplace_back(I);
2384 continue;
2385 }
2386 return false;
2387
2388 case Instruction::Store: {
2389 StoreInst *SI = cast<StoreInst>(I);
2390 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2391 return false;
2392 Users.emplace_back(I);
2393 continue;
2394 }
2395 }
2396 llvm_unreachable("missing a return?");
2397 }
2398 } while (!Worklist.empty());
2399 return true;
2400 }
2401
visitAllocSite(Instruction & MI)2402 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2403 // If we have a malloc call which is only used in any amount of comparisons to
2404 // null and free calls, delete the calls and replace the comparisons with true
2405 // or false as appropriate.
2406
2407 // This is based on the principle that we can substitute our own allocation
2408 // function (which will never return null) rather than knowledge of the
2409 // specific function being called. In some sense this can change the permitted
2410 // outputs of a program (when we convert a malloc to an alloca, the fact that
2411 // the allocation is now on the stack is potentially visible, for example),
2412 // but we believe in a permissible manner.
2413 SmallVector<WeakTrackingVH, 64> Users;
2414
2415 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2416 // before each store.
2417 TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2418 std::unique_ptr<DIBuilder> DIB;
2419 if (isa<AllocaInst>(MI)) {
2420 DIIs = FindDbgAddrUses(&MI);
2421 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2422 }
2423
2424 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2425 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2426 // Lowering all @llvm.objectsize calls first because they may
2427 // use a bitcast/GEP of the alloca we are removing.
2428 if (!Users[i])
2429 continue;
2430
2431 Instruction *I = cast<Instruction>(&*Users[i]);
2432
2433 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2434 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2435 Value *Result =
2436 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2437 replaceInstUsesWith(*I, Result);
2438 eraseInstFromFunction(*I);
2439 Users[i] = nullptr; // Skip examining in the next loop.
2440 }
2441 }
2442 }
2443 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2444 if (!Users[i])
2445 continue;
2446
2447 Instruction *I = cast<Instruction>(&*Users[i]);
2448
2449 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2450 replaceInstUsesWith(*C,
2451 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2452 C->isFalseWhenEqual()));
2453 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2454 for (auto *DII : DIIs)
2455 ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2456 } else {
2457 // Casts, GEP, or anything else: we're about to delete this instruction,
2458 // so it can not have any valid uses.
2459 replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2460 }
2461 eraseInstFromFunction(*I);
2462 }
2463
2464 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2465 // Replace invoke with a NOP intrinsic to maintain the original CFG
2466 Module *M = II->getModule();
2467 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2468 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2469 None, "", II->getParent());
2470 }
2471
2472 for (auto *DII : DIIs)
2473 eraseInstFromFunction(*DII);
2474
2475 return eraseInstFromFunction(MI);
2476 }
2477 return nullptr;
2478 }
2479
2480 /// Move the call to free before a NULL test.
2481 ///
2482 /// Check if this free is accessed after its argument has been test
2483 /// against NULL (property 0).
2484 /// If yes, it is legal to move this call in its predecessor block.
2485 ///
2486 /// The move is performed only if the block containing the call to free
2487 /// will be removed, i.e.:
2488 /// 1. it has only one predecessor P, and P has two successors
2489 /// 2. it contains the call, noops, and an unconditional branch
2490 /// 3. its successor is the same as its predecessor's successor
2491 ///
2492 /// The profitability is out-of concern here and this function should
2493 /// be called only if the caller knows this transformation would be
2494 /// profitable (e.g., for code size).
tryToMoveFreeBeforeNullTest(CallInst & FI,const DataLayout & DL)2495 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2496 const DataLayout &DL) {
2497 Value *Op = FI.getArgOperand(0);
2498 BasicBlock *FreeInstrBB = FI.getParent();
2499 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2500
2501 // Validate part of constraint #1: Only one predecessor
2502 // FIXME: We can extend the number of predecessor, but in that case, we
2503 // would duplicate the call to free in each predecessor and it may
2504 // not be profitable even for code size.
2505 if (!PredBB)
2506 return nullptr;
2507
2508 // Validate constraint #2: Does this block contains only the call to
2509 // free, noops, and an unconditional branch?
2510 BasicBlock *SuccBB;
2511 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2512 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2513 return nullptr;
2514
2515 // If there are only 2 instructions in the block, at this point,
2516 // this is the call to free and unconditional.
2517 // If there are more than 2 instructions, check that they are noops
2518 // i.e., they won't hurt the performance of the generated code.
2519 if (FreeInstrBB->size() != 2) {
2520 for (const Instruction &Inst : *FreeInstrBB) {
2521 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2522 continue;
2523 auto *Cast = dyn_cast<CastInst>(&Inst);
2524 if (!Cast || !Cast->isNoopCast(DL))
2525 return nullptr;
2526 }
2527 }
2528 // Validate the rest of constraint #1 by matching on the pred branch.
2529 Instruction *TI = PredBB->getTerminator();
2530 BasicBlock *TrueBB, *FalseBB;
2531 ICmpInst::Predicate Pred;
2532 if (!match(TI, m_Br(m_ICmp(Pred,
2533 m_CombineOr(m_Specific(Op),
2534 m_Specific(Op->stripPointerCasts())),
2535 m_Zero()),
2536 TrueBB, FalseBB)))
2537 return nullptr;
2538 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2539 return nullptr;
2540
2541 // Validate constraint #3: Ensure the null case just falls through.
2542 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2543 return nullptr;
2544 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2545 "Broken CFG: missing edge from predecessor to successor");
2546
2547 // At this point, we know that everything in FreeInstrBB can be moved
2548 // before TI.
2549 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2550 It != End;) {
2551 Instruction &Instr = *It++;
2552 if (&Instr == FreeInstrBBTerminator)
2553 break;
2554 Instr.moveBefore(TI);
2555 }
2556 assert(FreeInstrBB->size() == 1 &&
2557 "Only the branch instruction should remain");
2558 return &FI;
2559 }
2560
visitFree(CallInst & FI)2561 Instruction *InstCombiner::visitFree(CallInst &FI) {
2562 Value *Op = FI.getArgOperand(0);
2563
2564 // free undef -> unreachable.
