• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Host communication command constants for ChromeOS EC
4  *
5  * Copyright (C) 2012 Google, Inc
6  *
7  * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8  * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9  */
10 
11 /* Host communication command constants for Chrome EC */
12 
13 #ifndef __CROS_EC_COMMANDS_H
14 #define __CROS_EC_COMMANDS_H
15 
16 
17 
18 
19 #define BUILD_ASSERT(_cond)
20 
21 /*
22  * Current version of this protocol
23  *
24  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25  * determined in other ways.  Remove this once the kernel code no longer
26  * depends on it.
27  */
28 #define EC_PROTO_VERSION          0x00000002
29 
30 /* Command version mask */
31 #define EC_VER_MASK(version) BIT(version)
32 
33 /* I/O addresses for ACPI commands */
34 #define EC_LPC_ADDR_ACPI_DATA  0x62
35 #define EC_LPC_ADDR_ACPI_CMD   0x66
36 
37 /* I/O addresses for host command */
38 #define EC_LPC_ADDR_HOST_DATA  0x200
39 #define EC_LPC_ADDR_HOST_CMD   0x204
40 
41 /* I/O addresses for host command args and params */
42 /* Protocol version 2 */
43 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
44 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
45 					 * EC_PROTO2_MAX_PARAM_SIZE
46 					 */
47 /* Protocol version 3 */
48 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
49 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
50 
51 /*
52  * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53  * and they tell the kernel that so we have to think of it as two parts.
54  */
55 #define EC_HOST_CMD_REGION0    0x800
56 #define EC_HOST_CMD_REGION1    0x880
57 #define EC_HOST_CMD_REGION_SIZE 0x80
58 
59 /* EC command register bit functions */
60 #define EC_LPC_CMDR_DATA	BIT(0)  /* Data ready for host to read */
61 #define EC_LPC_CMDR_PENDING	BIT(1)  /* Write pending to EC */
62 #define EC_LPC_CMDR_BUSY	BIT(2)  /* EC is busy processing a command */
63 #define EC_LPC_CMDR_CMD		BIT(3)  /* Last host write was a command */
64 #define EC_LPC_CMDR_ACPI_BRST	BIT(4)  /* Burst mode (not used) */
65 #define EC_LPC_CMDR_SCI		BIT(5)  /* SCI event is pending */
66 #define EC_LPC_CMDR_SMI		BIT(6)  /* SMI event is pending */
67 
68 #define EC_LPC_ADDR_MEMMAP       0x900
69 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
70 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
71 
72 /* The offset address of each type of data in mapped memory. */
73 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
74 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
75 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
76 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
77 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
78 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
79 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
80 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
81 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
82 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
83 /* Unused 0x28 - 0x2f */
84 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
85 /* Unused 0x31 - 0x33 */
86 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
87 /* Battery values are all 32 bits, unless otherwise noted. */
88 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
89 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
90 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
91 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
92 #define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
93 #define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
94 /* Unused 0x4f */
95 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
109 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
110 /* 0x94 - 0x99: 1st Accelerometer */
111 /* 0x9a - 0x9f: 2nd Accelerometer */
112 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
113 /* Unused 0xa6 - 0xdf */
114 
115 /*
116  * ACPI is unable to access memory mapped data at or above this offset due to
117  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
118  * which might be needed by ACPI.
119  */
120 #define EC_MEMMAP_NO_ACPI 0xe0
121 
122 /* Define the format of the accelerometer mapped memory status byte. */
123 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
124 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
125 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
126 
127 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
128 #define EC_TEMP_SENSOR_ENTRIES     16
129 /*
130  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
131  *
132  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
133  */
134 #define EC_TEMP_SENSOR_B_ENTRIES      8
135 
136 /* Special values for mapped temperature sensors */
137 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
138 #define EC_TEMP_SENSOR_ERROR          0xfe
139 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
140 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
141 /*
142  * The offset of temperature value stored in mapped memory.  This allows
143  * reporting a temperature range of 200K to 454K = -73C to 181C.
144  */
145 #define EC_TEMP_SENSOR_OFFSET      200
146 
147 /*
148  * Number of ALS readings at EC_MEMMAP_ALS
149  */
150 #define EC_ALS_ENTRIES             2
151 
152 /*
153  * The default value a temperature sensor will return when it is present but
154  * has not been read this boot.  This is a reasonable number to avoid
155  * triggering alarms on the host.
156  */
157 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
158 
159 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
160 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
161 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
162 
163 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
164 #define EC_BATT_FLAG_AC_PRESENT   0x01
165 #define EC_BATT_FLAG_BATT_PRESENT 0x02
166 #define EC_BATT_FLAG_DISCHARGING  0x04
167 #define EC_BATT_FLAG_CHARGING     0x08
168 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
169 /* Set if some of the static/dynamic data is invalid (or outdated). */
170 #define EC_BATT_FLAG_INVALID_DATA 0x20
171 
172 /* Switch flags at EC_MEMMAP_SWITCHES */
173 #define EC_SWITCH_LID_OPEN               0x01
174 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
175 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
176 /* Was recovery requested via keyboard; now unused. */
177 #define EC_SWITCH_IGNORE1		 0x08
178 /* Recovery requested via dedicated signal (from servo board) */
179 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
180 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
181 #define EC_SWITCH_IGNORE0                0x20
182 
183 /* Host command interface flags */
184 /* Host command interface supports LPC args (LPC interface only) */
185 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
186 /* Host command interface supports version 3 protocol */
187 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
188 
189 /* Wireless switch flags */
190 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
191 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
192 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
193 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
194 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
195 
196 /*****************************************************************************/
197 /*
198  * ACPI commands
199  *
200  * These are valid ONLY on the ACPI command/data port.
201  */
202 
203 /*
204  * ACPI Read Embedded Controller
205  *
206  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
207  *
208  * Use the following sequence:
209  *
210  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
211  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
212  *    - Write address to EC_LPC_ADDR_ACPI_DATA
213  *    - Wait for EC_LPC_CMDR_DATA bit to set
214  *    - Read value from EC_LPC_ADDR_ACPI_DATA
215  */
216 #define EC_CMD_ACPI_READ 0x0080
217 
218 /*
219  * ACPI Write Embedded Controller
220  *
221  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
222  *
223  * Use the following sequence:
224  *
225  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
226  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
227  *    - Write address to EC_LPC_ADDR_ACPI_DATA
228  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
229  *    - Write value to EC_LPC_ADDR_ACPI_DATA
230  */
231 #define EC_CMD_ACPI_WRITE 0x0081
232 
233 /*
234  * ACPI Burst Enable Embedded Controller
235  *
236  * This enables burst mode on the EC to allow the host to issue several
237  * commands back-to-back. While in this mode, writes to mapped multi-byte
238  * data are locked out to ensure data consistency.
239  */
240 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
241 
242 /*
243  * ACPI Burst Disable Embedded Controller
244  *
245  * This disables burst mode on the EC and stops preventing EC writes to mapped
246  * multi-byte data.
247  */
248 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
249 
250 /*
251  * ACPI Query Embedded Controller
252  *
253  * This clears the lowest-order bit in the currently pending host events, and
254  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
255  * event 0x80000000 = 32), or 0 if no event was pending.
256  */
257 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
258 
259 /* Valid addresses in ACPI memory space, for read/write commands */
260 
261 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
262 #define EC_ACPI_MEM_VERSION            0x00
263 /*
264  * Test location; writing value here updates test compliment byte to (0xff -
265  * value).
266  */
267 #define EC_ACPI_MEM_TEST               0x01
268 /* Test compliment; writes here are ignored. */
269 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
270 
271 /* Keyboard backlight brightness percent (0 - 100) */
272 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
273 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
274 #define EC_ACPI_MEM_FAN_DUTY           0x04
275 
276 /*
277  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
278  * independent thresholds attached to them. The current value of the ID
279  * register determines which sensor is affected by the THRESHOLD and COMMIT
280  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
281  * as the memory-mapped sensors. The COMMIT register applies those settings.
282  *
283  * The spec does not mandate any way to read back the threshold settings
284  * themselves, but when a threshold is crossed the AP needs a way to determine
285  * which sensor(s) are responsible. Each reading of the ID register clears and
286  * returns one sensor ID that has crossed one of its threshold (in either
287  * direction) since the last read. A value of 0xFF means "no new thresholds
288  * have tripped". Setting or enabling the thresholds for a sensor will clear
289  * the unread event count for that sensor.
290  */
291 #define EC_ACPI_MEM_TEMP_ID            0x05
292 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
293 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
294 /*
295  * Here are the bits for the COMMIT register:
296  *   bit 0 selects the threshold index for the chosen sensor (0/1)
297  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
298  * Each write to the commit register affects one threshold.
299  */
300 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
301 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
302 /*
303  * Example:
304  *
305  * Set the thresholds for sensor 2 to 50 C and 60 C:
306  *   write 2 to [0x05]      --  select temp sensor 2
307  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
308  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
309  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
310  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
311  *
312  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
313  *   write 2 to [0x05]      --  select temp sensor 2
314  *   write 0x1 to [0x07]    --  disable threshold 1
315  */
316 
317 /* DPTF battery charging current limit */
318 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
319 
320 /* Charging limit is specified in 64 mA steps */
321 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
322 /* Value to disable DPTF battery charging limit */
323 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
324 
325 /*
326  * Report device orientation
327  *  Bits       Definition
328  *  3:1        Device DPTF Profile Number (DDPN)
329  *               0   = Reserved for backward compatibility (indicates no valid
330  *                     profile number. Host should fall back to using TBMD).
331  *              1..7 = DPTF Profile number to indicate to host which table needs
332  *                     to be loaded.
333  *   0         Tablet Mode Device Indicator (TBMD)
334  */
335 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
336 #define EC_ACPI_MEM_TBMD_SHIFT         0
337 #define EC_ACPI_MEM_TBMD_MASK          0x1
338 #define EC_ACPI_MEM_DDPN_SHIFT         1
339 #define EC_ACPI_MEM_DDPN_MASK          0x7
340 
341 /*
342  * Report device features. Uses the same format as the host command, except:
343  *
344  * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
345  * of features", which is of limited interest when the system is already
346  * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
347  * these are supported, it defaults to 0.
348  * This allows detecting the presence of this field since older versions of
349  * the EC codebase would simply return 0xff to that unknown address. Check
350  * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
351  * are valid.
352  */
353 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
354 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
355 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
356 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
357 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
358 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
359 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
360 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
361 
362 #define EC_ACPI_MEM_BATTERY_INDEX    0x12
363 
364 /*
365  * USB Port Power. Each bit indicates whether the corresponding USB ports' power
366  * is enabled (1) or disabled (0).
367  *   bit 0 USB port ID 0
368  *   ...
369  *   bit 7 USB port ID 7
370  */
371 #define EC_ACPI_MEM_USB_PORT_POWER 0x13
372 
373 /*
374  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
375  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
376  */
377 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
378 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
379 
380 /* Current version of ACPI memory address space */
381 #define EC_ACPI_MEM_VERSION_CURRENT 2
382 
383 
384 /*
385  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
386  * is pre-processed to handle constants but the ASL compiler is unable to
387  * handle actual C code so keep it separate.
388  */
389 
390 
391 /*
392  * Attributes for EC request and response packets.  Just defining __packed
393  * results in inefficient assembly code on ARM, if the structure is actually
394  * 32-bit aligned, as it should be for all buffers.
395  *
396  * Be very careful when adding these to existing structures.  They will round
397  * up the structure size to the specified boundary.
398  *
399  * Also be very careful to make that if a structure is included in some other
400  * parent structure that the alignment will still be true given the packing of
401  * the parent structure.  This is particularly important if the sub-structure
402  * will be passed as a pointer to another function, since that function will
403  * not know about the misaligment caused by the parent structure's packing.
404  *
405  * Also be very careful using __packed - particularly when nesting non-packed
406  * structures inside packed ones.  In fact, DO NOT use __packed directly;
407  * always use one of these attributes.
408  *
409  * Once everything is annotated properly, the following search strings should
410  * not return ANY matches in this file other than right here:
411  *
412  * "__packed" - generates inefficient code; all sub-structs must also be packed
413  *
414  * "struct [^_]" - all structs should be annotated, except for structs that are
415  * members of other structs/unions (and their original declarations should be
416  * annotated).
417  */
418 
419 /*
420  * Packed structures make no assumption about alignment, so they do inefficient
421  * byte-wise reads.
422  */
423 #define __ec_align1 __packed
424 #define __ec_align2 __packed
425 #define __ec_align4 __packed
426 #define __ec_align_size1 __packed
427 #define __ec_align_offset1 __packed
428 #define __ec_align_offset2 __packed
429 #define __ec_todo_packed __packed
430 #define __ec_todo_unpacked
431 
432 
433 /* LPC command status byte masks */
434 /* EC has written a byte in the data register and host hasn't read it yet */
435 #define EC_LPC_STATUS_TO_HOST     0x01
436 /* Host has written a command/data byte and the EC hasn't read it yet */
437 #define EC_LPC_STATUS_FROM_HOST   0x02
438 /* EC is processing a command */
439 #define EC_LPC_STATUS_PROCESSING  0x04
440 /* Last write to EC was a command, not data */
441 #define EC_LPC_STATUS_LAST_CMD    0x08
442 /* EC is in burst mode */
443 #define EC_LPC_STATUS_BURST_MODE  0x10
444 /* SCI event is pending (requesting SCI query) */
445 #define EC_LPC_STATUS_SCI_PENDING 0x20
446 /* SMI event is pending (requesting SMI query) */
447 #define EC_LPC_STATUS_SMI_PENDING 0x40
448 /* (reserved) */
449 #define EC_LPC_STATUS_RESERVED    0x80
450 
451 /*
452  * EC is busy.  This covers both the EC processing a command, and the host has
453  * written a new command but the EC hasn't picked it up yet.
454  */
455 #define EC_LPC_STATUS_BUSY_MASK \
456 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
457 
458 /*
459  * Host command response codes (16-bit).  Note that response codes should be
460  * stored in a uint16_t rather than directly in a value of this type.
461  */
462 enum ec_status {
463 	EC_RES_SUCCESS = 0,
464 	EC_RES_INVALID_COMMAND = 1,
465 	EC_RES_ERROR = 2,
466 	EC_RES_INVALID_PARAM = 3,
467 	EC_RES_ACCESS_DENIED = 4,
468 	EC_RES_INVALID_RESPONSE = 5,
469 	EC_RES_INVALID_VERSION = 6,
470 	EC_RES_INVALID_CHECKSUM = 7,
471 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
472 	EC_RES_UNAVAILABLE = 9,		/* No response available */
473 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
474 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
475 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
476 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
477 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
478 	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
479 	EC_RES_BUSY = 16,		/* Up but too busy.  Should retry */
480 	EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
481 	EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
482 	EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
483 	EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
484 };
485 
486 /*
487  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
488  * EC command uses code 0 to mean "no event pending".  We explicitly specify
489  * each value in the enum listing so they won't change if we delete/insert an
490  * item or rearrange the list (it needs to be stable across platforms, not
491  * just within a single compiled instance).
492  */
493 enum host_event_code {
494 	EC_HOST_EVENT_LID_CLOSED = 1,
495 	EC_HOST_EVENT_LID_OPEN = 2,
496 	EC_HOST_EVENT_POWER_BUTTON = 3,
497 	EC_HOST_EVENT_AC_CONNECTED = 4,
498 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
499 	EC_HOST_EVENT_BATTERY_LOW = 6,
500 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
501 	EC_HOST_EVENT_BATTERY = 8,
502 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
503 	/* Event generated by a device attached to the EC */
504 	EC_HOST_EVENT_DEVICE = 10,
505 	EC_HOST_EVENT_THERMAL = 11,
506 	EC_HOST_EVENT_USB_CHARGER = 12,
507 	EC_HOST_EVENT_KEY_PRESSED = 13,
508 	/*
509 	 * EC has finished initializing the host interface.  The host can check
510 	 * for this event following sending a EC_CMD_REBOOT_EC command to
511 	 * determine when the EC is ready to accept subsequent commands.
512 	 */
513 	EC_HOST_EVENT_INTERFACE_READY = 14,
514 	/* Keyboard recovery combo has been pressed */
515 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
516 
517 	/* Shutdown due to thermal overload */
518 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
519 	/* Shutdown due to battery level too low */
520 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
521 
522 	/* Suggest that the AP throttle itself */
523 	EC_HOST_EVENT_THROTTLE_START = 18,
524 	/* Suggest that the AP resume normal speed */
525 	EC_HOST_EVENT_THROTTLE_STOP = 19,
526 
527 	/* Hang detect logic detected a hang and host event timeout expired */
528 	EC_HOST_EVENT_HANG_DETECT = 20,
529 	/* Hang detect logic detected a hang and warm rebooted the AP */
530 	EC_HOST_EVENT_HANG_REBOOT = 21,
531 
532 	/* PD MCU triggering host event */
533 	EC_HOST_EVENT_PD_MCU = 22,
534 
535 	/* Battery Status flags have changed */
536 	EC_HOST_EVENT_BATTERY_STATUS = 23,
537 
538 	/* EC encountered a panic, triggering a reset */
539 	EC_HOST_EVENT_PANIC = 24,
540 
541 	/* Keyboard fastboot combo has been pressed */
542 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
543 
544 	/* EC RTC event occurred */
545 	EC_HOST_EVENT_RTC = 26,
546 
547 	/* Emulate MKBP event */
548 	EC_HOST_EVENT_MKBP = 27,
549 
550 	/* EC desires to change state of host-controlled USB mux */
551 	EC_HOST_EVENT_USB_MUX = 28,
552 
553 	/* TABLET/LAPTOP mode or detachable base attach/detach event */
554 	EC_HOST_EVENT_MODE_CHANGE = 29,
555 
556 	/* Keyboard recovery combo with hardware reinitialization */
557 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
558 
559 	/* WoV */
560 	EC_HOST_EVENT_WOV = 31,
561 
562 	/*
563 	 * The high bit of the event mask is not used as a host event code.  If
564 	 * it reads back as set, then the entire event mask should be
565 	 * considered invalid by the host.  This can happen when reading the
566 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
567 	 * not initialized on the EC, or improperly configured on the host.
568 	 */
569 	EC_HOST_EVENT_INVALID = 32
570 };
571 /* Host event mask */
572 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
573 
574 /**
575  * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
576  * @flags: The host argument flags.
577  * @command_version: Command version.
578  * @data_size: The length of data.
579  * @checksum: Checksum; sum of command + flags + command_version + data_size +
580  *            all params/response data bytes.
581  */
582 struct ec_lpc_host_args {
583 	uint8_t flags;
584 	uint8_t command_version;
585 	uint8_t data_size;
586 	uint8_t checksum;
587 } __ec_align4;
588 
589 /* Flags for ec_lpc_host_args.flags */
590 /*
591  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
592  * params.
593  *
594  * If EC gets a command and this flag is not set, this is an old-style command.
595  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
596  * unknown length.  EC must respond with an old-style response (that is,
597  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
598  */
599 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
600 /*
601  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
602  *
603  * If EC responds to a command and this flag is not set, this is an old-style
604  * response.  Command version is 0 and response data from EC is at
605  * EC_LPC_ADDR_OLD_PARAM with unknown length.
606  */
607 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
608 
609 /*****************************************************************************/
610 /*
611  * Byte codes returned by EC over SPI interface.
612  *
613  * These can be used by the AP to debug the EC interface, and to determine
614  * when the EC is not in a state where it will ever get around to responding
615  * to the AP.
616  *
617  * Example of sequence of bytes read from EC for a current good transfer:
618  *   1. -                  - AP asserts chip select (CS#)
619  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
620  *   3. -                  - EC starts handling CS# interrupt
621  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
622  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
623  *                           bytes looking for EC_SPI_FRAME_START
624  *   6. -                  - EC finishes processing and sets up response
625  *   7. EC_SPI_FRAME_START - AP reads frame byte
626  *   8. (response packet)  - AP reads response packet
627  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
628  *   10 -                  - AP deasserts chip select
629  *   11 -                  - EC processes CS# interrupt and sets up DMA for
630  *                           next request
631  *
632  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
633  * the following byte values:
634  *   EC_SPI_OLD_READY
635  *   EC_SPI_RX_READY
636  *   EC_SPI_RECEIVING
637  *   EC_SPI_PROCESSING
638  *
639  * Then the EC found an error in the request, or was not ready for the request
640  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
641  * because the EC is unable to tell when the AP is done sending its request.
642  */
643 
644 /*
645  * Framing byte which precedes a response packet from the EC.  After sending a
646  * request, the AP will clock in bytes until it sees the framing byte, then
647  * clock in the response packet.
648  */
649 #define EC_SPI_FRAME_START    0xec
650 
651 /*
652  * Padding bytes which are clocked out after the end of a response packet.
653  */
654 #define EC_SPI_PAST_END       0xed
655 
656 /*
657  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
658  * that the AP will send a valid packet header (starting with
659  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
660  */
661 #define EC_SPI_RX_READY       0xf8
662 
663 /*
664  * EC has started receiving the request from the AP, but hasn't started
665  * processing it yet.
666  */
667 #define EC_SPI_RECEIVING      0xf9
668 
669 /* EC has received the entire request from the AP and is processing it. */
670 #define EC_SPI_PROCESSING     0xfa
671 
672 /*
673  * EC received bad data from the AP, such as a packet header with an invalid
674  * length.  EC will ignore all data until chip select deasserts.
675  */
676 #define EC_SPI_RX_BAD_DATA    0xfb
677 
678 /*
679  * EC received data from the AP before it was ready.  That is, the AP asserted
680  * chip select and started clocking data before the EC was ready to receive it.
681  * EC will ignore all data until chip select deasserts.
682  */
683 #define EC_SPI_NOT_READY      0xfc
684 
685 /*
686  * EC was ready to receive a request from the AP.  EC has treated the byte sent
687  * by the AP as part of a request packet, or (for old-style ECs) is processing
688  * a fully received packet but is not ready to respond yet.
689  */
690 #define EC_SPI_OLD_READY      0xfd
691 
692 /*****************************************************************************/
693 
694 /*
695  * Protocol version 2 for I2C and SPI send a request this way:
696  *
697  *	0	EC_CMD_VERSION0 + (command version)
698  *	1	Command number
699  *	2	Length of params = N
700  *	3..N+2	Params, if any
701  *	N+3	8-bit checksum of bytes 0..N+2
702  *
703  * The corresponding response is:
704  *
705  *	0	Result code (EC_RES_*)
706  *	1	Length of params = M
707  *	2..M+1	Params, if any
708  *	M+2	8-bit checksum of bytes 0..M+1
709  */
710 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
711 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
712 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
713 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
714 
715 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
716 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
717 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
718 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
719 
720 /* Parameter length was limited by the LPC interface */
721 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
722 
723 /* Maximum request and response packet sizes for protocol version 2 */
724 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
725 				    EC_PROTO2_MAX_PARAM_SIZE)
726 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
727 				     EC_PROTO2_MAX_PARAM_SIZE)
728 
729 /*****************************************************************************/
730 
731 /*
732  * Value written to legacy command port / prefix byte to indicate protocol
733  * 3+ structs are being used.  Usage is bus-dependent.
734  */
735 #define EC_COMMAND_PROTOCOL_3 0xda
736 
737 #define EC_HOST_REQUEST_VERSION 3
738 
739 /**
740  * struct ec_host_request - Version 3 request from host.
741  * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
742  *                  receives a header with a version it doesn't know how to
743  *                  parse.
744  * @checksum: Checksum of request and data; sum of all bytes including checksum
745  *            should total to 0.
746  * @command: Command to send (EC_CMD_...)
747  * @command_version: Command version.
748  * @reserved: Unused byte in current protocol version; set to 0.
749  * @data_len: Length of data which follows this header.
750  */
751 struct ec_host_request {
752 	uint8_t struct_version;
753 	uint8_t checksum;
754 	uint16_t command;
755 	uint8_t command_version;
756 	uint8_t reserved;
757 	uint16_t data_len;
758 } __ec_align4;
759 
760 #define EC_HOST_RESPONSE_VERSION 3
761 
762 /**
763  * struct ec_host_response - Version 3 response from EC.
764  * @struct_version: Struct version (=3).
765  * @checksum: Checksum of response and data; sum of all bytes including
766  *            checksum should total to 0.
767  * @result: EC's response to the command (separate from communication failure)
768  * @data_len: Length of data which follows this header.
769  * @reserved: Unused bytes in current protocol version; set to 0.
770  */
771 struct ec_host_response {
772 	uint8_t struct_version;
773 	uint8_t checksum;
774 	uint16_t result;
775 	uint16_t data_len;
776 	uint16_t reserved;
777 } __ec_align4;
778 
779 /*****************************************************************************/
780 
781 /*
782  * Host command protocol V4.
