• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
dev_xmit_complete(int rc)126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 #define NET_DEV_STAT(FIELD)			\
170 	union {					\
171 		unsigned long FIELD;		\
172 		atomic_long_t __##FIELD;	\
173 	}
174 
175 struct net_device_stats {
176 	NET_DEV_STAT(rx_packets);
177 	NET_DEV_STAT(tx_packets);
178 	NET_DEV_STAT(rx_bytes);
179 	NET_DEV_STAT(tx_bytes);
180 	NET_DEV_STAT(rx_errors);
181 	NET_DEV_STAT(tx_errors);
182 	NET_DEV_STAT(rx_dropped);
183 	NET_DEV_STAT(tx_dropped);
184 	NET_DEV_STAT(multicast);
185 	NET_DEV_STAT(collisions);
186 	NET_DEV_STAT(rx_length_errors);
187 	NET_DEV_STAT(rx_over_errors);
188 	NET_DEV_STAT(rx_crc_errors);
189 	NET_DEV_STAT(rx_frame_errors);
190 	NET_DEV_STAT(rx_fifo_errors);
191 	NET_DEV_STAT(rx_missed_errors);
192 	NET_DEV_STAT(tx_aborted_errors);
193 	NET_DEV_STAT(tx_carrier_errors);
194 	NET_DEV_STAT(tx_fifo_errors);
195 	NET_DEV_STAT(tx_heartbeat_errors);
196 	NET_DEV_STAT(tx_window_errors);
197 	NET_DEV_STAT(rx_compressed);
198 	NET_DEV_STAT(tx_compressed);
199 };
200 #undef NET_DEV_STAT
201 
202 
203 #include <linux/cache.h>
204 #include <linux/skbuff.h>
205 
206 #ifdef CONFIG_RPS
207 #include <linux/static_key.h>
208 extern struct static_key_false rps_needed;
209 extern struct static_key_false rfs_needed;
210 #endif
211 
212 struct neighbour;
213 struct neigh_parms;
214 struct sk_buff;
215 
216 struct netdev_hw_addr {
217 	struct list_head	list;
218 	unsigned char		addr[MAX_ADDR_LEN];
219 	unsigned char		type;
220 #define NETDEV_HW_ADDR_T_LAN		1
221 #define NETDEV_HW_ADDR_T_SAN		2
222 #define NETDEV_HW_ADDR_T_UNICAST	3
223 #define NETDEV_HW_ADDR_T_MULTICAST	4
224 	bool			global_use;
225 	int			sync_cnt;
226 	int			refcount;
227 	int			synced;
228 	struct rcu_head		rcu_head;
229 };
230 
231 struct netdev_hw_addr_list {
232 	struct list_head	list;
233 	int			count;
234 };
235 
236 #define netdev_hw_addr_list_count(l) ((l)->count)
237 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
238 #define netdev_hw_addr_list_for_each(ha, l) \
239 	list_for_each_entry(ha, &(l)->list, list)
240 
241 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
242 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
243 #define netdev_for_each_uc_addr(ha, dev) \
244 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
245 
246 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
247 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
248 #define netdev_for_each_mc_addr(ha, dev) \
249 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
250 
251 struct hh_cache {
252 	unsigned int	hh_len;
253 	seqlock_t	hh_lock;
254 
255 	/* cached hardware header; allow for machine alignment needs.        */
256 #define HH_DATA_MOD	16
257 #define HH_DATA_OFF(__len) \
258 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
259 #define HH_DATA_ALIGN(__len) \
260 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
261 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
262 };
263 
264 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
265  * Alternative is:
266  *   dev->hard_header_len ? (dev->hard_header_len +
267  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
268  *
269  * We could use other alignment values, but we must maintain the
270  * relationship HH alignment <= LL alignment.
271  */
272 #define LL_RESERVED_SPACE(dev) \
273 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
274 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
275 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
276 
277 struct header_ops {
278 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
279 			   unsigned short type, const void *daddr,
280 			   const void *saddr, unsigned int len);
281 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
282 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
283 	void	(*cache_update)(struct hh_cache *hh,
284 				const struct net_device *dev,
285 				const unsigned char *haddr);
286 	bool	(*validate)(const char *ll_header, unsigned int len);
287 	__be16	(*parse_protocol)(const struct sk_buff *skb);
288 };
289 
290 /* These flag bits are private to the generic network queueing
291  * layer; they may not be explicitly referenced by any other
292  * code.
293  */
294 
295 enum netdev_state_t {
296 	__LINK_STATE_START,
297 	__LINK_STATE_PRESENT,
298 	__LINK_STATE_NOCARRIER,
299 	__LINK_STATE_LINKWATCH_PENDING,
300 	__LINK_STATE_DORMANT,
301 	__LINK_STATE_TESTING,
302 };
303 
304 
305 /*
306  * This structure holds boot-time configured netdevice settings. They
307  * are then used in the device probing.
308  */
309 struct netdev_boot_setup {
310 	char name[IFNAMSIZ];
311 	struct ifmap map;
312 };
313 #define NETDEV_BOOT_SETUP_MAX 8
314 
315 int __init netdev_boot_setup(char *str);
316 
317 struct gro_list {
318 	struct list_head	list;
319 	int			count;
320 };
321 
322 /*
323  * size of gro hash buckets, must less than bit number of
324  * napi_struct::gro_bitmask
325  */
326 #define GRO_HASH_BUCKETS	8
327 
328 /*
329  * Structure for NAPI scheduling similar to tasklet but with weighting
330  */
331 struct napi_struct {
332 	/* The poll_list must only be managed by the entity which
333 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
334 	 * whoever atomically sets that bit can add this napi_struct
335 	 * to the per-CPU poll_list, and whoever clears that bit
336 	 * can remove from the list right before clearing the bit.
337 	 */
338 	struct list_head	poll_list;
339 
340 	unsigned long		state;
341 	int			weight;
342 	int			defer_hard_irqs_count;
343 	unsigned long		gro_bitmask;
344 	int			(*poll)(struct napi_struct *, int);
345 #ifdef CONFIG_NETPOLL
346 	int			poll_owner;
347 #endif
348 	struct net_device	*dev;
349 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
350 	struct sk_buff		*skb;
351 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
352 	int			rx_count; /* length of rx_list */
353 	struct hrtimer		timer;
354 	struct list_head	dev_list;
355 	struct hlist_node	napi_hash_node;
356 	unsigned int		napi_id;
357 };
358 
359 enum {
360 	NAPI_STATE_SCHED,	/* Poll is scheduled */
361 	NAPI_STATE_MISSED,	/* reschedule a napi */
362 	NAPI_STATE_DISABLE,	/* Disable pending */
363 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
364 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
365 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
366 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
367 };
368 
369 enum {
370 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
371 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
372 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
373 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
374 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
375 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
376 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
377 };
378 
379 enum gro_result {
380 	GRO_MERGED,
381 	GRO_MERGED_FREE,
382 	GRO_HELD,
383 	GRO_NORMAL,
384 	GRO_DROP,
385 	GRO_CONSUMED,
386 };
387 typedef enum gro_result gro_result_t;
388 
389 /*
390  * enum rx_handler_result - Possible return values for rx_handlers.
391  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
392  * further.
393  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
394  * case skb->dev was changed by rx_handler.
395  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
396  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
397  *
398  * rx_handlers are functions called from inside __netif_receive_skb(), to do
399  * special processing of the skb, prior to delivery to protocol handlers.
400  *
401  * Currently, a net_device can only have a single rx_handler registered. Trying
402  * to register a second rx_handler will return -EBUSY.
403  *
404  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
405  * To unregister a rx_handler on a net_device, use
406  * netdev_rx_handler_unregister().
