1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 #ifdef CONFIG_NEWIP
44 #include <linux/nip.h> /* NIP */
45 #endif
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 #include <linux/siphash.h>
50
51 extern struct inet_hashinfo tcp_hashinfo;
52
53 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
54 int tcp_orphan_count_sum(void);
55
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57
58 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 #define TCP_MIN_SND_MSS 48
61 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
62
63 /*
64 * Never offer a window over 32767 without using window scaling. Some
65 * poor stacks do signed 16bit maths!
66 */
67 #define MAX_TCP_WINDOW 32767U
68
69 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
70 #define TCP_MIN_MSS 88U
71
72 /* The initial MTU to use for probing */
73 #define TCP_BASE_MSS 1024
74
75 /* probing interval, default to 10 minutes as per RFC4821 */
76 #define TCP_PROBE_INTERVAL 600
77
78 /* Specify interval when tcp mtu probing will stop */
79 #define TCP_PROBE_THRESHOLD 8
80
81 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
82 #define TCP_FASTRETRANS_THRESH 3
83
84 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
85 #define TCP_MAX_QUICKACKS 16U
86
87 /* Maximal number of window scale according to RFC1323 */
88 #define TCP_MAX_WSCALE 14U
89
90 /* urg_data states */
91 #define TCP_URG_VALID 0x0100
92 #define TCP_URG_NOTYET 0x0200
93 #define TCP_URG_READ 0x0400
94
95 #define TCP_RETR1 3 /*
96 * This is how many retries it does before it
97 * tries to figure out if the gateway is
98 * down. Minimal RFC value is 3; it corresponds
99 * to ~3sec-8min depending on RTO.
100 */
101
102 #define TCP_RETR2 15 /*
103 * This should take at least
104 * 90 minutes to time out.
105 * RFC1122 says that the limit is 100 sec.
106 * 15 is ~13-30min depending on RTO.
107 */
108
109 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
110 * when active opening a connection.
111 * RFC1122 says the minimum retry MUST
112 * be at least 180secs. Nevertheless
113 * this value is corresponding to
114 * 63secs of retransmission with the
115 * current initial RTO.
116 */
117
118 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
119 * when passive opening a connection.
120 * This is corresponding to 31secs of
121 * retransmission with the current
122 * initial RTO.
123 */
124
125 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
126 * state, about 60 seconds */
127 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
128 /* BSD style FIN_WAIT2 deadlock breaker.
129 * It used to be 3min, new value is 60sec,
130 * to combine FIN-WAIT-2 timeout with
131 * TIME-WAIT timer.
132 */
133 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
134
135 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
136 #if HZ >= 100
137 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
138 #define TCP_ATO_MIN ((unsigned)(HZ/25))
139 #else
140 #define TCP_DELACK_MIN 4U
141 #define TCP_ATO_MIN 4U
142 #endif
143 #define TCP_RTO_MAX ((unsigned)(120*HZ))
144 #define TCP_RTO_MIN ((unsigned)(HZ/5))
145 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
146 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
147 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
148 * used as a fallback RTO for the
149 * initial data transmission if no
150 * valid RTT sample has been acquired,
151 * most likely due to retrans in 3WHS.
152 */
153
154 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
155 * for local resources.
156 */
157 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
158 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
159 #define TCP_KEEPALIVE_INTVL (75*HZ)
160
161 #define MAX_TCP_KEEPIDLE 32767
162 #define MAX_TCP_KEEPINTVL 32767
163 #define MAX_TCP_KEEPCNT 127
164 #define MAX_TCP_SYNCNT 127
165
166 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
167
168 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
169 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
170 * after this time. It should be equal
171 * (or greater than) TCP_TIMEWAIT_LEN
172 * to provide reliability equal to one
173 * provided by timewait state.
174 */
175 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
176 * timestamps. It must be less than
177 * minimal timewait lifetime.
178 */
179 /*
180 * TCP option
181 */
182
183 #define TCPOPT_NOP 1 /* Padding */
184 #define TCPOPT_EOL 0 /* End of options */
185 #define TCPOPT_MSS 2 /* Segment size negotiating */
186 #define TCPOPT_WINDOW 3 /* Window scaling */
187 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
188 #define TCPOPT_SACK 5 /* SACK Block */
189 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
190 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
191 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
192 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
193 #define TCPOPT_EXP 254 /* Experimental */
194 /* Magic number to be after the option value for sharing TCP
195 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
196 */
197 #define TCPOPT_FASTOPEN_MAGIC 0xF989
198 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
199
200 /*
201 * TCP option lengths
202 */
203
204 #define TCPOLEN_MSS 4
205 #define TCPOLEN_WINDOW 3
206 #define TCPOLEN_SACK_PERM 2
207 #define TCPOLEN_TIMESTAMP 10
208 #define TCPOLEN_MD5SIG 18
209 #define TCPOLEN_FASTOPEN_BASE 2
210 #define TCPOLEN_EXP_FASTOPEN_BASE 4
211 #define TCPOLEN_EXP_SMC_BASE 6
212
213 /* But this is what stacks really send out. */
214 #define TCPOLEN_TSTAMP_ALIGNED 12
215 #define TCPOLEN_WSCALE_ALIGNED 4
216 #define TCPOLEN_SACKPERM_ALIGNED 4
217 #define TCPOLEN_SACK_BASE 2
218 #define TCPOLEN_SACK_BASE_ALIGNED 4
219 #define TCPOLEN_SACK_PERBLOCK 8
220 #define TCPOLEN_MD5SIG_ALIGNED 20
221 #define TCPOLEN_MSS_ALIGNED 4
222 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
223
224 /* Flags in tp->nonagle */
225 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
226 #define TCP_NAGLE_CORK 2 /* Socket is corked */
227 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
228
229 /* TCP thin-stream limits */
230 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
231
232 /* TCP initial congestion window as per rfc6928 */
233 #define TCP_INIT_CWND 10
234
235 /* Bit Flags for sysctl_tcp_fastopen */
236 #define TFO_CLIENT_ENABLE 1
237 #define TFO_SERVER_ENABLE 2
238 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
239
240 /* Accept SYN data w/o any cookie option */
241 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
242
243 /* Force enable TFO on all listeners, i.e., not requiring the
244 * TCP_FASTOPEN socket option.
245 */
246 #define TFO_SERVER_WO_SOCKOPT1 0x400
247
248
249 /* sysctl variables for tcp */
250 extern int sysctl_tcp_max_orphans;
251 extern long sysctl_tcp_mem[3];
252
253 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
254 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
255 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
256
257 extern atomic_long_t tcp_memory_allocated;
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 return true;
267
268 return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271 * The next routines deal with comparing 32 bit unsigned ints
272 * and worry about wraparound (automatic with unsigned arithmetic).