2565 if (isa<UndefValue>(Op)) {
2566 // Leave a marker since we can't modify the CFG here.
2567 CreateNonTerminatorUnreachable(&FI);
2568 return eraseInstFromFunction(FI);
2569 }
2570
2571 // If we have 'free null' delete the instruction. This can happen in stl code
2572 // when lots of inlining happens.
2573 if (isa<ConstantPointerNull>(Op))
2574 return eraseInstFromFunction(FI);
2575
2576 // If we optimize for code size, try to move the call to free before the null
2577 // test so that simplify cfg can remove the empty block and dead code
2578 // elimination the branch. I.e., helps to turn something like:
2579 // if (foo) free(foo);
2580 // into
2581 // free(foo);
2582 if (MinimizeSize)
2583 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2584 return I;
2585
2586 return nullptr;
2587 }
2588
visitReturnInst(ReturnInst & RI)2589 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2590 if (RI.getNumOperands() == 0) // ret void
2591 return nullptr;
2592
2593 Value *ResultOp = RI.getOperand(0);
2594 Type *VTy = ResultOp->getType();
2595 if (!VTy->isIntegerTy())
2596 return nullptr;
2597
2598 // There might be assume intrinsics dominating this return that completely
2599 // determine the value. If so, constant fold it.
2600 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2601 if (Known.isConstant())
2602 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
2603
2604 return nullptr;
2605 }
2606
visitBranchInst(BranchInst & BI)2607 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2608 // Change br (not X), label True, label False to: br X, label False, True
2609 Value *X = nullptr;
2610 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2611 !isa<Constant>(X)) {
2612 // Swap Destinations and condition...
2613 BI.setCondition(X);
2614 BI.swapSuccessors();
2615 return &BI;
2616 }
2617
2618 // If the condition is irrelevant, remove the use so that other
2619 // transforms on the condition become more effective.
2620 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2621 BI.getSuccessor(0) == BI.getSuccessor(1)) {
2622 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
2623 return &BI;
2624 }
2625
2626 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2627 CmpInst::Predicate Pred;
2628 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())),
2629 m_BasicBlock(), m_BasicBlock())) &&
2630 !isCanonicalPredicate(Pred)) {
2631 // Swap destinations and condition.
2632 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2633 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2634 BI.swapSuccessors();
2635 Worklist.Add(Cond);
2636 return &BI;
2637 }
2638
2639 return nullptr;
2640 }
2641
visitSwitchInst(SwitchInst & SI)2642 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2643 Value *Cond = SI.getCondition();
2644 Value *Op0;
2645 ConstantInt *AddRHS;
2646 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2647 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2648 for (auto Case : SI.cases()) {
2649 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2650 assert(isa<ConstantInt>(NewCase) &&
2651 "Result of expression should be constant");
2652 Case.setValue(cast<ConstantInt>(NewCase));
2653 }
2654 SI.setCondition(Op0);
2655 return &SI;
2656 }
2657
2658 KnownBits Known = computeKnownBits(Cond, 0, &SI);
2659 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2660 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2661
2662 // Compute the number of leading bits we can ignore.
2663 // TODO: A better way to determine this would use ComputeNumSignBits().
2664 for (auto &C : SI.cases()) {
2665 LeadingKnownZeros = std::min(
2666 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2667 LeadingKnownOnes = std::min(
2668 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2669 }
2670
2671 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2672
2673 // Shrink the condition operand if the new type is smaller than the old type.
2674 // But do not shrink to a non-standard type, because backend can't generate
2675 // good code for that yet.
2676 // TODO: We can make it aggressive again after fixing PR39569.
2677 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2678 shouldChangeType(Known.getBitWidth(), NewWidth)) {
2679 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2680 Builder.SetInsertPoint(&SI);
2681 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2682 SI.setCondition(NewCond);
2683
2684 for (auto Case : SI.cases()) {
2685 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2686 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2687 }
2688 return &SI;
2689 }
2690
2691 return nullptr;
2692 }
2693
visitExtractValueInst(ExtractValueInst & EV)2694 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2695 Value *Agg = EV.getAggregateOperand();
2696
2697 if (!EV.hasIndices())
2698 return replaceInstUsesWith(EV, Agg);
2699
2700 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2701 SQ.getWithInstruction(&EV)))
2702 return replaceInstUsesWith(EV, V);
2703
2704 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2705 // We're extracting from an insertvalue instruction, compare the indices
2706 const unsigned *exti, *exte, *insi, *inse;
2707 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2708 exte = EV.idx_end(), inse = IV->idx_end();
2709 exti != exte && insi != inse;
2710 ++exti, ++insi) {
2711 if (*insi != *exti)
2712 // The insert and extract both reference distinctly different elements.
2713 // This means the extract is not influenced by the insert, and we can
2714 // replace the aggregate operand of the extract with the aggregate
2715 // operand of the insert. i.e., replace
2716 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2717 // %E = extractvalue { i32, { i32 } } %I, 0
2718 // with
2719 // %E = extractvalue { i32, { i32 } } %A, 0
2720 return ExtractValueInst::Create(IV->getAggregateOperand(),
2721 EV.getIndices());
2722 }
2723 if (exti == exte && insi == inse)
2724 // Both iterators are at the end: Index lists are identical. Replace
2725 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2726 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2727 // with "i32 42"
2728 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2729 if (exti == exte) {
2730 // The extract list is a prefix of the insert list. i.e. replace
2731 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2732 // %E = extractvalue { i32, { i32 } } %I, 1
2733 // with
2734 // %X = extractvalue { i32, { i32 } } %A, 1
2735 // %E = insertvalue { i32 } %X, i32 42, 0
2736 // by switching the order of the insert and extract (though the
2737 // insertvalue should be left in, since it may have other uses).