407  *
408  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
409  * do with the skb.
410  *
411  * If the rx_handler consumed the skb in some way, it should return
412  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
413  * the skb to be delivered in some other way.
414  *
415  * If the rx_handler changed skb->dev, to divert the skb to another
416  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
417  * new device will be called if it exists.
418  *
419  * If the rx_handler decides the skb should be ignored, it should return
420  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
421  * are registered on exact device (ptype->dev == skb->dev).
422  *
423  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
424  * delivered, it should return RX_HANDLER_PASS.
425  *
426  * A device without a registered rx_handler will behave as if rx_handler
427  * returned RX_HANDLER_PASS.
428  */
429 
430 enum rx_handler_result {
431 	RX_HANDLER_CONSUMED,
432 	RX_HANDLER_ANOTHER,
433 	RX_HANDLER_EXACT,
434 	RX_HANDLER_PASS,
435 };
436 typedef enum rx_handler_result rx_handler_result_t;
437 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
438 
439 void __napi_schedule(struct napi_struct *n);
440 void __napi_schedule_irqoff(struct napi_struct *n);
441 
napi_disable_pending(struct napi_struct * n)442 static inline bool napi_disable_pending(struct napi_struct *n)
443 {
444 	return test_bit(NAPI_STATE_DISABLE, &n->state);
445 }
446 
447 bool napi_schedule_prep(struct napi_struct *n);
448 
449 /**
450  *	napi_schedule - schedule NAPI poll
451  *	@n: NAPI context
452  *
453  * Schedule NAPI poll routine to be called if it is not already
454  * running.
455  */
napi_schedule(struct napi_struct * n)456 static inline void napi_schedule(struct napi_struct *n)
457 {
458 	if (napi_schedule_prep(n))
459 		__napi_schedule(n);
460 }
461 
462 /**
463  *	napi_schedule_irqoff - schedule NAPI poll
464  *	@n: NAPI context
465  *
466  * Variant of napi_schedule(), assuming hard irqs are masked.
467  */
napi_schedule_irqoff(struct napi_struct * n)468 static inline void napi_schedule_irqoff(struct napi_struct *n)
469 {
470 	if (napi_schedule_prep(n))
471 		__napi_schedule_irqoff(n);
472 }
473 
474 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)475 static inline bool napi_reschedule(struct napi_struct *napi)
476 {
477 	if (napi_schedule_prep(napi)) {
478 		__napi_schedule(napi);
479 		return true;
480 	}
481 	return false;
482 }
483 
484 bool napi_complete_done(struct napi_struct *n, int work_done);
485 /**
486  *	napi_complete - NAPI processing complete
487  *	@n: NAPI context
488  *
489  * Mark NAPI processing as complete.
490  * Consider using napi_complete_done() instead.
491  * Return false if device should avoid rearming interrupts.
492  */
napi_complete(struct napi_struct * n)493 static inline bool napi_complete(struct napi_struct *n)
494 {
495 	return napi_complete_done(n, 0);
496 }
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
napi_enable(struct napi_struct * n)514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
napi_synchronize(const struct napi_struct * n)530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
net_has_fallback_tunnels(const struct net * net)641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 #if IS_ENABLED(CONFIG_SYSCTL)
644 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
645 
646 	return !fb_tunnels_only_for_init_net ||
647 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
648 #else
649 	return true;
650 #endif
651 }
652 
net_inherit_devconf(void)653 static inline int net_inherit_devconf(void)
654 {
655 #if IS_ENABLED(CONFIG_SYSCTL)
656 	return READ_ONCE(sysctl_devconf_inherit_init_net);
657 #else
658 	return 0;
659 #endif
660 }
661 
netdev_queue_numa_node_read(const struct netdev_queue * q)662 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
663 {
664 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
665 	return q->numa_node;
666 #else
667 	return NUMA_NO_NODE;
668 #endif
669 }
670 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)671 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
672 {
673 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
674 	q->numa_node = node;
675 #endif
676 }
677 
678 #ifdef CONFIG_RPS
679 /*
680  * This structure holds an RPS map which can be of variable length.  The
681  * map is an array of CPUs.
682  */
683 struct rps_map {
684 	unsigned int len;
685 	struct rcu_head rcu;
686 	u16 cpus[];
687 };
688 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
689 
690 /*
691  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
692  * tail pointer for that CPU's input queue at the time of last enqueue, and
693  * a hardware filter index.
694  */
695 struct rps_dev_flow {
696 	u16 cpu;
697 	u16 filter;
698 	unsigned int last_qtail;
699 };
700 #define RPS_NO_FILTER 0xffff
701 
702 /*
703  * The rps_dev_flow_table structure contains a table of flow mappings.
704  */
705 struct rps_dev_flow_table {
706 	unsigned int mask;
707 	struct rcu_head rcu;
708 	struct rps_dev_flow flows[];
709 };
710 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
711     ((_num) * sizeof(struct rps_dev_flow)))
712 
713 /*
714  * The rps_sock_flow_table contains mappings of flows to the last CPU
715  * on which they were processed by the application (set in recvmsg).
716  * Each entry is a 32bit value. Upper part is the high-order bits
717  * of flow hash, lower part is CPU number.
718  * rps_cpu_mask is used to partition the space, depending on number of
719  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
720  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
721  * meaning we use 32-6=26 bits for the hash.
722  */
723 struct rps_sock_flow_table {
724 	u32	mask;
725 
726 	u32	ents[] ____cacheline_aligned_in_smp;
727 };
728 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
729 
730 #define RPS_NO_CPU 0xffff
731 
732 extern u32 rps_cpu_mask;
733 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
734 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)735 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
736 					u32 hash)
737 {
738 	if (table && hash) {
739 		unsigned int index = hash & table->mask;
740 		u32 val = hash & ~rps_cpu_mask;
741 
742 		/* We only give a hint, preemption can change CPU under us */
743 		val |= raw_smp_processor_id();
744 
745 		if (table->ents[index] != val)
746 			table->ents[index] = val;
747 	}
748 }
749 
750 #ifdef CONFIG_RFS_ACCEL
751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
752 			 u16 filter_id);
753 #endif
754 #endif /* CONFIG_RPS */
755 
756 /* This structure contains an instance of an RX queue. */
757 struct netdev_rx_queue {
758 #ifdef CONFIG_RPS
759 	struct rps_map __rcu		*rps_map;
760 	struct rps_dev_flow_table __rcu	*rps_flow_table;
761 #endif
762 	struct kobject			kobj;
763 	struct net_device		*dev;
764 	struct xdp_rxq_info		xdp_rxq;
765 #ifdef CONFIG_XDP_SOCKETS
766 	struct xsk_buff_pool            *pool;
767 #endif
768 } ____cacheline_aligned_in_smp;
769 
770 /*
771  * RX queue sysfs structures and functions.
772  */
773 struct rx_queue_attribute {
774 	struct attribute attr;
775 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
776 	ssize_t (*store)(struct netdev_rx_queue *queue,
777 			 const char *buf, size_t len);
778 };
779 
780 #ifdef CONFIG_XPS
781 /*
782  * This structure holds an XPS map which can be of variable length.  The
783  * map is an array of queues.
784  */
785 struct xps_map {
786 	unsigned int len;
787 	unsigned int alloc_len;
788 	struct rcu_head rcu;
789 	u16 queues[];
790 };
791 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
792 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
793        - sizeof(struct xps_map)) / sizeof(u16))
794 
795 /*
796  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
797  */
798 struct xps_dev_maps {
799 	struct rcu_head rcu;
800 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
801 };
802 
803 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
804 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
805 
806 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
807 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
808 
809 #endif /* CONFIG_XPS */
810 
811 #define TC_MAX_QUEUE	16
812 #define TC_BITMASK	15
813 /* HW offloaded queuing disciplines txq count and offset maps */
814 struct netdev_tc_txq {
815 	u16 count;
816 	u16 offset;
817 };
818 
819 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
820 /*
821  * This structure is to hold information about the device
822  * configured to run FCoE protocol stack.