273 */
274
before(__u32 seq1,__u32 seq2)275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277 return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) before(seq1, seq2)
280
281 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 return seq3 - seq2 >= seq1 - seq2;
285 }
286
tcp_out_of_memory(struct sock * sk)287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 return true;
292 return false;
293 }
294
295 void sk_forced_mem_schedule(struct sock *sk, int size);
296
297 bool tcp_check_oom(struct sock *sk, int shift);
298
299
300 extern struct proto tcp_prot;
301
302 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
303 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
305 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
306
307 void tcp_tasklet_init(void);
308
309 int tcp_v4_err(struct sk_buff *skb, u32);
310
311 void tcp_shutdown(struct sock *sk, int how);
312
313 int tcp_v4_early_demux(struct sk_buff *skb);
314 int tcp_v4_rcv(struct sk_buff *skb);
315
316 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
317 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
318 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
319 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
320 int flags);
321 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
322 size_t size, int flags);
323 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
324 size_t size, int flags);
325 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
326 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
327 int size_goal);
328 void tcp_release_cb(struct sock *sk);
329 void tcp_wfree(struct sk_buff *skb);
330 void tcp_write_timer_handler(struct sock *sk);
331 void tcp_delack_timer_handler(struct sock *sk);
332 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
333 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
334 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
335 void tcp_rcv_space_adjust(struct sock *sk);
336 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
337 void tcp_twsk_destructor(struct sock *sk);
338 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
339 struct pipe_inode_info *pipe, size_t len,
340 unsigned int flags);
341
342 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)343 static inline void tcp_dec_quickack_mode(struct sock *sk,
344 const unsigned int pkts)
345 {
346 struct inet_connection_sock *icsk = inet_csk(sk);
347
348 if (icsk->icsk_ack.quick) {
349 if (pkts >= icsk->icsk_ack.quick) {
350 icsk->icsk_ack.quick = 0;
351 /* Leaving quickack mode we deflate ATO. */
352 icsk->icsk_ack.ato = TCP_ATO_MIN;
353 } else
354 icsk->icsk_ack.quick -= pkts;
355 }
356 }
357
358 #define TCP_ECN_OK 1
359 #define TCP_ECN_QUEUE_CWR 2
360 #define TCP_ECN_DEMAND_CWR 4
361 #define TCP_ECN_SEEN 8
362
363 enum tcp_tw_status {
364 TCP_TW_SUCCESS = 0,
365 TCP_TW_RST = 1,
366 TCP_TW_ACK = 2,
367 TCP_TW_SYN = 3
368 };
369
370
371 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
372 struct sk_buff *skb,
373 const struct tcphdr *th);
374 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
375 struct request_sock *req, bool fastopen,
376 bool *lost_race);
377 int tcp_child_process(struct sock *parent, struct sock *child,
378 struct sk_buff *skb);
379 void tcp_enter_loss(struct sock *sk);
380 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
381 void tcp_clear_retrans(struct tcp_sock *tp);
382 void tcp_update_metrics(struct sock *sk);
383 void tcp_init_metrics(struct sock *sk);
384 void tcp_metrics_init(void);
385 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
386 void tcp_close(struct sock *sk, long timeout);
387 void tcp_init_sock(struct sock *sk);
388 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
389 __poll_t tcp_poll(struct file *file, struct socket *sock,
390 struct poll_table_struct *wait);
391 int tcp_getsockopt(struct sock *sk, int level, int optname,
392 char __user *optval, int __user *optlen);
393 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
394 unsigned int optlen);
395 void tcp_set_keepalive(struct sock *sk, int val);
396 void tcp_syn_ack_timeout(const struct request_sock *req);
397 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
398 int flags, int *addr_len);
399 int tcp_set_rcvlowat(struct sock *sk, int val);
400 void tcp_data_ready(struct sock *sk);
401 #ifdef CONFIG_MMU
402 int tcp_mmap(struct file *file, struct socket *sock,
403 struct vm_area_struct *vma);
404 #endif
405 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
406 struct tcp_options_received *opt_rx,
407 int estab, struct tcp_fastopen_cookie *foc);
408 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
409
410 /*
411 * BPF SKB-less helpers
412 */
413 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
414 struct tcphdr *th, u32 *cookie);
415 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
416 struct tcphdr *th, u32 *cookie);
417 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
418 const struct tcp_request_sock_ops *af_ops,
419 struct sock *sk, struct tcphdr *th);
420 /*
421 * TCP v4 functions exported for the inet6 API
422 */
423
424 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
425 void tcp_v4_mtu_reduced(struct sock *sk);
426 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
427 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
428 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
429 struct sock *tcp_create_openreq_child(const struct sock *sk,
430 struct request_sock *req,
431 struct sk_buff *skb);
432 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
433 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
434 struct request_sock *req,
435 struct dst_entry *dst,
436 struct request_sock *req_unhash,
437 bool *own_req);
438 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
439 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
440 int tcp_connect(struct sock *sk);
441 enum tcp_synack_type {
442 TCP_SYNACK_NORMAL,
443 TCP_SYNACK_FASTOPEN,
444 TCP_SYNACK_COOKIE,
445 };
446 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
447 struct request_sock *req,
448 struct tcp_fastopen_cookie *foc,
449 enum tcp_synack_type synack_type,
450 struct sk_buff *syn_skb);
451 int tcp_disconnect(struct sock *sk, int flags);
452
453 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
454 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
455 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
456
457 /* From syncookies.c */
458 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
459 struct request_sock *req,
460 struct dst_entry *dst, u32 tsoff);
461 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
462 u32 cookie);
463 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
464 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
465 const struct tcp_request_sock_ops *af_ops,
466 struct sock *sk, struct sk_buff *skb);
467 #ifdef CONFIG_SYN_COOKIES
468
469 /* Syncookies use a monotonic timer which increments every 60 seconds.
470 * This counter is used both as a hash input and partially encoded into
471 * the cookie value. A cookie is only validated further if the delta
472 * between the current counter value and the encoded one is less than this,
473 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
474 * the counter advances immediately after a cookie is generated).
475 */
476 #define MAX_SYNCOOKIE_AGE 2
477 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
478 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
479
480 /* syncookies: remember time of last synqueue overflow
481 * But do not dirty this field too often (once per second is enough)
482 * It is racy as we do not hold a lock, but race is very minor.
483 */
tcp_synq_overflow(const struct sock * sk)484 static inline void tcp_synq_overflow(const struct sock *sk)
485 {
486 unsigned int last_overflow;
487 unsigned int now = jiffies;
488
489 if (sk->sk_reuseport) {
490 struct sock_reuseport *reuse;
491
492 reuse = rcu_dereference(sk->sk_reuseport_cb);
493 if (likely(reuse)) {
494 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
495 if (!time_between32(now, last_overflow,
496 last_overflow + HZ))
497 WRITE_ONCE(reuse->synq_overflow_ts, now);
498 return;
499 }
500 }
501
502 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
503 if (!time_between32(now, last_overflow, last_overflow + HZ))
504 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
505 }
506
507 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)508 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
509 {
510 unsigned int last_overflow;
511 unsigned int now = jiffies;
512
513 if (sk->sk_reuseport) {
514 struct sock_reuseport *reuse;
515
516 reuse = rcu_dereference(sk->sk_reuseport_cb);
517 if (likely(reuse)) {
518 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
519 return !time_between32(now, last_overflow - HZ,
520 last_overflow +
521 TCP_SYNCOOKIE_VALID);
522 }
523 }
524
525 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
526
527 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
528 * then we're under synflood. However, we have to use
529 * 'last_overflow - HZ' as lower bound. That's because a concurrent
530 * tcp_synq_overflow() could update .ts_recent_stamp after we read
531 * jiffies but before we store .ts_recent_stamp into last_overflow,
532 * which could lead to rejecting a valid syncookie.
533 */
534 return !time_between32(now, last_overflow - HZ,
535 last_overflow + TCP_SYNCOOKIE_VALID);
536 }
537
tcp_cookie_time(void)538 static inline u32 tcp_cookie_time(void)
539 {
540 u64 val = get_jiffies_64();
541
542 do_div(val, TCP_SYNCOOKIE_PERIOD);
543 return val;
544 }
545
546 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
547 u16 *mssp);
548 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
549 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
550 bool cookie_timestamp_decode(const struct net *net,
551 struct tcp_options_received *opt);
552 bool cookie_ecn_ok(const struct tcp_options_received *opt,
553 const struct net *net, const struct dst_entry *dst);
554
555 /* From net/ipv6/syncookies.c */
556 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
557 u32 cookie);
558 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
559
560 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
561 const struct tcphdr *th, u16 *mssp);
562 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 #endif
564 /* tcp_output.c */
565
566 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
567 int nonagle);
568 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
569 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
570 void tcp_retransmit_timer(struct sock *sk);
571 void tcp_xmit_retransmit_queue(struct sock *);
572 void tcp_simple_retransmit(struct sock *);
573 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
574 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
575 enum tcp_queue {
576 TCP_FRAG_IN_WRITE_QUEUE,
577 TCP_FRAG_IN_RTX_QUEUE,
578 };
579 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
580 struct sk_buff *skb, u32 len,
581 unsigned int mss_now, gfp_t gfp);
582
583 void tcp_send_probe0(struct sock *);
584 void tcp_send_partial(struct sock *);
585 int tcp_write_wakeup(struct sock *, int mib);
586 void tcp_send_fin(struct sock *sk);
587 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
588 int tcp_send_synack(struct sock *);
589 void tcp_push_one(struct sock *, unsigned int mss_now);
590 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
591 void tcp_send_ack(struct sock *sk);
592 void tcp_send_delayed_ack(struct sock *sk);
593 void tcp_send_loss_probe(struct sock *sk);
594 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
595 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
596 const struct sk_buff *next_skb);
597
598 /* tcp_input.c */
599 void tcp_rearm_rto(struct sock *sk);
600 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
601 void tcp_reset(struct sock *sk);
602 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
603 void tcp_fin(struct sock *sk);
604 void tcp_check_space(struct sock *sk);
605
606 /* tcp_timer.c */
607 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)608 static inline void tcp_clear_xmit_timers(struct sock *sk)
609 {
610 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
611 __sock_put(sk);
612
613 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
614 __sock_put(sk);
615
616 inet_csk_clear_xmit_timers(sk);
617 }
618
619 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
620 unsigned int tcp_current_mss(struct sock *sk);
621 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
622
623 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)624 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
625 {
626 int cutoff;
627
628 /* When peer uses tiny windows, there is no use in packetizing
629 * to sub-MSS pieces for the sake of SWS or making sure there
630 * are enough packets in the pipe for fast recovery.