783  *
784  * Packets always start with a request or response header.  They are followed
785  * by data_len bytes of data.  If the data_crc_present flag is set, the data
786  * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1
787  * polynomial.
788  *
789  * Host algorithm when sending a request q:
790  *
791  * 101) tries_left=(some value, e.g. 3);
792  * 102) q.seq_num++
793  * 103) q.seq_dup=0
794  * 104) Calculate q.header_crc.
795  * 105) Send request q to EC.
796  * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
797  *
798  * 201) If r.struct_version != 4, go to 301.
799  * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
800  * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
801  * 204) If r.seq_num != q.seq_num, go to 301.
802  * 205) If r.seq_dup == q.seq_dup, return success.
803  * 207) If r.seq_dup == 1, go to 301.
804  * 208) Return error.
805  *
806  * 301) If --tries_left <= 0, return error.
807  * 302) If q.seq_dup == 1, go to 105.
808  * 303) q.seq_dup = 1
809  * 304) Go to 104.
810  *
811  * EC algorithm when receiving a request q.
812  * EC has response buffer r, error buffer e.
813  *
814  * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
815  *      and go to 301
816  * 102) If q.header_crc mismatches calculated CRC, set e.result =
817  *      EC_RES_INVALID_HEADER_CRC and go to 301
818  * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
819  *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
820  *      and go to 301.
821  * 104) If q.seq_dup == 0, go to 201.
822  * 105) If q.seq_num != r.seq_num, go to 201.
823  * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
824  *
825  * 201) Process request q into response r.
826  * 202) r.seq_num = q.seq_num
827  * 203) r.seq_dup = q.seq_dup
828  * 204) Calculate r.header_crc
829  * 205) If r.data_len > 0 and data is no longer available, set e.result =
830  *      EC_RES_DUP_UNAVAILABLE and go to 301.
831  * 206) Send response r.
832  *
833  * 301) e.seq_num = q.seq_num
834  * 302) e.seq_dup = q.seq_dup
835  * 303) Calculate e.header_crc.
836  * 304) Send error response e.
837  */
838 
839 /* Version 4 request from host */
840 struct ec_host_request4 {
841 	/*
842 	 * bits 0-3: struct_version: Structure version (=4)
843 	 * bit    4: is_response: Is response (=0)
844 	 * bits 5-6: seq_num: Sequence number
845 	 * bit    7: seq_dup: Sequence duplicate flag
846 	 */
847 	uint8_t fields0;
848 
849 	/*
850 	 * bits 0-4: command_version: Command version
851 	 * bits 5-6: Reserved (set 0, ignore on read)
852 	 * bit    7: data_crc_present: Is data CRC present after data
853 	 */
854 	uint8_t fields1;
855 
856 	/* Command code (EC_CMD_*) */
857 	uint16_t command;
858 
859 	/* Length of data which follows this header (not including data CRC) */
860 	uint16_t data_len;
861 
862 	/* Reserved (set 0, ignore on read) */
863 	uint8_t reserved;
864 
865 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
866 	uint8_t header_crc;
867 } __ec_align4;
868 
869 /* Version 4 response from EC */
870 struct ec_host_response4 {
871 	/*
872 	 * bits 0-3: struct_version: Structure version (=4)
873 	 * bit    4: is_response: Is response (=1)
874 	 * bits 5-6: seq_num: Sequence number
875 	 * bit    7: seq_dup: Sequence duplicate flag
876 	 */
877 	uint8_t fields0;
878 
879 	/*
880 	 * bits 0-6: Reserved (set 0, ignore on read)
881 	 * bit    7: data_crc_present: Is data CRC present after data
882 	 */
883 	uint8_t fields1;
884 
885 	/* Result code (EC_RES_*) */
886 	uint16_t result;
887 
888 	/* Length of data which follows this header (not including data CRC) */
889 	uint16_t data_len;
890 
891 	/* Reserved (set 0, ignore on read) */
892 	uint8_t reserved;
893 
894 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
895 	uint8_t header_crc;
896 } __ec_align4;
897 
898 /* Fields in fields0 byte */
899 #define EC_PACKET4_0_STRUCT_VERSION_MASK	0x0f
900 #define EC_PACKET4_0_IS_RESPONSE_MASK		0x10
901 #define EC_PACKET4_0_SEQ_NUM_SHIFT		5
902 #define EC_PACKET4_0_SEQ_NUM_MASK		0x60
903 #define EC_PACKET4_0_SEQ_DUP_MASK		0x80
904 
905 /* Fields in fields1 byte */
906 #define EC_PACKET4_1_COMMAND_VERSION_MASK	0x1f  /* (request only) */
907 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK	0x80
908 
909 /*****************************************************************************/
910 /*
911  * Notes on commands:
912  *
913  * Each command is an 16-bit command value.  Commands which take params or
914  * return response data specify structures for that data.  If no structure is
915  * specified, the command does not input or output data, respectively.
916  * Parameter/response length is implicit in the structs.  Some underlying
917  * communication protocols (I2C, SPI) may add length or checksum headers, but
918  * those are implementation-dependent and not defined here.
919  *
920  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
921  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
922  */
923 
924 /*****************************************************************************/
925 /* General / test commands */
926 
927 /*
928  * Get protocol version, used to deal with non-backward compatible protocol
929  * changes.
930  */
931 #define EC_CMD_PROTO_VERSION 0x0000
932 
933 /**
934  * struct ec_response_proto_version - Response to the proto version command.
935  * @version: The protocol version.
936  */
937 struct ec_response_proto_version {
938 	uint32_t version;
939 } __ec_align4;
940 
941 /*
942  * Hello.  This is a simple command to test the EC is responsive to
943  * commands.
944  */
945 #define EC_CMD_HELLO 0x0001
946 
947 /**
948  * struct ec_params_hello - Parameters to the hello command.
949  * @in_data: Pass anything here.
950  */
951 struct ec_params_hello {
952 	uint32_t in_data;
953 } __ec_align4;
954 
955 /**
956  * struct ec_response_hello - Response to the hello command.
957  * @out_data: Output will be in_data + 0x01020304.
958  */
959 struct ec_response_hello {
960 	uint32_t out_data;
961 } __ec_align4;
962 
963 /* Get version number */
964 #define EC_CMD_GET_VERSION 0x0002
965 
966 enum ec_current_image {
967 	EC_IMAGE_UNKNOWN = 0,
968 	EC_IMAGE_RO,
969 	EC_IMAGE_RW
970 };
971 
972 /**
973  * struct ec_response_get_version - Response to the get version command.
974  * @version_string_ro: Null-terminated RO firmware version string.
975  * @version_string_rw: Null-terminated RW firmware version string.
976  * @reserved: Unused bytes; was previously RW-B firmware version string.
977  * @current_image: One of ec_current_image.
978  */
979 struct ec_response_get_version {
980 	char version_string_ro[32];
981 	char version_string_rw[32];
982 	char reserved[32];
983 	uint32_t current_image;
984 } __ec_align4;
985 
986 /* Read test */
987 #define EC_CMD_READ_TEST 0x0003
988 
989 /**
990  * struct ec_params_read_test - Parameters for the read test command.
991  * @offset: Starting value for read buffer.
992  * @size: Size to read in bytes.
993  */
994 struct ec_params_read_test {
995 	uint32_t offset;
996 	uint32_t size;
997 } __ec_align4;
998 
999 /**
1000  * struct ec_response_read_test - Response to the read test command.
1001  * @data: Data returned by the read test command.
1002  */
1003 struct ec_response_read_test {
1004 	uint32_t data[32];
1005 } __ec_align4;
1006 
1007 /*
1008  * Get build information
1009  *
1010  * Response is null-terminated string.
1011  */
1012 #define EC_CMD_GET_BUILD_INFO 0x0004
1013 
1014 /* Get chip info */
1015 #define EC_CMD_GET_CHIP_INFO 0x0005
1016 
1017 /**
1018  * struct ec_response_get_chip_info - Response to the get chip info command.
1019  * @vendor: Null-terminated string for chip vendor.
1020  * @name: Null-terminated string for chip name.
1021  * @revision: Null-terminated string for chip mask version.
1022  */
1023 struct ec_response_get_chip_info {
1024 	char vendor[32];
1025 	char name[32];
1026 	char revision[32];
1027 } __ec_align4;
1028 
1029 /* Get board HW version */
1030 #define EC_CMD_GET_BOARD_VERSION 0x0006
1031 
1032 /**
1033  * struct ec_response_board_version - Response to the board version command.
1034  * @board_version: A monotonously incrementing number.
1035  */
1036 struct ec_response_board_version {
1037 	uint16_t board_version;
1038 } __ec_align2;
1039 
1040 /*
1041  * Read memory-mapped data.
1042  *
1043  * This is an alternate interface to memory-mapped data for bus protocols
1044  * which don't support direct-mapped memory - I2C, SPI, etc.
1045  *
1046  * Response is params.size bytes of data.
1047  */
1048 #define EC_CMD_READ_MEMMAP 0x0007
1049 
1050 /**
1051  * struct ec_params_read_memmap - Parameters for the read memory map command.
1052  * @offset: Offset in memmap (EC_MEMMAP_*).
1053  * @size: Size to read in bytes.
1054  */
1055 struct ec_params_read_memmap {
1056 	uint8_t offset;
1057 	uint8_t size;
1058 } __ec_align1;
1059 
1060 /* Read versions supported for a command */
1061 #define EC_CMD_GET_CMD_VERSIONS 0x0008
1062 
1063 /**
1064  * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1065  * @cmd: Command to check.
1066  */
1067 struct ec_params_get_cmd_versions {
1068 	uint8_t cmd;
1069 } __ec_align1;
1070 
1071 /**
1072  * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1073  *         versions (v1)
1074  * @cmd: Command to check.
1075  */
1076 struct ec_params_get_cmd_versions_v1 {
1077 	uint16_t cmd;
1078 } __ec_align2;
1079 
1080 /**
1081  * struct ec_response_get_cmd_version - Response to the get command versions.
1082  * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1083  *                a desired version.
1084  */
1085 struct ec_response_get_cmd_versions {
1086 	uint32_t version_mask;
1087 } __ec_align4;
1088 
1089 /*
1090  * Check EC communications status (busy). This is needed on i2c/spi but not
1091  * on lpc since it has its own out-of-band busy indicator.
1092  *
1093  * lpc must read the status from the command register. Attempting this on
1094  * lpc will overwrite the args/parameter space and corrupt its data.
1095  */
1096 #define EC_CMD_GET_COMMS_STATUS		0x0009
1097 
1098 /* Avoid using ec_status which is for return values */
1099 enum ec_comms_status {
1100 	EC_COMMS_STATUS_PROCESSING	= BIT(0),	/* Processing cmd */
1101 };
1102 
1103 /**
1104  * struct ec_response_get_comms_status - Response to the get comms status
1105  *         command.
1106  * @flags: Mask of enum ec_comms_status.
1107  */
1108 struct ec_response_get_comms_status {
1109 	uint32_t flags;		/* Mask of enum ec_comms_status */
1110 } __ec_align4;
1111 
1112 /* Fake a variety of responses, purely for testing purposes. */
1113 #define EC_CMD_TEST_PROTOCOL		0x000A
1114 
1115 /* Tell the EC what to send back to us. */
1116 struct ec_params_test_protocol {
1117 	uint32_t ec_result;
1118 	uint32_t ret_len;
1119 	uint8_t buf[32];
1120 } __ec_align4;
1121 
1122 /* Here it comes... */
1123 struct ec_response_test_protocol {
1124 	uint8_t buf[32];
1125 } __ec_align4;
1126 
1127 /* Get protocol information */
1128 #define EC_CMD_GET_PROTOCOL_INFO	0x000B
1129 
1130 /* Flags for ec_response_get_protocol_info.flags */
1131 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
1132 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1133 
1134 /**
1135  * struct ec_response_get_protocol_info - Response to the get protocol info.
1136  * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1137  *                     version n).
1138  * @max_request_packet_size: Maximum request packet size in bytes.
1139  * @max_response_packet_size: Maximum response packet size in bytes.
1140  * @flags: see EC_PROTOCOL_INFO_*
1141  */
1142 struct ec_response_get_protocol_info {
1143 	/* Fields which exist if at least protocol version 3 supported */
1144 	uint32_t protocol_versions;
1145 	uint16_t max_request_packet_size;
1146 	uint16_t max_response_packet_size;
1147 	uint32_t flags;
1148 } __ec_align4;
1149 
1150 
1151 /*****************************************************************************/
1152 /* Get/Set miscellaneous values */
1153 
1154 /* The upper byte of .flags tells what to do (nothing means "get") */
1155 #define EC_GSV_SET        0x80000000
1156 
1157 /*
1158  * The lower three bytes of .flags identifies the parameter, if that has
1159  * meaning for an individual command.
1160  */
1161 #define EC_GSV_PARAM_MASK 0x00ffffff
1162 
1163 struct ec_params_get_set_value {
1164 	uint32_t flags;
1165 	uint32_t value;
1166 } __ec_align4;
1167 
1168 struct ec_response_get_set_value {
1169 	uint32_t flags;
1170 	uint32_t value;
1171 } __ec_align4;
1172 
1173 /* More than one command can use these structs to get/set parameters. */
1174 #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1175 
1176 /*****************************************************************************/
1177 /* List the features supported by the firmware */
1178 #define EC_CMD_GET_FEATURES  0x000D
1179 
1180 /* Supported features */
1181 enum ec_feature_code {
1182 	/*
1183 	 * This image contains a limited set of features. Another image
1184 	 * in RW partition may support more features.
1185 	 */
1186 	EC_FEATURE_LIMITED = 0,
1187 	/*
1188 	 * Commands for probing/reading/writing/erasing the flash in the
1189 	 * EC are present.
1190 	 */
1191 	EC_FEATURE_FLASH = 1,
1192 	/*
1193 	 * Can control the fan speed directly.
1194 	 */
1195 	EC_FEATURE_PWM_FAN = 2,
1196 	/*
1197 	 * Can control the intensity of the keyboard backlight.
1198 	 */
1199 	EC_FEATURE_PWM_KEYB = 3,
1200 	/*
1201 	 * Support Google lightbar, introduced on Pixel.
1202 	 */
1203 	EC_FEATURE_LIGHTBAR = 4,
1204 	/* Control of LEDs  */
1205 	EC_FEATURE_LED = 5,
1206 	/* Exposes an interface to control gyro and sensors.
1207 	 * The host goes through the EC to access these sensors.
1208 	 * In addition, the EC may provide composite sensors, like lid angle.
1209 	 */
1210 	EC_FEATURE_MOTION_SENSE = 6,
1211 	/* The keyboard is controlled by the EC */
1212 	EC_FEATURE_KEYB = 7,
1213 	/* The AP can use part of the EC flash as persistent storage. */
1214 	EC_FEATURE_PSTORE = 8,
1215 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1216 	EC_FEATURE_PORT80 = 9,
1217 	/*
1218 	 * Thermal management: include TMP specific commands.
1219 	 * Higher level than direct fan control.
1220 	 */
1221 	EC_FEATURE_THERMAL = 10,
1222 	/* Can switch the screen backlight on/off */
1223 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1224 	/* Can switch the wifi module on/off */
1225 	EC_FEATURE_WIFI_SWITCH = 12,
1226 	/* Monitor host events, through for example SMI or SCI */
1227 	EC_FEATURE_HOST_EVENTS = 13,
1228 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1229 	EC_FEATURE_GPIO = 14,
1230 	/* The EC can send i2c messages to downstream devices. */
1231 	EC_FEATURE_I2C = 15,
1232 	/* Command to control charger are included */
1233 	EC_FEATURE_CHARGER = 16,
1234 	/* Simple battery support. */
1235 	EC_FEATURE_BATTERY = 17,
1236 	/*
1237 	 * Support Smart battery protocol
1238 	 * (Common Smart Battery System Interface Specification)
1239 	 */
1240 	EC_FEATURE_SMART_BATTERY = 18,
1241 	/* EC can detect when the host hangs. */
1242 	EC_FEATURE_HANG_DETECT = 19,
1243 	/* Report power information, for pit only */
1244 	EC_FEATURE_PMU = 20,
1245 	/* Another Cros EC device is present downstream of this one */
1246 	EC_FEATURE_SUB_MCU = 21,
1247 	/* Support USB Power delivery (PD) commands */
1248 	EC_FEATURE_USB_PD = 22,
1249 	/* Control USB multiplexer, for audio through USB port for instance. */
1250 	EC_FEATURE_USB_MUX = 23,
1251 	/* Motion Sensor code has an internal software FIFO */
1252 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1253 	/* Support temporary secure vstore */
1254 	EC_FEATURE_VSTORE = 25,
1255 	/* EC decides on USB-C SS mux state, muxes configured by host */
1256 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1257 	/* EC has RTC feature that can be controlled by host commands */
1258 	EC_FEATURE_RTC = 27,
1259 	/* The MCU exposes a Fingerprint sensor */
1260 	EC_FEATURE_FINGERPRINT = 28,
1261 	/* The MCU exposes a Touchpad */
1262 	EC_FEATURE_TOUCHPAD = 29,
1263 	/* The MCU has RWSIG task enabled */
1264 	EC_FEATURE_RWSIG = 30,
1265 	/* EC has device events support */
1266 	EC_FEATURE_DEVICE_EVENT = 31,
1267 	/* EC supports the unified wake masks for LPC/eSPI systems */
1268 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1269 	/* EC supports 64-bit host events */
1270 	EC_FEATURE_HOST_EVENT64 = 33,
1271 	/* EC runs code in RAM (not in place, a.k.a. XIP) */
1272 	EC_FEATURE_EXEC_IN_RAM = 34,
1273 	/* EC supports CEC commands */
1274 	EC_FEATURE_CEC = 35,
1275 	/* EC supports tight sensor timestamping. */
1276 	EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1277 	/*
1278 	 * EC supports tablet mode detection aligned to Chrome and allows
1279 	 * setting of threshold by host command using
1280 	 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1281 	 */
1282 	EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1283 	/* The MCU is a System Companion Processor (SCP). */
1284 	EC_FEATURE_SCP = 39,
1285 	/* The MCU is an Integrated Sensor Hub */
1286 	EC_FEATURE_ISH = 40,
1287 };
1288 
1289 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1290 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1291 
1292 struct ec_response_get_features {
1293 	uint32_t flags[2];
1294 } __ec_align4;
1295 
1296 /*****************************************************************************/
1297 /* Get the board's SKU ID from EC */
1298 #define EC_CMD_GET_SKU_ID 0x000E
1299 
1300 /* Set SKU ID from AP */
1301 #define EC_CMD_SET_SKU_ID 0x000F
1302 
1303 struct ec_sku_id_info {
1304 	uint32_t sku_id;
1305 } __ec_align4;
1306 
1307 /*****************************************************************************/
1308 /* Flash commands */
1309 
1310 /* Get flash info */
1311 #define EC_CMD_FLASH_INFO 0x0010
1312 #define EC_VER_FLASH_INFO 2
1313 
1314 /**
1315  * struct ec_response_flash_info - Response to the flash info command.
1316  * @flash_size: Usable flash size in bytes.
1317  * @write_block_size: Write block size. Write offset and size must be a
1318  *                    multiple of this.
1319  * @erase_block_size: Erase block size. Erase offset and size must be a
1320  *                    multiple of this.
1321  * @protect_block_size: Protection block size. Protection offset and size
1322  *                      must be a multiple of this.
1323  *
1324  * Version 0 returns these fields.
1325  */
1326 struct ec_response_flash_info {
1327 	uint32_t flash_size;
1328 	uint32_t write_block_size;
1329 	uint32_t erase_block_size;
1330 	uint32_t protect_block_size;
1331 } __ec_align4;
1332 
1333 /*
1334  * Flags for version 1+ flash info command
1335  * EC flash erases bits to 0 instead of 1.
1336  */
1337 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1338 
1339 /*
1340  * Flash must be selected for read/write/erase operations to succeed.  This may
1341  * be necessary on a chip where write/erase can be corrupted by other board
1342  * activity, or where the chip needs to enable some sort of programming voltage,
1343  * or where the read/write/erase operations require cleanly suspending other
1344  * chip functionality.
1345  */
1346 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1347 
1348 /**
1349  * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1350  * @flash_size: Usable flash size in bytes.
1351  * @write_block_size: Write block size. Write offset and size must be a
1352  *                    multiple of this.
1353  * @erase_block_size: Erase block size. Erase offset and size must be a
1354  *                    multiple of this.
1355  * @protect_block_size: Protection block size. Protection offset and size
1356  *                      must be a multiple of this.
1357  * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1358  *                    size is exactly this and offset is a multiple of this.
1359  *                    For example, an EC may have a write buffer which can do
1360  *                    half-page operations if data is aligned, and a slower
1361  *                    word-at-a-time write mode.
1362  * @flags: Flags; see EC_FLASH_INFO_*
1363  *
1364  * Version 1 returns the same initial fields as version 0, with additional
1365  * fields following.
1366  *
1367  * gcc anonymous structs don't seem to get along with the __packed directive;
1368  * if they did we'd define the version 0 structure as a sub-structure of this
1369  * one.
1370  *
1371  * Version 2 supports flash banks of different sizes:
1372  * The caller specified the number of banks it has preallocated
1373  * (num_banks_desc)
1374  * The EC returns the number of banks describing the flash memory.
1375  * It adds banks descriptions up to num_banks_desc.
1376  */
1377 struct ec_response_flash_info_1 {
1378 	/* Version 0 fields; see above for description */
1379 	uint32_t flash_size;
1380 	uint32_t write_block_size;
1381 	uint32_t erase_block_size;
1382 	uint32_t protect_block_size;
1383 
1384 	/* Version 1 adds these fields: */
1385 	uint32_t write_ideal_size;
1386 	uint32_t flags;
1387 } __ec_align4;
1388 
1389 struct ec_params_flash_info_2 {
1390 	/* Number of banks to describe */
1391 	uint16_t num_banks_desc;
1392 	/* Reserved; set 0; ignore on read */
1393 	uint8_t reserved[2];
1394 } __ec_align4;
1395 
1396 struct ec_flash_bank {
1397 	/* Number of sector is in this bank. */
1398 	uint16_t count;
1399 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1400 	uint8_t size_exp;
1401 	/* Minimal write size for the sectors in this bank */
1402 	uint8_t write_size_exp;
1403 	/* Erase size for the sectors in this bank */
1404 	uint8_t erase_size_exp;
1405 	/* Size for write protection, usually identical to erase size. */
1406 	uint8_t protect_size_exp;
1407 	/* Reserved; set 0; ignore on read */
1408 	uint8_t reserved[2];
1409 };
1410 
1411 struct ec_response_flash_info_2 {
1412 	/* Total flash in the EC. */
1413 	uint32_t flash_size;
1414 	/* Flags; see EC_FLASH_INFO_* */
1415 	uint32_t flags;
1416 	/* Maximum size to use to send data to write to the EC. */
1417 	uint32_t write_ideal_size;
1418 	/* Number of banks present in the EC. */
1419 	uint16_t num_banks_total;
1420 	/* Number of banks described in banks array. */
1421 	uint16_t num_banks_desc;
1422 	struct ec_flash_bank banks[];
1423 } __ec_align4;
1424 
1425 /*
1426  * Read flash
1427  *
1428  * Response is params.size bytes of data.
1429  */
1430 #define EC_CMD_FLASH_READ 0x0011
1431 
1432 /**
1433  * struct ec_params_flash_read - Parameters for the flash read command.
1434  * @offset: Byte offset to read.
1435  * @size: Size to read in bytes.
1436  */
1437 struct ec_params_flash_read {
1438 	uint32_t offset;
1439 	uint32_t size;
1440 } __ec_align4;
1441 
1442 /* Write flash */
1443 #define EC_CMD_FLASH_WRITE 0x0012
1444 #define EC_VER_FLASH_WRITE 1
1445 
1446 /* Version 0 of the flash command supported only 64 bytes of data */
1447 #define EC_FLASH_WRITE_VER0_SIZE 64
1448 
1449 /**
1450  * struct ec_params_flash_write - Parameters for the flash write command.
1451  * @offset: Byte offset to write.
1452  * @size: Size to write in bytes.
1453  */
1454 struct ec_params_flash_write {
1455 	uint32_t offset;
1456 	uint32_t size;
1457 	/* Followed by data to write */
1458 } __ec_align4;
1459 
1460 /* Erase flash */
1461 #define EC_CMD_FLASH_ERASE 0x0013
1462 
1463 /**
1464  * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1465  * @offset: Byte offset to erase.