823  */
824 struct netdev_fcoe_hbainfo {
825 	char	manufacturer[64];
826 	char	serial_number[64];
827 	char	hardware_version[64];
828 	char	driver_version[64];
829 	char	optionrom_version[64];
830 	char	firmware_version[64];
831 	char	model[256];
832 	char	model_description[256];
833 };
834 #endif
835 
836 #define MAX_PHYS_ITEM_ID_LEN 32
837 
838 /* This structure holds a unique identifier to identify some
839  * physical item (port for example) used by a netdevice.
840  */
841 struct netdev_phys_item_id {
842 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
843 	unsigned char id_len;
844 };
845 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)846 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
847 					    struct netdev_phys_item_id *b)
848 {
849 	return a->id_len == b->id_len &&
850 	       memcmp(a->id, b->id, a->id_len) == 0;
851 }
852 
853 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
854 				       struct sk_buff *skb,
855 				       struct net_device *sb_dev);
856 
857 enum tc_setup_type {
858 	TC_SETUP_QDISC_MQPRIO,
859 	TC_SETUP_CLSU32,
860 	TC_SETUP_CLSFLOWER,
861 	TC_SETUP_CLSMATCHALL,
862 	TC_SETUP_CLSBPF,
863 	TC_SETUP_BLOCK,
864 	TC_SETUP_QDISC_CBS,
865 	TC_SETUP_QDISC_RED,
866 	TC_SETUP_QDISC_PRIO,
867 	TC_SETUP_QDISC_MQ,
868 	TC_SETUP_QDISC_ETF,
869 	TC_SETUP_ROOT_QDISC,
870 	TC_SETUP_QDISC_GRED,
871 	TC_SETUP_QDISC_TAPRIO,
872 	TC_SETUP_FT,
873 	TC_SETUP_QDISC_ETS,
874 	TC_SETUP_QDISC_TBF,
875 	TC_SETUP_QDISC_FIFO,
876 };
877 
878 /* These structures hold the attributes of bpf state that are being passed
879  * to the netdevice through the bpf op.
880  */
881 enum bpf_netdev_command {
882 	/* Set or clear a bpf program used in the earliest stages of packet
883 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
884 	 * is responsible for calling bpf_prog_put on any old progs that are
885 	 * stored. In case of error, the callee need not release the new prog
886 	 * reference, but on success it takes ownership and must bpf_prog_put
887 	 * when it is no longer used.
888 	 */
889 	XDP_SETUP_PROG,
890 	XDP_SETUP_PROG_HW,
891 	/* BPF program for offload callbacks, invoked at program load time. */
892 	BPF_OFFLOAD_MAP_ALLOC,
893 	BPF_OFFLOAD_MAP_FREE,
894 	XDP_SETUP_XSK_POOL,
895 };
896 
897 struct bpf_prog_offload_ops;
898 struct netlink_ext_ack;
899 struct xdp_umem;
900 struct xdp_dev_bulk_queue;
901 struct bpf_xdp_link;
902 
903 enum bpf_xdp_mode {
904 	XDP_MODE_SKB = 0,
905 	XDP_MODE_DRV = 1,
906 	XDP_MODE_HW = 2,
907 	__MAX_XDP_MODE
908 };
909 
910 struct bpf_xdp_entity {
911 	struct bpf_prog *prog;
912 	struct bpf_xdp_link *link;
913 };
914 
915 struct netdev_bpf {
916 	enum bpf_netdev_command command;
917 	union {
918 		/* XDP_SETUP_PROG */
919 		struct {
920 			u32 flags;
921 			struct bpf_prog *prog;
922 			struct netlink_ext_ack *extack;
923 		};
924 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
925 		struct {
926 			struct bpf_offloaded_map *offmap;
927 		};
928 		/* XDP_SETUP_XSK_POOL */
929 		struct {
930 			struct xsk_buff_pool *pool;
931 			u16 queue_id;
932 		} xsk;
933 	};
934 };
935 
936 /* Flags for ndo_xsk_wakeup. */
937 #define XDP_WAKEUP_RX (1 << 0)
938 #define XDP_WAKEUP_TX (1 << 1)
939 
940 #ifdef CONFIG_XFRM_OFFLOAD
941 struct xfrmdev_ops {
942 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
943 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
944 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
945 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
946 				       struct xfrm_state *x);
947 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
948 };
949 #endif
950 
951 struct dev_ifalias {
952 	struct rcu_head rcuhead;
953 	char ifalias[];
954 };
955 
956 struct devlink;
957 struct tlsdev_ops;
958 
959 struct netdev_name_node {
960 	struct hlist_node hlist;
961 	struct list_head list;
962 	struct net_device *dev;
963 	const char *name;
964 };
965 
966 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
967 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
968 
969 struct netdev_net_notifier {
970 	struct list_head list;
971 	struct notifier_block *nb;
972 };
973 
974 /*
975  * This structure defines the management hooks for network devices.
976  * The following hooks can be defined; unless noted otherwise, they are
977  * optional and can be filled with a null pointer.
978  *
979  * int (*ndo_init)(struct net_device *dev);
980  *     This function is called once when a network device is registered.
981  *     The network device can use this for any late stage initialization
982  *     or semantic validation. It can fail with an error code which will
983  *     be propagated back to register_netdev.
984  *
985  * void (*ndo_uninit)(struct net_device *dev);
986  *     This function is called when device is unregistered or when registration
987  *     fails. It is not called if init fails.
988  *
989  * int (*ndo_open)(struct net_device *dev);
990  *     This function is called when a network device transitions to the up
991  *     state.
992  *
993  * int (*ndo_stop)(struct net_device *dev);
994  *     This function is called when a network device transitions to the down
995  *     state.
996  *
997  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
998  *                               struct net_device *dev);
999  *	Called when a packet needs to be transmitted.
1000  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1001  *	the queue before that can happen; it's for obsolete devices and weird
1002  *	corner cases, but the stack really does a non-trivial amount
1003  *	of useless work if you return NETDEV_TX_BUSY.
1004  *	Required; cannot be NULL.
1005  *
1006  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1007  *					   struct net_device *dev
1008  *					   netdev_features_t features);
1009  *	Called by core transmit path to determine if device is capable of
1010  *	performing offload operations on a given packet. This is to give
1011  *	the device an opportunity to implement any restrictions that cannot
1012  *	be otherwise expressed by feature flags. The check is called with
1013  *	the set of features that the stack has calculated and it returns
1014  *	those the driver believes to be appropriate.
1015  *
1016  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1017  *                         struct net_device *sb_dev);
1018  *	Called to decide which queue to use when device supports multiple
1019  *	transmit queues.
1020  *
1021  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1022  *	This function is called to allow device receiver to make
1023  *	changes to configuration when multicast or promiscuous is enabled.
1024  *
1025  * void (*ndo_set_rx_mode)(struct net_device *dev);
1026  *	This function is called device changes address list filtering.
1027  *	If driver handles unicast address filtering, it should set
1028  *	IFF_UNICAST_FLT in its priv_flags.
1029  *
1030  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1031  *	This function  is called when the Media Access Control address
1032  *	needs to be changed. If this interface is not defined, the
1033  *	MAC address can not be changed.
1034  *
1035  * int (*ndo_validate_addr)(struct net_device *dev);
1036  *	Test if Media Access Control address is valid for the device.