631 *
632 * On the other hand, for extremely large MSS devices, handling
633 * smaller than MSS windows in this way does make sense.
634 */
635 if (tp->max_window > TCP_MSS_DEFAULT)
636 cutoff = (tp->max_window >> 1);
637 else
638 cutoff = tp->max_window;
639
640 if (cutoff && pktsize > cutoff)
641 return max_t(int, cutoff, 68U - tp->tcp_header_len);
642 else
643 return pktsize;
644 }
645
646 /* tcp.c */
647 void tcp_get_info(struct sock *, struct tcp_info *);
648
649 /* Read 'sendfile()'-style from a TCP socket */
650 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
651 sk_read_actor_t recv_actor);
652
653 void tcp_initialize_rcv_mss(struct sock *sk);
654
655 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
656 int tcp_mss_to_mtu(struct sock *sk, int mss);
657 void tcp_mtup_init(struct sock *sk);
658
tcp_bound_rto(const struct sock * sk)659 static inline void tcp_bound_rto(const struct sock *sk)
660 {
661 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
662 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
663 }
664
__tcp_set_rto(const struct tcp_sock * tp)665 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
666 {
667 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
668 }
669
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)670 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
671 {
672 /* mptcp hooks are only on the slow path */
673 if (sk_is_mptcp((struct sock *)tp))
674 return;
675
676 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
677 ntohl(TCP_FLAG_ACK) |
678 snd_wnd);
679 }
680
tcp_fast_path_on(struct tcp_sock * tp)681 static inline void tcp_fast_path_on(struct tcp_sock *tp)
682 {
683 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
684 }
685
tcp_fast_path_check(struct sock * sk)686 static inline void tcp_fast_path_check(struct sock *sk)
687 {
688 struct tcp_sock *tp = tcp_sk(sk);
689
690 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
691 tp->rcv_wnd &&
692 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
693 !tp->urg_data)
694 tcp_fast_path_on(tp);
695 }
696
697 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)698 static inline u32 tcp_rto_min(struct sock *sk)
699 {
700 const struct dst_entry *dst = __sk_dst_get(sk);
701 u32 rto_min = inet_csk(sk)->icsk_rto_min;
702
703 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
704 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
705 return rto_min;
706 }
707
tcp_rto_min_us(struct sock * sk)708 static inline u32 tcp_rto_min_us(struct sock *sk)
709 {
710 return jiffies_to_usecs(tcp_rto_min(sk));
711 }
712
tcp_ca_dst_locked(const struct dst_entry * dst)713 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
714 {
715 return dst_metric_locked(dst, RTAX_CC_ALGO);
716 }
717
718 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)719 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
720 {
721 return minmax_get(&tp->rtt_min);
722 }
723
724 /* Compute the actual receive window we are currently advertising.
725 * Rcv_nxt can be after the window if our peer push more data
726 * than the offered window.
727 */
tcp_receive_window(const struct tcp_sock * tp)728 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
729 {
730 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
731
732 if (win < 0)
733 win = 0;
734 return (u32) win;
735 }
736
737 /* Choose a new window, without checks for shrinking, and without
738 * scaling applied to the result. The caller does these things
739 * if necessary. This is a "raw" window selection.
740 */
741 u32 __tcp_select_window(struct sock *sk);
742
743 void tcp_send_window_probe(struct sock *sk);
744
745 /* TCP uses 32bit jiffies to save some space.
746 * Note that this is different from tcp_time_stamp, which
747 * historically has been the same until linux-4.13.
748 */
749 #define tcp_jiffies32 ((u32)jiffies)
750
751 /*
752 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
753 * It is no longer tied to jiffies, but to 1 ms clock.
754 * Note: double check if you want to use tcp_jiffies32 instead of this.
755 */
756 #define TCP_TS_HZ 1000
757
tcp_clock_ns(void)758 static inline u64 tcp_clock_ns(void)
759 {
760 return ktime_get_ns();
761 }
762
tcp_clock_us(void)763 static inline u64 tcp_clock_us(void)
764 {
765 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
766 }
767
768 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)769 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
770 {
771 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
772 }
773
774 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)775 static inline u32 tcp_ns_to_ts(u64 ns)
776 {
777 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
778 }
779
780 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)781 static inline u32 tcp_time_stamp_raw(void)
782 {
783 return tcp_ns_to_ts(tcp_clock_ns());
784 }
785
786 void tcp_mstamp_refresh(struct tcp_sock *tp);
787
tcp_stamp_us_delta(u64 t1,u64 t0)788 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
789 {
790 return max_t(s64, t1 - t0, 0);
791 }
792
tcp_skb_timestamp(const struct sk_buff * skb)793 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
794 {
795 return tcp_ns_to_ts(skb->skb_mstamp_ns);
796 }
797
798 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)799 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
800 {
801 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
802 }
803
804
805 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
806
807 #define TCPHDR_FIN 0x01
808 #define TCPHDR_SYN 0x02
809 #define TCPHDR_RST 0x04
810 #define TCPHDR_PSH 0x08
811 #define TCPHDR_ACK 0x10
812 #define TCPHDR_URG 0x20
813 #define TCPHDR_ECE 0x40
814 #define TCPHDR_CWR 0x80
815
816 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
817
818 /* This is what the send packet queuing engine uses to pass
819 * TCP per-packet control information to the transmission code.
820 * We also store the host-order sequence numbers in here too.
821 * This is 44 bytes if IPV6 is enabled.
822 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
823 */
824 struct tcp_skb_cb {
825 __u32 seq; /* Starting sequence number */
826 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
827 union {
828 /* Note : tcp_tw_isn is used in input path only
829 * (isn chosen by tcp_timewait_state_process())
830 *
831 * tcp_gso_segs/size are used in write queue only,
832 * cf tcp_skb_pcount()/tcp_skb_mss()
833 */
834 __u32 tcp_tw_isn;
835 struct {
836 u16 tcp_gso_segs;
837 u16 tcp_gso_size;
838 };
839 };
840 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
841
842 __u8 sacked; /* State flags for SACK. */
843 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
844 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
845 #define TCPCB_LOST 0x04 /* SKB is lost */
846 #define TCPCB_TAGBITS 0x07 /* All tag bits */
847 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
848 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
849 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
850 TCPCB_REPAIRED)
851
852 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
853 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
854 eor:1, /* Is skb MSG_EOR marked? */
855 has_rxtstamp:1, /* SKB has a RX timestamp */
856 unused:5;
857 __u32 ack_seq; /* Sequence number ACK'd */
858 union {
859 struct {
860 /* There is space for up to 24 bytes */
861 __u32 in_flight:30,/* Bytes in flight at transmit */
862 is_app_limited:1, /* cwnd not fully used? */
863 unused:1;
864 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
865 __u32 delivered;
866 /* start of send pipeline phase */
867 u64 first_tx_mstamp;
868 /* when we reached the "delivered" count */
869 u64 delivered_mstamp;
870 } tx; /* only used for outgoing skbs */
871 union {
872 struct inet_skb_parm h4;
873 #if IS_ENABLED(CONFIG_IPV6)
874 struct inet6_skb_parm h6;
875 #endif
876 #if IS_ENABLED(CONFIG_NEWIP)
877 struct ninet_skb_parm hnip; /* NIP */
878 #endif
879 } header; /* For incoming skbs */
880 struct {
881 __u32 flags;
882 struct sock *sk_redir;
883 void *data_end;
884 } bpf;
885 };
886 };
887
888 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
889
bpf_compute_data_end_sk_skb(struct sk_buff * skb)890 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
891 {
892 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
893 }
894
tcp_skb_bpf_ingress(const struct sk_buff * skb)895 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
896 {
897 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
898 }
899
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)900 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
901 {
902 return TCP_SKB_CB(skb)->bpf.sk_redir;
903 }
904
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)905 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
906 {
907 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
908 }
909
910 extern const struct inet_connection_sock_af_ops ipv4_specific;
911
912 #if IS_ENABLED(CONFIG_IPV6)
913 /* This is the variant of inet6_iif() that must be used by TCP,
914 * as TCP moves IP6CB into a different location in skb->cb[]
915 */
tcp_v6_iif(const struct sk_buff * skb)916 static inline int tcp_v6_iif(const struct sk_buff *skb)
917 {
918 return TCP_SKB_CB(skb)->header.h6.iif;
919 }
920
tcp_v6_iif_l3_slave(const struct sk_buff * skb)921 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
922 {
923 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
924
925 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
926 }
927
928 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)929 static inline int tcp_v6_sdif(const struct sk_buff *skb)
930 {
931 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
932 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
933 return TCP_SKB_CB(skb)->header.h6.iif;
934 #endif
935 return 0;
936 }
937
938 extern const struct inet_connection_sock_af_ops ipv6_specific;
939
940 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
941 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
942 void tcp_v6_early_demux(struct sk_buff *skb);
943
944 #endif
945
946 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)947 static inline int tcp_v4_sdif(struct sk_buff *skb)
948 {
949 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
950 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
951 return TCP_SKB_CB(skb)->header.h4.iif;
952 #endif
953 return 0;
954 }
955
956 /* Due to TSO, an SKB can be composed of multiple actual
957 * packets. To keep these tracked properly, we use this.