1466  * @size: Size to erase in bytes.
1467  */
1468 struct ec_params_flash_erase {
1469 	uint32_t offset;
1470 	uint32_t size;
1471 } __ec_align4;
1472 
1473 /*
1474  * v1 add async erase:
1475  * subcommands can returns:
1476  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1477  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1478  * EC_RES_ERROR : other errors.
1479  * EC_RES_BUSY : an existing erase operation is in progress.
1480  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1481  *
1482  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1483  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1484  * the proper result.
1485  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1486  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1487  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1488  * permitted while erasing. (For instance, STM32F4).
1489  */
1490 enum ec_flash_erase_cmd {
1491 	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1492 	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1493 	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1494 };
1495 
1496 /**
1497  * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1498  * @cmd: One of ec_flash_erase_cmd.
1499  * @reserved: Pad byte; currently always contains 0.
1500  * @flag: No flags defined yet; set to 0.
1501  * @params: Same as v0 parameters.
1502  */
1503 struct ec_params_flash_erase_v1 {
1504 	uint8_t  cmd;
1505 	uint8_t  reserved;
1506 	uint16_t flag;
1507 	struct ec_params_flash_erase params;
1508 } __ec_align4;
1509 
1510 /*
1511  * Get/set flash protection.
1512  *
1513  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1514  * firmware write protect GPIO, not all flags will take effect immediately;
1515  * some flags require a subsequent hard reset to take effect.  Check the
1516  * returned flags bits to see what actually happened.
1517  *
1518  * If mask=0, simply returns the current flags state.
1519  */
1520 #define EC_CMD_FLASH_PROTECT 0x0015
1521 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1522 
1523 /* Flags for flash protection */
1524 /* RO flash code protected when the EC boots */
1525 #define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1526 /*
1527  * RO flash code protected now.  If this bit is set, at-boot status cannot
1528  * be changed.
1529  */
1530 #define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1531 /* Entire flash code protected now, until reboot. */
1532 #define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1533 /* Flash write protect GPIO is asserted now */
1534 #define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1535 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1536 #define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1537 /*
1538  * Error - flash protection is in inconsistent state.  At least one bank of
1539  * flash which should be protected is not protected.  Usually fixed by
1540  * re-requesting the desired flags, or by a hard reset if that fails.
1541  */
1542 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1543 /* Entire flash code protected when the EC boots */
1544 #define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1545 /* RW flash code protected when the EC boots */
1546 #define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1547 /* RW flash code protected now. */
1548 #define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1549 /* Rollback information flash region protected when the EC boots */
1550 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1551 /* Rollback information flash region protected now */
1552 #define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1553 
1554 
1555 /**
1556  * struct ec_params_flash_protect - Parameters for the flash protect command.
1557  * @mask: Bits in flags to apply.
1558  * @flags: New flags to apply.
1559  */
1560 struct ec_params_flash_protect {
1561 	uint32_t mask;
1562 	uint32_t flags;
1563 } __ec_align4;
1564 
1565 /**
1566  * struct ec_response_flash_protect - Response to the flash protect command.
1567  * @flags: Current value of flash protect flags.
1568  * @valid_flags: Flags which are valid on this platform. This allows the
1569  *               caller to distinguish between flags which aren't set vs. flags
1570  *               which can't be set on this platform.
1571  * @writable_flags: Flags which can be changed given the current protection
1572  *                  state.
1573  */
1574 struct ec_response_flash_protect {
1575 	uint32_t flags;
1576 	uint32_t valid_flags;
1577 	uint32_t writable_flags;
1578 } __ec_align4;
1579 
1580 /*
1581  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1582  * write protect.  These commands may be reused with version > 0.
1583  */
1584 
1585 /* Get the region offset/size */
1586 #define EC_CMD_FLASH_REGION_INFO 0x0016
1587 #define EC_VER_FLASH_REGION_INFO 1
1588 
1589 enum ec_flash_region {
1590 	/* Region which holds read-only EC image */
1591 	EC_FLASH_REGION_RO = 0,
1592 	/*
1593 	 * Region which holds active RW image. 'Active' is different from
1594 	 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1595 	 * scheduled to run, active/non-active applies only to RW images (for
1596 	 * the same reason 'update' applies only to RW images. It's a state of
1597 	 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1598 	 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1599 	 * doesn't enter 'running' state but it's still active on a flash.
1600 	 */
1601 	EC_FLASH_REGION_ACTIVE,
1602 	/*
1603 	 * Region which should be write-protected in the factory (a superset of
1604 	 * EC_FLASH_REGION_RO)
1605 	 */
1606 	EC_FLASH_REGION_WP_RO,
1607 	/* Region which holds updatable (non-active) RW image */
1608 	EC_FLASH_REGION_UPDATE,
1609 	/* Number of regions */
1610 	EC_FLASH_REGION_COUNT,
1611 };
1612 /*
1613  * 'RW' is vague if there are multiple RW images; we mean the active one,
1614  * so the old constant is deprecated.
1615  */
1616 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1617 
1618 /**
1619  * struct ec_params_flash_region_info - Parameters for the flash region info
1620  *         command.
1621  * @region: Flash region; see EC_FLASH_REGION_*
1622  */
1623 struct ec_params_flash_region_info {
1624 	uint32_t region;
1625 } __ec_align4;
1626 
1627 struct ec_response_flash_region_info {
1628 	uint32_t offset;
1629 	uint32_t size;
1630 } __ec_align4;
1631 
1632 /* Read/write VbNvContext */
1633 #define EC_CMD_VBNV_CONTEXT 0x0017
1634 #define EC_VER_VBNV_CONTEXT 1
1635 #define EC_VBNV_BLOCK_SIZE 16
1636 
1637 enum ec_vbnvcontext_op {
1638 	EC_VBNV_CONTEXT_OP_READ,
1639 	EC_VBNV_CONTEXT_OP_WRITE,
1640 };
1641 
1642 struct ec_params_vbnvcontext {
1643 	uint32_t op;
1644 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1645 } __ec_align4;
1646 
1647 struct ec_response_vbnvcontext {
1648 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1649 } __ec_align4;
1650 
1651 
1652 /* Get SPI flash information */
1653 #define EC_CMD_FLASH_SPI_INFO 0x0018
1654 
1655 struct ec_response_flash_spi_info {
1656 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1657 	uint8_t jedec[3];
1658 
1659 	/* Pad byte; currently always contains 0 */
1660 	uint8_t reserved0;
1661 
1662 	/* Manufacturer / device ID from command 0x90 */
1663 	uint8_t mfr_dev_id[2];
1664 
1665 	/* Status registers from command 0x05 and 0x35 */
1666 	uint8_t sr1, sr2;
1667 } __ec_align1;
1668 
1669 
1670 /* Select flash during flash operations */
1671 #define EC_CMD_FLASH_SELECT 0x0019
1672 
1673 /**
1674  * struct ec_params_flash_select - Parameters for the flash select command.
1675  * @select: 1 to select flash, 0 to deselect flash
1676  */
1677 struct ec_params_flash_select {
1678 	uint8_t select;
1679 } __ec_align4;
1680 
1681 
1682 /*****************************************************************************/
1683 /* PWM commands */
1684 
1685 /* Get fan target RPM */
1686 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1687 
1688 struct ec_response_pwm_get_fan_rpm {
1689 	uint32_t rpm;
1690 } __ec_align4;
1691 
1692 /* Set target fan RPM */
1693 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1694 
1695 /* Version 0 of input params */
1696 struct ec_params_pwm_set_fan_target_rpm_v0 {
1697 	uint32_t rpm;
1698 } __ec_align4;
1699 
1700 /* Version 1 of input params */
1701 struct ec_params_pwm_set_fan_target_rpm_v1 {
1702 	uint32_t rpm;
1703 	uint8_t fan_idx;
1704 } __ec_align_size1;
1705 
1706 /* Get keyboard backlight */
1707 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1708 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1709 
1710 struct ec_response_pwm_get_keyboard_backlight {
1711 	uint8_t percent;
1712 	uint8_t enabled;
1713 } __ec_align1;
1714 
1715 /* Set keyboard backlight */
1716 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1717 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1718 
1719 struct ec_params_pwm_set_keyboard_backlight {
1720 	uint8_t percent;
1721 } __ec_align1;
1722 
1723 /* Set target fan PWM duty cycle */
1724 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1725 
1726 /* Version 0 of input params */
1727 struct ec_params_pwm_set_fan_duty_v0 {
1728 	uint32_t percent;
1729 } __ec_align4;
1730 
1731 /* Version 1 of input params */
1732 struct ec_params_pwm_set_fan_duty_v1 {
1733 	uint32_t percent;
1734 	uint8_t fan_idx;
1735 } __ec_align_size1;
1736 
1737 #define EC_CMD_PWM_SET_DUTY 0x0025
1738 /* 16 bit duty cycle, 0xffff = 100% */
1739 #define EC_PWM_MAX_DUTY 0xffff
1740 
1741 enum ec_pwm_type {
1742 	/* All types, indexed by board-specific enum pwm_channel */
1743 	EC_PWM_TYPE_GENERIC = 0,
1744 	/* Keyboard backlight */
1745 	EC_PWM_TYPE_KB_LIGHT,
1746 	/* Display backlight */
1747 	EC_PWM_TYPE_DISPLAY_LIGHT,
1748 	EC_PWM_TYPE_COUNT,
1749 };
1750 
1751 struct ec_params_pwm_set_duty {
1752 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1753 	uint8_t pwm_type;  /* ec_pwm_type */
1754 	uint8_t index;     /* Type-specific index, or 0 if unique */
1755 } __ec_align4;
1756 
1757 #define EC_CMD_PWM_GET_DUTY 0x0026
1758 
1759 struct ec_params_pwm_get_duty {
1760 	uint8_t pwm_type;  /* ec_pwm_type */
1761 	uint8_t index;     /* Type-specific index, or 0 if unique */
1762 } __ec_align1;
1763 
1764 struct ec_response_pwm_get_duty {
1765 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1766 } __ec_align2;
1767 
1768 /*****************************************************************************/
1769 /*
1770  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1771  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1772  * into a subcommand. We'll make separate structs for subcommands with
1773  * different input args, so that we know how much to expect.
1774  */
1775 #define EC_CMD_LIGHTBAR_CMD 0x0028
1776 
1777 struct rgb_s {
1778 	uint8_t r, g, b;
1779 } __ec_todo_unpacked;
1780 
1781 #define LB_BATTERY_LEVELS 4
1782 
1783 /*
1784  * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1785  * host command, but the alignment is the same regardless. Keep it that way.
1786  */
1787 struct lightbar_params_v0 {
1788 	/* Timing */
1789 	int32_t google_ramp_up;
1790 	int32_t google_ramp_down;
1791 	int32_t s3s0_ramp_up;
1792 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1793 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1794 	int32_t s0s3_ramp_down;
1795 	int32_t s3_sleep_for;
1796 	int32_t s3_ramp_up;
1797 	int32_t s3_ramp_down;
1798 
1799 	/* Oscillation */
1800 	uint8_t new_s0;
1801 	uint8_t osc_min[2];			/* AC=0/1 */
1802 	uint8_t osc_max[2];			/* AC=0/1 */
1803 	uint8_t w_ofs[2];			/* AC=0/1 */
1804 
1805 	/* Brightness limits based on the backlight and AC. */
1806 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1807 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1808 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1809 
1810 	/* Battery level thresholds */
1811 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1812 
1813 	/* Map [AC][battery_level] to color index */
1814 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1815 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1816 
1817 	/* Color palette */
1818 	struct rgb_s color[8];			/* 0-3 are Google colors */
1819 } __ec_todo_packed;
1820 
1821 struct lightbar_params_v1 {
1822 	/* Timing */
1823 	int32_t google_ramp_up;
1824 	int32_t google_ramp_down;
1825 	int32_t s3s0_ramp_up;
1826 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1827 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1828 	int32_t s0s3_ramp_down;
1829 	int32_t s3_sleep_for;
1830 	int32_t s3_ramp_up;
1831 	int32_t s3_ramp_down;
1832 	int32_t s5_ramp_up;
1833 	int32_t s5_ramp_down;
1834 	int32_t tap_tick_delay;
1835 	int32_t tap_gate_delay;
1836 	int32_t tap_display_time;
1837 
1838 	/* Tap-for-battery params */
1839 	uint8_t tap_pct_red;
1840 	uint8_t tap_pct_green;
1841 	uint8_t tap_seg_min_on;
1842 	uint8_t tap_seg_max_on;
1843 	uint8_t tap_seg_osc;
1844 	uint8_t tap_idx[3];
1845 
1846 	/* Oscillation */
1847 	uint8_t osc_min[2];			/* AC=0/1 */
1848 	uint8_t osc_max[2];			/* AC=0/1 */
1849 	uint8_t w_ofs[2];			/* AC=0/1 */
1850 
1851 	/* Brightness limits based on the backlight and AC. */
1852 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1853 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1854 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1855 
1856 	/* Battery level thresholds */
1857 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1858 
1859 	/* Map [AC][battery_level] to color index */
1860 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1861 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1862 
1863 	/* s5: single color pulse on inhibited power-up */
1864 	uint8_t s5_idx;
1865 
1866 	/* Color palette */
1867 	struct rgb_s color[8];			/* 0-3 are Google colors */
1868 } __ec_todo_packed;
1869 
1870 /* Lightbar command params v2
1871  * crbug.com/467716
1872  *
1873  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1874  * logical groups to make it more manageable ( < 120 bytes).
1875  *
1876  * NOTE: Each of these groups must be less than 120 bytes.
1877  */
1878 
1879 struct lightbar_params_v2_timing {
1880 	/* Timing */
1881 	int32_t google_ramp_up;
1882 	int32_t google_ramp_down;
1883 	int32_t s3s0_ramp_up;
1884 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1885 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1886 	int32_t s0s3_ramp_down;
1887 	int32_t s3_sleep_for;
1888 	int32_t s3_ramp_up;
1889 	int32_t s3_ramp_down;
1890 	int32_t s5_ramp_up;
1891 	int32_t s5_ramp_down;
1892 	int32_t tap_tick_delay;
1893 	int32_t tap_gate_delay;
1894 	int32_t tap_display_time;
1895 } __ec_todo_packed;
1896 
1897 struct lightbar_params_v2_tap {
1898 	/* Tap-for-battery params */
1899 	uint8_t tap_pct_red;
1900 	uint8_t tap_pct_green;
1901 	uint8_t tap_seg_min_on;
1902 	uint8_t tap_seg_max_on;
1903 	uint8_t tap_seg_osc;
1904 	uint8_t tap_idx[3];
1905 } __ec_todo_packed;
1906 
1907 struct lightbar_params_v2_oscillation {
1908 	/* Oscillation */
1909 	uint8_t osc_min[2];			/* AC=0/1 */
1910 	uint8_t osc_max[2];			/* AC=0/1 */
1911 	uint8_t w_ofs[2];			/* AC=0/1 */
1912 } __ec_todo_packed;
1913 
1914 struct lightbar_params_v2_brightness {
1915 	/* Brightness limits based on the backlight and AC. */
1916 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1917 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1918 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1919 } __ec_todo_packed;
1920 
1921 struct lightbar_params_v2_thresholds {
1922 	/* Battery level thresholds */
1923 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1924 } __ec_todo_packed;
1925 
1926 struct lightbar_params_v2_colors {
1927 	/* Map [AC][battery_level] to color index */
1928 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1929 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1930 
1931 	/* s5: single color pulse on inhibited power-up */
1932 	uint8_t s5_idx;
1933 
1934 	/* Color palette */
1935 	struct rgb_s color[8];			/* 0-3 are Google colors */
1936 } __ec_todo_packed;
1937 
1938 /* Lightbar program. */
1939 #define EC_LB_PROG_LEN 192
1940 struct lightbar_program {
1941 	uint8_t size;
1942 	uint8_t data[EC_LB_PROG_LEN];
1943 } __ec_todo_unpacked;
1944 
1945 struct ec_params_lightbar {
1946 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1947 	union {
1948 		/*
1949 		 * The following commands have no args:
1950 		 *
1951 		 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1952 		 * version, get_brightness, get_demo, suspend, resume,
1953 		 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1954 		 * get_params_v2_bright, get_params_v2_thlds,
1955 		 * get_params_v2_colors
1956 		 *
1957 		 * Don't use an empty struct, because C++ hates that.
1958 		 */
1959 
1960 		struct __ec_todo_unpacked {
1961 			uint8_t num;
1962 		} set_brightness, seq, demo;
1963 
1964 		struct __ec_todo_unpacked {
1965 			uint8_t ctrl, reg, value;
1966 		} reg;
1967 
1968 		struct __ec_todo_unpacked {
1969 			uint8_t led, red, green, blue;
1970 		} set_rgb;
1971 
1972 		struct __ec_todo_unpacked {
1973 			uint8_t led;
1974 		} get_rgb;
1975 
1976 		struct __ec_todo_unpacked {
1977 			uint8_t enable;
1978 		} manual_suspend_ctrl;
1979 
1980 		struct lightbar_params_v0 set_params_v0;
1981 		struct lightbar_params_v1 set_params_v1;
1982 
1983 		struct lightbar_params_v2_timing set_v2par_timing;
1984 		struct lightbar_params_v2_tap set_v2par_tap;
1985 		struct lightbar_params_v2_oscillation set_v2par_osc;
1986 		struct lightbar_params_v2_brightness set_v2par_bright;
1987 		struct lightbar_params_v2_thresholds set_v2par_thlds;
1988 		struct lightbar_params_v2_colors set_v2par_colors;
1989 
1990 		struct lightbar_program set_program;
1991 	};
1992 } __ec_todo_packed;
1993 
1994 struct ec_response_lightbar {
1995 	union {
1996 		struct __ec_todo_unpacked {
1997 			struct __ec_todo_unpacked {
1998 				uint8_t reg;
1999 				uint8_t ic0;
2000 				uint8_t ic1;
2001 			} vals[23];
2002 		} dump;
2003 
2004 		struct __ec_todo_unpacked {
2005 			uint8_t num;
2006 		} get_seq, get_brightness, get_demo;
2007 
2008 		struct lightbar_params_v0 get_params_v0;
2009 		struct lightbar_params_v1 get_params_v1;
2010 
2011 
2012 		struct lightbar_params_v2_timing get_params_v2_timing;
2013 		struct lightbar_params_v2_tap get_params_v2_tap;
2014 		struct lightbar_params_v2_oscillation get_params_v2_osc;
2015 		struct lightbar_params_v2_brightness get_params_v2_bright;
2016 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
2017 		struct lightbar_params_v2_colors get_params_v2_colors;
2018 
2019 		struct __ec_todo_unpacked {
2020 			uint32_t num;
2021 			uint32_t flags;
2022 		} version;
2023 
2024 		struct __ec_todo_unpacked {
2025 			uint8_t red, green, blue;
2026 		} get_rgb;
2027 
2028 		/*
2029 		 * The following commands have no response:
2030 		 *
2031 		 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2032 		 * set_params_v0, set_params_v1, set_program,
2033 		 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2034 		 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2035 		 * set_v2par_thlds, set_v2par_colors
2036 		 */
2037 	};
2038 } __ec_todo_packed;
2039 
2040 /* Lightbar commands */
2041 enum lightbar_command {
2042 	LIGHTBAR_CMD_DUMP = 0,
2043 	LIGHTBAR_CMD_OFF = 1,
2044 	LIGHTBAR_CMD_ON = 2,
2045 	LIGHTBAR_CMD_INIT = 3,
2046 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2047 	LIGHTBAR_CMD_SEQ = 5,
2048 	LIGHTBAR_CMD_REG = 6,
2049 	LIGHTBAR_CMD_SET_RGB = 7,
2050 	LIGHTBAR_CMD_GET_SEQ = 8,
2051 	LIGHTBAR_CMD_DEMO = 9,
2052 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2053 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2054 	LIGHTBAR_CMD_VERSION = 12,
2055 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2056 	LIGHTBAR_CMD_GET_RGB = 14,
2057 	LIGHTBAR_CMD_GET_DEMO = 15,
2058 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2059 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2060 	LIGHTBAR_CMD_SET_PROGRAM = 18,
2061 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2062 	LIGHTBAR_CMD_SUSPEND = 20,
2063 	LIGHTBAR_CMD_RESUME = 21,
2064 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2065 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2066 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2067 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2068 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2069 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2070 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2071 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2072 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2073 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2074 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2075 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2076 	LIGHTBAR_NUM_CMDS
2077 };
2078 
2079 /*****************************************************************************/
2080 /* LED control commands */
2081 
2082 #define EC_CMD_LED_CONTROL 0x0029
2083 
2084 enum ec_led_id {
2085 	/* LED to indicate battery state of charge */
2086 	EC_LED_ID_BATTERY_LED = 0,
2087 	/*
2088 	 * LED to indicate system power state (on or in suspend).
2089 	 * May be on power button or on C-panel.
2090 	 */
2091 	EC_LED_ID_POWER_LED,
2092 	/* LED on power adapter or its plug */
2093 	EC_LED_ID_ADAPTER_LED,
2094 	/* LED to indicate left side */
2095 	EC_LED_ID_LEFT_LED,
2096 	/* LED to indicate right side */
2097 	EC_LED_ID_RIGHT_LED,
2098 	/* LED to indicate recovery mode with HW_REINIT */
2099 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
2100 	/* LED to indicate sysrq debug mode. */
2101 	EC_LED_ID_SYSRQ_DEBUG_LED,
2102 
2103 	EC_LED_ID_COUNT
2104 };
2105 
2106 /* LED control flags */
2107 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2108 #define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2109 
2110 enum ec_led_colors {
2111 	EC_LED_COLOR_RED = 0,
2112 	EC_LED_COLOR_GREEN,
2113 	EC_LED_COLOR_BLUE,
2114 	EC_LED_COLOR_YELLOW,
2115 	EC_LED_COLOR_WHITE,
2116 	EC_LED_COLOR_AMBER,
2117 
2118 	EC_LED_COLOR_COUNT
2119 };
2120 
2121 struct ec_params_led_control {
2122 	uint8_t led_id;     /* Which LED to control */
2123 	uint8_t flags;      /* Control flags */
2124 
2125 	uint8_t brightness[EC_LED_COLOR_COUNT];
2126 } __ec_align1;
2127 
2128 struct ec_response_led_control {
2129 	/*
2130 	 * Available brightness value range.
2131 	 *
2132 	 * Range 0 means color channel not present.
2133 	 * Range 1 means on/off control.
2134 	 * Other values means the LED is control by PWM.
2135 	 */
2136 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
2137 } __ec_align1;
2138 
2139 /*****************************************************************************/
2140 /* Verified boot commands */
2141 
2142 /*
2143  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2144  * reused for other purposes with version > 0.
2145  */
2146 
2147 /* Verified boot hash command */
2148 #define EC_CMD_VBOOT_HASH 0x002A
2149 
2150 struct ec_params_vboot_hash {
2151 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2152 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2153 	uint8_t nonce_size;      /* Nonce size; may be 0 */
2154 	uint8_t reserved0;       /* Reserved; set 0 */
2155 	uint32_t offset;         /* Offset in flash to hash */
2156 	uint32_t size;           /* Number of bytes to hash */
2157 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2158 } __ec_align4;
2159 
2160 struct ec_response_vboot_hash {
2161 	uint8_t status;          /* enum ec_vboot_hash_status */
2162 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2163 	uint8_t digest_size;     /* Size of hash digest in bytes */
2164 	uint8_t reserved0;       /* Ignore; will be 0 */
2165 	uint32_t offset;         /* Offset in flash which was hashed */
2166 	uint32_t size;           /* Number of bytes hashed */
2167 	uint8_t hash_digest[64]; /* Hash digest data */
2168 } __ec_align4;
2169 
2170 enum ec_vboot_hash_cmd {
2171 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2172 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2173 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2174 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2175 };
2176 
2177 enum ec_vboot_hash_type {
2178 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2179 };
2180 
2181 enum ec_vboot_hash_status {
2182 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2183 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2184 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2185 };
2186 
2187 /*
2188  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2189  * If one of these is specified, the EC will automatically update offset and
2190  * size to the correct values for the specified image (RO or RW).
2191  */
2192 #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
2193 #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
2194 #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
2195 
2196 /*
2197  * 'RW' is vague if there are multiple RW images; we mean the active one,
2198  * so the old constant is deprecated.
2199  */
2200 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2201 
2202 /*****************************************************************************/
2203 /*
2204  * Motion sense commands. We'll make separate structs for sub-commands with
2205  * different input args, so that we know how much to expect.