2738 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2739 EV.getIndices());
2740 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2741 makeArrayRef(insi, inse));
2742 }
2743 if (insi == inse)
2744 // The insert list is a prefix of the extract list
2745 // We can simply remove the common indices from the extract and make it
2746 // operate on the inserted value instead of the insertvalue result.
2747 // i.e., replace
2748 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2749 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2750 // with
2751 // %E extractvalue { i32 } { i32 42 }, 0
2752 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2753 makeArrayRef(exti, exte));
2754 }
2755 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2756 // We're extracting from an overflow intrinsic, see if we're the only user,
2757 // which allows us to simplify multiple result intrinsics to simpler
2758 // things that just get one value.
2759 if (WO->hasOneUse()) {
2760 // Check if we're grabbing only the result of a 'with overflow' intrinsic
2761 // and replace it with a traditional binary instruction.
2762 if (*EV.idx_begin() == 0) {
2763 Instruction::BinaryOps BinOp = WO->getBinaryOp();
2764 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2765 replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2766 eraseInstFromFunction(*WO);
2767 return BinaryOperator::Create(BinOp, LHS, RHS);
2768 }
2769
2770 // If the normal result of the add is dead, and the RHS is a constant,
2771 // we can transform this into a range comparison.
2772 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2773 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2774 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2775 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2776 ConstantExpr::getNot(CI));
2777 }
2778 }
2779 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2780 // If the (non-volatile) load only has one use, we can rewrite this to a
2781 // load from a GEP. This reduces the size of the load. If a load is used
2782 // only by extractvalue instructions then this either must have been
2783 // optimized before, or it is a struct with padding, in which case we
2784 // don't want to do the transformation as it loses padding knowledge.
2785 if (L->isSimple() && L->hasOneUse()) {
2786 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2787 SmallVector<Value*, 4> Indices;
2788 // Prefix an i32 0 since we need the first element.
2789 Indices.push_back(Builder.getInt32(0));
2790 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2791 I != E; ++I)
2792 Indices.push_back(Builder.getInt32(*I));
2793
2794 // We need to insert these at the location of the old load, not at that of
2795 // the extractvalue.
2796 Builder.SetInsertPoint(L);
2797 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2798 L->getPointerOperand(), Indices);
2799 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2800 // Whatever aliasing information we had for the orignal load must also
2801 // hold for the smaller load, so propagate the annotations.
2802 AAMDNodes Nodes;
2803 L->getAAMetadata(Nodes);
2804 NL->setAAMetadata(Nodes);
2805 // Returning the load directly will cause the main loop to insert it in
2806 // the wrong spot, so use replaceInstUsesWith().
2807 return replaceInstUsesWith(EV, NL);
2808 }
2809 // We could simplify extracts from other values. Note that nested extracts may
2810 // already be simplified implicitly by the above: extract (extract (insert) )
2811 // will be translated into extract ( insert ( extract ) ) first and then just
2812 // the value inserted, if appropriate. Similarly for extracts from single-use
2813 // loads: extract (extract (load)) will be translated to extract (load (gep))
2814 // and if again single-use then via load (gep (gep)) to load (gep).
2815 // However, double extracts from e.g. function arguments or return values
2816 // aren't handled yet.
2817 return nullptr;
2818 }
2819
2820 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)2821 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2822 switch (Personality) {
2823 case EHPersonality::GNU_C:
2824 case EHPersonality::GNU_C_SjLj:
2825 case EHPersonality::Rust:
2826 // The GCC C EH and Rust personality only exists to support cleanups, so
2827 // it's not clear what the semantics of catch clauses are.
2828 return false;
2829 case EHPersonality::Unknown:
2830 return false;
2831 case EHPersonality::GNU_Ada:
2832 // While __gnat_all_others_value will match any Ada exception, it doesn't
2833 // match foreign exceptions (or didn't, before gcc-4.7).
2834 return false;
2835 case EHPersonality::GNU_CXX:
2836 case EHPersonality::GNU_CXX_SjLj:
2837 case EHPersonality::GNU_ObjC:
2838 case EHPersonality::MSVC_X86SEH:
2839 case EHPersonality::MSVC_Win64SEH:
2840 case EHPersonality::MSVC_CXX:
2841 case EHPersonality::CoreCLR:
2842 case EHPersonality::Wasm_CXX:
2843 return TypeInfo->isNullValue();
2844 }
2845 llvm_unreachable("invalid enum");
2846 }
2847
shorter_filter(const Value * LHS,const Value * RHS)2848 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2849 return
2850 cast<ArrayType>(LHS->getType())->getNumElements()
2851 <
2852 cast<ArrayType>(RHS->getType())->getNumElements();
2853 }
2854
visitLandingPadInst(LandingPadInst & LI)2855 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2856 // The logic here should be correct for any real-world personality function.
2857 // However if that turns out not to be true, the offending logic can always
2858 // be conditioned on the personality function, like the catch-all logic is.
2859 EHPersonality Personality =
2860 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2861
2862 // Simplify the list of clauses, eg by removing repeated catch clauses
2863 // (these are often created by inlining).
2864 bool MakeNewInstruction = false; // If true, recreate using the following:
2865 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2866 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2867
2868 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2869 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2870 bool isLastClause = i + 1 == e;
2871 if (LI.isCatch(i)) {
2872 // A catch clause.
2873 Constant *CatchClause = LI.getClause(i);
2874 Constant *TypeInfo = CatchClause->stripPointerCasts();
2875
2876 // If we already saw this clause, there is no point in having a second
2877 // copy of it.
2878 if (AlreadyCaught.insert(TypeInfo).second) {
2879 // This catch clause was not already seen.
2880 NewClauses.push_back(CatchClause);
2881 } else {
2882 // Repeated catch clause - drop the redundant copy.
2883 MakeNewInstruction = true;
2884 }
2885
2886 // If this is a catch-all then there is no point in keeping any following
2887 // clauses or marking the landingpad as having a cleanup.