958 */
tcp_skb_pcount(const struct sk_buff * skb)959 static inline int tcp_skb_pcount(const struct sk_buff *skb)
960 {
961 return TCP_SKB_CB(skb)->tcp_gso_segs;
962 }
963
tcp_skb_pcount_set(struct sk_buff * skb,int segs)964 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
965 {
966 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
967 }
968
tcp_skb_pcount_add(struct sk_buff * skb,int segs)969 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
970 {
971 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
972 }
973
974 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)975 static inline int tcp_skb_mss(const struct sk_buff *skb)
976 {
977 return TCP_SKB_CB(skb)->tcp_gso_size;
978 }
979
tcp_skb_can_collapse_to(const struct sk_buff * skb)980 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
981 {
982 return likely(!TCP_SKB_CB(skb)->eor);
983 }
984
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)985 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
986 const struct sk_buff *from)
987 {
988 return likely(tcp_skb_can_collapse_to(to) &&
989 mptcp_skb_can_collapse(to, from));
990 }
991
992 /* Events passed to congestion control interface */
993 enum tcp_ca_event {
994 CA_EVENT_TX_START, /* first transmit when no packets in flight */
995 CA_EVENT_CWND_RESTART, /* congestion window restart */
996 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
997 CA_EVENT_LOSS, /* loss timeout */
998 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
999 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1000 };
1001
1002 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1003 enum tcp_ca_ack_event_flags {
1004 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1005 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1006 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1007 };
1008
1009 /*
1010 * Interface for adding new TCP congestion control handlers
1011 */
1012 #define TCP_CA_NAME_MAX 16
1013 #define TCP_CA_MAX 128
1014 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1015
1016 #define TCP_CA_UNSPEC 0
1017
1018 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1019 #define TCP_CONG_NON_RESTRICTED 0x1
1020 /* Requires ECN/ECT set on all packets */
1021 #define TCP_CONG_NEEDS_ECN 0x2
1022 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1023
1024 union tcp_cc_info;
1025
1026 struct ack_sample {
1027 u32 pkts_acked;
1028 s32 rtt_us;
1029 u32 in_flight;
1030 };
1031
1032 /* A rate sample measures the number of (original/retransmitted) data
1033 * packets delivered "delivered" over an interval of time "interval_us".
1034 * The tcp_rate.c code fills in the rate sample, and congestion
1035 * control modules that define a cong_control function to run at the end
1036 * of ACK processing can optionally chose to consult this sample when
1037 * setting cwnd and pacing rate.
1038 * A sample is invalid if "delivered" or "interval_us" is negative.
1039 */
1040 struct rate_sample {
1041 u64 prior_mstamp; /* starting timestamp for interval */
1042 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1043 s32 delivered; /* number of packets delivered over interval */
1044 long interval_us; /* time for tp->delivered to incr "delivered" */
1045 u32 snd_interval_us; /* snd interval for delivered packets */
1046 u32 rcv_interval_us; /* rcv interval for delivered packets */
1047 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1048 int losses; /* number of packets marked lost upon ACK */
1049 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1050 u32 prior_in_flight; /* in flight before this ACK */
1051 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1052 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1053 bool is_retrans; /* is sample from retransmission? */
1054 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1055 };
1056
1057 struct tcp_congestion_ops {
1058 struct list_head list;
1059 u32 key;
1060 u32 flags;
1061
1062 /* initialize private data (optional) */
1063 void (*init)(struct sock *sk);
1064 /* cleanup private data (optional) */
1065 void (*release)(struct sock *sk);
1066
1067 /* return slow start threshold (required) */
1068 u32 (*ssthresh)(struct sock *sk);
1069 /* do new cwnd calculation (required) */
1070 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1071 /* call before changing ca_state (optional) */
1072 void (*set_state)(struct sock *sk, u8 new_state);
1073 /* call when cwnd event occurs (optional) */
1074 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1075 /* call when ack arrives (optional) */
1076 void (*in_ack_event)(struct sock *sk, u32 flags);
1077 /* new value of cwnd after loss (required) */
1078 u32 (*undo_cwnd)(struct sock *sk);
1079 /* hook for packet ack accounting (optional) */
1080 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1081 /* override sysctl_tcp_min_tso_segs */
1082 u32 (*min_tso_segs)(struct sock *sk);
1083 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1084 u32 (*sndbuf_expand)(struct sock *sk);
1085 /* call when packets are delivered to update cwnd and pacing rate,
1086 * after all the ca_state processing. (optional)
1087 */
1088 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1089 /* get info for inet_diag (optional) */
1090 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1091 union tcp_cc_info *info);
1092
1093 char name[TCP_CA_NAME_MAX];
1094 struct module *owner;
1095 };
1096
1097 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1099
1100 void tcp_assign_congestion_control(struct sock *sk);
1101 void tcp_init_congestion_control(struct sock *sk);
1102 void tcp_cleanup_congestion_control(struct sock *sk);
1103 int tcp_set_default_congestion_control(struct net *net, const char *name);
1104 void tcp_get_default_congestion_control(struct net *net, char *name);
1105 void tcp_get_available_congestion_control(char *buf, size_t len);
1106 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107 int tcp_set_allowed_congestion_control(char *allowed);
1108 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109 bool cap_net_admin);
1110 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112
1113 u32 tcp_reno_ssthresh(struct sock *sk);
1114 u32 tcp_reno_undo_cwnd(struct sock *sk);
1115 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116 extern struct tcp_congestion_ops tcp_reno;
1117
1118 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121 #ifdef CONFIG_INET
1122 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1124 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125 {
1126 return NULL;
1127 }
1128 #endif
1129
tcp_ca_needs_ecn(const struct sock * sk)1130 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131 {
1132 const struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135 }
1136
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1137 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138 {
1139 struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141 if (icsk->icsk_ca_ops->set_state)
1142 icsk->icsk_ca_ops->set_state(sk, ca_state);
1143 icsk->icsk_ca_state = ca_state;
1144 }
1145
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1146 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147 {
1148 const struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150 if (icsk->icsk_ca_ops->cwnd_event)
1151 icsk->icsk_ca_ops->cwnd_event(sk, event);
1152 }
1153
1154 /* From tcp_rate.c */
1155 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157 struct rate_sample *rs);
1158 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159 bool is_sack_reneg, struct rate_sample *rs);
1160 void tcp_rate_check_app_limited(struct sock *sk);
1161
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1162 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1163 {
1164 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1165 }
1166
1167 /* These functions determine how the current flow behaves in respect of SACK
1168 * handling. SACK is negotiated with the peer, and therefore it can vary
1169 * between different flows.
1170 *
1171 * tcp_is_sack - SACK enabled
1172 * tcp_is_reno - No SACK
1173 */
tcp_is_sack(const struct tcp_sock * tp)1174 static inline int tcp_is_sack(const struct tcp_sock *tp)
1175 {
1176 return likely(tp->rx_opt.sack_ok);
1177 }
1178
tcp_is_reno(const struct tcp_sock * tp)1179 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1180 {
1181 return !tcp_is_sack(tp);
1182 }
1183
tcp_left_out(const struct tcp_sock * tp)1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1185 {
1186 return tp->sacked_out + tp->lost_out;
1187 }
1188
1189 /* This determines how many packets are "in the network" to the best
1190 * of our knowledge. In many cases it is conservative, but where
1191 * detailed information is available from the receiver (via SACK
1192 * blocks etc.) we can make more aggressive calculations.
1193 *
1194 * Use this for decisions involving congestion control, use just
1195 * tp->packets_out to determine if the send queue is empty or not.