1037  *
1038  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1039  *	Called when a user requests an ioctl which can't be handled by
1040  *	the generic interface code. If not defined ioctls return
1041  *	not supported error code.
1042  *
1043  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1044  *	Used to set network devices bus interface parameters. This interface
1045  *	is retained for legacy reasons; new devices should use the bus
1046  *	interface (PCI) for low level management.
1047  *
1048  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1049  *	Called when a user wants to change the Maximum Transfer Unit
1050  *	of a device.
1051  *
1052  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1053  *	Callback used when the transmitter has not made any progress
1054  *	for dev->watchdog ticks.
1055  *
1056  * void (*ndo_get_stats64)(struct net_device *dev,
1057  *                         struct rtnl_link_stats64 *storage);
1058  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1059  *	Called when a user wants to get the network device usage
1060  *	statistics. Drivers must do one of the following:
1061  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1062  *	   rtnl_link_stats64 structure passed by the caller.
1063  *	2. Define @ndo_get_stats to update a net_device_stats structure
1064  *	   (which should normally be dev->stats) and return a pointer to
1065  *	   it. The structure may be changed asynchronously only if each
1066  *	   field is written atomically.
1067  *	3. Update dev->stats asynchronously and atomically, and define
1068  *	   neither operation.
1069  *
1070  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1071  *	Return true if this device supports offload stats of this attr_id.
1072  *
1073  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1074  *	void *attr_data)
1075  *	Get statistics for offload operations by attr_id. Write it into the
1076  *	attr_data pointer.
1077  *
1078  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1079  *	If device supports VLAN filtering this function is called when a
1080  *	VLAN id is registered.
1081  *
1082  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1083  *	If device supports VLAN filtering this function is called when a
1084  *	VLAN id is unregistered.
1085  *
1086  * void (*ndo_poll_controller)(struct net_device *dev);
1087  *
1088  *	SR-IOV management functions.
1089  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1090  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1091  *			  u8 qos, __be16 proto);
1092  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1093  *			  int max_tx_rate);
1094  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1095  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1096  * int (*ndo_get_vf_config)(struct net_device *dev,
1097  *			    int vf, struct ifla_vf_info *ivf);
1098  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1099  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1100  *			  struct nlattr *port[]);
1101  *
1102  *      Enable or disable the VF ability to query its RSS Redirection Table and
1103  *      Hash Key. This is needed since on some devices VF share this information
1104  *      with PF and querying it may introduce a theoretical security risk.
1105  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1106  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1107  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1108  *		       void *type_data);
1109  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1110  *	This is always called from the stack with the rtnl lock held and netif
1111  *	tx queues stopped. This allows the netdevice to perform queue
1112  *	management safely.
1113  *
1114  *	Fiber Channel over Ethernet (FCoE) offload functions.
1115  * int (*ndo_fcoe_enable)(struct net_device *dev);
1116  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1117  *	so the underlying device can perform whatever needed configuration or
1118  *	initialization to support acceleration of FCoE traffic.
1119  *
1120  * int (*ndo_fcoe_disable)(struct net_device *dev);
1121  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1122  *	so the underlying device can perform whatever needed clean-ups to
1123  *	stop supporting acceleration of FCoE traffic.
1124  *
1125  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1126  *			     struct scatterlist *sgl, unsigned int sgc);
1127  *	Called when the FCoE Initiator wants to initialize an I/O that
1128  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1129  *	perform necessary setup and returns 1 to indicate the device is set up
1130  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1131  *
1132  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1133  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1134  *	indicated by the FC exchange id 'xid', so the underlying device can
1135  *	clean up and reuse resources for later DDP requests.
1136  *
1137  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1138  *			      struct scatterlist *sgl, unsigned int sgc);
1139  *	Called when the FCoE Target wants to initialize an I/O that
1140  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1141  *	perform necessary setup and returns 1 to indicate the device is set up
1142  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1143  *
1144  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1145  *			       struct netdev_fcoe_hbainfo *hbainfo);
1146  *	Called when the FCoE Protocol stack wants information on the underlying
1147  *	device. This information is utilized by the FCoE protocol stack to
1148  *	register attributes with Fiber Channel management service as per the
1149  *	FC-GS Fabric Device Management Information(FDMI) specification.
1150  *
1151  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1152  *	Called when the underlying device wants to override default World Wide
1153  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1154  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1155  *	protocol stack to use.
1156  *
1157  *	RFS acceleration.
1158  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1159  *			    u16 rxq_index, u32 flow_id);
1160  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1161  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1162  *	Return the filter ID on success, or a negative error code.
1163  *
1164  *	Slave management functions (for bridge, bonding, etc).
1165  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1166  *	Called to make another netdev an underling.
1167  *
1168  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1169  *	Called to release previously enslaved netdev.
1170  *
1171  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1172  *					    struct sk_buff *skb,
1173  *					    bool all_slaves);
1174  *	Get the xmit slave of master device. If all_slaves is true, function
1175  *	assume all the slaves can transmit.
1176  *
1177  *      Feature/offload setting functions.
1178  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1179  *		netdev_features_t features);
1180  *	Adjusts the requested feature flags according to device-specific
1181  *	constraints, and returns the resulting flags. Must not modify
1182  *	the device state.
1183  *
1184  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1185  *	Called to update device configuration to new features. Passed
1186  *	feature set might be less than what was returned by ndo_fix_features()).
1187  *	Must return >0 or -errno if it changed dev->features itself.
1188  *
1189  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1190  *		      struct net_device *dev,
1191  *		      const unsigned char *addr, u16 vid, u16 flags,
1192  *		      struct netlink_ext_ack *extack);
1193  *	Adds an FDB entry to dev for addr.
1194  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1195  *		      struct net_device *dev,
1196  *		      const unsigned char *addr, u16 vid)
1197  *	Deletes the FDB entry from dev coresponding to addr.
1198  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1199  *		       struct net_device *dev, struct net_device *filter_dev,
1200  *		       int *idx)
1201  *	Used to add FDB entries to dump requests. Implementers should add
1202  *	entries to skb and update idx with the number of entries.
1203  *
1204  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1205  *			     u16 flags, struct netlink_ext_ack *extack)
1206  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1207  *			     struct net_device *dev, u32 filter_mask,
1208  *			     int nlflags)
1209  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1210  *			     u16 flags);
1211  *
1212  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1213  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1214  *	which do not represent real hardware may define this to allow their
1215  *	userspace components to manage their virtual carrier state. Devices
1216  *	that determine carrier state from physical hardware properties (eg
1217  *	network cables) or protocol-dependent mechanisms (eg
1218  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1219  *
1220  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1221  *			       struct netdev_phys_item_id *ppid);
1222  *	Called to get ID of physical port of this device. If driver does
1223  *	not implement this, it is assumed that the hw is not able to have
1224  *	multiple net devices on single physical port.
1225  *
1226  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1227  *				 struct netdev_phys_item_id *ppid)
1228  *	Called to get the parent ID of the physical port of this device.
1229  *
1230  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1231  *			      struct udp_tunnel_info *ti);
1232  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1233  *	address family that a UDP tunnel is listnening to. It is called only
1234  *	when a new port starts listening. The operation is protected by the
1235  *	RTNL.
1236  *
1237  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1238  *			      struct udp_tunnel_info *ti);
1239  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1240  *	address family that the UDP tunnel is not listening to anymore. The
1241  *	operation is protected by the RTNL.
1242  *
1243  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1244  *				 struct net_device *dev)
1245  *	Called by upper layer devices to accelerate switching or other
1246  *	station functionality into hardware. 'pdev is the lowerdev
1247  *	to use for the offload and 'dev' is the net device that will
1248  *	back the offload. Returns a pointer to the private structure
1249  *	the upper layer will maintain.