2206  */
2207 #define EC_CMD_MOTION_SENSE_CMD 0x002B
2208 
2209 /* Motion sense commands */
2210 enum motionsense_command {
2211 	/*
2212 	 * Dump command returns all motion sensor data including motion sense
2213 	 * module flags and individual sensor flags.
2214 	 */
2215 	MOTIONSENSE_CMD_DUMP = 0,
2216 
2217 	/*
2218 	 * Info command returns data describing the details of a given sensor,
2219 	 * including enum motionsensor_type, enum motionsensor_location, and
2220 	 * enum motionsensor_chip.
2221 	 */
2222 	MOTIONSENSE_CMD_INFO = 1,
2223 
2224 	/*
2225 	 * EC Rate command is a setter/getter command for the EC sampling rate
2226 	 * in milliseconds.
2227 	 * It is per sensor, the EC run sample task  at the minimum of all
2228 	 * sensors EC_RATE.
2229 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2230 	 * to collect all the sensor samples.
2231 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2232 	 * to process of all motion sensors in milliseconds.
2233 	 */
2234 	MOTIONSENSE_CMD_EC_RATE = 2,
2235 
2236 	/*
2237 	 * Sensor ODR command is a setter/getter command for the output data
2238 	 * rate of a specific motion sensor in millihertz.
2239 	 */
2240 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
2241 
2242 	/*
2243 	 * Sensor range command is a setter/getter command for the range of
2244 	 * a specified motion sensor in +/-G's or +/- deg/s.
2245 	 */
2246 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2247 
2248 	/*
2249 	 * Setter/getter command for the keyboard wake angle. When the lid
2250 	 * angle is greater than this value, keyboard wake is disabled in S3,
2251 	 * and when the lid angle goes less than this value, keyboard wake is
2252 	 * enabled. Note, the lid angle measurement is an approximate,
2253 	 * un-calibrated value, hence the wake angle isn't exact.
2254 	 */
2255 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2256 
2257 	/*
2258 	 * Returns a single sensor data.
2259 	 */
2260 	MOTIONSENSE_CMD_DATA = 6,
2261 
2262 	/*
2263 	 * Return sensor fifo info.
2264 	 */
2265 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2266 
2267 	/*
2268 	 * Insert a flush element in the fifo and return sensor fifo info.
2269 	 * The host can use that element to synchronize its operation.
2270 	 */
2271 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2272 
2273 	/*
2274 	 * Return a portion of the fifo.
2275 	 */
2276 	MOTIONSENSE_CMD_FIFO_READ = 9,
2277 
2278 	/*
2279 	 * Perform low level calibration.
2280 	 * On sensors that support it, ask to do offset calibration.
2281 	 */
2282 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2283 
2284 	/*
2285 	 * Sensor Offset command is a setter/getter command for the offset
2286 	 * used for calibration.
2287 	 * The offsets can be calculated by the host, or via
2288 	 * PERFORM_CALIB command.
2289 	 */
2290 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2291 
2292 	/*
2293 	 * List available activities for a MOTION sensor.
2294 	 * Indicates if they are enabled or disabled.
2295 	 */
2296 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2297 
2298 	/*
2299 	 * Activity management
2300 	 * Enable/Disable activity recognition.
2301 	 */
2302 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2303 
2304 	/*
2305 	 * Lid Angle
2306 	 */
2307 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2308 
2309 	/*
2310 	 * Allow the FIFO to trigger interrupt via MKBP events.
2311 	 * By default the FIFO does not send interrupt to process the FIFO
2312 	 * until the AP is ready or it is coming from a wakeup sensor.
2313 	 */
2314 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2315 
2316 	/*
2317 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2318 	 * to arbitrary values, or will lock to the last read actual values.
2319 	 */
2320 	MOTIONSENSE_CMD_SPOOF = 16,
2321 
2322 	/* Set lid angle for tablet mode detection. */
2323 	MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2324 
2325 	/*
2326 	 * Sensor Scale command is a setter/getter command for the calibration
2327 	 * scale.
2328 	 */
2329 	MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2330 
2331 	/* Number of motionsense sub-commands. */
2332 	MOTIONSENSE_NUM_CMDS
2333 };
2334 
2335 /* List of motion sensor types. */
2336 enum motionsensor_type {
2337 	MOTIONSENSE_TYPE_ACCEL = 0,
2338 	MOTIONSENSE_TYPE_GYRO = 1,
2339 	MOTIONSENSE_TYPE_MAG = 2,
2340 	MOTIONSENSE_TYPE_PROX = 3,
2341 	MOTIONSENSE_TYPE_LIGHT = 4,
2342 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2343 	MOTIONSENSE_TYPE_BARO = 6,
2344 	MOTIONSENSE_TYPE_SYNC = 7,
2345 	MOTIONSENSE_TYPE_MAX,
2346 };
2347 
2348 /* List of motion sensor locations. */
2349 enum motionsensor_location {
2350 	MOTIONSENSE_LOC_BASE = 0,
2351 	MOTIONSENSE_LOC_LID = 1,
2352 	MOTIONSENSE_LOC_CAMERA = 2,
2353 	MOTIONSENSE_LOC_MAX,
2354 };
2355 
2356 /* List of motion sensor chips. */
2357 enum motionsensor_chip {
2358 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2359 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2360 	MOTIONSENSE_CHIP_BMI160 = 2,
2361 	MOTIONSENSE_CHIP_SI1141 = 3,
2362 	MOTIONSENSE_CHIP_SI1142 = 4,
2363 	MOTIONSENSE_CHIP_SI1143 = 5,
2364 	MOTIONSENSE_CHIP_KX022 = 6,
2365 	MOTIONSENSE_CHIP_L3GD20H = 7,
2366 	MOTIONSENSE_CHIP_BMA255 = 8,
2367 	MOTIONSENSE_CHIP_BMP280 = 9,
2368 	MOTIONSENSE_CHIP_OPT3001 = 10,
2369 	MOTIONSENSE_CHIP_BH1730 = 11,
2370 	MOTIONSENSE_CHIP_GPIO = 12,
2371 	MOTIONSENSE_CHIP_LIS2DH = 13,
2372 	MOTIONSENSE_CHIP_LSM6DSM = 14,
2373 	MOTIONSENSE_CHIP_LIS2DE = 15,
2374 	MOTIONSENSE_CHIP_LIS2MDL = 16,
2375 	MOTIONSENSE_CHIP_LSM6DS3 = 17,
2376 	MOTIONSENSE_CHIP_LSM6DSO = 18,
2377 	MOTIONSENSE_CHIP_LNG2DM = 19,
2378 	MOTIONSENSE_CHIP_MAX,
2379 };
2380 
2381 /* List of orientation positions */
2382 enum motionsensor_orientation {
2383 	MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2384 	MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2385 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2386 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2387 	MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2388 };
2389 
2390 struct ec_response_motion_sensor_data {
2391 	/* Flags for each sensor. */
2392 	uint8_t flags;
2393 	/* Sensor number the data comes from. */
2394 	uint8_t sensor_num;
2395 	/* Each sensor is up to 3-axis. */
2396 	union {
2397 		int16_t             data[3];
2398 		struct __ec_todo_packed {
2399 			uint16_t    reserved;
2400 			uint32_t    timestamp;
2401 		};
2402 		struct __ec_todo_unpacked {
2403 			uint8_t     activity; /* motionsensor_activity */
2404 			uint8_t     state;
2405 			int16_t     add_info[2];
2406 		};
2407 	};
2408 } __ec_todo_packed;
2409 
2410 /* Note: used in ec_response_get_next_data */
2411 struct ec_response_motion_sense_fifo_info {
2412 	/* Size of the fifo */
2413 	uint16_t size;
2414 	/* Amount of space used in the fifo */
2415 	uint16_t count;
2416 	/* Timestamp recorded in us.
2417 	 * aka accurate timestamp when host event was triggered.
2418 	 */
2419 	uint32_t timestamp;
2420 	/* Total amount of vector lost */
2421 	uint16_t total_lost;
2422 	/* Lost events since the last fifo_info, per sensors */
2423 	uint16_t lost[];
2424 } __ec_todo_packed;
2425 
2426 struct ec_response_motion_sense_fifo_data {
2427 	uint32_t number_data;
2428 	struct ec_response_motion_sensor_data data[];
2429 } __ec_todo_packed;
2430 
2431 /* List supported activity recognition */
2432 enum motionsensor_activity {
2433 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2434 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2435 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2436 	MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2437 };
2438 
2439 struct ec_motion_sense_activity {
2440 	uint8_t sensor_num;
2441 	uint8_t activity; /* one of enum motionsensor_activity */
2442 	uint8_t enable;   /* 1: enable, 0: disable */
2443 	uint8_t reserved;
2444 	uint16_t parameters[3]; /* activity dependent parameters */
2445 } __ec_todo_unpacked;
2446 
2447 /* Module flag masks used for the dump sub-command. */
2448 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2449 
2450 /* Sensor flag masks used for the dump sub-command. */
2451 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2452 
2453 /*
2454  * Flush entry for synchronization.
2455  * data contains time stamp
2456  */
2457 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2458 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2459 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2460 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2461 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2462 
2463 /*
2464  * Send this value for the data element to only perform a read. If you
2465  * send any other value, the EC will interpret it as data to set and will
2466  * return the actual value set.
2467  */
2468 #define EC_MOTION_SENSE_NO_VALUE -1
2469 
2470 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2471 
2472 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2473 /* Set Calibration information */
2474 #define MOTION_SENSE_SET_OFFSET BIT(0)
2475 
2476 /* Default Scale value, factor 1. */
2477 #define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2478 
2479 #define LID_ANGLE_UNRELIABLE 500
2480 
2481 enum motionsense_spoof_mode {
2482 	/* Disable spoof mode. */
2483 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2484 
2485 	/* Enable spoof mode, but use provided component values. */
2486 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2487 
2488 	/* Enable spoof mode, but use the current sensor values. */
2489 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2490 
2491 	/* Query the current spoof mode status for the sensor. */
2492 	MOTIONSENSE_SPOOF_MODE_QUERY,
2493 };
2494 
2495 struct ec_params_motion_sense {
2496 	uint8_t cmd;
2497 	union {
2498 		/* Used for MOTIONSENSE_CMD_DUMP. */
2499 		struct __ec_todo_unpacked {
2500 			/*
2501 			 * Maximal number of sensor the host is expecting.
2502 			 * 0 means the host is only interested in the number
2503 			 * of sensors controlled by the EC.
2504 			 */
2505 			uint8_t max_sensor_count;
2506 		} dump;
2507 
2508 		/*
2509 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2510 		 */
2511 		struct __ec_todo_unpacked {
2512 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2513 			 * kb_wake_angle: angle to wakup AP.
2514 			 */
2515 			int16_t data;
2516 		} kb_wake_angle;
2517 
2518 		/*
2519 		 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2520 		 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2521 		 */
2522 		struct __ec_todo_unpacked {
2523 			uint8_t sensor_num;
2524 		} info, info_3, data, fifo_flush, perform_calib,
2525 				list_activities;
2526 
2527 		/*
2528 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2529 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2530 		 */
2531 		struct __ec_todo_unpacked {
2532 			uint8_t sensor_num;
2533 
2534 			/* Rounding flag, true for round-up, false for down. */
2535 			uint8_t roundup;
2536 
2537 			uint16_t reserved;
2538 
2539 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2540 			int32_t data;
2541 		} ec_rate, sensor_odr, sensor_range;
2542 
2543 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2544 		struct __ec_todo_packed {
2545 			uint8_t sensor_num;
2546 
2547 			/*
2548 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2549 			 * the calibration information in the EC.
2550 			 * If unset, just retrieve calibration information.
2551 			 */
2552 			uint16_t flags;
2553 
2554 			/*
2555 			 * Temperature at calibration, in units of 0.01 C
2556 			 * 0x8000: invalid / unknown.
2557 			 * 0x0: 0C
2558 			 * 0x7fff: +327.67C
2559 			 */
2560 			int16_t temp;
2561 
2562 			/*
2563 			 * Offset for calibration.
2564 			 * Unit:
2565 			 * Accelerometer: 1/1024 g
2566 			 * Gyro:          1/1024 deg/s
2567 			 * Compass:       1/16 uT
2568 			 */
2569 			int16_t offset[3];
2570 		} sensor_offset;
2571 
2572 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2573 		struct __ec_todo_packed {
2574 			uint8_t sensor_num;
2575 
2576 			/*
2577 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2578 			 * the calibration information in the EC.
2579 			 * If unset, just retrieve calibration information.
2580 			 */
2581 			uint16_t flags;
2582 
2583 			/*
2584 			 * Temperature at calibration, in units of 0.01 C
2585 			 * 0x8000: invalid / unknown.
2586 			 * 0x0: 0C
2587 			 * 0x7fff: +327.67C
2588 			 */
2589 			int16_t temp;
2590 
2591 			/*
2592 			 * Scale for calibration:
2593 			 * By default scale is 1, it is encoded on 16bits:
2594 			 * 1 = BIT(15)
2595 			 * ~2 = 0xFFFF
2596 			 * ~0 = 0.
2597 			 */
2598 			uint16_t scale[3];
2599 		} sensor_scale;
2600 
2601 
2602 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2603 		/* (no params) */
2604 
2605 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2606 		struct __ec_todo_unpacked {
2607 			/*
2608 			 * Number of expected vector to return.
2609 			 * EC may return less or 0 if none available.
2610 			 */
2611 			uint32_t max_data_vector;
2612 		} fifo_read;
2613 
2614 		struct ec_motion_sense_activity set_activity;
2615 
2616 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2617 		/* (no params) */
2618 
2619 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2620 		struct __ec_todo_unpacked {
2621 			/*
2622 			 * 1: enable, 0 disable fifo,
2623 			 * EC_MOTION_SENSE_NO_VALUE return value.
2624 			 */
2625 			int8_t enable;
2626 		} fifo_int_enable;
2627 
2628 		/* Used for MOTIONSENSE_CMD_SPOOF */
2629 		struct __ec_todo_packed {
2630 			uint8_t sensor_id;
2631 
2632 			/* See enum motionsense_spoof_mode. */
2633 			uint8_t spoof_enable;
2634 
2635 			/* Ignored, used for alignment. */
2636 			uint8_t reserved;
2637 
2638 			/* Individual component values to spoof. */
2639 			int16_t components[3];
2640 		} spoof;
2641 
2642 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2643 		struct __ec_todo_unpacked {
2644 			/*
2645 			 * Lid angle threshold for switching between tablet and
2646 			 * clamshell mode.
2647 			 */
2648 			int16_t lid_angle;
2649 
2650 			/*
2651 			 * Hysteresis degree to prevent fluctuations between
2652 			 * clamshell and tablet mode if lid angle keeps
2653 			 * changing around the threshold. Lid motion driver will
2654 			 * use lid_angle + hys_degree to trigger tablet mode and
2655 			 * lid_angle - hys_degree to trigger clamshell mode.
2656 			 */
2657 			int16_t hys_degree;
2658 		} tablet_mode_threshold;
2659 	};
2660 } __ec_todo_packed;
2661 
2662 struct ec_response_motion_sense {
2663 	union {
2664 		/* Used for MOTIONSENSE_CMD_DUMP */
2665 		struct __ec_todo_unpacked {
2666 			/* Flags representing the motion sensor module. */
2667 			uint8_t module_flags;
2668 
2669 			/* Number of sensors managed directly by the EC. */
2670 			uint8_t sensor_count;
2671 
2672 			/*
2673 			 * Sensor data is truncated if response_max is too small
2674 			 * for holding all the data.
2675 			 */
2676 			struct ec_response_motion_sensor_data sensor[0];
2677 		} dump;
2678 
2679 		/* Used for MOTIONSENSE_CMD_INFO. */
2680 		struct __ec_todo_unpacked {
2681 			/* Should be element of enum motionsensor_type. */
2682 			uint8_t type;
2683 
2684 			/* Should be element of enum motionsensor_location. */
2685 			uint8_t location;
2686 
2687 			/* Should be element of enum motionsensor_chip. */
2688 			uint8_t chip;
2689 		} info;
2690 
2691 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2692 		struct __ec_todo_unpacked {
2693 			/* Should be element of enum motionsensor_type. */
2694 			uint8_t type;
2695 
2696 			/* Should be element of enum motionsensor_location. */
2697 			uint8_t location;
2698 
2699 			/* Should be element of enum motionsensor_chip. */
2700 			uint8_t chip;
2701 
2702 			/* Minimum sensor sampling frequency */
2703 			uint32_t min_frequency;
2704 
2705 			/* Maximum sensor sampling frequency */
2706 			uint32_t max_frequency;
2707 
2708 			/* Max number of sensor events that could be in fifo */
2709 			uint32_t fifo_max_event_count;
2710 		} info_3;
2711 
2712 		/* Used for MOTIONSENSE_CMD_DATA */
2713 		struct ec_response_motion_sensor_data data;
2714 
2715 		/*
2716 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2717 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2718 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2719 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2720 		 * MOTIONSENSE_CMD_SPOOF.
2721 		 */
2722 		struct __ec_todo_unpacked {
2723 			/* Current value of the parameter queried. */
2724 			int32_t ret;
2725 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2726 		  fifo_int_enable, spoof;
2727 
2728 		/*
2729 		 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2730 		 * PERFORM_CALIB.
2731 		 */
2732 		struct __ec_todo_unpacked  {
2733 			int16_t temp;
2734 			int16_t offset[3];
2735 		} sensor_offset, perform_calib;
2736 
2737 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2738 		struct __ec_todo_unpacked  {
2739 			int16_t temp;
2740 			uint16_t scale[3];
2741 		} sensor_scale;
2742 
2743 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2744 
2745 		struct ec_response_motion_sense_fifo_data fifo_read;
2746 
2747 		struct __ec_todo_packed {
2748 			uint16_t reserved;
2749 			uint32_t enabled;
2750 			uint32_t disabled;
2751 		} list_activities;
2752 
2753 		/* No params for set activity */
2754 
2755 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2756 		struct __ec_todo_unpacked {
2757 			/*
2758 			 * Angle between 0 and 360 degree if available,
2759 			 * LID_ANGLE_UNRELIABLE otherwise.
2760 			 */
2761 			uint16_t value;
2762 		} lid_angle;
2763 
2764 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2765 		struct __ec_todo_unpacked {
2766 			/*
2767 			 * Lid angle threshold for switching between tablet and
2768 			 * clamshell mode.
2769 			 */
2770 			uint16_t lid_angle;
2771 
2772 			/* Hysteresis degree. */
2773 			uint16_t hys_degree;
2774 		} tablet_mode_threshold;
2775 
2776 	};
2777 } __ec_todo_packed;
2778 
2779 /*****************************************************************************/
2780 /* Force lid open command */
2781 
2782 /* Make lid event always open */
2783 #define EC_CMD_FORCE_LID_OPEN 0x002C
2784 
2785 struct ec_params_force_lid_open {
2786 	uint8_t enabled;
2787 } __ec_align1;
2788 
2789 /*****************************************************************************/
2790 /* Configure the behavior of the power button */
2791 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2792 
2793 enum ec_config_power_button_flags {
2794 	/* Enable/Disable power button pulses for x86 devices */
2795 	EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2796 };
2797 
2798 struct ec_params_config_power_button {
2799 	/* See enum ec_config_power_button_flags */
2800 	uint8_t flags;
2801 } __ec_align1;
2802 
2803 /*****************************************************************************/
2804 /* USB charging control commands */
2805 
2806 /* Set USB port charging mode */
2807 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2808 
2809 struct ec_params_usb_charge_set_mode {
2810 	uint8_t usb_port_id;
2811 	uint8_t mode:7;
2812 	uint8_t inhibit_charge:1;
2813 } __ec_align1;
2814 
2815 /*****************************************************************************/
2816 /* Persistent storage for host */
2817 
2818 /* Maximum bytes that can be read/written in a single command */
2819 #define EC_PSTORE_SIZE_MAX 64
2820 
2821 /* Get persistent storage info */
2822 #define EC_CMD_PSTORE_INFO 0x0040
2823 
2824 struct ec_response_pstore_info {
2825 	/* Persistent storage size, in bytes */
2826 	uint32_t pstore_size;
2827 	/* Access size; read/write offset and size must be a multiple of this */
2828 	uint32_t access_size;
2829 } __ec_align4;
2830 
2831 /*
2832  * Read persistent storage
2833  *
2834  * Response is params.size bytes of data.
2835  */
2836 #define EC_CMD_PSTORE_READ 0x0041
2837 
2838 struct ec_params_pstore_read {
2839 	uint32_t offset;   /* Byte offset to read */
2840 	uint32_t size;     /* Size to read in bytes */
2841 } __ec_align4;
2842 
2843 /* Write persistent storage */
2844 #define EC_CMD_PSTORE_WRITE 0x0042
2845 
2846 struct ec_params_pstore_write {
2847 	uint32_t offset;   /* Byte offset to write */
2848 	uint32_t size;     /* Size to write in bytes */
2849 	uint8_t data[EC_PSTORE_SIZE_MAX];
2850 } __ec_align4;
2851 
2852 /*****************************************************************************/
2853 /* Real-time clock */
2854 
2855 /* RTC params and response structures */
2856 struct ec_params_rtc {
2857 	uint32_t time;
2858 } __ec_align4;
2859 
2860 struct ec_response_rtc {
2861 	uint32_t time;
2862 } __ec_align4;
2863 
2864 /* These use ec_response_rtc */
2865 #define EC_CMD_RTC_GET_VALUE 0x0044
2866 #define EC_CMD_RTC_GET_ALARM 0x0045
2867 
2868 /* These all use ec_params_rtc */
2869 #define EC_CMD_RTC_SET_VALUE 0x0046
2870 #define EC_CMD_RTC_SET_ALARM 0x0047
2871 
2872 /* Pass as time param to SET_ALARM to clear the current alarm */
2873 #define EC_RTC_ALARM_CLEAR 0
2874 
2875 /*****************************************************************************/
2876 /* Port80 log access */
2877 
2878 /* Maximum entries that can be read/written in a single command */
2879 #define EC_PORT80_SIZE_MAX 32
2880 
2881 /* Get last port80 code from previous boot */
2882 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2883 #define EC_CMD_PORT80_READ 0x0048
2884 
2885 enum ec_port80_subcmd {
2886 	EC_PORT80_GET_INFO = 0,
2887 	EC_PORT80_READ_BUFFER,
2888 };
2889 
2890 struct ec_params_port80_read {
2891 	uint16_t subcmd;
2892 	union {
2893 		struct __ec_todo_unpacked {
2894 			uint32_t offset;
2895 			uint32_t num_entries;
2896 		} read_buffer;
2897 	};
2898 } __ec_todo_packed;
2899 
2900 struct ec_response_port80_read {
2901 	union {
2902 		struct __ec_todo_unpacked {
2903 			uint32_t writes;
2904 			uint32_t history_size;
2905 			uint32_t last_boot;
2906 		} get_info;
2907 		struct __ec_todo_unpacked {
2908 			uint16_t codes[EC_PORT80_SIZE_MAX];
2909 		} data;
2910 	};
2911 } __ec_todo_packed;
2912 
2913 struct ec_response_port80_last_boot {
2914 	uint16_t code;
2915 } __ec_align2;
2916 
2917 /*****************************************************************************/
2918 /* Temporary secure storage for host verified boot use */
2919 
2920 /* Number of bytes in a vstore slot */
2921 #define EC_VSTORE_SLOT_SIZE 64
2922 
2923 /* Maximum number of vstore slots */
2924 #define EC_VSTORE_SLOT_MAX 32
2925 
2926 /* Get persistent storage info */
2927 #define EC_CMD_VSTORE_INFO 0x0049
2928 struct ec_response_vstore_info {
2929 	/* Indicates which slots are locked */
2930 	uint32_t slot_locked;
2931 	/* Total number of slots available */
2932 	uint8_t slot_count;
2933 } __ec_align_size1;
2934 
2935 /*
2936  * Read temporary secure storage
2937  *
2938  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2939  */
2940 #define EC_CMD_VSTORE_READ 0x004A
2941 
2942 struct ec_params_vstore_read {
2943 	uint8_t slot; /* Slot to read from */
2944 } __ec_align1;
2945 
2946 struct ec_response_vstore_read {
2947 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2948 } __ec_align1;
2949 
2950 /*
2951  * Write temporary secure storage and lock it.
2952  */
2953 #define EC_CMD_VSTORE_WRITE 0x004B
2954 
2955 struct ec_params_vstore_write {
2956 	uint8_t slot; /* Slot to write to */
2957 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2958 } __ec_align1;
2959 
2960 /*****************************************************************************/
2961 /* Thermal engine commands. Note that there are two implementations. We'll
2962  * reuse the command number, but the data and behavior is incompatible.