1196 *
1197 * Read this equation as:
1198 *
1199 * "Packets sent once on transmission queue" MINUS
1200 * "Packets left network, but not honestly ACKed yet" PLUS
1201 * "Packets fast retransmitted"
1202 */
tcp_packets_in_flight(const struct tcp_sock * tp)1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1204 {
1205 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1206 }
1207
1208 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1209
tcp_in_slow_start(const struct tcp_sock * tp)1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1211 {
1212 return tp->snd_cwnd < tp->snd_ssthresh;
1213 }
1214
tcp_in_initial_slowstart(const struct tcp_sock * tp)1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1216 {
1217 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1218 }
1219
tcp_in_cwnd_reduction(const struct sock * sk)1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1221 {
1222 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1223 (1 << inet_csk(sk)->icsk_ca_state);
1224 }
1225
1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1227 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1228 * ssthresh.
1229 */
tcp_current_ssthresh(const struct sock * sk)1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1231 {
1232 const struct tcp_sock *tp = tcp_sk(sk);
1233
1234 if (tcp_in_cwnd_reduction(sk))
1235 return tp->snd_ssthresh;
1236 else
1237 return max(tp->snd_ssthresh,
1238 ((tp->snd_cwnd >> 1) +
1239 (tp->snd_cwnd >> 2)));
1240 }
1241
1242 /* Use define here intentionally to get WARN_ON location shown at the caller */
1243 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1244
1245 void tcp_enter_cwr(struct sock *sk);
1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1247
1248 /* The maximum number of MSS of available cwnd for which TSO defers
1249 * sending if not using sysctl_tcp_tso_win_divisor.
1250 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 {
1253 return 3;
1254 }
1255
1256 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1258 {
1259 return tp->snd_una + tp->snd_wnd;
1260 }
1261
1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1263 * flexible approach. The RFC suggests cwnd should not be raised unless
1264 * it was fully used previously. And that's exactly what we do in
1265 * congestion avoidance mode. But in slow start we allow cwnd to grow
1266 * as long as the application has used half the cwnd.
1267 * Example :
1268 * cwnd is 10 (IW10), but application sends 9 frames.
1269 * We allow cwnd to reach 18 when all frames are ACKed.
1270 * This check is safe because it's as aggressive as slow start which already
1271 * risks 100% overshoot. The advantage is that we discourage application to
1272 * either send more filler packets or data to artificially blow up the cwnd
1273 * usage, and allow application-limited process to probe bw more aggressively.
1274 */
tcp_is_cwnd_limited(const struct sock * sk)1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1276 {
1277 const struct tcp_sock *tp = tcp_sk(sk);
1278
1279 if (tp->is_cwnd_limited)
1280 return true;
1281
1282 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1283 if (tcp_in_slow_start(tp))
1284 return tp->snd_cwnd < 2 * tp->max_packets_out;
1285
1286 return false;
1287 }
1288
1289 /* BBR congestion control needs pacing.
1290 * Same remark for SO_MAX_PACING_RATE.
1291 * sch_fq packet scheduler is efficiently handling pacing,
1292 * but is not always installed/used.
1293 * Return true if TCP stack should pace packets itself.
1294 */
tcp_needs_internal_pacing(const struct sock * sk)1295 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1296 {
1297 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1298 }
1299
1300 /* Estimates in how many jiffies next packet for this flow can be sent.
1301 * Scheduling a retransmit timer too early would be silly.
1302 */
tcp_pacing_delay(const struct sock * sk)1303 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1304 {
1305 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1306
1307 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1308 }
1309
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1310 static inline void tcp_reset_xmit_timer(struct sock *sk,
1311 const int what,
1312 unsigned long when,
1313 const unsigned long max_when)
1314 {
1315 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1316 max_when);
1317 }
1318
1319 /* Something is really bad, we could not queue an additional packet,
1320 * because qdisc is full or receiver sent a 0 window, or we are paced.
1321 * We do not want to add fuel to the fire, or abort too early,
1322 * so make sure the timer we arm now is at least 200ms in the future,
1323 * regardless of current icsk_rto value (as it could be ~2ms)
1324 */
tcp_probe0_base(const struct sock * sk)1325 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1326 {
1327 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1328 }
1329
1330 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1331 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1332 unsigned long max_when)
1333 {
1334 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1335
1336 return (unsigned long)min_t(u64, when, max_when);
1337 }
1338
tcp_check_probe_timer(struct sock * sk)1339 static inline void tcp_check_probe_timer(struct sock *sk)
1340 {
1341 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1342 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1343 tcp_probe0_base(sk), TCP_RTO_MAX);
1344 }
1345
tcp_init_wl(struct tcp_sock * tp,u32 seq)1346 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1347 {
1348 tp->snd_wl1 = seq;
1349 }
1350
tcp_update_wl(struct tcp_sock * tp,u32 seq)1351 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1352 {
1353 tp->snd_wl1 = seq;
1354 }
1355
1356 /*
1357 * Calculate(/check) TCP checksum
1358 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1359 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1360 __be32 daddr, __wsum base)
1361 {
1362 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1363 }
1364
tcp_checksum_complete(struct sk_buff * skb)1365 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1366 {
1367 return !skb_csum_unnecessary(skb) &&
1368 __skb_checksum_complete(skb);
1369 }
1370
1371 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1372 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1373 void tcp_set_state(struct sock *sk, int state);
1374 void tcp_done(struct sock *sk);
1375 int tcp_abort(struct sock *sk, int err);
1376
tcp_sack_reset(struct tcp_options_received * rx_opt)1377 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1378 {
1379 rx_opt->dsack = 0;
1380 rx_opt->num_sacks = 0;
1381 }
1382
1383 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1384
tcp_slow_start_after_idle_check(struct sock * sk)1385 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1386 {
1387 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 s32 delta;
1390
1391 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1392 tp->packets_out || ca_ops->cong_control)
1393 return;
1394 delta = tcp_jiffies32 - tp->lsndtime;
1395 if (delta > inet_csk(sk)->icsk_rto)
1396 tcp_cwnd_restart(sk, delta);
1397 }
1398
1399 /* Determine a window scaling and initial window to offer. */
1400 void tcp_select_initial_window(const struct sock *sk, int __space,
1401 __u32 mss, __u32 *rcv_wnd,
1402 __u32 *window_clamp, int wscale_ok,
1403 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1404
tcp_win_from_space(const struct sock * sk,int space)1405 static inline int tcp_win_from_space(const struct sock *sk, int space)
1406 {
1407 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1408
1409 return tcp_adv_win_scale <= 0 ?
1410 (space>>(-tcp_adv_win_scale)) :
1411 space - (space>>tcp_adv_win_scale);
1412 }
1413
1414 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1415 static inline int tcp_space(const struct sock *sk)
1416 {
1417 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1418 READ_ONCE(sk->sk_backlog.len) -
1419 atomic_read(&sk->sk_rmem_alloc));
1420 }
1421
tcp_full_space(const struct sock * sk)1422 static inline int tcp_full_space(const struct sock *sk)
1423 {
1424 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1425 }
1426
1427 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1428
1429 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1430 * If 87.5 % (7/8) of the space has been consumed, we want to override
1431 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1432 * len/truesize ratio.
1433 */
tcp_rmem_pressure(const struct sock * sk)1434 static inline bool tcp_rmem_pressure(const struct sock *sk)
1435 {
1436 int rcvbuf, threshold;
1437
1438 if (tcp_under_memory_pressure(sk))
1439 return true;
1440
1441 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1442 threshold = rcvbuf - (rcvbuf >> 3);
1443
1444 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1445 }
1446
1447 extern void tcp_openreq_init_rwin(struct request_sock *req,
1448 const struct sock *sk_listener,
1449 const struct dst_entry *dst);
1450
1451 void tcp_enter_memory_pressure(struct sock *sk);
1452 void tcp_leave_memory_pressure(struct sock *sk);
1453
keepalive_intvl_when(const struct tcp_sock * tp)1454 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1455 {
1456 struct net *net = sock_net((struct sock *)tp);
1457
1458 return tp->keepalive_intvl ? :
1459 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1460 }
1461
keepalive_time_when(const struct tcp_sock * tp)1462 static inline int keepalive_time_when(const struct tcp_sock *tp)
1463 {
1464 struct net *net = sock_net((struct sock *)tp);
1465
1466 return tp->keepalive_time ? :
1467 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1468 }
1469
keepalive_probes(const struct tcp_sock * tp)1470 static inline int keepalive_probes(const struct tcp_sock *tp)
1471 {
1472 struct net *net = sock_net((struct sock *)tp);
1473
1474 return tp->keepalive_probes ? :
1475 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1476 }
1477
keepalive_time_elapsed(const struct tcp_sock * tp)1478 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1479 {
1480 const struct inet_connection_sock *icsk = &tp->inet_conn;
1481
1482 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1483 tcp_jiffies32 - tp->rcv_tstamp);
1484 }
1485
tcp_fin_time(const struct sock * sk)1486 static inline int tcp_fin_time(const struct sock *sk)
1487 {
1488 int fin_timeout = tcp_sk(sk)->linger2 ? :
1489 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1490 const int rto = inet_csk(sk)->icsk_rto;
1491
1492 if (fin_timeout < (rto << 2) - (rto >> 1))
1493 fin_timeout = (rto << 2) - (rto >> 1);
1494
1495 return fin_timeout;
1496 }
1497
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1498 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1499 int paws_win)
1500 {
1501 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1502 return true;
1503 if (unlikely(!time_before32(ktime_get_seconds(),
1504 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1505 return true;
1506 /*
1507 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1508 * then following tcp messages have valid values. Ignore 0 value,
1509 * or else 'negative' tsval might forbid us to accept their packets.