1250  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1251  *	Called by upper layer device to delete the station created
1252  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1253  *	the station and priv is the structure returned by the add
1254  *	operation.
1255  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1256  *			     int queue_index, u32 maxrate);
1257  *	Called when a user wants to set a max-rate limitation of specific
1258  *	TX queue.
1259  * int (*ndo_get_iflink)(const struct net_device *dev);
1260  *	Called to get the iflink value of this device.
1261  * void (*ndo_change_proto_down)(struct net_device *dev,
1262  *				 bool proto_down);
1263  *	This function is used to pass protocol port error state information
1264  *	to the switch driver. The switch driver can react to the proto_down
1265  *      by doing a phys down on the associated switch port.
1266  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1267  *	This function is used to get egress tunnel information for given skb.
1268  *	This is useful for retrieving outer tunnel header parameters while
1269  *	sampling packet.
1270  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1271  *	This function is used to specify the headroom that the skb must
1272  *	consider when allocation skb during packet reception. Setting
1273  *	appropriate rx headroom value allows avoiding skb head copy on
1274  *	forward. Setting a negative value resets the rx headroom to the
1275  *	default value.
1276  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1277  *	This function is used to set or query state related to XDP on the
1278  *	netdevice and manage BPF offload. See definition of
1279  *	enum bpf_netdev_command for details.
1280  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1281  *			u32 flags);
1282  *	This function is used to submit @n XDP packets for transmit on a
1283  *	netdevice. Returns number of frames successfully transmitted, frames
1284  *	that got dropped are freed/returned via xdp_return_frame().
1285  *	Returns negative number, means general error invoking ndo, meaning
1286  *	no frames were xmit'ed and core-caller will free all frames.
1287  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1288  *      This function is used to wake up the softirq, ksoftirqd or kthread
1289  *	responsible for sending and/or receiving packets on a specific
1290  *	queue id bound to an AF_XDP socket. The flags field specifies if
1291  *	only RX, only Tx, or both should be woken up using the flags
1292  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1293  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1294  *	Get devlink port instance associated with a given netdev.
1295  *	Called with a reference on the netdevice and devlink locks only,
1296  *	rtnl_lock is not held.
1297  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1298  *			 int cmd);
1299  *	Add, change, delete or get information on an IPv4 tunnel.
1300  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1301  *	If a device is paired with a peer device, return the peer instance.
1302  *	The caller must be under RCU read context.
1303  */
1304 struct net_device_ops {
1305 	int			(*ndo_init)(struct net_device *dev);
1306 	void			(*ndo_uninit)(struct net_device *dev);
1307 	int			(*ndo_open)(struct net_device *dev);
1308 	int			(*ndo_stop)(struct net_device *dev);
1309 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1310 						  struct net_device *dev);
1311 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1312 						      struct net_device *dev,
1313 						      netdev_features_t features);
1314 	u16			(*ndo_select_queue)(struct net_device *dev,
1315 						    struct sk_buff *skb,
1316 						    struct net_device *sb_dev);
1317 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1318 						       int flags);
1319 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1320 	int			(*ndo_set_mac_address)(struct net_device *dev,
1321 						       void *addr);
1322 	int			(*ndo_validate_addr)(struct net_device *dev);
1323 	int			(*ndo_do_ioctl)(struct net_device *dev,
1324 					        struct ifreq *ifr, int cmd);
1325 	int			(*ndo_set_config)(struct net_device *dev,
1326 					          struct ifmap *map);
1327 	int			(*ndo_change_mtu)(struct net_device *dev,
1328 						  int new_mtu);
1329 	int			(*ndo_neigh_setup)(struct net_device *dev,
1330 						   struct neigh_parms *);
1331 	void			(*ndo_tx_timeout) (struct net_device *dev,
1332 						   unsigned int txqueue);
1333 
1334 	void			(*ndo_get_stats64)(struct net_device *dev,
1335 						   struct rtnl_link_stats64 *storage);
1336 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1337 	int			(*ndo_get_offload_stats)(int attr_id,
1338 							 const struct net_device *dev,
1339 							 void *attr_data);
1340 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1341 
1342 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1343 						       __be16 proto, u16 vid);
1344 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1345 						        __be16 proto, u16 vid);
1346 #ifdef CONFIG_NET_POLL_CONTROLLER
1347 	void                    (*ndo_poll_controller)(struct net_device *dev);
1348 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1349 						     struct netpoll_info *info);
1350 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1351 #endif
1352 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1353 						  int queue, u8 *mac);
1354 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1355 						   int queue, u16 vlan,
1356 						   u8 qos, __be16 proto);
1357 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1358 						   int vf, int min_tx_rate,
1359 						   int max_tx_rate);
1360 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1361 						       int vf, bool setting);
1362 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1363 						    int vf, bool setting);
1364 	int			(*ndo_get_vf_config)(struct net_device *dev,
1365 						     int vf,
1366 						     struct ifla_vf_info *ivf);
1367 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1368 							 int vf, int link_state);
1369 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1370 						    int vf,
1371 						    struct ifla_vf_stats
1372 						    *vf_stats);
1373 	int			(*ndo_set_vf_port)(struct net_device *dev,
1374 						   int vf,
1375 						   struct nlattr *port[]);
1376 	int			(*ndo_get_vf_port)(struct net_device *dev,
1377 						   int vf, struct sk_buff *skb);
1378 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1379 						   int vf,
1380 						   struct ifla_vf_guid *node_guid,
1381 						   struct ifla_vf_guid *port_guid);
1382 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1383 						   int vf, u64 guid,
1384 						   int guid_type);
1385 	int			(*ndo_set_vf_rss_query_en)(
1386 						   struct net_device *dev,
1387 						   int vf, bool setting);
1388 	int			(*ndo_setup_tc)(struct net_device *dev,
1389 						enum tc_setup_type type,
1390 						void *type_data);
1391 #if IS_ENABLED(CONFIG_FCOE)
1392 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1393 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1394 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1395 						      u16 xid,
1396 						      struct scatterlist *sgl,
1397 						      unsigned int sgc);
1398 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1399 						     u16 xid);
1400 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1401 						       u16 xid,
1402 						       struct scatterlist *sgl,
1403 						       unsigned int sgc);
1404 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1405 							struct netdev_fcoe_hbainfo *hbainfo);
1406 #endif
1407 
1408 #if IS_ENABLED(CONFIG_LIBFCOE)
1409 #define NETDEV_FCOE_WWNN 0
1410 #define NETDEV_FCOE_WWPN 1
1411 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1412 						    u64 *wwn, int type);
1413 #endif
1414 
1415 #ifdef CONFIG_RFS_ACCEL
1416 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1417 						     const struct sk_buff *skb,
1418 						     u16 rxq_index,
1419 						     u32 flow_id);
1420 #endif
1421 	int			(*ndo_add_slave)(struct net_device *dev,
1422 						 struct net_device *slave_dev,
1423 						 struct netlink_ext_ack *extack);
1424 	int			(*ndo_del_slave)(struct net_device *dev,
1425 						 struct net_device *slave_dev);
1426 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1427 						      struct sk_buff *skb,
1428 						      bool all_slaves);
1429 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1430 						    netdev_features_t features);
1431 	int			(*ndo_set_features)(struct net_device *dev,
1432 						    netdev_features_t features);
1433 	int			(*ndo_neigh_construct)(struct net_device *dev,
1434 						       struct neighbour *n);
1435 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1436 						     struct neighbour *n);
1437 
1438 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1439 					       struct nlattr *tb[],
1440 					       struct net_device *dev,
1441 					       const unsigned char *addr,
1442 					       u16 vid,
1443 					       u16 flags,
1444 					       struct netlink_ext_ack *extack);
1445 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1446 					       struct nlattr *tb[],
1447 					       struct net_device *dev,
1448 					       const unsigned char *addr,
1449 					       u16 vid);
1450 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1451 						struct netlink_callback *cb,
1452 						struct net_device *dev,