2963  * Version 0 is what originally shipped on Link.
2964  * Version 1 separates the CPU thermal limits from the fan control.
2965  */
2966 
2967 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2968 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2969 
2970 /* The version 0 structs are opaque. You have to know what they are for
2971  * the get/set commands to make any sense.
2972  */
2973 
2974 /* Version 0 - set */
2975 struct ec_params_thermal_set_threshold {
2976 	uint8_t sensor_type;
2977 	uint8_t threshold_id;
2978 	uint16_t value;
2979 } __ec_align2;
2980 
2981 /* Version 0 - get */
2982 struct ec_params_thermal_get_threshold {
2983 	uint8_t sensor_type;
2984 	uint8_t threshold_id;
2985 } __ec_align1;
2986 
2987 struct ec_response_thermal_get_threshold {
2988 	uint16_t value;
2989 } __ec_align2;
2990 
2991 
2992 /* The version 1 structs are visible. */
2993 enum ec_temp_thresholds {
2994 	EC_TEMP_THRESH_WARN = 0,
2995 	EC_TEMP_THRESH_HIGH,
2996 	EC_TEMP_THRESH_HALT,
2997 
2998 	EC_TEMP_THRESH_COUNT
2999 };
3000 
3001 /*
3002  * Thermal configuration for one temperature sensor. Temps are in degrees K.
3003  * Zero values will be silently ignored by the thermal task.
3004  *
3005  * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3006  * hysteresis.
3007  * For example,
3008  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3009  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3010  * EC will throttle ap when temperature >= 301 K, and release throttling when
3011  * temperature <= 299 K.
3012  *
3013  * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3014  * For example,
3015  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3016  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3017  * EC will throttle ap when temperature >= 301 K, and release throttling when
3018  * temperature <= 294 K.
3019  *
3020  * Note that this structure is a sub-structure of
3021  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3022  */
3023 struct ec_thermal_config {
3024 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3025 	uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3026 	uint32_t temp_fan_off;		/* no active cooling needed */
3027 	uint32_t temp_fan_max;		/* max active cooling needed */
3028 } __ec_align4;
3029 
3030 /* Version 1 - get config for one sensor. */
3031 struct ec_params_thermal_get_threshold_v1 {
3032 	uint32_t sensor_num;
3033 } __ec_align4;
3034 /* This returns a struct ec_thermal_config */
3035 
3036 /*
3037  * Version 1 - set config for one sensor.
3038  * Use read-modify-write for best results!
3039  */
3040 struct ec_params_thermal_set_threshold_v1 {
3041 	uint32_t sensor_num;
3042 	struct ec_thermal_config cfg;
3043 } __ec_align4;
3044 /* This returns no data */
3045 
3046 /****************************************************************************/
3047 
3048 /* Toggle automatic fan control */
3049 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3050 
3051 /* Version 1 of input params */
3052 struct ec_params_auto_fan_ctrl_v1 {
3053 	uint8_t fan_idx;
3054 } __ec_align1;
3055 
3056 /* Get/Set TMP006 calibration data */
3057 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3058 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3059 
3060 /*
3061  * The original TMP006 calibration only needed four params, but now we need
3062  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3063  * the params opaque. The v1 "get" response will include the algorithm number
3064  * and how many params it requires. That way we can change the EC code without
3065  * needing to update this file. We can also use a different algorithm on each
3066  * sensor.
3067  */
3068 
3069 /* This is the same struct for both v0 and v1. */
3070 struct ec_params_tmp006_get_calibration {
3071 	uint8_t index;
3072 } __ec_align1;
3073 
3074 /* Version 0 */
3075 struct ec_response_tmp006_get_calibration_v0 {
3076 	float s0;
3077 	float b0;
3078 	float b1;
3079 	float b2;
3080 } __ec_align4;
3081 
3082 struct ec_params_tmp006_set_calibration_v0 {
3083 	uint8_t index;
3084 	uint8_t reserved[3];
3085 	float s0;
3086 	float b0;
3087 	float b1;
3088 	float b2;
3089 } __ec_align4;
3090 
3091 /* Version 1 */
3092 struct ec_response_tmp006_get_calibration_v1 {
3093 	uint8_t algorithm;
3094 	uint8_t num_params;
3095 	uint8_t reserved[2];
3096 	float val[];
3097 } __ec_align4;
3098 
3099 struct ec_params_tmp006_set_calibration_v1 {
3100 	uint8_t index;
3101 	uint8_t algorithm;
3102 	uint8_t num_params;
3103 	uint8_t reserved;
3104 	float val[];
3105 } __ec_align4;
3106 
3107 
3108 /* Read raw TMP006 data */
3109 #define EC_CMD_TMP006_GET_RAW 0x0055
3110 
3111 struct ec_params_tmp006_get_raw {
3112 	uint8_t index;
3113 } __ec_align1;
3114 
3115 struct ec_response_tmp006_get_raw {
3116 	int32_t t;  /* In 1/100 K */
3117 	int32_t v;  /* In nV */
3118 } __ec_align4;
3119 
3120 /*****************************************************************************/
3121 /* MKBP - Matrix KeyBoard Protocol */
3122 
3123 /*
3124  * Read key state
3125  *
3126  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3127  * expected response size.
3128  *
3129  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3130  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3131  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3132  */
3133 #define EC_CMD_MKBP_STATE 0x0060
3134 
3135 /*
3136  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3137  */
3138 #define EC_CMD_MKBP_INFO 0x0061
3139 
3140 struct ec_response_mkbp_info {
3141 	uint32_t rows;
3142 	uint32_t cols;
3143 	/* Formerly "switches", which was 0. */
3144 	uint8_t reserved;
3145 } __ec_align_size1;
3146 
3147 struct ec_params_mkbp_info {
3148 	uint8_t info_type;
3149 	uint8_t event_type;
3150 } __ec_align1;
3151 
3152 enum ec_mkbp_info_type {
3153 	/*
3154 	 * Info about the keyboard matrix: number of rows and columns.
3155 	 *
3156 	 * Returns struct ec_response_mkbp_info.
3157 	 */
3158 	EC_MKBP_INFO_KBD = 0,
3159 
3160 	/*
3161 	 * For buttons and switches, info about which specifically are
3162 	 * supported.  event_type must be set to one of the values in enum
3163 	 * ec_mkbp_event.
3164 	 *
3165 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3166 	 * bitmask indicating which buttons or switches are present.  See the
3167 	 * bit inidices below.
3168 	 */
3169 	EC_MKBP_INFO_SUPPORTED = 1,
3170 
3171 	/*
3172 	 * Instantaneous state of buttons and switches.
3173 	 *
3174 	 * event_type must be set to one of the values in enum ec_mkbp_event.
3175 	 *
3176 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3177 	 * indicating the current state of the keyboard matrix.
3178 	 *
3179 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3180 	 * event state.
3181 	 *
3182 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3183 	 * state of supported buttons.
3184 	 *
3185 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3186 	 * state of supported switches.
3187 	 */
3188 	EC_MKBP_INFO_CURRENT = 2,
3189 };
3190 
3191 /* Simulate key press */
3192 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3193 
3194 struct ec_params_mkbp_simulate_key {
3195 	uint8_t col;
3196 	uint8_t row;
3197 	uint8_t pressed;
3198 } __ec_align1;
3199 
3200 #define EC_CMD_GET_KEYBOARD_ID 0x0063
3201 
3202 struct ec_response_keyboard_id {
3203 	uint32_t keyboard_id;
3204 } __ec_align4;
3205 
3206 enum keyboard_id {
3207 	KEYBOARD_ID_UNSUPPORTED = 0,
3208 	KEYBOARD_ID_UNREADABLE = 0xffffffff,
3209 };
3210 
3211 /* Configure keyboard scanning */
3212 #define EC_CMD_MKBP_SET_CONFIG 0x0064
3213 #define EC_CMD_MKBP_GET_CONFIG 0x0065
3214 
3215 /* flags */
3216 enum mkbp_config_flags {
3217 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
3218 };
3219 
3220 enum mkbp_config_valid {
3221 	EC_MKBP_VALID_SCAN_PERIOD		= BIT(0),
3222 	EC_MKBP_VALID_POLL_TIMEOUT		= BIT(1),
3223 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= BIT(3),
3224 	EC_MKBP_VALID_OUTPUT_SETTLE		= BIT(4),
3225 	EC_MKBP_VALID_DEBOUNCE_DOWN		= BIT(5),
3226 	EC_MKBP_VALID_DEBOUNCE_UP		= BIT(6),
3227 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= BIT(7),
3228 };
3229 
3230 /*
3231  * Configuration for our key scanning algorithm.
3232  *
3233  * Note that this is used as a sub-structure of
3234  * ec_{params/response}_mkbp_get_config.
3235  */
3236 struct ec_mkbp_config {
3237 	uint32_t valid_mask;		/* valid fields */
3238 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
3239 	uint8_t valid_flags;		/* which flags are valid */
3240 	uint16_t scan_period_us;	/* period between start of scans */
3241 	/* revert to interrupt mode after no activity for this long */
3242 	uint32_t poll_timeout_us;
3243 	/*
3244 	 * minimum post-scan relax time. Once we finish a scan we check
3245 	 * the time until we are due to start the next one. If this time is
3246 	 * shorter this field, we use this instead.
3247 	 */
3248 	uint16_t min_post_scan_delay_us;
3249 	/* delay between setting up output and waiting for it to settle */
3250 	uint16_t output_settle_us;
3251 	uint16_t debounce_down_us;	/* time for debounce on key down */
3252 	uint16_t debounce_up_us;	/* time for debounce on key up */
3253 	/* maximum depth to allow for fifo (0 = no keyscan output) */
3254 	uint8_t fifo_max_depth;
3255 } __ec_align_size1;
3256 
3257 struct ec_params_mkbp_set_config {
3258 	struct ec_mkbp_config config;
3259 } __ec_align_size1;
3260 
3261 struct ec_response_mkbp_get_config {
3262 	struct ec_mkbp_config config;
3263 } __ec_align_size1;
3264 
3265 /* Run the key scan emulation */
3266 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3267 
3268 enum ec_keyscan_seq_cmd {
3269 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
3270 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
3271 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
3272 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
3273 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
3274 };
3275 
3276 enum ec_collect_flags {
3277 	/*
3278 	 * Indicates this scan was processed by the EC. Due to timing, some
3279 	 * scans may be skipped.
3280 	 */
3281 	EC_KEYSCAN_SEQ_FLAG_DONE	= BIT(0),
3282 };
3283 
3284 struct ec_collect_item {
3285 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
3286 } __ec_align1;
3287 
3288 struct ec_params_keyscan_seq_ctrl {
3289 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
3290 	union {
3291 		struct __ec_align1 {
3292 			uint8_t active;		/* still active */
3293 			uint8_t num_items;	/* number of items */
3294 			/* Current item being presented */
3295 			uint8_t cur_item;
3296 		} status;
3297 		struct __ec_todo_unpacked {
3298 			/*
3299 			 * Absolute time for this scan, measured from the
3300 			 * start of the sequence.
3301 			 */
3302 			uint32_t time_us;
3303 			uint8_t scan[0];	/* keyscan data */
3304 		} add;
3305 		struct __ec_align1 {
3306 			uint8_t start_item;	/* First item to return */
3307 			uint8_t num_items;	/* Number of items to return */
3308 		} collect;
3309 	};
3310 } __ec_todo_packed;
3311 
3312 struct ec_result_keyscan_seq_ctrl {
3313 	union {
3314 		struct __ec_todo_unpacked {
3315 			uint8_t num_items;	/* Number of items */
3316 			/* Data for each item */
3317 			struct ec_collect_item item[0];
3318 		} collect;
3319 	};
3320 } __ec_todo_packed;
3321 
3322 /*
3323  * Get the next pending MKBP event.
3324  *
3325  * Returns EC_RES_UNAVAILABLE if there is no event pending.
3326  */
3327 #define EC_CMD_GET_NEXT_EVENT 0x0067
3328 
3329 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3330 
3331 /*
3332  * We use the most significant bit of the event type to indicate to the host
3333  * that the EC has more MKBP events available to provide.
3334  */
3335 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3336 
3337 /* The mask to apply to get the raw event type */
3338 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3339 
3340 enum ec_mkbp_event {
3341 	/* Keyboard matrix changed. The event data is the new matrix state. */
3342 	EC_MKBP_EVENT_KEY_MATRIX = 0,
3343 
3344 	/* New host event. The event data is 4 bytes of host event flags. */
3345 	EC_MKBP_EVENT_HOST_EVENT = 1,
3346 
3347 	/* New Sensor FIFO data. The event data is fifo_info structure. */
3348 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
3349 
3350 	/* The state of the non-matrixed buttons have changed. */
3351 	EC_MKBP_EVENT_BUTTON = 3,
3352 
3353 	/* The state of the switches have changed. */
3354 	EC_MKBP_EVENT_SWITCH = 4,
3355 
3356 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
3357 	EC_MKBP_EVENT_FINGERPRINT = 5,
3358 
3359 	/*
3360 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
3361 	 * corresponding to the key to be pressed.
3362 	 */
3363 	EC_MKBP_EVENT_SYSRQ = 6,
3364 
3365 	/*
3366 	 * New 64-bit host event.
3367 	 * The event data is 8 bytes of host event flags.
3368 	 */
3369 	EC_MKBP_EVENT_HOST_EVENT64 = 7,
3370 
3371 	/* Notify the AP that something happened on CEC */
3372 	EC_MKBP_EVENT_CEC_EVENT = 8,
3373 
3374 	/* Send an incoming CEC message to the AP */
3375 	EC_MKBP_EVENT_CEC_MESSAGE = 9,
3376 
3377 	/* Number of MKBP events */
3378 	EC_MKBP_EVENT_COUNT,
3379 };
3380 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3381 
3382 union __ec_align_offset1 ec_response_get_next_data {
3383 	uint8_t key_matrix[13];
3384 
3385 	/* Unaligned */
3386 	uint32_t host_event;
3387 	uint64_t host_event64;
3388 
3389 	struct __ec_todo_unpacked {
3390 		/* For aligning the fifo_info */
3391 		uint8_t reserved[3];
3392 		struct ec_response_motion_sense_fifo_info info;
3393 	} sensor_fifo;
3394 
3395 	uint32_t buttons;
3396 
3397 	uint32_t switches;
3398 
3399 	uint32_t fp_events;
3400 
3401 	uint32_t sysrq;
3402 
3403 	/* CEC events from enum mkbp_cec_event */
3404 	uint32_t cec_events;
3405 };
3406 
3407 union __ec_align_offset1 ec_response_get_next_data_v1 {
3408 	uint8_t key_matrix[16];
3409 
3410 	/* Unaligned */
3411 	uint32_t host_event;
3412 	uint64_t host_event64;
3413 
3414 	struct __ec_todo_unpacked {
3415 		/* For aligning the fifo_info */
3416 		uint8_t reserved[3];
3417 		struct ec_response_motion_sense_fifo_info info;
3418 	} sensor_fifo;
3419 
3420 	uint32_t buttons;
3421 
3422 	uint32_t switches;
3423 
3424 	uint32_t fp_events;
3425 
3426 	uint32_t sysrq;
3427 
3428 	/* CEC events from enum mkbp_cec_event */
3429 	uint32_t cec_events;
3430 
3431 	uint8_t cec_message[16];
3432 };
3433 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3434 
3435 struct ec_response_get_next_event {
3436 	uint8_t event_type;
3437 	/* Followed by event data if any */
3438 	union ec_response_get_next_data data;
3439 } __ec_align1;
3440 
3441 struct ec_response_get_next_event_v1 {
3442 	uint8_t event_type;
3443 	/* Followed by event data if any */
3444 	union ec_response_get_next_data_v1 data;
3445 } __ec_align1;
3446 
3447 /* Bit indices for buttons and switches.*/
3448 /* Buttons */
3449 #define EC_MKBP_POWER_BUTTON	0
3450 #define EC_MKBP_VOL_UP		1
3451 #define EC_MKBP_VOL_DOWN	2
3452 #define EC_MKBP_RECOVERY	3
3453 
3454 /* Switches */
3455 #define EC_MKBP_LID_OPEN	0
3456 #define EC_MKBP_TABLET_MODE	1
3457 #define EC_MKBP_BASE_ATTACHED	2
3458 
3459 /* Run keyboard factory test scanning */
3460 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3461 
3462 struct ec_response_keyboard_factory_test {
3463 	uint16_t shorted;	/* Keyboard pins are shorted */
3464 } __ec_align2;
3465 
3466 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3467 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3468 #define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3469 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3470 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3471 					 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3472 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3473 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3474 #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3475 					 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3476 #define EC_MKBP_FP_ENROLL               BIT(27)
3477 #define EC_MKBP_FP_MATCH                BIT(28)
3478 #define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3479 #define EC_MKBP_FP_FINGER_UP            BIT(30)
3480 #define EC_MKBP_FP_IMAGE_READY          BIT(31)
3481 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3482 #define EC_MKBP_FP_ERR_ENROLL_OK               0
3483 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3484 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3485 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3486 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3487 /* Can be used to detect if image was usable for enrollment or not. */
3488 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3489 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3490 #define EC_MKBP_FP_ERR_MATCH_NO                0
3491 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3492 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3493 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3494 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3495 #define EC_MKBP_FP_ERR_MATCH_YES               1
3496 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3497 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3498 
3499 
3500 /*****************************************************************************/
3501 /* Temperature sensor commands */
3502 
3503 /* Read temperature sensor info */
3504 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3505 
3506 struct ec_params_temp_sensor_get_info {
3507 	uint8_t id;
3508 } __ec_align1;
3509 
3510 struct ec_response_temp_sensor_get_info {
3511 	char sensor_name[32];
3512 	uint8_t sensor_type;
3513 } __ec_align1;
3514 
3515 /*****************************************************************************/
3516 
3517 /*
3518  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3519  * commands accidentally sent to the wrong interface.  See the ACPI section
3520  * below.
3521  */
3522 
3523 /*****************************************************************************/
3524 /* Host event commands */
3525 
3526 
3527 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3528 /*
3529  * Host event mask params and response structures, shared by all of the host
3530  * event commands below.
3531  */
3532 struct ec_params_host_event_mask {
3533 	uint32_t mask;
3534 } __ec_align4;
3535 
3536 struct ec_response_host_event_mask {
3537 	uint32_t mask;
3538 } __ec_align4;
3539 
3540 /* These all use ec_response_host_event_mask */
3541 #define EC_CMD_HOST_EVENT_GET_B         0x0087
3542 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3543 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3544 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3545 
3546 /* These all use ec_params_host_event_mask */
3547 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3548 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3549 #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3550 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3551 #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3552 
3553 /*
3554  * Unified host event programming interface - Should be used by newer versions
3555  * of BIOS/OS to program host events and masks
3556  */
3557 
3558 struct ec_params_host_event {
3559 
3560 	/* Action requested by host - one of enum ec_host_event_action. */
3561 	uint8_t action;
3562 
3563 	/*
3564 	 * Mask type that the host requested the action on - one of
3565 	 * enum ec_host_event_mask_type.
3566 	 */
3567 	uint8_t mask_type;
3568 
3569 	/* Set to 0, ignore on read */
3570 	uint16_t reserved;
3571 
3572 	/* Value to be used in case of set operations. */
3573 	uint64_t value;
3574 } __ec_align4;
3575 
3576 /*
3577  * Response structure returned by EC_CMD_HOST_EVENT.
3578  * Update the value on a GET request. Set to 0 on GET/CLEAR
3579  */
3580 
3581 struct ec_response_host_event {
3582 
3583 	/* Mask value in case of get operation */
3584 	uint64_t value;
3585 } __ec_align4;
3586 
3587 enum ec_host_event_action {
3588 	/*
3589 	 * params.value is ignored. Value of mask_type populated
3590 	 * in response.value
3591 	 */
3592 	EC_HOST_EVENT_GET,
3593 
3594 	/* Bits in params.value are set */
3595 	EC_HOST_EVENT_SET,
3596 
3597 	/* Bits in params.value are cleared */
3598 	EC_HOST_EVENT_CLEAR,
3599 };
3600 
3601 enum ec_host_event_mask_type {
3602 
3603 	/* Main host event copy */
3604 	EC_HOST_EVENT_MAIN,
3605 
3606 	/* Copy B of host events */
3607 	EC_HOST_EVENT_B,
3608 
3609 	/* SCI Mask */
3610 	EC_HOST_EVENT_SCI_MASK,
3611 
3612 	/* SMI Mask */
3613 	EC_HOST_EVENT_SMI_MASK,
3614 
3615 	/* Mask of events that should be always reported in hostevents */
3616 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3617 
3618 	/* Active wake mask */
3619 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3620 
3621 	/* Lazy wake mask for S0ix */
3622 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3623 
3624 	/* Lazy wake mask for S3 */
3625 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3626 
3627 	/* Lazy wake mask for S5 */
3628 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3629 };
3630 
3631 #define EC_CMD_HOST_EVENT       0x00A4
3632 
3633 /*****************************************************************************/
3634 /* Switch commands */
3635 
3636 /* Enable/disable LCD backlight */
3637 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3638 
3639 struct ec_params_switch_enable_backlight {
3640 	uint8_t enabled;
3641 } __ec_align1;
3642 
3643 /* Enable/disable WLAN/Bluetooth */
3644 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3645 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3646 
3647 /* Version 0 params; no response */
3648 struct ec_params_switch_enable_wireless_v0 {
3649 	uint8_t enabled;
3650 } __ec_align1;
3651 
3652 /* Version 1 params */
3653 struct ec_params_switch_enable_wireless_v1 {
3654 	/* Flags to enable now */
3655 	uint8_t now_flags;
3656 
3657 	/* Which flags to copy from now_flags */
3658 	uint8_t now_mask;
3659 
3660 	/*
3661 	 * Flags to leave enabled in S3, if they're on at the S0->S3
3662 	 * transition.  (Other flags will be disabled by the S0->S3
3663 	 * transition.)
3664 	 */
3665 	uint8_t suspend_flags;
3666 
3667 	/* Which flags to copy from suspend_flags */
3668 	uint8_t suspend_mask;
3669 } __ec_align1;
3670 
3671 /* Version 1 response */
3672 struct ec_response_switch_enable_wireless_v1 {
3673 	/* Flags to enable now */
3674 	uint8_t now_flags;
3675 
3676 	/* Flags to leave enabled in S3 */
3677 	uint8_t suspend_flags;
3678 } __ec_align1;
3679 
3680 /*****************************************************************************/
3681 /* GPIO commands. Only available on EC if write protect has been disabled. */
3682 
3683 /* Set GPIO output value */
3684 #define EC_CMD_GPIO_SET 0x0092
3685 
3686 struct ec_params_gpio_set {
3687 	char name[32];
3688 	uint8_t val;
3689 } __ec_align1;
3690 
3691 /* Get GPIO value */
3692 #define EC_CMD_GPIO_GET 0x0093
3693 
3694 /* Version 0 of input params and response */
3695 struct ec_params_gpio_get {
3696 	char name[32];
3697 } __ec_align1;
3698 
3699 struct ec_response_gpio_get {
3700 	uint8_t val;
3701 } __ec_align1;
3702 
3703 /* Version 1 of input params and response */
3704 struct ec_params_gpio_get_v1 {
3705 	uint8_t subcmd;
3706 	union {
3707 		struct __ec_align1 {
3708 			char name[32];
3709 		} get_value_by_name;
3710 		struct __ec_align1 {
3711 			uint8_t index;
3712 		} get_info;
3713 	};
3714 } __ec_align1;
3715 
3716 struct ec_response_gpio_get_v1 {
3717 	union {
3718 		struct __ec_align1 {
3719 			uint8_t val;
3720 		} get_value_by_name, get_count;
3721 		struct __ec_todo_unpacked {
3722 			uint8_t val;
3723 			char name[32];
3724 			uint32_t flags;
3725 		} get_info;
3726 	};
3727 } __ec_todo_packed;
3728 
3729 enum gpio_get_subcmd {
3730 	EC_GPIO_GET_BY_NAME = 0,
3731 	EC_GPIO_GET_COUNT = 1,
3732 	EC_GPIO_GET_INFO = 2,
3733 };
3734 
3735 /*****************************************************************************/
3736 /* I2C commands. Only available when flash write protect is unlocked. */
3737 
3738 /*
3739  * CAUTION: These commands are deprecated, and are not supported anymore in EC
3740  * builds >= 8398.0.0 (see crosbug.com/p/23570).
3741  *
3742  * Use EC_CMD_I2C_PASSTHRU instead.