1510 */
1511 if (!rx_opt->ts_recent)
1512 return true;
1513 return false;
1514 }
1515
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1516 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1517 int rst)
1518 {
1519 if (tcp_paws_check(rx_opt, 0))
1520 return false;
1521
1522 /* RST segments are not recommended to carry timestamp,
1523 and, if they do, it is recommended to ignore PAWS because
1524 "their cleanup function should take precedence over timestamps."
1525 Certainly, it is mistake. It is necessary to understand the reasons
1526 of this constraint to relax it: if peer reboots, clock may go
1527 out-of-sync and half-open connections will not be reset.
1528 Actually, the problem would be not existing if all
1529 the implementations followed draft about maintaining clock
1530 via reboots. Linux-2.2 DOES NOT!
1531
1532 However, we can relax time bounds for RST segments to MSL.
1533 */
1534 if (rst && !time_before32(ktime_get_seconds(),
1535 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1536 return false;
1537 return true;
1538 }
1539
1540 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1541 int mib_idx, u32 *last_oow_ack_time);
1542
tcp_mib_init(struct net * net)1543 static inline void tcp_mib_init(struct net *net)
1544 {
1545 /* See RFC 2012 */
1546 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1547 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1548 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1549 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1550 }
1551
1552 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1553 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1554 {
1555 tp->lost_skb_hint = NULL;
1556 }
1557
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1558 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1559 {
1560 tcp_clear_retrans_hints_partial(tp);
1561 tp->retransmit_skb_hint = NULL;
1562 }
1563
1564 union tcp_md5_addr {
1565 struct in_addr a4;
1566 #if IS_ENABLED(CONFIG_IPV6)
1567 struct in6_addr a6;
1568 #endif
1569 };
1570
1571 /* - key database */
1572 struct tcp_md5sig_key {
1573 struct hlist_node node;
1574 u8 keylen;
1575 u8 family; /* AF_INET or AF_INET6 */
1576 u8 prefixlen;
1577 union tcp_md5_addr addr;
1578 int l3index; /* set if key added with L3 scope */
1579 u8 key[TCP_MD5SIG_MAXKEYLEN];
1580 struct rcu_head rcu;
1581 };
1582
1583 /* - sock block */
1584 struct tcp_md5sig_info {
1585 struct hlist_head head;
1586 struct rcu_head rcu;
1587 };
1588
1589 /* - pseudo header */
1590 struct tcp4_pseudohdr {
1591 __be32 saddr;
1592 __be32 daddr;
1593 __u8 pad;
1594 __u8 protocol;
1595 __be16 len;
1596 };
1597
1598 struct tcp6_pseudohdr {
1599 struct in6_addr saddr;
1600 struct in6_addr daddr;
1601 __be32 len;
1602 __be32 protocol; /* including padding */
1603 };
1604
1605 union tcp_md5sum_block {
1606 struct tcp4_pseudohdr ip4;
1607 #if IS_ENABLED(CONFIG_IPV6)
1608 struct tcp6_pseudohdr ip6;
1609 #endif
1610 };
1611
1612 /* - pool: digest algorithm, hash description and scratch buffer */
1613 struct tcp_md5sig_pool {
1614 struct ahash_request *md5_req;
1615 void *scratch;
1616 };
1617
1618 /* - functions */
1619 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1620 const struct sock *sk, const struct sk_buff *skb);
1621 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1622 int family, u8 prefixlen, int l3index,
1623 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1624 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1625 int family, u8 prefixlen, int l3index);
1626 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1627 const struct sock *addr_sk);
1628
1629 #ifdef CONFIG_TCP_MD5SIG
1630 #include <linux/jump_label.h>
1631 extern struct static_key_false tcp_md5_needed;
1632 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1633 const union tcp_md5_addr *addr,
1634 int family);
1635 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1636 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1637 const union tcp_md5_addr *addr, int family)
1638 {
1639 if (!static_branch_unlikely(&tcp_md5_needed))
1640 return NULL;
1641 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1642 }
1643
1644 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1645 #else
1646 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1647 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1648 const union tcp_md5_addr *addr, int family)
1649 {
1650 return NULL;
1651 }
1652 #define tcp_twsk_md5_key(twsk) NULL
1653 #endif
1654
1655 bool tcp_alloc_md5sig_pool(void);
1656
1657 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1658 static inline void tcp_put_md5sig_pool(void)
1659 {
1660 local_bh_enable();
1661 }
1662
1663 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1664 unsigned int header_len);
1665 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1666 const struct tcp_md5sig_key *key);
1667
1668 /* From tcp_fastopen.c */
1669 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1670 struct tcp_fastopen_cookie *cookie);
1671 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1672 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1673 u16 try_exp);
1674 struct tcp_fastopen_request {
1675 /* Fast Open cookie. Size 0 means a cookie request */
1676 struct tcp_fastopen_cookie cookie;
1677 struct msghdr *data; /* data in MSG_FASTOPEN */
1678 size_t size;
1679 int copied; /* queued in tcp_connect() */
1680 struct ubuf_info *uarg;
1681 };
1682 void tcp_free_fastopen_req(struct tcp_sock *tp);
1683 void tcp_fastopen_destroy_cipher(struct sock *sk);
1684 void tcp_fastopen_ctx_destroy(struct net *net);
1685 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1686 void *primary_key, void *backup_key);
1687 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1688 u64 *key);
1689 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1690 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1691 struct request_sock *req,
1692 struct tcp_fastopen_cookie *foc,
1693 const struct dst_entry *dst);
1694 void tcp_fastopen_init_key_once(struct net *net);
1695 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1696 struct tcp_fastopen_cookie *cookie);
1697 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1698 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1699 #define TCP_FASTOPEN_KEY_MAX 2
1700 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1701 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1702
1703 /* Fastopen key context */
1704 struct tcp_fastopen_context {
1705 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1706 int num;
1707 struct rcu_head rcu;
1708 };
1709
1710 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1711 void tcp_fastopen_active_disable(struct sock *sk);
1712 bool tcp_fastopen_active_should_disable(struct sock *sk);
1713 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1714 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1715
1716 /* Caller needs to wrap with rcu_read_(un)lock() */
1717 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1718 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1719 {
1720 struct tcp_fastopen_context *ctx;
1721
1722 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1723 if (!ctx)
1724 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1725 return ctx;
1726 }
1727
1728 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1729 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1730 const struct tcp_fastopen_cookie *orig)
1731 {
1732 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1733 orig->len == foc->len &&
1734 !memcmp(orig->val, foc->val, foc->len))
1735 return true;
1736 return false;
1737 }
1738
1739 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1740 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1741 {
1742 return ctx->num;
1743 }
1744
1745 /* Latencies incurred by various limits for a sender. They are
1746 * chronograph-like stats that are mutually exclusive.