1453 						struct net_device *filter_dev,
1454 						int *idx);
1455 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1456 					       struct nlattr *tb[],
1457 					       struct net_device *dev,
1458 					       const unsigned char *addr,
1459 					       u16 vid, u32 portid, u32 seq,
1460 					       struct netlink_ext_ack *extack);
1461 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1462 						      struct nlmsghdr *nlh,
1463 						      u16 flags,
1464 						      struct netlink_ext_ack *extack);
1465 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1466 						      u32 pid, u32 seq,
1467 						      struct net_device *dev,
1468 						      u32 filter_mask,
1469 						      int nlflags);
1470 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1471 						      struct nlmsghdr *nlh,
1472 						      u16 flags);
1473 	int			(*ndo_change_carrier)(struct net_device *dev,
1474 						      bool new_carrier);
1475 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1476 							struct netdev_phys_item_id *ppid);
1477 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1478 							  struct netdev_phys_item_id *ppid);
1479 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1480 							  char *name, size_t len);
1481 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1482 						      struct udp_tunnel_info *ti);
1483 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1484 						      struct udp_tunnel_info *ti);
1485 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1486 							struct net_device *dev);
1487 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1488 							void *priv);
1489 
1490 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1491 						      int queue_index,
1492 						      u32 maxrate);
1493 	int			(*ndo_get_iflink)(const struct net_device *dev);
1494 	int			(*ndo_change_proto_down)(struct net_device *dev,
1495 							 bool proto_down);
1496 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1497 						       struct sk_buff *skb);
1498 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1499 						       int needed_headroom);
1500 	int			(*ndo_bpf)(struct net_device *dev,
1501 					   struct netdev_bpf *bpf);
1502 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1503 						struct xdp_frame **xdp,
1504 						u32 flags);
1505 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1506 						  u32 queue_id, u32 flags);
1507 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1508 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1509 						  struct ip_tunnel_parm *p, int cmd);
1510 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1511 };
1512 
1513 /**
1514  * enum net_device_priv_flags - &struct net_device priv_flags
1515  *
1516  * These are the &struct net_device, they are only set internally
1517  * by drivers and used in the kernel. These flags are invisible to
1518  * userspace; this means that the order of these flags can change
1519  * during any kernel release.
1520  *
1521  * You should have a pretty good reason to be extending these flags.
1522  *
1523  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1524  * @IFF_EBRIDGE: Ethernet bridging device
1525  * @IFF_BONDING: bonding master or slave
1526  * @IFF_ISATAP: ISATAP interface (RFC4214)
1527  * @IFF_WAN_HDLC: WAN HDLC device
1528  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1529  *	release skb->dst
1530  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1531  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1532  * @IFF_MACVLAN_PORT: device used as macvlan port
1533  * @IFF_BRIDGE_PORT: device used as bridge port
1534  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1535  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1536  * @IFF_UNICAST_FLT: Supports unicast filtering
1537  * @IFF_TEAM_PORT: device used as team port
1538  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1539  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1540  *	change when it's running
1541  * @IFF_MACVLAN: Macvlan device
1542  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1543  *	underlying stacked devices
1544  * @IFF_L3MDEV_MASTER: device is an L3 master device
1545  * @IFF_NO_QUEUE: device can run without qdisc attached
1546  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1547  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1548  * @IFF_TEAM: device is a team device
1549  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1550  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1551  *	entity (i.e. the master device for bridged veth)
1552  * @IFF_MACSEC: device is a MACsec device
1553  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1554  * @IFF_FAILOVER: device is a failover master device
1555  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1556  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1557  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1558  */
1559 enum netdev_priv_flags {
1560 	IFF_802_1Q_VLAN			= 1<<0,
1561 	IFF_EBRIDGE			= 1<<1,
1562 	IFF_BONDING			= 1<<2,
1563 	IFF_ISATAP			= 1<<3,
1564 	IFF_WAN_HDLC			= 1<<4,
1565 	IFF_XMIT_DST_RELEASE		= 1<<5,
1566 	IFF_DONT_BRIDGE			= 1<<6,
1567 	IFF_DISABLE_NETPOLL		= 1<<7,
1568 	IFF_MACVLAN_PORT		= 1<<8,
1569 	IFF_BRIDGE_PORT			= 1<<9,
1570 	IFF_OVS_DATAPATH		= 1<<10,
1571 	IFF_TX_SKB_SHARING		= 1<<11,
1572 	IFF_UNICAST_FLT			= 1<<12,
1573 	IFF_TEAM_PORT			= 1<<13,
1574 	IFF_SUPP_NOFCS			= 1<<14,
1575 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1576 	IFF_MACVLAN			= 1<<16,
1577 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1578 	IFF_L3MDEV_MASTER		= 1<<18,
1579 	IFF_NO_QUEUE			= 1<<19,
1580 	IFF_OPENVSWITCH			= 1<<20,
1581 	IFF_L3MDEV_SLAVE		= 1<<21,
1582 	IFF_TEAM			= 1<<22,
1583 	IFF_RXFH_CONFIGURED		= 1<<23,
1584 	IFF_PHONY_HEADROOM		= 1<<24,
1585 	IFF_MACSEC			= 1<<25,
1586 	IFF_NO_RX_HANDLER		= 1<<26,
1587 	IFF_FAILOVER			= 1<<27,
1588 	IFF_FAILOVER_SLAVE		= 1<<28,
1589 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1590 	IFF_LIVE_RENAME_OK		= 1<<30,
1591 };
1592 
1593 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1594 #define IFF_EBRIDGE			IFF_EBRIDGE
1595 #define IFF_BONDING			IFF_BONDING
1596 #define IFF_ISATAP			IFF_ISATAP
1597 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1598 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1599 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1600 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1601 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1602 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1603 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1604 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1605 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1606 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1607 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1608 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1609 #define IFF_MACVLAN			IFF_MACVLAN
1610 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1611 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1612 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1613 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1614 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1615 #define IFF_TEAM			IFF_TEAM
1616 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1617 #define IFF_MACSEC			IFF_MACSEC
1618 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1619 #define IFF_FAILOVER			IFF_FAILOVER
1620 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1621 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1622 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1623 
1624 /* Specifies the type of the struct net_device::ml_priv pointer */
1625 enum netdev_ml_priv_type {
1626 	ML_PRIV_NONE,
1627 	ML_PRIV_CAN,
1628 };
1629 
1630 /**
1631  *	struct net_device - The DEVICE structure.
1632  *
1633  *	Actually, this whole structure is a big mistake.  It mixes I/O
1634  *	data with strictly "high-level" data, and it has to know about
1635  *	almost every data structure used in the INET module.
1636  *
1637  *	@name:	This is the first field of the "visible" part of this structure
1638  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1639  *		of the interface.
1640  *
1641  *	@name_node:	Name hashlist node
1642  *	@ifalias:	SNMP alias
1643  *	@mem_end:	Shared memory end
1644  *	@mem_start:	Shared memory start
1645  *	@base_addr:	Device I/O address
1646  *	@irq:		Device IRQ number
1647  *
1648  *	@state:		Generic network queuing layer state, see netdev_state_t
1649  *	@dev_list:	The global list of network devices
1650  *	@napi_list:	List entry used for polling NAPI devices
1651  *	@unreg_list:	List entry  when we are unregistering the
1652  *			device; see the function unregister_netdev
1653  *	@close_list:	List entry used when we are closing the device
1654  *	@ptype_all:     Device-specific packet handlers for all protocols
1655  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1656  *
1657  *	@adj_list:	Directly linked devices, like slaves for bonding
1658  *	@features:	Currently active device features
1659  *	@hw_features:	User-changeable features
1660  *
1661  *	@wanted_features:	User-requested features
1662  *	@vlan_features:		Mask of features inheritable by VLAN devices
1663  *
1664  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1665  *				This field indicates what encapsulation
1666  *				offloads the hardware is capable of doing,
1667  *				and drivers will need to set them appropriately.