3743  */
3744 
3745 /* Read I2C bus */
3746 #define EC_CMD_I2C_READ 0x0094
3747 
3748 struct ec_params_i2c_read {
3749 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3750 	uint8_t read_size; /* Either 8 or 16. */
3751 	uint8_t port;
3752 	uint8_t offset;
3753 } __ec_align_size1;
3754 
3755 struct ec_response_i2c_read {
3756 	uint16_t data;
3757 } __ec_align2;
3758 
3759 /* Write I2C bus */
3760 #define EC_CMD_I2C_WRITE 0x0095
3761 
3762 struct ec_params_i2c_write {
3763 	uint16_t data;
3764 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3765 	uint8_t write_size; /* Either 8 or 16. */
3766 	uint8_t port;
3767 	uint8_t offset;
3768 } __ec_align_size1;
3769 
3770 /*****************************************************************************/
3771 /* Charge state commands. Only available when flash write protect unlocked. */
3772 
3773 /* Force charge state machine to stop charging the battery or force it to
3774  * discharge the battery.
3775  */
3776 #define EC_CMD_CHARGE_CONTROL 0x0096
3777 #define EC_VER_CHARGE_CONTROL 1
3778 
3779 enum ec_charge_control_mode {
3780 	CHARGE_CONTROL_NORMAL = 0,
3781 	CHARGE_CONTROL_IDLE,
3782 	CHARGE_CONTROL_DISCHARGE,
3783 };
3784 
3785 struct ec_params_charge_control {
3786 	uint32_t mode;  /* enum charge_control_mode */
3787 } __ec_align4;
3788 
3789 /*****************************************************************************/
3790 
3791 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3792 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3793 
3794 /*
3795  * Read data from the saved snapshot. If the subcmd parameter is
3796  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3797  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3798  * end of the previous snapshot.
3799  *
3800  * The params are only looked at in version >= 1 of this command. Prior
3801  * versions will just default to CONSOLE_READ_NEXT behavior.
3802  *
3803  * Response is null-terminated string.  Empty string, if there is no more
3804  * remaining output.
3805  */
3806 #define EC_CMD_CONSOLE_READ 0x0098
3807 
3808 enum ec_console_read_subcmd {
3809 	CONSOLE_READ_NEXT = 0,
3810 	CONSOLE_READ_RECENT
3811 };
3812 
3813 struct ec_params_console_read_v1 {
3814 	uint8_t subcmd; /* enum ec_console_read_subcmd */
3815 } __ec_align1;
3816 
3817 /*****************************************************************************/
3818 
3819 /*
3820  * Cut off battery power immediately or after the host has shut down.
3821  *
3822  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3823  *	  EC_RES_SUCCESS if the command was successful.
3824  *	  EC_RES_ERROR if the cut off command failed.
3825  */
3826 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3827 
3828 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	BIT(0)
3829 
3830 struct ec_params_battery_cutoff {
3831 	uint8_t flags;
3832 } __ec_align1;
3833 
3834 /*****************************************************************************/
3835 /* USB port mux control. */
3836 
3837 /*
3838  * Switch USB mux or return to automatic switching.
3839  */
3840 #define EC_CMD_USB_MUX 0x009A
3841 
3842 struct ec_params_usb_mux {
3843 	uint8_t mux;
3844 } __ec_align1;
3845 
3846 /*****************************************************************************/
3847 /* LDOs / FETs control. */
3848 
3849 enum ec_ldo_state {
3850 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3851 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3852 };
3853 
3854 /*
3855  * Switch on/off a LDO.
3856  */
3857 #define EC_CMD_LDO_SET 0x009B
3858 
3859 struct ec_params_ldo_set {
3860 	uint8_t index;
3861 	uint8_t state;
3862 } __ec_align1;
3863 
3864 /*
3865  * Get LDO state.
3866  */
3867 #define EC_CMD_LDO_GET 0x009C
3868 
3869 struct ec_params_ldo_get {
3870 	uint8_t index;
3871 } __ec_align1;
3872 
3873 struct ec_response_ldo_get {
3874 	uint8_t state;
3875 } __ec_align1;
3876 
3877 /*****************************************************************************/
3878 /* Power info. */
3879 
3880 /*
3881  * Get power info.
3882  */
3883 #define EC_CMD_POWER_INFO 0x009D
3884 
3885 struct ec_response_power_info {
3886 	uint32_t usb_dev_type;
3887 	uint16_t voltage_ac;
3888 	uint16_t voltage_system;
3889 	uint16_t current_system;
3890 	uint16_t usb_current_limit;
3891 } __ec_align4;
3892 
3893 /*****************************************************************************/
3894 /* I2C passthru command */
3895 
3896 #define EC_CMD_I2C_PASSTHRU 0x009E
3897 
3898 /* Read data; if not present, message is a write */
3899 #define EC_I2C_FLAG_READ	BIT(15)
3900 
3901 /* Mask for address */
3902 #define EC_I2C_ADDR_MASK	0x3ff
3903 
3904 #define EC_I2C_STATUS_NAK	BIT(0) /* Transfer was not acknowledged */
3905 #define EC_I2C_STATUS_TIMEOUT	BIT(1) /* Timeout during transfer */
3906 
3907 /* Any error */
3908 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3909 
3910 struct ec_params_i2c_passthru_msg {
3911 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3912 	uint16_t len;		/* Number of bytes to read or write */
3913 } __ec_align2;
3914 
3915 struct ec_params_i2c_passthru {
3916 	uint8_t port;		/* I2C port number */
3917 	uint8_t num_msgs;	/* Number of messages */
3918 	struct ec_params_i2c_passthru_msg msg[];
3919 	/* Data to write for all messages is concatenated here */
3920 } __ec_align2;
3921 
3922 struct ec_response_i2c_passthru {
3923 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3924 	uint8_t num_msgs;	/* Number of messages processed */
3925 	uint8_t data[];		/* Data read by messages concatenated here */
3926 } __ec_align1;
3927 
3928 /*****************************************************************************/
3929 /* Power button hang detect */
3930 
3931 #define EC_CMD_HANG_DETECT 0x009F
3932 
3933 /* Reasons to start hang detection timer */
3934 /* Power button pressed */
3935 #define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3936 
3937 /* Lid closed */
3938 #define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3939 
3940  /* Lid opened */
3941 #define EC_HANG_START_ON_LID_OPEN     BIT(2)
3942 
3943 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3944 #define EC_HANG_START_ON_RESUME       BIT(3)
3945 
3946 /* Reasons to cancel hang detection */
3947 
3948 /* Power button released */
3949 #define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3950 
3951 /* Any host command from AP received */
3952 #define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3953 
3954 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3955 #define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3956 
3957 /*
3958  * If this flag is set, all the other fields are ignored, and the hang detect
3959  * timer is started.  This provides the AP a way to start the hang timer
3960  * without reconfiguring any of the other hang detect settings.  Note that
3961  * you must previously have configured the timeouts.
3962  */
3963 #define EC_HANG_START_NOW             BIT(30)
3964 
3965 /*
3966  * If this flag is set, all the other fields are ignored (including
3967  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3968  * without reconfiguring any of the other hang detect settings.
3969  */
3970 #define EC_HANG_STOP_NOW              BIT(31)
3971 
3972 struct ec_params_hang_detect {
3973 	/* Flags; see EC_HANG_* */
3974 	uint32_t flags;
3975 
3976 	/* Timeout in msec before generating host event, if enabled */
3977 	uint16_t host_event_timeout_msec;
3978 
3979 	/* Timeout in msec before generating warm reboot, if enabled */
3980 	uint16_t warm_reboot_timeout_msec;
3981 } __ec_align4;
3982 
3983 /*****************************************************************************/
3984 /* Commands for battery charging */
3985 
3986 /*
3987  * This is the single catch-all host command to exchange data regarding the
3988  * charge state machine (v2 and up).
3989  */
3990 #define EC_CMD_CHARGE_STATE 0x00A0
3991 
3992 /* Subcommands for this host command */
3993 enum charge_state_command {
3994 	CHARGE_STATE_CMD_GET_STATE,
3995 	CHARGE_STATE_CMD_GET_PARAM,
3996 	CHARGE_STATE_CMD_SET_PARAM,
3997 	CHARGE_STATE_NUM_CMDS
3998 };
3999 
4000 /*
4001  * Known param numbers are defined here. Ranges are reserved for board-specific
4002  * params, which are handled by the particular implementations.
4003  */
4004 enum charge_state_params {
4005 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
4006 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
4007 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4008 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
4009 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
4010 	CS_PARAM_LIMIT_POWER,	      /*
4011 				       * Check if power is limited due to
4012 				       * low battery and / or a weak external
4013 				       * charger. READ ONLY.
4014 				       */
4015 	/* How many so far? */
4016 	CS_NUM_BASE_PARAMS,
4017 
4018 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4019 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4020 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4021 
4022 	/* Range for CONFIG_CHARGE_STATE_DEBUG params */
4023 	CS_PARAM_DEBUG_MIN = 0x20000,
4024 	CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4025 	CS_PARAM_DEBUG_MANUAL_MODE,
4026 	CS_PARAM_DEBUG_SEEMS_DEAD,
4027 	CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4028 	CS_PARAM_DEBUG_BATT_REMOVED,
4029 	CS_PARAM_DEBUG_MANUAL_CURRENT,
4030 	CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4031 	CS_PARAM_DEBUG_MAX = 0x2ffff,
4032 
4033 	/* Other custom param ranges go here... */
4034 };
4035 
4036 struct ec_params_charge_state {
4037 	uint8_t cmd;				/* enum charge_state_command */
4038 	union {
4039 		/* get_state has no args */
4040 
4041 		struct __ec_todo_unpacked {
4042 			uint32_t param;		/* enum charge_state_param */
4043 		} get_param;
4044 
4045 		struct __ec_todo_unpacked {
4046 			uint32_t param;		/* param to set */
4047 			uint32_t value;		/* value to set */
4048 		} set_param;
4049 	};
4050 } __ec_todo_packed;
4051 
4052 struct ec_response_charge_state {
4053 	union {
4054 		struct __ec_align4 {
4055 			int ac;
4056 			int chg_voltage;
4057 			int chg_current;
4058 			int chg_input_current;
4059 			int batt_state_of_charge;
4060 		} get_state;
4061 
4062 		struct __ec_align4 {
4063 			uint32_t value;
4064 		} get_param;
4065 
4066 		/* set_param returns no args */
4067 	};
4068 } __ec_align4;
4069 
4070 
4071 /*
4072  * Set maximum battery charging current.
4073  */
4074 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4075 
4076 struct ec_params_current_limit {
4077 	uint32_t limit; /* in mA */
4078 } __ec_align4;
4079 
4080 /*
4081  * Set maximum external voltage / current.
4082  */
4083 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4084 
4085 /* Command v0 is used only on Spring and is obsolete + unsupported */
4086 struct ec_params_external_power_limit_v1 {
4087 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4088 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4089 } __ec_align2;
4090 
4091 #define EC_POWER_LIMIT_NONE 0xffff
4092 
4093 /*
4094  * Set maximum voltage & current of a dedicated charge port
4095  */
4096 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4097 
4098 struct ec_params_dedicated_charger_limit {
4099 	uint16_t current_lim; /* in mA */
4100 	uint16_t voltage_lim; /* in mV */
4101 } __ec_align2;
4102 
4103 /*****************************************************************************/
4104 /* Hibernate/Deep Sleep Commands */
4105 
4106 /* Set the delay before going into hibernation. */
4107 #define EC_CMD_HIBERNATION_DELAY 0x00A8
4108 
4109 struct ec_params_hibernation_delay {
4110 	/*
4111 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4112 	 * current settings without changing them.
4113 	 */
4114 	uint32_t seconds;
4115 } __ec_align4;
4116 
4117 struct ec_response_hibernation_delay {
4118 	/*
4119 	 * The current time in seconds in which the system has been in the G3
4120 	 * state.  This value is reset if the EC transitions out of G3.
4121 	 */
4122 	uint32_t time_g3;
4123 
4124 	/*
4125 	 * The current time remaining in seconds until the EC should hibernate.
4126 	 * This value is also reset if the EC transitions out of G3.
4127 	 */
4128 	uint32_t time_remaining;
4129 
4130 	/*
4131 	 * The current time in seconds that the EC should wait in G3 before
4132 	 * hibernating.
4133 	 */
4134 	uint32_t hibernate_delay;
4135 } __ec_align4;
4136 
4137 /* Inform the EC when entering a sleep state */
4138 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4139 
4140 enum host_sleep_event {
4141 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4142 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
4143 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4144 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4145 	/* S3 suspend with additional enabled wake sources */
4146 	HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4147 };
4148 
4149 struct ec_params_host_sleep_event {
4150 	uint8_t sleep_event;
4151 } __ec_align1;
4152 
4153 /*
4154  * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4155  * transition failures
4156  */
4157 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4158 
4159 /* Disable timeout detection for this sleep transition */
4160 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4161 
4162 struct ec_params_host_sleep_event_v1 {
4163 	/* The type of sleep being entered or exited. */
4164 	uint8_t sleep_event;
4165 
4166 	/* Padding */
4167 	uint8_t reserved;
4168 	union {
4169 		/* Parameters that apply for suspend messages. */
4170 		struct {
4171 			/*
4172 			 * The timeout in milliseconds between when this message
4173 			 * is received and when the EC will declare sleep
4174 			 * transition failure if the sleep signal is not
4175 			 * asserted.
4176 			 */
4177 			uint16_t sleep_timeout_ms;
4178 		} suspend_params;
4179 
4180 		/* No parameters for non-suspend messages. */
4181 	};
4182 } __ec_align2;
4183 
4184 /* A timeout occurred when this bit is set */
4185 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4186 
4187 /*
4188  * The mask defining which bits correspond to the number of sleep transitions,
4189  * as well as the maximum number of suspend line transitions that will be
4190  * reported back to the host.
4191  */
4192 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4193 
4194 struct ec_response_host_sleep_event_v1 {
4195 	union {
4196 		/* Response fields that apply for resume messages. */
4197 		struct {
4198 			/*
4199 			 * The number of sleep power signal transitions that
4200 			 * occurred since the suspend message. The high bit
4201 			 * indicates a timeout occurred.
4202 			 */
4203 			uint32_t sleep_transitions;
4204 		} resume_response;
4205 
4206 		/* No response fields for non-resume messages. */
4207 	};
4208 } __ec_align4;
4209 
4210 /*****************************************************************************/
4211 /* Device events */
4212 #define EC_CMD_DEVICE_EVENT 0x00AA
4213 
4214 enum ec_device_event {
4215 	EC_DEVICE_EVENT_TRACKPAD,
4216 	EC_DEVICE_EVENT_DSP,
4217 	EC_DEVICE_EVENT_WIFI,
4218 };
4219 
4220 enum ec_device_event_param {
4221 	/* Get and clear pending device events */
4222 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4223 	/* Get device event mask */
4224 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4225 	/* Set device event mask */
4226 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4227 };
4228 
4229 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4230 
4231 struct ec_params_device_event {
4232 	uint32_t event_mask;
4233 	uint8_t param;
4234 } __ec_align_size1;
4235 
4236 struct ec_response_device_event {
4237 	uint32_t event_mask;
4238 } __ec_align4;
4239 
4240 /*****************************************************************************/
4241 /* Smart battery pass-through */
4242 
4243 /* Get / Set 16-bit smart battery registers */
4244 #define EC_CMD_SB_READ_WORD   0x00B0
4245 #define EC_CMD_SB_WRITE_WORD  0x00B1
4246 
4247 /* Get / Set string smart battery parameters
4248  * formatted as SMBUS "block".
4249  */
4250 #define EC_CMD_SB_READ_BLOCK  0x00B2
4251 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
4252 
4253 struct ec_params_sb_rd {
4254 	uint8_t reg;
4255 } __ec_align1;
4256 
4257 struct ec_response_sb_rd_word {
4258 	uint16_t value;
4259 } __ec_align2;
4260 
4261 struct ec_params_sb_wr_word {
4262 	uint8_t reg;
4263 	uint16_t value;
4264 } __ec_align1;
4265 
4266 struct ec_response_sb_rd_block {
4267 	uint8_t data[32];
4268 } __ec_align1;
4269 
4270 struct ec_params_sb_wr_block {
4271 	uint8_t reg;
4272 	uint16_t data[32];
4273 } __ec_align1;
4274 
4275 /*****************************************************************************/
4276 /* Battery vendor parameters
4277  *
4278  * Get or set vendor-specific parameters in the battery. Implementations may
4279  * differ between boards or batteries. On a set operation, the response
4280  * contains the actual value set, which may be rounded or clipped from the
4281  * requested value.
4282  */
4283 
4284 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4285 
4286 enum ec_battery_vendor_param_mode {
4287 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
4288 	BATTERY_VENDOR_PARAM_MODE_SET,
4289 };
4290 
4291 struct ec_params_battery_vendor_param {
4292 	uint32_t param;
4293 	uint32_t value;
4294 	uint8_t mode;
4295 } __ec_align_size1;
4296 
4297 struct ec_response_battery_vendor_param {
4298 	uint32_t value;
4299 } __ec_align4;
4300 
4301 /*****************************************************************************/
4302 /*
4303  * Smart Battery Firmware Update Commands
4304  */
4305 #define EC_CMD_SB_FW_UPDATE 0x00B5
4306 
4307 enum ec_sb_fw_update_subcmd {
4308 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
4309 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4310 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4311 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4312 	EC_SB_FW_UPDATE_END      = 0x4,
4313 	EC_SB_FW_UPDATE_STATUS   = 0x5,
4314 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
4315 	EC_SB_FW_UPDATE_MAX      = 0x7,
4316 };
4317 
4318 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4319 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4320 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
4321 
4322 struct ec_sb_fw_update_header {
4323 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4324 	uint16_t fw_id;   /* firmware id */
4325 } __ec_align4;
4326 
4327 struct ec_params_sb_fw_update {
4328 	struct ec_sb_fw_update_header hdr;
4329 	union {
4330 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4331 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4332 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4333 		/* EC_SB_FW_UPDATE_END      = 0x4 */
4334 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4335 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4336 		/* Those have no args */
4337 
4338 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4339 		struct __ec_align4 {
4340 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4341 		} write;
4342 	};
4343 } __ec_align4;
4344 
4345 struct ec_response_sb_fw_update {
4346 	union {
4347 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4348 		struct __ec_align1 {
4349 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4350 		} info;
4351 
4352 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4353 		struct __ec_align1 {
4354 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4355 		} status;
4356 	};
4357 } __ec_align1;
4358 
4359 /*
4360  * Entering Verified Boot Mode Command
4361  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4362  * Valid Modes are: normal, developer, and recovery.
4363  */
4364 #define EC_CMD_ENTERING_MODE 0x00B6
4365 
4366 struct ec_params_entering_mode {
4367 	int vboot_mode;
4368 } __ec_align4;
4369 
4370 #define VBOOT_MODE_NORMAL    0
4371 #define VBOOT_MODE_DEVELOPER 1
4372 #define VBOOT_MODE_RECOVERY  2
4373 
4374 /*****************************************************************************/
4375 /*
4376  * I2C passthru protection command: Protects I2C tunnels against access on
4377  * certain addresses (board-specific).
4378  */
4379 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4380 
4381 enum ec_i2c_passthru_protect_subcmd {
4382 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4383 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4384 };
4385 
4386 struct ec_params_i2c_passthru_protect {
4387 	uint8_t subcmd;
4388 	uint8_t port;		/* I2C port number */
4389 } __ec_align1;
4390 
4391 struct ec_response_i2c_passthru_protect {
4392 	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
4393 } __ec_align1;
4394 
4395 
4396 /*****************************************************************************/
4397 /*
4398  * HDMI CEC commands
4399  *
4400  * These commands are for sending and receiving message via HDMI CEC
4401  */
4402 
4403 #define MAX_CEC_MSG_LEN 16
4404 
4405 /* CEC message from the AP to be written on the CEC bus */
4406 #define EC_CMD_CEC_WRITE_MSG 0x00B8
4407 
4408 /**
4409  * struct ec_params_cec_write - Message to write to the CEC bus
4410  * @msg: message content to write to the CEC bus
4411  */
4412 struct ec_params_cec_write {
4413 	uint8_t msg[MAX_CEC_MSG_LEN];
4414 } __ec_align1;
4415 
4416 /* Set various CEC parameters */
4417 #define EC_CMD_CEC_SET 0x00BA
4418 
4419 /**
4420  * struct ec_params_cec_set - CEC parameters set
4421  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4422  * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4423  *	or 1 to enable CEC functionality, in case cmd is
4424  *	CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4425  *	address between 0 and 15 or 0xff to unregister
4426  */
4427 struct ec_params_cec_set {
4428 	uint8_t cmd; /* enum cec_command */
4429 	uint8_t val;
4430 } __ec_align1;
4431 
4432 /* Read various CEC parameters */
4433 #define EC_CMD_CEC_GET 0x00BB
4434 
4435 /**
4436  * struct ec_params_cec_get - CEC parameters get
4437  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4438  */
4439 struct ec_params_cec_get {
4440 	uint8_t cmd; /* enum cec_command */
4441 } __ec_align1;
4442 
4443 /**
4444  * struct ec_response_cec_get - CEC parameters get response
4445  * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4446  *	disabled or 1 if CEC functionality is enabled,
4447  *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4448  *	configured logical address between 0 and 15 or 0xff if unregistered
4449  */
4450 struct ec_response_cec_get {
4451 	uint8_t val;
4452 } __ec_align1;
4453 
4454 /* CEC parameters command */
4455 enum cec_command {
4456 	/* CEC reading, writing and events enable */
4457 	CEC_CMD_ENABLE,
4458 	/* CEC logical address  */
4459 	CEC_CMD_LOGICAL_ADDRESS,
4460 };
4461 
4462 /* Events from CEC to AP */
4463 enum mkbp_cec_event {
4464 	/* Outgoing message was acknowledged by a follower */
4465 	EC_MKBP_CEC_SEND_OK			= BIT(0),
4466 	/* Outgoing message was not acknowledged */
4467 	EC_MKBP_CEC_SEND_FAILED			= BIT(1),
4468 };
4469 
4470 /*****************************************************************************/
4471 
4472 /* Commands for audio codec. */
4473 #define EC_CMD_EC_CODEC 0x00BC
4474 
4475 enum ec_codec_subcmd {
4476 	EC_CODEC_GET_CAPABILITIES = 0x0,
4477 	EC_CODEC_GET_SHM_ADDR = 0x1,
4478 	EC_CODEC_SET_SHM_ADDR = 0x2,
4479 	EC_CODEC_SUBCMD_COUNT,
4480 };
4481 
4482 enum ec_codec_cap {
4483 	EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4484 	EC_CODEC_CAP_WOV_LANG_SHM = 1,
4485 	EC_CODEC_CAP_LAST = 32,
4486 };
4487 
4488 enum ec_codec_shm_id {
4489 	EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4490 	EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4491 	EC_CODEC_SHM_ID_LAST,
4492 };
4493 
4494 enum ec_codec_shm_type {
4495 	EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4496 	EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4497 };
4498 
4499 struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4500 	uint8_t shm_id;
4501 	uint8_t reserved[3];
4502 };
4503 
4504 struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4505 	uint64_t phys_addr;
4506 	uint32_t len;
4507 	uint8_t shm_id;
4508 	uint8_t reserved[3];
4509 };
4510 
4511 struct __ec_align4 ec_param_ec_codec {
4512 	uint8_t cmd; /* enum ec_codec_subcmd */
4513 	uint8_t reserved[3];
4514 
4515 	union {
4516 		struct ec_param_ec_codec_get_shm_addr
4517 				get_shm_addr_param;
4518 		struct ec_param_ec_codec_set_shm_addr
4519 				set_shm_addr_param;
4520 	};
4521 };
4522 
4523 struct __ec_align4 ec_response_ec_codec_get_capabilities {
4524 	uint32_t capabilities;
4525 };
4526 
4527 struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4528 	uint64_t phys_addr;
4529 	uint32_t len;
4530 	uint8_t type;
4531 	uint8_t reserved[3];
4532 };
4533 
4534 /*****************************************************************************/
4535 
4536 /* Commands for DMIC on audio codec. */
4537 #define EC_CMD_EC_CODEC_DMIC 0x00BD
4538 
4539 enum ec_codec_dmic_subcmd {
4540 	EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4541 	EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4542 	EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4543 	EC_CODEC_DMIC_SUBCMD_COUNT,
4544 };
4545 
4546 enum ec_codec_dmic_channel {
4547 	EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4548 	EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4549 	EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4550 	EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4551 	EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4552 	EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4553 	EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4554 	EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4555 	EC_CODEC_DMIC_CHANNEL_COUNT,
4556 };
4557 
4558 struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4559 	uint8_t channel; /* enum ec_codec_dmic_channel */
4560 	uint8_t gain;
4561 	uint8_t reserved[2];
4562 };
4563 
4564 struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4565 	uint8_t channel; /* enum ec_codec_dmic_channel */
4566 	uint8_t reserved[3];
4567 };
4568 
4569 struct __ec_align4 ec_param_ec_codec_dmic {
4570 	uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4571 	uint8_t reserved[3];
4572 
4573 	union {
4574 		struct ec_param_ec_codec_dmic_set_gain_idx
4575 				set_gain_idx_param;
4576 		struct ec_param_ec_codec_dmic_get_gain_idx
4577 				get_gain_idx_param;
4578 	};
4579 };
4580 
4581 struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4582 	uint8_t max_gain;
4583 };
4584 
4585 struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4586 	uint8_t gain;
4587 };
4588 
4589 /*****************************************************************************/
4590 
4591 /* Commands for I2S RX on audio codec. */
4592 
4593 #define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4594 
4595 enum ec_codec_i2s_rx_subcmd {
4596 	EC_CODEC_I2S_RX_ENABLE = 0x0,
4597 	EC_CODEC_I2S_RX_DISABLE = 0x1,
4598 	EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4599 	EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4600 	EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4601 	EC_CODEC_I2S_RX_SUBCMD_COUNT,
4602 };
4603 
4604 enum ec_codec_i2s_rx_sample_depth {
4605 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4606 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4607 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4608 };
4609 
4610 enum ec_codec_i2s_rx_daifmt {
4611 	EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4612 	EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4613 	EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4614 	EC_CODEC_I2S_RX_DAIFMT_COUNT,
4615 };
4616 
4617 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4618 	uint8_t depth;
4619 	uint8_t reserved[3];
4620 };
4621 
4622 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4623 	uint8_t left;
4624 	uint8_t right;
4625 	uint8_t reserved[2];
4626 };
4627 
4628 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4629 	uint8_t daifmt;
4630 	uint8_t reserved[3];
4631 };
4632 
4633 struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4634 	uint32_t bclk;
4635 };
4636 
4637 struct __ec_align4 ec_param_ec_codec_i2s_rx {
4638 	uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4639 	uint8_t reserved[3];
4640 
4641 	union {
4642 		struct ec_param_ec_codec_i2s_rx_set_sample_depth
4643 				set_sample_depth_param;
4644 		struct ec_param_ec_codec_i2s_rx_set_daifmt
4645 				set_daifmt_param;
4646 		struct ec_param_ec_codec_i2s_rx_set_bclk
4647 				set_bclk_param;
4648 	};
4649 };
4650 
4651 /*****************************************************************************/
4652 /* Commands for WoV on audio codec. */
4653 
4654 #define EC_CMD_EC_CODEC_WOV 0x00BF
4655 
4656 enum ec_codec_wov_subcmd {
4657 	EC_CODEC_WOV_SET_LANG = 0x0,
4658 	EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4659 	EC_CODEC_WOV_GET_LANG = 0x2,
4660 	EC_CODEC_WOV_ENABLE = 0x3,
4661 	EC_CODEC_WOV_DISABLE = 0x4,
4662 	EC_CODEC_WOV_READ_AUDIO = 0x5,
4663 	EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4664 	EC_CODEC_WOV_SUBCMD_COUNT,
4665 };
4666 
4667 /*
4668  * @hash is SHA256 of the whole language model.