2888 if (isCatchAll(Personality, TypeInfo)) {
2889 if (!isLastClause)
2890 MakeNewInstruction = true;
2891 CleanupFlag = false;
2892 break;
2893 }
2894 } else {
2895 // A filter clause. If any of the filter elements were already caught
2896 // then they can be dropped from the filter. It is tempting to try to
2897 // exploit the filter further by saying that any typeinfo that does not
2898 // occur in the filter can't be caught later (and thus can be dropped).
2899 // However this would be wrong, since typeinfos can match without being
2900 // equal (for example if one represents a C++ class, and the other some
2901 // class derived from it).
2902 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2903 Constant *FilterClause = LI.getClause(i);
2904 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2905 unsigned NumTypeInfos = FilterType->getNumElements();
2906
2907 // An empty filter catches everything, so there is no point in keeping any
2908 // following clauses or marking the landingpad as having a cleanup. By
2909 // dealing with this case here the following code is made a bit simpler.
2910 if (!NumTypeInfos) {
2911 NewClauses.push_back(FilterClause);
2912 if (!isLastClause)
2913 MakeNewInstruction = true;
2914 CleanupFlag = false;
2915 break;
2916 }
2917
2918 bool MakeNewFilter = false; // If true, make a new filter.
2919 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2920 if (isa<ConstantAggregateZero>(FilterClause)) {
2921 // Not an empty filter - it contains at least one null typeinfo.
2922 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2923 Constant *TypeInfo =
2924 Constant::getNullValue(FilterType->getElementType());
2925 // If this typeinfo is a catch-all then the filter can never match.
2926 if (isCatchAll(Personality, TypeInfo)) {
2927 // Throw the filter away.
2928 MakeNewInstruction = true;
2929 continue;
2930 }
2931
2932 // There is no point in having multiple copies of this typeinfo, so
2933 // discard all but the first copy if there is more than one.
2934 NewFilterElts.push_back(TypeInfo);
2935 if (NumTypeInfos > 1)
2936 MakeNewFilter = true;
2937 } else {
2938 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2939 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2940 NewFilterElts.reserve(NumTypeInfos);
2941
2942 // Remove any filter elements that were already caught or that already
2943 // occurred in the filter. While there, see if any of the elements are
2944 // catch-alls. If so, the filter can be discarded.
2945 bool SawCatchAll = false;
2946 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2947 Constant *Elt = Filter->getOperand(j);
2948 Constant *TypeInfo = Elt->stripPointerCasts();
2949 if (isCatchAll(Personality, TypeInfo)) {
2950 // This element is a catch-all. Bail out, noting this fact.
2951 SawCatchAll = true;
2952 break;
2953 }
2954
2955 // Even if we've seen a type in a catch clause, we don't want to
2956 // remove it from the filter. An unexpected type handler may be
2957 // set up for a call site which throws an exception of the same
2958 // type caught. In order for the exception thrown by the unexpected
2959 // handler to propagate correctly, the filter must be correctly
2960 // described for the call site.
2961 //
2962 // Example:
2963 //
2964 // void unexpected() { throw 1;}
2965 // void foo() throw (int) {
2966 // std::set_unexpected(unexpected);
2967 // try {
2968 // throw 2.0;
2969 // } catch (int i) {}
2970 // }
2971
2972 // There is no point in having multiple copies of the same typeinfo in
2973 // a filter, so only add it if we didn't already.
2974 if (SeenInFilter.insert(TypeInfo).second)
2975 NewFilterElts.push_back(cast<Constant>(Elt));
2976 }
2977 // A filter containing a catch-all cannot match anything by definition.
2978 if (SawCatchAll) {
2979 // Throw the filter away.
2980 MakeNewInstruction = true;
2981 continue;
2982 }
2983
2984 // If we dropped something from the filter, make a new one.
2985 if (NewFilterElts.size() < NumTypeInfos)
2986 MakeNewFilter = true;
2987 }
2988 if (MakeNewFilter) {
2989 FilterType = ArrayType::get(FilterType->getElementType(),
2990 NewFilterElts.size());
2991 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2992 MakeNewInstruction = true;
2993 }
2994
2995 NewClauses.push_back(FilterClause);
2996
2997 // If the new filter is empty then it will catch everything so there is
2998 // no point in keeping any following clauses or marking the landingpad
2999 // as having a cleanup. The case of the original filter being empty was
3000 // already handled above.
3001 if (MakeNewFilter && !NewFilterElts.size()) {
3002 assert(MakeNewInstruction && "New filter but not a new instruction!");
3003 CleanupFlag = false;
3004 break;
3005 }
3006 }
3007 }
3008
3009 // If several filters occur in a row then reorder them so that the shortest
3010 // filters come first (those with the smallest number of elements). This is
3011 // advantageous because shorter filters are more likely to match, speeding up
3012 // unwinding, but mostly because it increases the effectiveness of the other
3013 // filter optimizations below.
3014 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3015 unsigned j;
3016 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3017 for (j = i; j != e; ++j)
3018 if (!isa<ArrayType>(NewClauses[j]->getType()))
3019 break;
3020
3021 // Check whether the filters are already sorted by length. We need to know
3022 // if sorting them is actually going to do anything so that we only make a
3023 // new landingpad instruction if it does.
3024 for (unsigned k = i; k + 1 < j; ++k)
3025 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3026 // Not sorted, so sort the filters now. Doing an unstable sort would be
3027 // correct too but reordering filters pointlessly might confuse users.
3028 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3029 shorter_filter);
3030 MakeNewInstruction = true;
3031 break;
3032 }
3033
3034 // Look for the next batch of filters.
3035 i = j + 1;
3036 }
3037
3038 // If typeinfos matched if and only if equal, then the elements of a filter L
3039 // that occurs later than a filter F could be replaced by the intersection of
3040 // the elements of F and L. In reality two typeinfos can match without being
3041 // equal (for example if one represents a C++ class, and the other some class
3042 // derived from it) so it would be wrong to perform this transform in general.
3043 // However the transform is correct and useful if F is a subset of L. In that
3044 // case L can be replaced by F, and thus removed altogether since repeating a
3045 // filter is pointless. So here we look at all pairs of filters F and L where
3046 // L follows F in the list of clauses, and remove L if every element of F is
3047 // an element of L. This can occur when inlining C++ functions with exception
3048 // specifications.