1668  *
1669  *	@mpls_features:	Mask of features inheritable by MPLS
1670  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1671  *
1672  *	@ifindex:	interface index
1673  *	@group:		The group the device belongs to
1674  *
1675  *	@stats:		Statistics struct, which was left as a legacy, use
1676  *			rtnl_link_stats64 instead
1677  *
1678  *	@rx_dropped:	Dropped packets by core network,
1679  *			do not use this in drivers
1680  *	@tx_dropped:	Dropped packets by core network,
1681  *			do not use this in drivers
1682  *	@rx_nohandler:	nohandler dropped packets by core network on
1683  *			inactive devices, do not use this in drivers
1684  *	@carrier_up_count:	Number of times the carrier has been up
1685  *	@carrier_down_count:	Number of times the carrier has been down
1686  *
1687  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1688  *				instead of ioctl,
1689  *				see <net/iw_handler.h> for details.
1690  *	@wireless_data:	Instance data managed by the core of wireless extensions
1691  *
1692  *	@netdev_ops:	Includes several pointers to callbacks,
1693  *			if one wants to override the ndo_*() functions
1694  *	@ethtool_ops:	Management operations
1695  *	@l3mdev_ops:	Layer 3 master device operations
1696  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1697  *			discovery handling. Necessary for e.g. 6LoWPAN.
1698  *	@xfrmdev_ops:	Transformation offload operations
1699  *	@tlsdev_ops:	Transport Layer Security offload operations
1700  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1701  *			of Layer 2 headers.
1702  *
1703  *	@flags:		Interface flags (a la BSD)
1704  *	@priv_flags:	Like 'flags' but invisible to userspace,
1705  *			see if.h for the definitions
1706  *	@gflags:	Global flags ( kept as legacy )
1707  *	@padded:	How much padding added by alloc_netdev()
1708  *	@operstate:	RFC2863 operstate
1709  *	@link_mode:	Mapping policy to operstate
1710  *	@if_port:	Selectable AUI, TP, ...
1711  *	@dma:		DMA channel
1712  *	@mtu:		Interface MTU value
1713  *	@min_mtu:	Interface Minimum MTU value
1714  *	@max_mtu:	Interface Maximum MTU value
1715  *	@type:		Interface hardware type
1716  *	@hard_header_len: Maximum hardware header length.
1717  *	@min_header_len:  Minimum hardware header length
1718  *
1719  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1720  *			  cases can this be guaranteed
1721  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1722  *			  cases can this be guaranteed. Some cases also use
1723  *			  LL_MAX_HEADER instead to allocate the skb
1724  *
1725  *	interface address info:
1726  *
1727  * 	@perm_addr:		Permanent hw address
1728  * 	@addr_assign_type:	Hw address assignment type
1729  * 	@addr_len:		Hardware address length
1730  *	@upper_level:		Maximum depth level of upper devices.
1731  *	@lower_level:		Maximum depth level of lower devices.
1732  *	@neigh_priv_len:	Used in neigh_alloc()
1733  * 	@dev_id:		Used to differentiate devices that share
1734  * 				the same link layer address
1735  * 	@dev_port:		Used to differentiate devices that share
1736  * 				the same function
1737  *	@addr_list_lock:	XXX: need comments on this one
1738  *	@name_assign_type:	network interface name assignment type
1739  *	@uc_promisc:		Counter that indicates promiscuous mode
1740  *				has been enabled due to the need to listen to
1741  *				additional unicast addresses in a device that
1742  *				does not implement ndo_set_rx_mode()
1743  *	@uc:			unicast mac addresses
1744  *	@mc:			multicast mac addresses
1745  *	@dev_addrs:		list of device hw addresses
1746  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1747  *	@promiscuity:		Number of times the NIC is told to work in
1748  *				promiscuous mode; if it becomes 0 the NIC will
1749  *				exit promiscuous mode
1750  *	@allmulti:		Counter, enables or disables allmulticast mode
1751  *
1752  *	@vlan_info:	VLAN info
1753  *	@dsa_ptr:	dsa specific data
1754  *	@tipc_ptr:	TIPC specific data
1755  *	@atalk_ptr:	AppleTalk link
1756  *	@ip_ptr:	IPv4 specific data
1757  *	@dn_ptr:	DECnet specific data
1758  *	@ip6_ptr:	IPv6 specific data
1759  *	@ax25_ptr:	AX.25 specific data
1760  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1761  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1762  *			 device struct
1763  *	@mpls_ptr:	mpls_dev struct pointer
1764  *
1765  *	@dev_addr:	Hw address (before bcast,
1766  *			because most packets are unicast)
1767  *
1768  *	@_rx:			Array of RX queues
1769  *	@num_rx_queues:		Number of RX queues
1770  *				allocated at register_netdev() time
1771  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1772  *	@xdp_prog:		XDP sockets filter program pointer
1773  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1774  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1775  *				allow to avoid NIC hard IRQ, on busy queues.
1776  *
1777  *	@rx_handler:		handler for received packets
1778  *	@rx_handler_data: 	XXX: need comments on this one
1779  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1780  *				ingress processing
1781  *	@ingress_queue:		XXX: need comments on this one
1782  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1783  *	@broadcast:		hw bcast address
1784  *
1785  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1786  *			indexed by RX queue number. Assigned by driver.
1787  *			This must only be set if the ndo_rx_flow_steer
1788  *			operation is defined
1789  *	@index_hlist:		Device index hash chain
1790  *
1791  *	@_tx:			Array of TX queues
1792  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1793  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1794  *	@qdisc:			Root qdisc from userspace point of view
1795  *	@tx_queue_len:		Max frames per queue allowed
1796  *	@tx_global_lock: 	XXX: need comments on this one
1797  *	@xdp_bulkq:		XDP device bulk queue
1798  *	@xps_cpus_map:		all CPUs map for XPS device
1799  *	@xps_rxqs_map:		all RXQs map for XPS device
1800  *
1801  *	@xps_maps:	XXX: need comments on this one
1802  *	@miniq_egress:		clsact qdisc specific data for
1803  *				egress processing
1804  *	@qdisc_hash:		qdisc hash table
1805  *	@watchdog_timeo:	Represents the timeout that is used by
1806  *				the watchdog (see dev_watchdog())
1807  *	@watchdog_timer:	List of timers
1808  *
1809  *	@proto_down_reason:	reason a netdev interface is held down
1810  *	@pcpu_refcnt:		Number of references to this device
1811  *	@todo_list:		Delayed register/unregister
1812  *	@link_watch_list:	XXX: need comments on this one
1813  *
1814  *	@reg_state:		Register/unregister state machine
1815  *	@dismantle:		Device is going to be freed
1816  *	@rtnl_link_state:	This enum represents the phases of creating
1817  *				a new link
1818  *
1819  *	@needs_free_netdev:	Should unregister perform free_netdev?