4669  * @total_len indicates the length of whole language model.
4670  * @offset is the cursor from the beginning of the model.
4671  * @buf is the packet buffer.
4672  * @len denotes how many bytes in the buf.
4673  */
4674 struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4675 	uint8_t hash[32];
4676 	uint32_t total_len;
4677 	uint32_t offset;
4678 	uint8_t buf[128];
4679 	uint32_t len;
4680 };
4681 
4682 struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4683 	uint8_t hash[32];
4684 	uint32_t total_len;
4685 };
4686 
4687 struct __ec_align4 ec_param_ec_codec_wov {
4688 	uint8_t cmd; /* enum ec_codec_wov_subcmd */
4689 	uint8_t reserved[3];
4690 
4691 	union {
4692 		struct ec_param_ec_codec_wov_set_lang
4693 				set_lang_param;
4694 		struct ec_param_ec_codec_wov_set_lang_shm
4695 				set_lang_shm_param;
4696 	};
4697 };
4698 
4699 struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4700 	uint8_t hash[32];
4701 };
4702 
4703 struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4704 	uint8_t buf[128];
4705 	uint32_t len;
4706 };
4707 
4708 struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4709 	uint32_t offset;
4710 	uint32_t len;
4711 };
4712 
4713 /*****************************************************************************/
4714 /* System commands */
4715 
4716 /*
4717  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4718  * necessarily reboot the EC.  Rename to "image" or something similar?
4719  */
4720 #define EC_CMD_REBOOT_EC 0x00D2
4721 
4722 /* Command */
4723 enum ec_reboot_cmd {
4724 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4725 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4726 	EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4727 	/* (command 3 was jump to RW-B) */
4728 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
4729 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4730 	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4731 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4732 };
4733 
4734 /* Flags for ec_params_reboot_ec.reboot_flags */
4735 #define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4736 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4737 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4738 
4739 struct ec_params_reboot_ec {
4740 	uint8_t cmd;           /* enum ec_reboot_cmd */
4741 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4742 } __ec_align1;
4743 
4744 /*
4745  * Get information on last EC panic.
4746  *
4747  * Returns variable-length platform-dependent panic information.  See panic.h
4748  * for details.
4749  */
4750 #define EC_CMD_GET_PANIC_INFO 0x00D3
4751 
4752 /*****************************************************************************/
4753 /*
4754  * Special commands
4755  *
4756  * These do not follow the normal rules for commands.  See each command for
4757  * details.
4758  */
4759 
4760 /*
4761  * Reboot NOW
4762  *
4763  * This command will work even when the EC LPC interface is busy, because the
4764  * reboot command is processed at interrupt level.  Note that when the EC
4765  * reboots, the host will reboot too, so there is no response to this command.
4766  *
4767  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4768  */
4769 #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4770 
4771 /*
4772  * Resend last response (not supported on LPC).
4773  *
4774  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4775  * there was no previous command, or the previous command's response was too
4776  * big to save.
4777  */
4778 #define EC_CMD_RESEND_RESPONSE 0x00DB
4779 
4780 /*
4781  * This header byte on a command indicate version 0. Any header byte less
4782  * than this means that we are talking to an old EC which doesn't support
4783  * versioning. In that case, we assume version 0.
4784  *
4785  * Header bytes greater than this indicate a later version. For example,
4786  * EC_CMD_VERSION0 + 1 means we are using version 1.
4787  *
4788  * The old EC interface must not use commands 0xdc or higher.
4789  */
4790 #define EC_CMD_VERSION0 0x00DC
4791 
4792 /*****************************************************************************/
4793 /*
4794  * PD commands
4795  *
4796  * These commands are for PD MCU communication.
4797  */
4798 
4799 /* EC to PD MCU exchange status command */
4800 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4801 #define EC_VER_PD_EXCHANGE_STATUS 2
4802 
4803 enum pd_charge_state {
4804 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4805 	PD_CHARGE_NONE,          /* No charging allowed */
4806 	PD_CHARGE_5V,            /* 5V charging only */
4807 	PD_CHARGE_MAX            /* Charge at max voltage */
4808 };
4809 
4810 /* Status of EC being sent to PD */
4811 #define EC_STATUS_HIBERNATING	BIT(0)
4812 
4813 struct ec_params_pd_status {
4814 	uint8_t status;       /* EC status */
4815 	int8_t batt_soc;      /* battery state of charge */
4816 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4817 } __ec_align1;
4818 
4819 /* Status of PD being sent back to EC */
4820 #define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4821 #define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4822 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4823 #define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4824 #define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4825 #define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4826 #define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4827 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4828 				      PD_STATUS_TCPC_ALERT_1 | \
4829 				      PD_STATUS_HOST_EVENT)
4830 struct ec_response_pd_status {
4831 	uint32_t curr_lim_ma;       /* input current limit */
4832 	uint16_t status;            /* PD MCU status */
4833 	int8_t active_charge_port;  /* active charging port */
4834 } __ec_align_size1;
4835 
4836 /* AP to PD MCU host event status command, cleared on read */
4837 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4838 
4839 /* PD MCU host event status bits */
4840 #define PD_EVENT_UPDATE_DEVICE     BIT(0)
4841 #define PD_EVENT_POWER_CHANGE      BIT(1)
4842 #define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4843 #define PD_EVENT_DATA_SWAP         BIT(3)
4844 struct ec_response_host_event_status {
4845 	uint32_t status;      /* PD MCU host event status */
4846 } __ec_align4;
4847 
4848 /* Set USB type-C port role and muxes */
4849 #define EC_CMD_USB_PD_CONTROL 0x0101
4850 
4851 enum usb_pd_control_role {
4852 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4853 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4854 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4855 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4856 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4857 	USB_PD_CTRL_ROLE_FREEZE = 5,
4858 	USB_PD_CTRL_ROLE_COUNT
4859 };
4860 
4861 enum usb_pd_control_mux {
4862 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
4863 	USB_PD_CTRL_MUX_NONE = 1,
4864 	USB_PD_CTRL_MUX_USB = 2,
4865 	USB_PD_CTRL_MUX_DP = 3,
4866 	USB_PD_CTRL_MUX_DOCK = 4,
4867 	USB_PD_CTRL_MUX_AUTO = 5,
4868 	USB_PD_CTRL_MUX_COUNT
4869 };
4870 
4871 enum usb_pd_control_swap {
4872 	USB_PD_CTRL_SWAP_NONE = 0,
4873 	USB_PD_CTRL_SWAP_DATA = 1,
4874 	USB_PD_CTRL_SWAP_POWER = 2,
4875 	USB_PD_CTRL_SWAP_VCONN = 3,
4876 	USB_PD_CTRL_SWAP_COUNT
4877 };
4878 
4879 struct ec_params_usb_pd_control {
4880 	uint8_t port;
4881 	uint8_t role;
4882 	uint8_t mux;
4883 	uint8_t swap;
4884 } __ec_align1;
4885 
4886 #define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4887 #define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4888 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4889 
4890 #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4891 #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4892 #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4893 #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4894 #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4895 #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4896 #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4897 
4898 struct ec_response_usb_pd_control {
4899 	uint8_t enabled;
4900 	uint8_t role;
4901 	uint8_t polarity;
4902 	uint8_t state;
4903 } __ec_align1;
4904 
4905 struct ec_response_usb_pd_control_v1 {
4906 	uint8_t enabled;
4907 	uint8_t role;
4908 	uint8_t polarity;
4909 	char state[32];
4910 } __ec_align1;
4911 
4912 /* Values representing usbc PD CC state */
4913 #define USBC_PD_CC_NONE		0 /* No accessory connected */
4914 #define USBC_PD_CC_NO_UFP	1 /* No UFP accessory connected */
4915 #define USBC_PD_CC_AUDIO_ACC	2 /* Audio accessory connected */
4916 #define USBC_PD_CC_DEBUG_ACC	3 /* Debug accessory connected */
4917 #define USBC_PD_CC_UFP_ATTACHED	4 /* UFP attached to usbc */
4918 #define USBC_PD_CC_DFP_ATTACHED	5 /* DPF attached to usbc */
4919 
4920 /* Active/Passive Cable */
4921 #define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4922 /* Optical/Non-optical cable */
4923 #define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4924 /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4925 #define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4926 /* Active Link Uni-Direction */
4927 #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4928 
4929 struct ec_response_usb_pd_control_v2 {
4930 	uint8_t enabled;
4931 	uint8_t role;
4932 	uint8_t polarity;
4933 	char state[32];
4934 	uint8_t cc_state;	/* enum pd_cc_states representing cc state */
4935 	uint8_t dp_mode;	/* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4936 	uint8_t reserved;	/* Reserved for future use */
4937 	uint8_t control_flags;	/* USB_PD_CTRL_*flags */
4938 	uint8_t cable_speed;	/* TBT_SS_* cable speed */
4939 	uint8_t cable_gen;	/* TBT_GEN3_* cable rounded support */
4940 } __ec_align1;
4941 
4942 #define EC_CMD_USB_PD_PORTS 0x0102
4943 
4944 /* Maximum number of PD ports on a device, num_ports will be <= this */
4945 #define EC_USB_PD_MAX_PORTS 8
4946 
4947 struct ec_response_usb_pd_ports {
4948 	uint8_t num_ports;
4949 } __ec_align1;
4950 
4951 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4952 
4953 #define PD_POWER_CHARGING_PORT 0xff
4954 struct ec_params_usb_pd_power_info {
4955 	uint8_t port;
4956 } __ec_align1;
4957 
4958 enum usb_chg_type {
4959 	USB_CHG_TYPE_NONE,
4960 	USB_CHG_TYPE_PD,
4961 	USB_CHG_TYPE_C,
4962 	USB_CHG_TYPE_PROPRIETARY,
4963 	USB_CHG_TYPE_BC12_DCP,
4964 	USB_CHG_TYPE_BC12_CDP,
4965 	USB_CHG_TYPE_BC12_SDP,
4966 	USB_CHG_TYPE_OTHER,
4967 	USB_CHG_TYPE_VBUS,
4968 	USB_CHG_TYPE_UNKNOWN,
4969 	USB_CHG_TYPE_DEDICATED,
4970 };
4971 enum usb_power_roles {
4972 	USB_PD_PORT_POWER_DISCONNECTED,
4973 	USB_PD_PORT_POWER_SOURCE,
4974 	USB_PD_PORT_POWER_SINK,
4975 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4976 };
4977 
4978 struct usb_chg_measures {
4979 	uint16_t voltage_max;
4980 	uint16_t voltage_now;
4981 	uint16_t current_max;
4982 	uint16_t current_lim;
4983 } __ec_align2;
4984 
4985 struct ec_response_usb_pd_power_info {
4986 	uint8_t role;
4987 	uint8_t type;
4988 	uint8_t dualrole;
4989 	uint8_t reserved1;
4990 	struct usb_chg_measures meas;
4991 	uint32_t max_power;
4992 } __ec_align4;
4993 
4994 
4995 /*
4996  * This command will return the number of USB PD charge port + the number
4997  * of dedicated port present.
4998  * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
4999  */
5000 #define EC_CMD_CHARGE_PORT_COUNT 0x0105
5001 struct ec_response_charge_port_count {
5002 	uint8_t port_count;
5003 } __ec_align1;
5004 
5005 /* Write USB-PD device FW */
5006 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
5007 
5008 enum usb_pd_fw_update_cmds {
5009 	USB_PD_FW_REBOOT,
5010 	USB_PD_FW_FLASH_ERASE,
5011 	USB_PD_FW_FLASH_WRITE,
5012 	USB_PD_FW_ERASE_SIG,
5013 };
5014 
5015 struct ec_params_usb_pd_fw_update {
5016 	uint16_t dev_id;
5017 	uint8_t cmd;
5018 	uint8_t port;
5019 	uint32_t size;     /* Size to write in bytes */
5020 	/* Followed by data to write */
5021 } __ec_align4;
5022 
5023 /* Write USB-PD Accessory RW_HASH table entry */
5024 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5025 /* RW hash is first 20 bytes of SHA-256 of RW section */
5026 #define PD_RW_HASH_SIZE 20
5027 struct ec_params_usb_pd_rw_hash_entry {
5028 	uint16_t dev_id;
5029 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5030 	uint8_t reserved;        /*
5031 				  * For alignment of current_image
5032 				  * TODO(rspangler) but it's not aligned!
5033 				  * Should have been reserved[2].
5034 				  */
5035 	uint32_t current_image;  /* One of ec_current_image */
5036 } __ec_align1;
5037 
5038 /* Read USB-PD Accessory info */
5039 #define EC_CMD_USB_PD_DEV_INFO 0x0112
5040 
5041 struct ec_params_usb_pd_info_request {
5042 	uint8_t port;
5043 } __ec_align1;
5044 
5045 /* Read USB-PD Device discovery info */
5046 #define EC_CMD_USB_PD_DISCOVERY 0x0113
5047 struct ec_params_usb_pd_discovery_entry {
5048 	uint16_t vid;  /* USB-IF VID */
5049 	uint16_t pid;  /* USB-IF PID */
5050 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
5051 } __ec_align_size1;
5052 
5053 /* Override default charge behavior */
5054 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5055 
5056 /* Negative port parameters have special meaning */
5057 enum usb_pd_override_ports {
5058 	OVERRIDE_DONT_CHARGE = -2,
5059 	OVERRIDE_OFF = -1,
5060 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5061 };
5062 
5063 struct ec_params_charge_port_override {
5064 	int16_t override_port; /* Override port# */
5065 } __ec_align2;
5066 
5067 /*
5068  * Read (and delete) one entry of PD event log.
5069  * TODO(crbug.com/751742): Make this host command more generic to accommodate
5070  * future non-PD logs that use the same internal EC event_log.
5071  */
5072 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5073 
5074 struct ec_response_pd_log {
5075 	uint32_t timestamp; /* relative timestamp in milliseconds */
5076 	uint8_t type;       /* event type : see PD_EVENT_xx below */
5077 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5078 	uint16_t data;      /* type-defined data payload */
5079 	uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5080 } __ec_align4;
5081 
5082 /* The timestamp is the microsecond counter shifted to get about a ms. */
5083 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5084 
5085 #define PD_LOG_SIZE_MASK  0x1f
5086 #define PD_LOG_PORT_MASK  0xe0
5087 #define PD_LOG_PORT_SHIFT    5
5088 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5089 				      ((size) & PD_LOG_SIZE_MASK))
5090 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5091 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5092 
5093 /* PD event log : entry types */
5094 /* PD MCU events */
5095 #define PD_EVENT_MCU_BASE       0x00
5096 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5097 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5098 /* Reserved for custom board event */
5099 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5100 /* PD generic accessory events */
5101 #define PD_EVENT_ACC_BASE       0x20
5102 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5103 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5104 /* PD power supply events */
5105 #define PD_EVENT_PS_BASE        0x40
5106 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5107 /* PD video dongles events */
5108 #define PD_EVENT_VIDEO_BASE     0x60
5109 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5110 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5111 /* Returned in the "type" field, when there is no entry available */
5112 #define PD_EVENT_NO_ENTRY       0xff
5113 
5114 /*
5115  * PD_EVENT_MCU_CHARGE event definition :
5116  * the payload is "struct usb_chg_measures"
5117  * the data field contains the port state flags as defined below :
5118  */
5119 /* Port partner is a dual role device */
5120 #define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5121 /* Port is the pending override port */
5122 #define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5123 /* Port is the override port */
5124 #define CHARGE_FLAGS_OVERRIDE          BIT(13)
5125 /* Charger type */
5126 #define CHARGE_FLAGS_TYPE_SHIFT               3
5127 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5128 /* Power delivery role */
5129 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5130 
5131 /*
5132  * PD_EVENT_PS_FAULT data field flags definition :
5133  */
5134 #define PS_FAULT_OCP                          1
5135 #define PS_FAULT_FAST_OCP                     2
5136 #define PS_FAULT_OVP                          3
5137 #define PS_FAULT_DISCH                        4
5138 
5139 /*
5140  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5141  */
5142 struct mcdp_version {
5143 	uint8_t major;
5144 	uint8_t minor;
5145 	uint16_t build;
5146 } __ec_align4;
5147 
5148 struct mcdp_info {
5149 	uint8_t family[2];
5150 	uint8_t chipid[2];
5151 	struct mcdp_version irom;
5152 	struct mcdp_version fw;
5153 } __ec_align4;
5154 
5155 /* struct mcdp_info field decoding */
5156 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5157 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5158 
5159 /* Get/Set USB-PD Alternate mode info */
5160 #define EC_CMD_USB_PD_GET_AMODE 0x0116
5161 struct ec_params_usb_pd_get_mode_request {
5162 	uint16_t svid_idx; /* SVID index to get */
5163 	uint8_t port;      /* port */
5164 } __ec_align_size1;
5165 
5166 struct ec_params_usb_pd_get_mode_response {
5167 	uint16_t svid;   /* SVID */
5168 	uint16_t opos;    /* Object Position */
5169 	uint32_t vdo[6]; /* Mode VDOs */
5170 } __ec_align4;
5171 
5172 #define EC_CMD_USB_PD_SET_AMODE 0x0117
5173 
5174 enum pd_mode_cmd {
5175 	PD_EXIT_MODE = 0,
5176 	PD_ENTER_MODE = 1,
5177 	/* Not a command.  Do NOT remove. */
5178 	PD_MODE_CMD_COUNT,
5179 };
5180 
5181 struct ec_params_usb_pd_set_mode_request {
5182 	uint32_t cmd;  /* enum pd_mode_cmd */
5183 	uint16_t svid; /* SVID to set */
5184 	uint8_t opos;  /* Object Position */
5185 	uint8_t port;  /* port */
5186 } __ec_align4;
5187 
5188 /* Ask the PD MCU to record a log of a requested type */
5189 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5190 
5191 struct ec_params_pd_write_log_entry {
5192 	uint8_t type; /* event type : see PD_EVENT_xx above */
5193 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
5194 } __ec_align1;
5195 
5196 
5197 /* Control USB-PD chip */
5198 #define EC_CMD_PD_CONTROL 0x0119
5199 
5200 enum ec_pd_control_cmd {
5201 	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5202 	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5203 	PD_RESET,            /* Force reset the PD chip */
5204 	PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5205 	PD_CHIP_ON,          /* Power on the PD chip */
5206 };
5207 
5208 struct ec_params_pd_control {
5209 	uint8_t chip;         /* chip id */
5210 	uint8_t subcmd;
5211 } __ec_align1;
5212 
5213 /* Get info about USB-C SS muxes */
5214 #define EC_CMD_USB_PD_MUX_INFO 0x011A
5215 
5216 struct ec_params_usb_pd_mux_info {
5217 	uint8_t port; /* USB-C port number */
5218 } __ec_align1;
5219 
5220 /* Flags representing mux state */
5221 #define USB_PD_MUX_NONE               0      /* Open switch */
5222 #define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5223 #define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5224 #define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5225 #define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5226 #define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5227 #define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5228 #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5229 #define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5230 
5231 struct ec_response_usb_pd_mux_info {
5232 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5233 } __ec_align1;
5234 
5235 #define EC_CMD_PD_CHIP_INFO		0x011B
5236 
5237 struct ec_params_pd_chip_info {
5238 	uint8_t port;	/* USB-C port number */
5239 	uint8_t renew;	/* Force renewal */
5240 } __ec_align1;
5241 
5242 struct ec_response_pd_chip_info {
5243 	uint16_t vendor_id;
5244 	uint16_t product_id;
5245 	uint16_t device_id;
5246 	union {
5247 		uint8_t fw_version_string[8];
5248 		uint64_t fw_version_number;
5249 	};
5250 } __ec_align2;
5251 
5252 struct ec_response_pd_chip_info_v1 {
5253 	uint16_t vendor_id;
5254 	uint16_t product_id;
5255 	uint16_t device_id;
5256 	union {
5257 		uint8_t fw_version_string[8];
5258 		uint64_t fw_version_number;
5259 	};
5260 	union {
5261 		uint8_t min_req_fw_version_string[8];
5262 		uint64_t min_req_fw_version_number;
5263 	};
5264 } __ec_align2;
5265 
5266 /* Run RW signature verification and get status */
5267 #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
5268 
5269 struct ec_response_rwsig_check_status {
5270 	uint32_t status;
5271 } __ec_align4;
5272 
5273 /* For controlling RWSIG task */
5274 #define EC_CMD_RWSIG_ACTION	0x011D
5275 
5276 enum rwsig_action {
5277 	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
5278 	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
5279 };
5280 
5281 struct ec_params_rwsig_action {
5282 	uint32_t action;
5283 } __ec_align4;
5284 
5285 /* Run verification on a slot */
5286 #define EC_CMD_EFS_VERIFY	0x011E
5287 
5288 struct ec_params_efs_verify {
5289 	uint8_t region;		/* enum ec_flash_region */
5290 } __ec_align1;
5291 
5292 /*
5293  * Retrieve info from Cros Board Info store. Response is based on the data
5294  * type. Integers return a uint32. Strings return a string, using the response
5295  * size to determine how big it is.
5296  */
5297 #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
5298 /*
5299  * Write info into Cros Board Info on EEPROM. Write fails if the board has
5300  * hardware write-protect enabled.