3049 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3050 // Examine each filter in turn.
3051 Value *Filter = NewClauses[i];
3052 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3053 if (!FTy)
3054 // Not a filter - skip it.
3055 continue;
3056 unsigned FElts = FTy->getNumElements();
3057 // Examine each filter following this one. Doing this backwards means that
3058 // we don't have to worry about filters disappearing under us when removed.
3059 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3060 Value *LFilter = NewClauses[j];
3061 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3062 if (!LTy)
3063 // Not a filter - skip it.
3064 continue;
3065 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3066 // an element of LFilter, then discard LFilter.
3067 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3068 // If Filter is empty then it is a subset of LFilter.
3069 if (!FElts) {
3070 // Discard LFilter.
3071 NewClauses.erase(J);
3072 MakeNewInstruction = true;
3073 // Move on to the next filter.
3074 continue;
3075 }
3076 unsigned LElts = LTy->getNumElements();
3077 // If Filter is longer than LFilter then it cannot be a subset of it.
3078 if (FElts > LElts)
3079 // Move on to the next filter.
3080 continue;
3081 // At this point we know that LFilter has at least one element.
3082 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3083 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3084 // already know that Filter is not longer than LFilter).
3085 if (isa<ConstantAggregateZero>(Filter)) {
3086 assert(FElts <= LElts && "Should have handled this case earlier!");
3087 // Discard LFilter.
3088 NewClauses.erase(J);
3089 MakeNewInstruction = true;
3090 }
3091 // Move on to the next filter.
3092 continue;
3093 }
3094 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3095 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3096 // Since Filter is non-empty and contains only zeros, it is a subset of
3097 // LFilter iff LFilter contains a zero.
3098 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3099 for (unsigned l = 0; l != LElts; ++l)
3100 if (LArray->getOperand(l)->isNullValue()) {
3101 // LFilter contains a zero - discard it.
3102 NewClauses.erase(J);
3103 MakeNewInstruction = true;
3104 break;
3105 }
3106 // Move on to the next filter.
3107 continue;
3108 }
3109 // At this point we know that both filters are ConstantArrays. Loop over
3110 // operands to see whether every element of Filter is also an element of
3111 // LFilter. Since filters tend to be short this is probably faster than
3112 // using a method that scales nicely.
3113 ConstantArray *FArray = cast<ConstantArray>(Filter);
3114 bool AllFound = true;
3115 for (unsigned f = 0; f != FElts; ++f) {
3116 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3117 AllFound = false;
3118 for (unsigned l = 0; l != LElts; ++l) {
3119 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3120 if (LTypeInfo == FTypeInfo) {
3121 AllFound = true;
3122 break;
3123 }
3124 }
3125 if (!AllFound)
3126 break;
3127 }
3128 if (AllFound) {
3129 // Discard LFilter.
3130 NewClauses.erase(J);
3131 MakeNewInstruction = true;
3132 }
3133 // Move on to the next filter.
3134 }
3135 }
3136
3137 // If we changed any of the clauses, replace the old landingpad instruction
3138 // with a new one.
3139 if (MakeNewInstruction) {
3140 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3141 NewClauses.size());
3142 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3143 NLI->addClause(NewClauses[i]);
3144 // A landing pad with no clauses must have the cleanup flag set. It is
3145 // theoretically possible, though highly unlikely, that we eliminated all
3146 // clauses. If so, force the cleanup flag to true.
3147 if (NewClauses.empty())
3148 CleanupFlag = true;
3149 NLI->setCleanup(CleanupFlag);
3150 return NLI;
3151 }
3152
3153 // Even if none of the clauses changed, we may nonetheless have understood
3154 // that the cleanup flag is pointless. Clear it if so.
3155 if (LI.isCleanup() != CleanupFlag) {
3156 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3157 LI.setCleanup(CleanupFlag);
3158 return &LI;
3159 }
3160
3161 return nullptr;
3162 }
3163
visitFreeze(FreezeInst & I)3164 Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
3165 Value *Op0 = I.getOperand(0);
3166
3167 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3168 return replaceInstUsesWith(I, V);
3169
3170 return nullptr;
3171 }
3172
3173 /// Try to move the specified instruction from its current block into the
3174 /// beginning of DestBlock, which can only happen if it's safe to move the
3175 /// instruction past all of the instructions between it and the end of its
3176 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)3177 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3178 assert(I->hasOneUse() && "Invariants didn't hold!");
3179 BasicBlock *SrcBlock = I->getParent();
3180
3181 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3182 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3183 I->isTerminator())
3184 return false;
3185
3186 // Do not sink static or dynamic alloca instructions. Static allocas must
3187 // remain in the entry block, and dynamic allocas must not be sunk in between
3188 // a stacksave / stackrestore pair, which would incorrectly shorten its
3189 // lifetime.
3190 if (isa<AllocaInst>(I))
3191 return false;
3192
3193 // Do not sink into catchswitch blocks.
3194 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3195 return false;
3196
3197 // Do not sink convergent call instructions.
3198 if (auto *CI = dyn_cast<CallInst>(I)) {
3199 if (CI->isConvergent())
3200 return false;
3201 }
3202 // We can only sink load instructions if there is nothing between the load and
3203 // the end of block that could change the value.
3204 if (I->mayReadFromMemory()) {
3205 for (BasicBlock::iterator Scan = I->getIterator(),
3206 E = I->getParent()->end();
3207 Scan != E; ++Scan)
3208 if (Scan->mayWriteToMemory())
3209 return false;
3210 }
3211 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3212 I->moveBefore(&*InsertPos);
3213 ++NumSunkInst;
3214
3215 // Also sink all related debug uses from the source basic block. Otherwise we
3216 // get debug use before the def. Attempt to salvage debug uses first, to
3217 // maximise the range variables have location for. If we cannot salvage, then
3218 // mark the location undef: we know it was supposed to receive a new location
3219 // here, but that computation has been sunk.