1747 */
1748 enum tcp_chrono {
1749 TCP_CHRONO_UNSPEC,
1750 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1751 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1752 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1753 __TCP_CHRONO_MAX,
1754 };
1755
1756 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1757 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1758
1759 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1760 * the same memory storage than skb->destructor/_skb_refdst
1761 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1762 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1763 {
1764 skb->destructor = NULL;
1765 skb->_skb_refdst = 0UL;
1766 }
1767
1768 #define tcp_skb_tsorted_save(skb) { \
1769 unsigned long _save = skb->_skb_refdst; \
1770 skb->_skb_refdst = 0UL;
1771
1772 #define tcp_skb_tsorted_restore(skb) \
1773 skb->_skb_refdst = _save; \
1774 }
1775
1776 void tcp_write_queue_purge(struct sock *sk);
1777
tcp_rtx_queue_head(const struct sock * sk)1778 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1779 {
1780 return skb_rb_first(&sk->tcp_rtx_queue);
1781 }
1782
tcp_rtx_queue_tail(const struct sock * sk)1783 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1784 {
1785 return skb_rb_last(&sk->tcp_rtx_queue);
1786 }
1787
tcp_write_queue_head(const struct sock * sk)1788 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1789 {
1790 return skb_peek(&sk->sk_write_queue);
1791 }
1792
tcp_write_queue_tail(const struct sock * sk)1793 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1794 {
1795 return skb_peek_tail(&sk->sk_write_queue);
1796 }
1797
1798 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1799 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1800
tcp_send_head(const struct sock * sk)1801 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1802 {
1803 return skb_peek(&sk->sk_write_queue);
1804 }
1805
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1806 static inline bool tcp_skb_is_last(const struct sock *sk,
1807 const struct sk_buff *skb)
1808 {
1809 return skb_queue_is_last(&sk->sk_write_queue, skb);
1810 }
1811
1812 /**
1813 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1814 * @sk: socket
1815 *
1816 * Since the write queue can have a temporary empty skb in it,
1817 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1818 */
tcp_write_queue_empty(const struct sock * sk)1819 static inline bool tcp_write_queue_empty(const struct sock *sk)
1820 {
1821 const struct tcp_sock *tp = tcp_sk(sk);
1822
1823 return tp->write_seq == tp->snd_nxt;
1824 }
1825
tcp_rtx_queue_empty(const struct sock * sk)1826 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1827 {
1828 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1829 }
1830
tcp_rtx_and_write_queues_empty(const struct sock * sk)1831 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1832 {
1833 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1834 }
1835
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1836 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1837 {
1838 __skb_queue_tail(&sk->sk_write_queue, skb);
1839
1840 /* Queue it, remembering where we must start sending. */
1841 if (sk->sk_write_queue.next == skb)
1842 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1843 }
1844
1845 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1846 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1847 struct sk_buff *skb,
1848 struct sock *sk)
1849 {
1850 __skb_queue_before(&sk->sk_write_queue, skb, new);
1851 }
1852
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1853 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1854 {
1855 tcp_skb_tsorted_anchor_cleanup(skb);
1856 __skb_unlink(skb, &sk->sk_write_queue);
1857 }
1858
1859 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1860
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1861 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1862 {
1863 tcp_skb_tsorted_anchor_cleanup(skb);
1864 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1865 }
1866
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1867 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1868 {
1869 list_del(&skb->tcp_tsorted_anchor);
1870 tcp_rtx_queue_unlink(skb, sk);
1871 sk_wmem_free_skb(sk, skb);
1872 }
1873
tcp_push_pending_frames(struct sock * sk)1874 static inline void tcp_push_pending_frames(struct sock *sk)
1875 {
1876 if (tcp_send_head(sk)) {
1877 struct tcp_sock *tp = tcp_sk(sk);
1878
1879 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1880 }
1881 }
1882
1883 /* Start sequence of the skb just after the highest skb with SACKed
1884 * bit, valid only if sacked_out > 0 or when the caller has ensured
1885 * validity by itself.
1886 */
tcp_highest_sack_seq(struct tcp_sock * tp)1887 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1888 {
1889 if (!tp->sacked_out)
1890 return tp->snd_una;
1891
1892 if (tp->highest_sack == NULL)
1893 return tp->snd_nxt;
1894
1895 return TCP_SKB_CB(tp->highest_sack)->seq;
1896 }
1897
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1898 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1899 {
1900 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1901 }
1902
tcp_highest_sack(struct sock * sk)1903 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1904 {
1905 return tcp_sk(sk)->highest_sack;
1906 }
1907
tcp_highest_sack_reset(struct sock * sk)1908 static inline void tcp_highest_sack_reset(struct sock *sk)
1909 {
1910 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1911 }
1912
1913 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1914 static inline void tcp_highest_sack_replace(struct sock *sk,
1915 struct sk_buff *old,
1916 struct sk_buff *new)
1917 {
1918 if (old == tcp_highest_sack(sk))
1919 tcp_sk(sk)->highest_sack = new;
1920 }
1921
1922 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1923 static inline bool inet_sk_transparent(const struct sock *sk)
1924 {
1925 switch (sk->sk_state) {
1926 case TCP_TIME_WAIT:
1927 return inet_twsk(sk)->tw_transparent;
1928 case TCP_NEW_SYN_RECV:
1929 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1930 }
1931 return inet_sk(sk)->transparent;
1932 }
1933
1934 /* Determines whether this is a thin stream (which may suffer from
1935 * increased latency). Used to trigger latency-reducing mechanisms.
1936 */
tcp_stream_is_thin(struct tcp_sock * tp)1937 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1938 {
1939 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1940 }
1941
1942 /* /proc */
1943 enum tcp_seq_states {
1944 TCP_SEQ_STATE_LISTENING,
1945 TCP_SEQ_STATE_ESTABLISHED,
1946 };
1947
1948 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1949 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1950 void tcp_seq_stop(struct seq_file *seq, void *v);
1951
1952 struct tcp_seq_afinfo {
1953 sa_family_t family;
1954 };
1955
1956 struct tcp_iter_state {
1957 struct seq_net_private p;
1958 enum tcp_seq_states state;
1959 struct sock *syn_wait_sk;
1960 struct tcp_seq_afinfo *bpf_seq_afinfo;
1961 int bucket, offset, sbucket, num;
1962 loff_t last_pos;
1963 };
1964
1965 extern struct request_sock_ops tcp_request_sock_ops;
1966 extern struct request_sock_ops tcp6_request_sock_ops;
1967
1968 void tcp_v4_destroy_sock(struct sock *sk);
1969
1970 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1971 netdev_features_t features);
1972 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1973 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1974 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1975 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1976 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1977 int tcp_gro_complete(struct sk_buff *skb);
1978
1979 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1980
tcp_notsent_lowat(const struct tcp_sock * tp)1981 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1982 {
1983 struct net *net = sock_net((struct sock *)tp);
1984 return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
1985 }
1986
1987 /* @wake is one when sk_stream_write_space() calls us.
1988 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1989 * This mimics the strategy used in sock_def_write_space().
1990 */
tcp_stream_memory_free(const struct sock * sk,int wake)1991 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1992 {
1993 const struct tcp_sock *tp = tcp_sk(sk);
1994 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1995 READ_ONCE(tp->snd_nxt);
1996
1997 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1998 }
1999
2000 #ifdef CONFIG_PROC_FS
2001 int tcp4_proc_init(void);
2002 void tcp4_proc_exit(void);
2003 #endif
2004
2005 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2006 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2007 const struct tcp_request_sock_ops *af_ops,
2008 struct sock *sk, struct sk_buff *skb);
2009
2010 /* TCP af-specific functions */
2011 struct tcp_sock_af_ops {
2012 #ifdef CONFIG_TCP_MD5SIG
2013 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2014 const struct sock *addr_sk);
2015 int (*calc_md5_hash)(char *location,
2016 const struct tcp_md5sig_key *md5,
2017 const struct sock *sk,
2018 const struct sk_buff *skb);
2019 int (*md5_parse)(struct sock *sk,
2020 int optname,
2021 sockptr_t optval,
2022 int optlen);
2023 #endif
2024 };
2025
2026 struct tcp_request_sock_ops {
2027 u16 mss_clamp;
2028 #ifdef CONFIG_TCP_MD5SIG
2029 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2030 const struct sock *addr_sk);
2031 int (*calc_md5_hash) (char *location,
2032 const struct tcp_md5sig_key *md5,
2033 const struct sock *sk,
2034 const struct sk_buff *skb);
2035 #endif
2036 void (*init_req)(struct request_sock *req,
2037 const struct sock *sk_listener,
2038 struct sk_buff *skb);
2039 #ifdef CONFIG_SYN_COOKIES
2040 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2041 __u16 *mss);
2042 #endif
2043 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2044 const struct request_sock *req);
2045 u32 (*init_seq)(const struct sk_buff *skb);
2046 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2047 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2048 struct flowi *fl, struct request_sock *req,
2049 struct tcp_fastopen_cookie *foc,
2050 enum tcp_synack_type synack_type,
2051 struct sk_buff *syn_skb);
2052 };
2053
2054 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2055 #if IS_ENABLED(CONFIG_IPV6)
2056 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2057 #endif
2058
2059 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2060 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2061 const struct sock *sk, struct sk_buff *skb,
2062 __u16 *mss)
2063 {
2064 tcp_synq_overflow(sk);
2065 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2066 return ops->cookie_init_seq(skb, mss);
2067 }
2068 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2069 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2070 const struct sock *sk, struct sk_buff *skb,
2071 __u16 *mss)
2072 {
2073 return 0;
2074 }
2075 #endif
2076
2077 int tcpv4_offload_init(void);
2078
2079 void tcp_v4_init(void);
2080 void tcp_init(void);
2081
2082 /* tcp_recovery.c */
2083 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2084 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2085 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2086 u32 reo_wnd);
2087 extern bool tcp_rack_mark_lost(struct sock *sk);
2088 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2089 u64 xmit_time);
2090 extern void tcp_rack_reo_timeout(struct sock *sk);
2091 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2092
2093 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2094 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2095 {
2096 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2097 u32 rto = inet_csk(sk)->icsk_rto;
2098 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2099
2100 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2101 }
2102
2103 /*
2104 * Save and compile IPv4 options, return a pointer to it
2105 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2106 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2107 struct sk_buff *skb)
2108 {
2109 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2110 struct ip_options_rcu *dopt = NULL;
2111
2112 if (opt->optlen) {
2113 int opt_size = sizeof(*dopt) + opt->optlen;
2114
2115 dopt = kmalloc(opt_size, GFP_ATOMIC);
2116 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2117 kfree(dopt);
2118 dopt = NULL;
2119 }
2120 }
2121 return dopt;
2122 }
2123
2124 /* locally generated TCP pure ACKs have skb->truesize == 2
2125 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2126 * This is much faster than dissecting the packet to find out.