5301  */
5302 #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
5303 
5304 enum cbi_data_tag {
5305 	CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5306 	CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5307 	CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5308 	CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5309 	CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5310 	CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5311 	CBI_TAG_COUNT,
5312 };
5313 
5314 /*
5315  * Flags to control read operation
5316  *
5317  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5318  *          write was successful without reboot.
5319  */
5320 #define CBI_GET_RELOAD		BIT(0)
5321 
5322 struct ec_params_get_cbi {
5323 	uint32_t tag;		/* enum cbi_data_tag */
5324 	uint32_t flag;		/* CBI_GET_* */
5325 } __ec_align4;
5326 
5327 /*
5328  * Flags to control write behavior.
5329  *
5330  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5331  *          useful when writing multiple fields in a row.
5332  * INIT:    Need to be set when creating a new CBI from scratch. All fields
5333  *          will be initialized to zero first.
5334  */
5335 #define CBI_SET_NO_SYNC		BIT(0)
5336 #define CBI_SET_INIT		BIT(1)
5337 
5338 struct ec_params_set_cbi {
5339 	uint32_t tag;		/* enum cbi_data_tag */
5340 	uint32_t flag;		/* CBI_SET_* */
5341 	uint32_t size;		/* Data size */
5342 	uint8_t data[];		/* For string and raw data */
5343 } __ec_align1;
5344 
5345 /*
5346  * Information about resets of the AP by the EC and the EC's own uptime.
5347  */
5348 #define EC_CMD_GET_UPTIME_INFO 0x0121
5349 
5350 struct ec_response_uptime_info {
5351 	/*
5352 	 * Number of milliseconds since the last EC boot. Sysjump resets
5353 	 * typically do not restart the EC's time_since_boot epoch.
5354 	 *
5355 	 * WARNING: The EC's sense of time is much less accurate than the AP's
5356 	 * sense of time, in both phase and frequency.  This timebase is similar
5357 	 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5358 	 */
5359 	uint32_t time_since_ec_boot_ms;
5360 
5361 	/*
5362 	 * Number of times the AP was reset by the EC since the last EC boot.
5363 	 * Note that the AP may be held in reset by the EC during the initial
5364 	 * boot sequence, such that the very first AP boot may count as more
5365 	 * than one here.
5366 	 */
5367 	uint32_t ap_resets_since_ec_boot;
5368 
5369 	/*
5370 	 * The set of flags which describe the EC's most recent reset.  See
5371 	 * include/system.h RESET_FLAG_* for details.
5372 	 */
5373 	uint32_t ec_reset_flags;
5374 
5375 	/* Empty log entries have both the cause and timestamp set to zero. */
5376 	struct ap_reset_log_entry {
5377 		/*
5378 		 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5379 		 * for details.
5380 		 */
5381 		uint16_t reset_cause;
5382 
5383 		/* Reserved for protocol growth. */
5384 		uint16_t reserved;
5385 
5386 		/*
5387 		 * The time of the reset's assertion, in milliseconds since the
5388 		 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5389 		 * Set to zero if the log entry is empty.
5390 		 */
5391 		uint32_t reset_time_ms;
5392 	} recent_ap_reset[4];
5393 } __ec_align4;
5394 
5395 /*
5396  * Add entropy to the device secret (stored in the rollback region).
5397  *
5398  * Depending on the chip, the operation may take a long time (e.g. to erase
5399  * flash), so the commands are asynchronous.
5400  */
5401 #define EC_CMD_ADD_ENTROPY	0x0122
5402 
5403 enum add_entropy_action {
5404 	/* Add entropy to the current secret. */
5405 	ADD_ENTROPY_ASYNC = 0,
5406 	/*
5407 	 * Add entropy, and also make sure that the previous secret is erased.
5408 	 * (this can be implemented by adding entropy multiple times until
5409 	 * all rolback blocks have been overwritten).
5410 	 */
5411 	ADD_ENTROPY_RESET_ASYNC = 1,
5412 	/* Read back result from the previous operation. */
5413 	ADD_ENTROPY_GET_RESULT = 2,
5414 };
5415 
5416 struct ec_params_rollback_add_entropy {
5417 	uint8_t action;
5418 } __ec_align1;
5419 
5420 /*
5421  * Perform a single read of a given ADC channel.
5422  */
5423 #define EC_CMD_ADC_READ		0x0123
5424 
5425 struct ec_params_adc_read {
5426 	uint8_t adc_channel;
5427 } __ec_align1;
5428 
5429 struct ec_response_adc_read {
5430 	int32_t adc_value;
5431 } __ec_align4;
5432 
5433 /*
5434  * Read back rollback info
5435  */
5436 #define EC_CMD_ROLLBACK_INFO		0x0124
5437 
5438 struct ec_response_rollback_info {
5439 	int32_t id; /* Incrementing number to indicate which region to use. */
5440 	int32_t rollback_min_version;
5441 	int32_t rw_rollback_version;
5442 } __ec_align4;
5443 
5444 
5445 /* Issue AP reset */
5446 #define EC_CMD_AP_RESET 0x0125
5447 
5448 /*****************************************************************************/
5449 /* Voltage regulator controls */
5450 
5451 /*
5452  * Get basic info of voltage regulator for given index.
5453  *
5454  * Returns the regulator name and supported voltage list in mV.
5455  */
5456 #define EC_CMD_REGULATOR_GET_INFO 0x012C
5457 
5458 /* Maximum length of regulator name */
5459 #define EC_REGULATOR_NAME_MAX_LEN 16
5460 
5461 /* Maximum length of the supported voltage list. */
5462 #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5463 
5464 struct ec_params_regulator_get_info {
5465 	uint32_t index;
5466 } __ec_align4;
5467 
5468 struct ec_response_regulator_get_info {
5469 	char name[EC_REGULATOR_NAME_MAX_LEN];
5470 	uint16_t num_voltages;
5471 	uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5472 } __ec_align2;
5473 
5474 /*
5475  * Configure the regulator as enabled / disabled.
5476  */
5477 #define EC_CMD_REGULATOR_ENABLE 0x012D
5478 
5479 struct ec_params_regulator_enable {
5480 	uint32_t index;
5481 	uint8_t enable;
5482 } __ec_align4;
5483 
5484 /*
5485  * Query if the regulator is enabled.
5486  *
5487  * Returns 1 if the regulator is enabled, 0 if not.
5488  */
5489 #define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5490 
5491 struct ec_params_regulator_is_enabled {
5492 	uint32_t index;
5493 } __ec_align4;
5494 
5495 struct ec_response_regulator_is_enabled {
5496 	uint8_t enabled;
5497 } __ec_align1;
5498 
5499 /*
5500  * Set voltage for the voltage regulator within the range specified.
5501  *
5502  * The driver should select the voltage in range closest to min_mv.
5503  *
5504  * Also note that this might be called before the regulator is enabled, and the
5505  * setting should be in effect after the regulator is enabled.
5506  */
5507 #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5508 
5509 struct ec_params_regulator_set_voltage {
5510 	uint32_t index;
5511 	uint32_t min_mv;
5512 	uint32_t max_mv;
5513 } __ec_align4;
5514 
5515 /*
5516  * Get the currently configured voltage for the voltage regulator.
5517  *
5518  * Note that this might be called before the regulator is enabled, and this
5519  * should return the configured output voltage if the regulator is enabled.
5520  */
5521 #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5522 
5523 struct ec_params_regulator_get_voltage {
5524 	uint32_t index;
5525 } __ec_align4;
5526 
5527 struct ec_response_regulator_get_voltage {
5528 	uint32_t voltage_mv;
5529 } __ec_align4;
5530 
5531 /*****************************************************************************/
5532 /* The command range 0x200-0x2FF is reserved for Rotor. */
5533 
5534 /*****************************************************************************/
5535 /*
5536  * Reserve a range of host commands for the CR51 firmware.
5537  */
5538 #define EC_CMD_CR51_BASE 0x0300
5539 #define EC_CMD_CR51_LAST 0x03FF
5540 
5541 /*****************************************************************************/
5542 /* Fingerprint MCU commands: range 0x0400-0x040x */
5543 
5544 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
5545 #define EC_CMD_FP_PASSTHRU 0x0400
5546 
5547 #define EC_FP_FLAG_NOT_COMPLETE 0x1
5548 
5549 struct ec_params_fp_passthru {
5550 	uint16_t len;		/* Number of bytes to write then read */
5551 	uint16_t flags;		/* EC_FP_FLAG_xxx */
5552 	uint8_t data[];		/* Data to send */
5553 } __ec_align2;
5554 
5555 /* Configure the Fingerprint MCU behavior */
5556 #define EC_CMD_FP_MODE 0x0402
5557 
5558 /* Put the sensor in its lowest power mode */
5559 #define FP_MODE_DEEPSLEEP      BIT(0)
5560 /* Wait to see a finger on the sensor */
5561 #define FP_MODE_FINGER_DOWN    BIT(1)
5562 /* Poll until the finger has left the sensor */
5563 #define FP_MODE_FINGER_UP      BIT(2)
5564 /* Capture the current finger image */
5565 #define FP_MODE_CAPTURE        BIT(3)
5566 /* Finger enrollment session on-going */
5567 #define FP_MODE_ENROLL_SESSION BIT(4)
5568 /* Enroll the current finger image */
5569 #define FP_MODE_ENROLL_IMAGE   BIT(5)
5570 /* Try to match the current finger image */
5571 #define FP_MODE_MATCH          BIT(6)
5572 /* Reset and re-initialize the sensor. */
5573 #define FP_MODE_RESET_SENSOR   BIT(7)
5574 /* special value: don't change anything just read back current mode */
5575 #define FP_MODE_DONT_CHANGE    BIT(31)
5576 
5577 #define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5578 			FP_MODE_FINGER_DOWN    | \
5579 			FP_MODE_FINGER_UP      | \
5580 			FP_MODE_CAPTURE        | \
5581 			FP_MODE_ENROLL_SESSION | \
5582 			FP_MODE_ENROLL_IMAGE   | \
5583 			FP_MODE_MATCH          | \
5584 			FP_MODE_RESET_SENSOR   | \
5585 			FP_MODE_DONT_CHANGE)
5586 
5587 /* Capture types defined in bits [30..28] */
5588 #define FP_MODE_CAPTURE_TYPE_SHIFT 28
5589 #define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5590 /*
5591  * This enum must remain ordered, if you add new values you must ensure that
5592  * FP_CAPTURE_TYPE_MAX is still the last one.
5593  */
5594 enum fp_capture_type {
5595 	/* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5596 	FP_CAPTURE_VENDOR_FORMAT = 0,
5597 	/* Simple raw image capture (produces width x height x bpp bits) */
5598 	FP_CAPTURE_SIMPLE_IMAGE = 1,
5599 	/* Self test pattern (e.g. checkerboard) */
5600 	FP_CAPTURE_PATTERN0 = 2,
5601 	/* Self test pattern (e.g. inverted checkerboard) */
5602 	FP_CAPTURE_PATTERN1 = 3,
5603 	/* Capture for Quality test with fixed contrast */
5604 	FP_CAPTURE_QUALITY_TEST = 4,
5605 	/* Capture for pixel reset value test */
5606 	FP_CAPTURE_RESET_TEST = 5,
5607 	FP_CAPTURE_TYPE_MAX,
5608 };
5609 /* Extracts the capture type from the sensor 'mode' word */
5610 #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5611 				       >> FP_MODE_CAPTURE_TYPE_SHIFT)
5612 
5613 struct ec_params_fp_mode {
5614 	uint32_t mode; /* as defined by FP_MODE_ constants */
5615 } __ec_align4;
5616 
5617 struct ec_response_fp_mode {
5618 	uint32_t mode; /* as defined by FP_MODE_ constants */
5619 } __ec_align4;
5620 
5621 /* Retrieve Fingerprint sensor information */
5622 #define EC_CMD_FP_INFO 0x0403
5623 
5624 /* Number of dead pixels detected on the last maintenance */
5625 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5626 /* Unknown number of dead pixels detected on the last maintenance */
5627 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5628 /* No interrupt from the sensor */
5629 #define FP_ERROR_NO_IRQ    BIT(12)
5630 /* SPI communication error */
5631 #define FP_ERROR_SPI_COMM  BIT(13)
5632 /* Invalid sensor Hardware ID */
5633 #define FP_ERROR_BAD_HWID  BIT(14)
5634 /* Sensor initialization failed */
5635 #define FP_ERROR_INIT_FAIL BIT(15)
5636 
5637 struct ec_response_fp_info_v0 {
5638 	/* Sensor identification */
5639 	uint32_t vendor_id;
5640 	uint32_t product_id;
5641 	uint32_t model_id;
5642 	uint32_t version;
5643 	/* Image frame characteristics */
5644 	uint32_t frame_size;
5645 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5646 	uint16_t width;
5647 	uint16_t height;
5648 	uint16_t bpp;
5649 	uint16_t errors; /* see FP_ERROR_ flags above */
5650 } __ec_align4;
5651 
5652 struct ec_response_fp_info {
5653 	/* Sensor identification */
5654 	uint32_t vendor_id;
5655 	uint32_t product_id;
5656 	uint32_t model_id;
5657 	uint32_t version;
5658 	/* Image frame characteristics */
5659 	uint32_t frame_size;
5660 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5661 	uint16_t width;
5662 	uint16_t height;
5663 	uint16_t bpp;
5664 	uint16_t errors; /* see FP_ERROR_ flags above */
5665 	/* Template/finger current information */
5666 	uint32_t template_size;  /* max template size in bytes */
5667 	uint16_t template_max;   /* maximum number of fingers/templates */
5668 	uint16_t template_valid; /* number of valid fingers/templates */
5669 	uint32_t template_dirty; /* bitmap of templates with MCU side changes */
5670 	uint32_t template_version; /* version of the template format */
5671 } __ec_align4;
5672 
5673 /* Get the last captured finger frame or a template content */
5674 #define EC_CMD_FP_FRAME 0x0404
5675 
5676 /* constants defining the 'offset' field which also contains the frame index */
5677 #define FP_FRAME_INDEX_SHIFT       28
5678 /* Frame buffer where the captured image is stored */
5679 #define FP_FRAME_INDEX_RAW_IMAGE    0
5680 /* First frame buffer holding a template */
5681 #define FP_FRAME_INDEX_TEMPLATE     1
5682 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
5683 #define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
5684 
5685 /* Version of the format of the encrypted templates. */
5686 #define FP_TEMPLATE_FORMAT_VERSION 3
5687 
5688 /* Constants for encryption parameters */
5689 #define FP_CONTEXT_NONCE_BYTES 12
5690 #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
5691 #define FP_CONTEXT_TAG_BYTES 16
5692 #define FP_CONTEXT_SALT_BYTES 16
5693 #define FP_CONTEXT_TPM_BYTES 32
5694 
5695 struct ec_fp_template_encryption_metadata {
5696 	/*
5697 	 * Version of the structure format (N=3).
5698 	 */
5699 	uint16_t struct_version;
5700 	/* Reserved bytes, set to 0. */
5701 	uint16_t reserved;
5702 	/*
5703 	 * The salt is *only* ever used for key derivation. The nonce is unique,
5704 	 * a different one is used for every message.
5705 	 */
5706 	uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
5707 	uint8_t salt[FP_CONTEXT_SALT_BYTES];
5708 	uint8_t tag[FP_CONTEXT_TAG_BYTES];
5709 };
5710 
5711 struct ec_params_fp_frame {
5712 	/*
5713 	 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
5714 	 * in the high nibble, and the real offset within the frame in
5715 	 * FP_FRAME_OFFSET_MASK.
5716 	 */
5717 	uint32_t offset;
5718 	uint32_t size;
5719 } __ec_align4;
5720 
5721 /* Load a template into the MCU */
5722 #define EC_CMD_FP_TEMPLATE 0x0405
5723 
5724 /* Flag in the 'size' field indicating that the full template has been sent */
5725 #define FP_TEMPLATE_COMMIT 0x80000000
5726 
5727 struct ec_params_fp_template {
5728 	uint32_t offset;
5729 	uint32_t size;
5730 	uint8_t data[];
5731 } __ec_align4;
5732 
5733 /* Clear the current fingerprint user context and set a new one */
5734 #define EC_CMD_FP_CONTEXT 0x0406
5735 
5736 struct ec_params_fp_context {
5737 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
5738 } __ec_align4;
5739 
5740 #define EC_CMD_FP_STATS 0x0407
5741 
5742 #define FPSTATS_CAPTURE_INV  BIT(0)
5743 #define FPSTATS_MATCHING_INV BIT(1)
5744 
5745 struct ec_response_fp_stats {
5746 	uint32_t capture_time_us;
5747 	uint32_t matching_time_us;
5748 	uint32_t overall_time_us;
5749 	struct {
5750 		uint32_t lo;
5751 		uint32_t hi;
5752 	} overall_t0;
5753 	uint8_t timestamps_invalid;
5754 	int8_t template_matched;
5755 } __ec_align2;
5756 
5757 #define EC_CMD_FP_SEED 0x0408
5758 struct ec_params_fp_seed {
5759 	/*
5760 	 * Version of the structure format (N=3).
5761 	 */
5762 	uint16_t struct_version;
5763 	/* Reserved bytes, set to 0. */
5764 	uint16_t reserved;
5765 	/* Seed from the TPM. */
5766 	uint8_t seed[FP_CONTEXT_TPM_BYTES];
5767 } __ec_align4;
5768 
5769 #define EC_CMD_FP_ENC_STATUS 0x0409
5770 
5771 /* FP TPM seed has been set or not */
5772 #define FP_ENC_STATUS_SEED_SET BIT(0)
5773 
5774 struct ec_response_fp_encryption_status {
5775 	/* Used bits in encryption engine status */
5776 	uint32_t valid_flags;
5777 	/* Encryption engine status */
5778 	uint32_t status;
5779 } __ec_align4;
5780 
5781 /*****************************************************************************/
5782 /* Touchpad MCU commands: range 0x0500-0x05FF */
5783 
5784 /* Perform touchpad self test */
5785 #define EC_CMD_TP_SELF_TEST 0x0500
5786 
5787 /* Get number of frame types, and the size of each type */
5788 #define EC_CMD_TP_FRAME_INFO 0x0501
5789 
5790 struct ec_response_tp_frame_info {
5791 	uint32_t n_frames;
5792 	uint32_t frame_sizes[];
5793 } __ec_align4;
5794 
5795 /* Create a snapshot of current frame readings */
5796 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
5797 
5798 /* Read the frame */
5799 #define EC_CMD_TP_FRAME_GET 0x0503
5800 
5801 struct ec_params_tp_frame_get {
5802 	uint32_t frame_index;
5803 	uint32_t offset;
5804 	uint32_t size;
5805 } __ec_align4;
5806 
5807 /*****************************************************************************/
5808 /* EC-EC communication commands: range 0x0600-0x06FF */
5809 
5810 #define EC_COMM_TEXT_MAX 8
5811 
5812 /*
5813  * Get battery static information, i.e. information that never changes, or
5814  * very infrequently.
5815  */
5816 #define EC_CMD_BATTERY_GET_STATIC 0x0600
5817 
5818 /**
5819  * struct ec_params_battery_static_info - Battery static info parameters
5820  * @index: Battery index.
5821  */
5822 struct ec_params_battery_static_info {
5823 	uint8_t index;
5824 } __ec_align_size1;
5825 
5826 /**
5827  * struct ec_response_battery_static_info - Battery static info response
5828  * @design_capacity: Battery Design Capacity (mAh)
5829  * @design_voltage: Battery Design Voltage (mV)
5830  * @manufacturer: Battery Manufacturer String
5831  * @model: Battery Model Number String
5832  * @serial: Battery Serial Number String
5833  * @type: Battery Type String
5834  * @cycle_count: Battery Cycle Count
5835  */
5836 struct ec_response_battery_static_info {
5837 	uint16_t design_capacity;
5838 	uint16_t design_voltage;
5839 	char manufacturer[EC_COMM_TEXT_MAX];
5840 	char model[EC_COMM_TEXT_MAX];
5841 	char serial[EC_COMM_TEXT_MAX];
5842 	char type[EC_COMM_TEXT_MAX];
5843 	/* TODO(crbug.com/795991): Consider moving to dynamic structure. */
5844 	uint32_t cycle_count;
5845 } __ec_align4;
5846 
5847 /*
5848  * Get battery dynamic information, i.e. information that is likely to change
5849  * every time it is read.
5850  */
5851 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
5852 
5853 /**
5854  * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
5855  * @index: Battery index.
5856  */
5857 struct ec_params_battery_dynamic_info {
5858 	uint8_t index;
5859 } __ec_align_size1;
5860 
5861 /**
5862  * struct ec_response_battery_dynamic_info - Battery dynamic info response
5863  * @actual_voltage: Battery voltage (mV)
5864  * @actual_current: Battery current (mA); negative=discharging
5865  * @remaining_capacity: Remaining capacity (mAh)
5866  * @full_capacity: Capacity (mAh, might change occasionally)
5867  * @flags: Flags, see EC_BATT_FLAG_*
5868  * @desired_voltage: Charging voltage desired by battery (mV)
5869  * @desired_current: Charging current desired by battery (mA)
5870  */
5871 struct ec_response_battery_dynamic_info {
5872 	int16_t actual_voltage;
5873 	int16_t actual_current;
5874 	int16_t remaining_capacity;
5875 	int16_t full_capacity;
5876 	int16_t flags;
5877 	int16_t desired_voltage;
5878 	int16_t desired_current;
5879 } __ec_align2;
5880 
5881 /*
5882  * Control charger chip. Used to control charger chip on the slave.
5883  */
5884 #define EC_CMD_CHARGER_CONTROL 0x0602
5885 
5886 /**
5887  * struct ec_params_charger_control - Charger control parameters
5888  * @max_current: Charger current (mA). Positive to allow base to draw up to
5889  *     max_current and (possibly) charge battery, negative to request current
5890  *     from base (OTG).
5891  * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
5892  *     >= 0.
5893  * @allow_charging: Allow base battery charging (only makes sense if
5894  *     max_current > 0).
5895  */
5896 struct ec_params_charger_control {
5897 	int16_t max_current;
5898 	uint16_t otg_voltage;
5899 	uint8_t allow_charging;
5900 } __ec_align_size1;
5901 
5902 /*****************************************************************************/
5903 /*
5904  * Reserve a range of host commands for board-specific, experimental, or
5905  * special purpose features. These can be (re)used without updating this file.
5906  *
5907  * CAUTION: Don't go nuts with this. Shipping products should document ALL
5908  * their EC commands for easier development, testing, debugging, and support.
5909  *
5910  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
5911  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
5912  *
5913  * In your experimental code, you may want to do something like this:
5914  *
5915  *   #define EC_CMD_MAGIC_FOO 0x0000
5916  *   #define EC_CMD_MAGIC_BAR 0x0001
5917  *   #define EC_CMD_MAGIC_HEY 0x0002
5918  *
5919  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
5920  *      EC_VER_MASK(0);
5921  *
5922  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
5923  *      EC_VER_MASK(0);
5924  *
5925  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
5926  *      EC_VER_MASK(0);
5927  */
5928 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
5929 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
5930 
5931 /*
5932  * Given the private host command offset, calculate the true private host
5933  * command value.
5934  */
5935 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
5936 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
5937 
5938 /*****************************************************************************/
5939 /*
5940  * Passthru commands
5941  *
5942  * Some platforms have sub-processors chained to each other.  For example.
5943  *
5944  *     AP <--> EC <--> PD MCU
5945  *
5946  * The top 2 bits of the command number are used to indicate which device the
5947  * command is intended for.  Device 0 is always the device receiving the
5948  * command; other device mapping is board-specific.
5949  *
5950  * When a device receives a command to be passed to a sub-processor, it passes
5951  * it on with the device number set back to 0.  This allows the sub-processor
5952  * to remain blissfully unaware of whether the command originated on the next
5953  * device up the chain, or was passed through from the AP.
5954  *
5955  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
5956  *     AP sends command 0x4002 to the EC
5957  *     EC sends command 0x0002 to the PD MCU
5958  *     EC forwards PD MCU response back to the AP
5959  */
5960 
5961 /* Offset and max command number for sub-device n */
5962 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
5963 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
5964 
5965 /*****************************************************************************/
5966 /*
5967  * Deprecated constants. These constants have been renamed for clarity. The
5968  * meaning and size has not changed. Programs that use the old names should
5969  * switch to the new names soon, as the old names may not be carried forward
5970  * forever.
5971  */
5972 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
5973 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
5974 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
5975 
5976 
5977 
5978 #endif  /* __CROS_EC_COMMANDS_H */
5979