3220 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3221 findDbgUsers(DbgUsers, I);
3222 for (auto *DII : reverse(DbgUsers)) {
3223 if (DII->getParent() == SrcBlock) {
3224 if (isa<DbgDeclareInst>(DII)) {
3225 // A dbg.declare instruction should not be cloned, since there can only be
3226 // one per variable fragment. It should be left in the original place since
3227 // sunk instruction is not an alloca(otherwise we could not be here).
3228 // But we need to update arguments of dbg.declare instruction, so that it
3229 // would not point into sunk instruction.
3230 if (!isa<CastInst>(I))
3231 continue; // dbg.declare points at something it shouldn't
3232
3233 DII->setOperand(
3234 0, MetadataAsValue::get(I->getContext(),
3235 ValueAsMetadata::get(I->getOperand(0))));
3236 continue;
3237 }
3238
3239 // dbg.value is in the same basic block as the sunk inst, see if we can
3240 // salvage it. Clone a new copy of the instruction: on success we need
3241 // both salvaged and unsalvaged copies.
3242 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
3243 cast<DbgVariableIntrinsic>(DII->clone())};
3244
3245 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
3246 // We are unable to salvage: sink the cloned dbg.value, and mark the
3247 // original as undef, terminating any earlier variable location.
3248 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3249 TmpUser[0]->insertBefore(&*InsertPos);
3250 Value *Undef = UndefValue::get(I->getType());
3251 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
3252 ValueAsMetadata::get(Undef)));
3253 } else {
3254 // We successfully salvaged: place the salvaged dbg.value in the
3255 // original location, and move the unmodified dbg.value to sink with
3256 // the sunk inst.
3257 TmpUser[0]->insertBefore(DII);
3258 DII->moveBefore(&*InsertPos);
3259 }
3260 }
3261 }
3262 return true;
3263 }
3264
run()3265 bool InstCombiner::run() {
3266 while (!Worklist.isEmpty()) {
3267 Instruction *I = Worklist.RemoveOne();
3268 if (I == nullptr) continue; // skip null values.
3269
3270 // Check to see if we can DCE the instruction.
3271 if (isInstructionTriviallyDead(I, &TLI)) {
3272 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
3273 eraseInstFromFunction(*I);
3274 ++NumDeadInst;
3275 MadeIRChange = true;
3276 continue;
3277 }
3278
3279 if (!DebugCounter::shouldExecute(VisitCounter))
3280 continue;
3281
3282 // Instruction isn't dead, see if we can constant propagate it.
3283 if (!I->use_empty() &&
3284 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3285 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3286 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3287 << '\n');
3288
3289 // Add operands to the worklist.
3290 replaceInstUsesWith(*I, C);
3291 ++NumConstProp;
3292 if (isInstructionTriviallyDead(I, &TLI))
3293 eraseInstFromFunction(*I);
3294 MadeIRChange = true;
3295 continue;
3296 }
3297 }
3298
3299 // In general, it is possible for computeKnownBits to determine all bits in
3300 // a value even when the operands are not all constants.
3301 Type *Ty = I->getType();
3302 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
3303 KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
3304 if (Known.isConstant()) {
3305 Constant *C = ConstantInt::get(Ty, Known.getConstant());
3306 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3307 << " from: " << *I << '\n');
3308
3309 // Add operands to the worklist.
3310 replaceInstUsesWith(*I, C);
3311 ++NumConstProp;
3312 if (isInstructionTriviallyDead(I, &TLI))
3313 eraseInstFromFunction(*I);
3314 MadeIRChange = true;
3315 continue;
3316 }
3317 }
3318
3319 // See if we can trivially sink this instruction to a successor basic block.
3320 if (EnableCodeSinking && I->hasOneUse()) {
3321 BasicBlock *BB = I->getParent();
3322 Instruction *UserInst = cast<Instruction>(*I->user_begin());
3323 BasicBlock *UserParent;
3324
3325 // Get the block the use occurs in.
3326 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3327 UserParent = PN->getIncomingBlock(*I->use_begin());
3328 else
3329 UserParent = UserInst->getParent();
3330
3331 if (UserParent != BB) {
3332 bool UserIsSuccessor = false;
3333 // See if the user is one of our successors.
3334 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3335 if (*SI == UserParent) {
3336 UserIsSuccessor = true;
3337 break;
3338 }
3339
3340 // If the user is one of our immediate successors, and if that successor
3341 // only has us as a predecessors (we'd have to split the critical edge
3342 // otherwise), we can keep going.
3343 if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3344 // Okay, the CFG is simple enough, try to sink this instruction.
3345 if (TryToSinkInstruction(I, UserParent)) {
3346 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3347 MadeIRChange = true;
3348 // We'll add uses of the sunk instruction below, but since sinking
3349 // can expose opportunities for it's *operands* add them to the
3350 // worklist
3351 for (Use &U : I->operands())
3352 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3353 Worklist.Add(OpI);
3354 }
3355 }
3356 }
3357 }
3358
3359 // Now that we have an instruction, try combining it to simplify it.
3360 Builder.SetInsertPoint(I);
3361 Builder.SetCurrentDebugLocation(I->getDebugLoc());
3362
3363 #ifndef NDEBUG
3364 std::string OrigI;
3365 #endif
3366 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3367 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3368
3369 if (Instruction *Result = visit(*I)) {
3370 ++NumCombined;
3371 // Should we replace the old instruction with a new one?
3372 if (Result != I) {
3373 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3374 << " New = " << *Result << '\n');
3375
3376 if (I->getDebugLoc())
3377 Result->setDebugLoc(I->getDebugLoc());
3378 // Everything uses the new instruction now.
3379 I->replaceAllUsesWith(Result);
3380
3381 // Move the name to the new instruction first.
3382 Result->takeName(I);
3383
3384 // Insert the new instruction into the basic block...
3385 BasicBlock *InstParent = I->getParent();
3386 BasicBlock::iterator InsertPos = I->getIterator();
3387
3388 // If we replace a PHI with something that isn't a PHI, fix up the
3389 // insertion point.