2127 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2128 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2129 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2130 {
2131 return skb->truesize == 2;
2132 }
2133
skb_set_tcp_pure_ack(struct sk_buff * skb)2134 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2135 {
2136 skb->truesize = 2;
2137 }
2138
tcp_inq(struct sock * sk)2139 static inline int tcp_inq(struct sock *sk)
2140 {
2141 struct tcp_sock *tp = tcp_sk(sk);
2142 int answ;
2143
2144 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2145 answ = 0;
2146 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2147 !tp->urg_data ||
2148 before(tp->urg_seq, tp->copied_seq) ||
2149 !before(tp->urg_seq, tp->rcv_nxt)) {
2150
2151 answ = tp->rcv_nxt - tp->copied_seq;
2152
2153 /* Subtract 1, if FIN was received */
2154 if (answ && sock_flag(sk, SOCK_DONE))
2155 answ--;
2156 } else {
2157 answ = tp->urg_seq - tp->copied_seq;
2158 }
2159
2160 return answ;
2161 }
2162
2163 int tcp_peek_len(struct socket *sock);
2164
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2165 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2166 {
2167 u16 segs_in;
2168
2169 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2170 tp->segs_in += segs_in;
2171 if (skb->len > tcp_hdrlen(skb))
2172 tp->data_segs_in += segs_in;
2173 }
2174
2175 /*
2176 * TCP listen path runs lockless.
2177 * We forced "struct sock" to be const qualified to make sure
2178 * we don't modify one of its field by mistake.
2179 * Here, we increment sk_drops which is an atomic_t, so we can safely
2180 * make sock writable again.
2181 */
tcp_listendrop(const struct sock * sk)2182 static inline void tcp_listendrop(const struct sock *sk)
2183 {
2184 atomic_inc(&((struct sock *)sk)->sk_drops);
2185 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2186 }
2187
2188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2189
2190 /*
2191 * Interface for adding Upper Level Protocols over TCP
2192 */
2193
2194 #define TCP_ULP_NAME_MAX 16
2195 #define TCP_ULP_MAX 128
2196 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2197
2198 struct tcp_ulp_ops {
2199 struct list_head list;
2200
2201 /* initialize ulp */
2202 int (*init)(struct sock *sk);
2203 /* update ulp */
2204 void (*update)(struct sock *sk, struct proto *p,
2205 void (*write_space)(struct sock *sk));
2206 /* cleanup ulp */
2207 void (*release)(struct sock *sk);
2208 /* diagnostic */
2209 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2210 size_t (*get_info_size)(const struct sock *sk);
2211 /* clone ulp */
2212 void (*clone)(const struct request_sock *req, struct sock *newsk,
2213 const gfp_t priority);
2214
2215 char name[TCP_ULP_NAME_MAX];
2216 struct module *owner;
2217 };
2218 int tcp_register_ulp(struct tcp_ulp_ops *type);
2219 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2220 int tcp_set_ulp(struct sock *sk, const char *name);
2221 void tcp_get_available_ulp(char *buf, size_t len);
2222 void tcp_cleanup_ulp(struct sock *sk);
2223 void tcp_update_ulp(struct sock *sk, struct proto *p,
2224 void (*write_space)(struct sock *sk));
2225
2226 #define MODULE_ALIAS_TCP_ULP(name) \
2227 __MODULE_INFO(alias, alias_userspace, name); \
2228 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2229
2230 struct sk_msg;
2231 struct sk_psock;
2232
2233 #ifdef CONFIG_BPF_STREAM_PARSER
2234 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2235 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2236 #else
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2237 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2238 {
2239 }
2240 #endif /* CONFIG_BPF_STREAM_PARSER */
2241
2242 #ifdef CONFIG_NET_SOCK_MSG
2243 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2244 int flags);
2245 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2246 struct msghdr *msg, int len, int flags);
2247 #endif /* CONFIG_NET_SOCK_MSG */
2248
2249 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2250 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2251 struct sk_buff *skb,
2252 unsigned int end_offset)
2253 {
2254 skops->skb = skb;
2255 skops->skb_data_end = skb->data + end_offset;
2256 }
2257 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2258 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2259 struct sk_buff *skb,
2260 unsigned int end_offset)
2261 {
2262 }
2263 #endif
2264
2265 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2266 * is < 0, then the BPF op failed (for example if the loaded BPF
2267 * program does not support the chosen operation or there is no BPF
2268 * program loaded).
2269 */
2270 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2271 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2272 {
2273 struct bpf_sock_ops_kern sock_ops;
2274 int ret;
2275
2276 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2277 if (sk_fullsock(sk)) {
2278 sock_ops.is_fullsock = 1;
2279 sock_owned_by_me(sk);
2280 }
2281
2282 sock_ops.sk = sk;
2283 sock_ops.op = op;
2284 if (nargs > 0)
2285 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2286
2287 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2288 if (ret == 0)
2289 ret = sock_ops.reply;
2290 else
2291 ret = -1;
2292 return ret;
2293 }
2294
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2295 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2296 {
2297 u32 args[2] = {arg1, arg2};
2298
2299 return tcp_call_bpf(sk, op, 2, args);
2300 }
2301
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2302 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2303 u32 arg3)
2304 {
2305 u32 args[3] = {arg1, arg2, arg3};
2306
2307 return tcp_call_bpf(sk, op, 3, args);
2308 }
2309
2310 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2311 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2312 {
2313 return -EPERM;
2314 }
2315
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2316 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2317 {
2318 return -EPERM;
2319 }
2320
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2321 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2322 u32 arg3)
2323 {
2324 return -EPERM;
2325 }
2326
2327 #endif
2328
tcp_timeout_init(struct sock * sk)2329 static inline u32 tcp_timeout_init(struct sock *sk)
2330 {
2331 int timeout;
2332
2333 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2334
2335 if (timeout <= 0)
2336 timeout = TCP_TIMEOUT_INIT;
2337 return timeout;
2338 }
2339
tcp_rwnd_init_bpf(struct sock * sk)2340 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2341 {
2342 int rwnd;
2343
2344 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2345
2346 if (rwnd < 0)
2347 rwnd = 0;
2348 return rwnd;
2349 }
2350
tcp_bpf_ca_needs_ecn(struct sock * sk)2351 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2352 {
2353 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2354 }
2355
tcp_bpf_rtt(struct sock * sk)2356 static inline void tcp_bpf_rtt(struct sock *sk)
2357 {
2358 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2359 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2360 }
2361
2362 #if IS_ENABLED(CONFIG_SMC)
2363 extern struct static_key_false tcp_have_smc;
2364 #endif
2365
2366 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2367 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2368 void (*cad)(struct sock *sk, u32 ack_seq));
2369 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2370 void clean_acked_data_flush(void);
2371 #endif
2372
2373 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2374 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2375 const struct tcp_sock *tp)
2376 {
2377 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2378 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2379 }
2380
2381 /* Compute Earliest Departure Time for some control packets
2382 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2383 */
tcp_transmit_time(const struct sock * sk)2384 static inline u64 tcp_transmit_time(const struct sock *sk)
2385 {
2386 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2387 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2388 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2389
2390 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2391 }
2392 return 0;
2393 }
2394
2395 #endif /* _TCP_H */
2396