3390 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3391 InsertPos = InstParent->getFirstInsertionPt();
3392
3393 InstParent->getInstList().insert(InsertPos, Result);
3394
3395 // Push the new instruction and any users onto the worklist.
3396 Worklist.AddUsersToWorkList(*Result);
3397 Worklist.Add(Result);
3398
3399 eraseInstFromFunction(*I);
3400 } else {
3401 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3402 << " New = " << *I << '\n');
3403
3404 // If the instruction was modified, it's possible that it is now dead.
3405 // if so, remove it.
3406 if (isInstructionTriviallyDead(I, &TLI)) {
3407 eraseInstFromFunction(*I);
3408 } else {
3409 Worklist.AddUsersToWorkList(*I);
3410 Worklist.Add(I);
3411 }
3412 }
3413 MadeIRChange = true;
3414 }
3415 }
3416
3417 Worklist.Zap();
3418 return MadeIRChange;
3419 }
3420
3421 /// Walk the function in depth-first order, adding all reachable code to the
3422 /// worklist.
3423 ///
3424 /// This has a couple of tricks to make the code faster and more powerful. In
3425 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3426 /// them to the worklist (this significantly speeds up instcombine on code where
3427 /// many instructions are dead or constant). Additionally, if we find a branch
3428 /// whose condition is a known constant, we only visit the reachable successors.
AddReachableCodeToWorklist(BasicBlock * BB,const DataLayout & DL,SmallPtrSetImpl<BasicBlock * > & Visited,InstCombineWorklist & ICWorklist,const TargetLibraryInfo * TLI)3429 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
3430 SmallPtrSetImpl<BasicBlock *> &Visited,
3431 InstCombineWorklist &ICWorklist,
3432 const TargetLibraryInfo *TLI) {
3433 bool MadeIRChange = false;
3434 SmallVector<BasicBlock*, 256> Worklist;
3435 Worklist.push_back(BB);
3436
3437 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3438 DenseMap<Constant *, Constant *> FoldedConstants;
3439
3440 do {
3441 BB = Worklist.pop_back_val();
3442
3443 // We have now visited this block! If we've already been here, ignore it.
3444 if (!Visited.insert(BB).second)
3445 continue;
3446
3447 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3448 Instruction *Inst = &*BBI++;
3449
3450 // DCE instruction if trivially dead.
3451 if (isInstructionTriviallyDead(Inst, TLI)) {
3452 ++NumDeadInst;
3453 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3454 salvageDebugInfoOrMarkUndef(*Inst);
3455 Inst->eraseFromParent();
3456 MadeIRChange = true;
3457 continue;
3458 }
3459
3460 // ConstantProp instruction if trivially constant.
3461 if (!Inst->use_empty() &&
3462 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3463 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3464 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3465 << '\n');
3466 Inst->replaceAllUsesWith(C);
3467 ++NumConstProp;
3468 if (isInstructionTriviallyDead(Inst, TLI))
3469 Inst->eraseFromParent();
3470 MadeIRChange = true;
3471 continue;
3472 }
3473
3474 // See if we can constant fold its operands.
3475 for (Use &U : Inst->operands()) {
3476 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3477 continue;
3478
3479 auto *C = cast<Constant>(U);
3480 Constant *&FoldRes = FoldedConstants[C];
3481 if (!FoldRes)
3482 FoldRes = ConstantFoldConstant(C, DL, TLI);
3483 if (!FoldRes)
3484 FoldRes = C;
3485
3486 if (FoldRes != C) {
3487 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3488 << "\n Old = " << *C
3489 << "\n New = " << *FoldRes << '\n');
3490 U = FoldRes;
3491 MadeIRChange = true;
3492 }
3493 }
3494
3495 // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3496 // consumes non-trivial amount of time and provides no value for the optimization.
3497 if (!isa<DbgInfoIntrinsic>(Inst))
3498 InstrsForInstCombineWorklist.push_back(Inst);
3499 }
3500
3501 // Recursively visit successors. If this is a branch or switch on a
3502 // constant, only visit the reachable successor.
3503 Instruction *TI = BB->getTerminator();
3504 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3505 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3506 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3507 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3508 Worklist.push_back(ReachableBB);
3509 continue;
3510 }
3511 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3512 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3513 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3514 continue;
3515 }
3516 }
3517
3518 for (BasicBlock *SuccBB : successors(TI))
3519 Worklist.push_back(SuccBB);
3520 } while (!Worklist.empty());
3521
3522 // Once we've found all of the instructions to add to instcombine's worklist,
3523 // add them in reverse order. This way instcombine will visit from the top
3524 // of the function down. This jives well with the way that it adds all uses
3525 // of instructions to the worklist after doing a transformation, thus avoiding
3526 // some N^2 behavior in pathological cases.
3527 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3528
3529 return MadeIRChange;
3530 }
3531
3532 /// Populate the IC worklist from a function, and prune any dead basic
3533 /// blocks discovered in the process.
3534 ///
3535 /// This also does basic constant propagation and other forward fixing to make
3536 /// the combiner itself run much faster.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)3537 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3538 TargetLibraryInfo *TLI,
3539 InstCombineWorklist &ICWorklist) {
3540 bool MadeIRChange = false;
3541
3542 // Do a depth-first traversal of the function, populate the worklist with
3543 // the reachable instructions. Ignore blocks that are not reachable. Keep
3544 // track of which blocks we visit.
3545 SmallPtrSet<BasicBlock *, 32> Visited;
3546 MadeIRChange |=
3547 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3548
3549 // Do a quick scan over the function. If we find any blocks that are
3550 // unreachable, remove any instructions inside of them. This prevents
3551 // the instcombine code from having to deal with some bad special cases.
3552 for (BasicBlock &BB : F) {
3553 if (Visited.count(&BB))
3554 continue;
3555
3556 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3557 MadeIRChange |= NumDeadInstInBB > 0;
3558 NumDeadInst += NumDeadInstInBB;
3559 }
3560
3561 return MadeIRChange;
3562 }
3563
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,bool ExpensiveCombines,unsigned MaxIterations,LoopInfo * LI)3564 static bool combineInstructionsOverFunction(
3565 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3566 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3567 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3568 ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations,
3569 LoopInfo *LI) {
3570 auto &DL = F.getParent()->getDataLayout();
3571 if (EnableExpensiveCombines.getNumOccurrences())
3572 ExpensiveCombines = EnableExpensiveCombines;
3573 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3574
3575 /// Builder - This is an IRBuilder that automatically inserts new
3576 /// instructions into the worklist when they are created.
3577 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3578 F.getContext(), TargetFolder(DL),
3579 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3580 Worklist.Add(I);
3581 if (match(I, m_Intrinsic<Intrinsic::assume>()))
3582 AC.registerAssumption(cast<CallInst>(I));
3583 }));
3584
3585 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3586 // by instcombiner.
3587 bool MadeIRChange = false;
3588 if (ShouldLowerDbgDeclare)
3589 MadeIRChange = LowerDbgDeclare(F);
3590
3591 // Iterate while there is work to do.
3592 unsigned Iteration = 0;
3593 while (true) {
3594 ++Iteration;
3595
3596 if (Iteration > InfiniteLoopDetectionThreshold) {
3597 report_fatal_error(
3598 "Instruction Combining seems stuck in an infinite loop after " +
3599 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3600 }
3601
3602 if (Iteration > MaxIterations) {
3603 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3604 << " on " << F.getName()
3605 << " reached; stopping before reaching a fixpoint\n");
3606 break;
3607 }
3608
3609 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3610 << F.getName() << "\n");
3611
3612 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3613
3614 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
3615 AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3616 IC.MaxArraySizeForCombine = MaxArraySize;
3617
3618 if (!IC.run())
3619 break;
3620
3621 MadeIRChange = true;
3622 }
3623
3624 return MadeIRChange;
3625 }
3626
InstCombinePass(bool ExpensiveCombines)3627 InstCombinePass::InstCombinePass(bool ExpensiveCombines)
3628 : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {}
3629
InstCombinePass(bool ExpensiveCombines,unsigned MaxIterations)3630 InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations)
3631 : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {}
3632
run(Function & F,FunctionAnalysisManager & AM)3633 PreservedAnalyses InstCombinePass::run(Function &F,
3634 FunctionAnalysisManager &AM) {
3635 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3636 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3637 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3638 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3639
3640 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3641
3642 auto *AA = &AM.getResult<AAManager>(F);
3643 const ModuleAnalysisManager &MAM =
3644 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
3645 ProfileSummaryInfo *PSI =
3646 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3647 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3648 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3649
3650 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3651 PSI, ExpensiveCombines, MaxIterations,
3652 LI))
3653 // No changes, all analyses are preserved.
3654 return PreservedAnalyses::all();
3655
3656 // Mark all the analyses that instcombine updates as preserved.
3657 PreservedAnalyses PA;
3658 PA.preserveSet<CFGAnalyses>();
3659 PA.preserve<AAManager>();
3660 PA.preserve<BasicAA>();
3661 PA.preserve<GlobalsAA>();
3662 return PA;
3663 }
3664
getAnalysisUsage(AnalysisUsage & AU) const3665 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3666 AU.setPreservesCFG();
3667 AU.addRequired<AAResultsWrapperPass>();
3668 AU.addRequired<AssumptionCacheTracker>();
3669 AU.addRequired<TargetLibraryInfoWrapperPass>();
3670 AU.addRequired<DominatorTreeWrapperPass>();
3671 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3672 AU.addPreserved<DominatorTreeWrapperPass>();
3673 AU.addPreserved<AAResultsWrapperPass>();
3674 AU.addPreserved<BasicAAWrapperPass>();
3675 AU.addPreserved<GlobalsAAWrapperPass>();
3676 AU.addRequired<ProfileSummaryInfoWrapperPass>();
3677 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3678 }
3679
runOnFunction(Function & F)3680 bool InstructionCombiningPass::runOnFunction(Function &F) {
3681 if (skipFunction(F))
3682 return false;
3683
3684 // Required analyses.
3685 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3686 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3687 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3688 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3689 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3690
3691 // Optional analyses.
3692 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3693 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3694 ProfileSummaryInfo *PSI =
3695 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3696 BlockFrequencyInfo *BFI =
3697 (PSI && PSI->hasProfileSummary()) ?
3698 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3699 nullptr;
3700
3701 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3702 PSI, ExpensiveCombines, MaxIterations,
3703 LI);
3704 }
3705
3706 char InstructionCombiningPass::ID = 0;
3707
InstructionCombiningPass(bool ExpensiveCombines)3708 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines)
3709 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines),
3710 MaxIterations(InstCombineDefaultMaxIterations) {
3711 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3712 }
3713
InstructionCombiningPass(bool ExpensiveCombines,unsigned MaxIterations)3714 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines,
3715 unsigned MaxIterations)
3716 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines),
3717 MaxIterations(MaxIterations) {
3718 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3719 }
3720
3721 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3722 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3723 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3724 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3725 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3726 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3727 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3728 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3729 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3730 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3731 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3732 "Combine redundant instructions", false, false)
3733
3734 // Initialization Routines
3735 void llvm::initializeInstCombine(PassRegistry &Registry) {
3736 initializeInstructionCombiningPassPass(Registry);
3737 }
3738
LLVMInitializeInstCombine(LLVMPassRegistryRef R)3739 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3740 initializeInstructionCombiningPassPass(*unwrap(R));
3741 }
3742
createInstructionCombiningPass(bool ExpensiveCombines)3743 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3744 return new InstructionCombiningPass(ExpensiveCombines);
3745 }
3746
createInstructionCombiningPass(bool ExpensiveCombines,unsigned MaxIterations)3747 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines,
3748 unsigned MaxIterations) {
3749 return new InstructionCombiningPass(ExpensiveCombines, MaxIterations);
3750 }
3751
LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)3752 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3753 unwrap(PM)->add(createInstructionCombiningPass());
3754 }
3755