1820  *	@priv_destructor:	Called from unregister
1821  *	@npinfo:		XXX: need comments on this one
1822  * 	@nd_net:		Network namespace this network device is inside
1823  *
1824  * 	@ml_priv:	Mid-layer private
1825  *	@ml_priv_type:  Mid-layer private type
1826  * 	@lstats:	Loopback statistics
1827  * 	@tstats:	Tunnel statistics
1828  * 	@dstats:	Dummy statistics
1829  * 	@vstats:	Virtual ethernet statistics
1830  *
1831  *	@garp_port:	GARP
1832  *	@mrp_port:	MRP
1833  *
1834  *	@dev:		Class/net/name entry
1835  *	@sysfs_groups:	Space for optional device, statistics and wireless
1836  *			sysfs groups
1837  *
1838  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1839  *	@rtnl_link_ops:	Rtnl_link_ops
1840  *
1841  *	@gso_max_size:	Maximum size of generic segmentation offload
1842  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1843  *			NIC for GSO
1844  *
1845  *	@dcbnl_ops:	Data Center Bridging netlink ops
1846  *	@num_tc:	Number of traffic classes in the net device
1847  *	@tc_to_txq:	XXX: need comments on this one
1848  *	@prio_tc_map:	XXX: need comments on this one
1849  *
1850  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1851  *
1852  *	@priomap:	XXX: need comments on this one
1853  *	@phydev:	Physical device may attach itself
1854  *			for hardware timestamping
1855  *	@sfp_bus:	attached &struct sfp_bus structure.
1856  *
1857  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1858  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1859  *
1860  *	@proto_down:	protocol port state information can be sent to the
1861  *			switch driver and used to set the phys state of the
1862  *			switch port.
1863  *
1864  *	@wol_enabled:	Wake-on-LAN is enabled
1865  *
1866  *	@net_notifier_list:	List of per-net netdev notifier block
1867  *				that follow this device when it is moved
1868  *				to another network namespace.
1869  *
1870  *	@macsec_ops:    MACsec offloading ops
1871  *
1872  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1873  *				offload capabilities of the device
1874  *	@udp_tunnel_nic:	UDP tunnel offload state
1875  *	@xdp_state:		stores info on attached XDP BPF programs
1876  *
1877  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1878  *			dev->addr_list_lock.
1879  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1880  *			keep a list of interfaces to be deleted.
1881  *
1882  *	FIXME: cleanup struct net_device such that network protocol info
1883  *	moves out.
1884  */
1885 
1886 struct net_device {
1887 	char			name[IFNAMSIZ];
1888 	struct netdev_name_node	*name_node;
1889 	struct dev_ifalias	__rcu *ifalias;
1890 	/*
1891 	 *	I/O specific fields
1892 	 *	FIXME: Merge these and struct ifmap into one
1893 	 */
1894 	unsigned long		mem_end;
1895 	unsigned long		mem_start;
1896 	unsigned long		base_addr;
1897 	int			irq;
1898 
1899 	/*
1900 	 *	Some hardware also needs these fields (state,dev_list,
1901 	 *	napi_list,unreg_list,close_list) but they are not
1902 	 *	part of the usual set specified in Space.c.
1903 	 */
1904 
1905 	unsigned long		state;
1906 
1907 	struct list_head	dev_list;
1908 	struct list_head	napi_list;
1909 	struct list_head	unreg_list;
1910 	struct list_head	close_list;
1911 	struct list_head	ptype_all;
1912 	struct list_head	ptype_specific;
1913 
1914 	struct {
1915 		struct list_head upper;
1916 		struct list_head lower;
1917 	} adj_list;
1918 
1919 	netdev_features_t	features;
1920 	netdev_features_t	hw_features;
1921 	netdev_features_t	wanted_features;
1922 	netdev_features_t	vlan_features;
1923 	netdev_features_t	hw_enc_features;
1924 	netdev_features_t	mpls_features;
1925 	netdev_features_t	gso_partial_features;
1926 
1927 	int			ifindex;
1928 	int			group;
1929 
1930 	struct net_device_stats	stats;
1931 
1932 	atomic_long_t		rx_dropped;
1933 	atomic_long_t		tx_dropped;
1934 	atomic_long_t		rx_nohandler;
1935 
1936 	/* Stats to monitor link on/off, flapping */
1937 	atomic_t		carrier_up_count;
1938 	atomic_t		carrier_down_count;
1939 
1940 #ifdef CONFIG_WIRELESS_EXT
1941 	const struct iw_handler_def *wireless_handlers;
1942 	struct iw_public_data	*wireless_data;
1943 #endif
1944 	const struct net_device_ops *netdev_ops;
1945 	const struct ethtool_ops *ethtool_ops;
1946 #ifdef CONFIG_NET_L3_MASTER_DEV
1947 	const struct l3mdev_ops	*l3mdev_ops;
1948 #endif
1949 #if IS_ENABLED(CONFIG_IPV6)
1950 	const struct ndisc_ops *ndisc_ops;
1951 #endif
1952 
1953 #ifdef CONFIG_XFRM_OFFLOAD
1954 	const struct xfrmdev_ops *xfrmdev_ops;
1955 #endif
1956 
1957 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1958 	const struct tlsdev_ops *tlsdev_ops;
1959 #endif
1960 
1961 	const struct header_ops *header_ops;
1962 
1963 	unsigned int		flags;
1964 	unsigned int		priv_flags;
1965 
1966 	unsigned short		gflags;
1967 	unsigned short		padded;
1968 
1969 	unsigned char		operstate;
1970 	unsigned char		link_mode;
1971 
1972 	unsigned char		if_port;
1973 	unsigned char		dma;
1974 
1975 	/* Note : dev->mtu is often read without holding a lock.
1976 	 * Writers usually hold RTNL.
1977 	 * It is recommended to use READ_ONCE() to annotate the reads,
1978 	 * and to use WRITE_ONCE() to annotate the writes.
1979 	 */
1980 	unsigned int		mtu;
1981 	unsigned int		min_mtu;
1982 	unsigned int		max_mtu;
1983 	unsigned short		type;
1984 	unsigned short		hard_header_len;
1985 	unsigned char		min_header_len;
1986 	unsigned char		name_assign_type;
1987 
1988 	unsigned short		needed_headroom;
1989 	unsigned short		needed_tailroom;
1990 
1991 	/* Interface address info. */
1992 	unsigned char		perm_addr[MAX_ADDR_LEN];
1993 	unsigned char		addr_assign_type;
1994 	unsigned char		addr_len;
1995 	unsigned char		upper_level;
1996 	unsigned char		lower_level;
1997 
1998 	unsigned short		neigh_priv_len;
1999 	unsigned short          dev_id;
2000 	unsigned short          dev_port;
2001 	spinlock_t		addr_list_lock;
2002 
2003 	struct netdev_hw_addr_list	uc;
2004 	struct netdev_hw_addr_list	mc;
2005 	struct netdev_hw_addr_list	dev_addrs;
2006 
2007 #ifdef CONFIG_SYSFS
2008 	struct kset		*queues_kset;
2009 #endif
2010 #ifdef CONFIG_LOCKDEP
2011 	struct list_head	unlink_list;
2012 #endif
2013 	unsigned int		promiscuity;
2014 	unsigned int		allmulti;
2015 	bool			uc_promisc;
2016 #ifdef CONFIG_LOCKDEP
2017 	unsigned char		nested_level;
2018 #endif
2019 
2020 
2021 	/* Protocol-specific pointers */
2022 
2023 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2024 	struct vlan_info __rcu	*vlan_info;
2025 #endif
2026 #if IS_ENABLED(CONFIG_NET_DSA)
2027 	struct dsa_port		*dsa_ptr;
2028 #endif
2029 #if IS_ENABLED(CONFIG_TIPC)
2030 	struct tipc_bearer __rcu *tipc_ptr;
2031 #endif
2032 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2033 	void 			*atalk_ptr;
2034 #endif
2035 	struct in_device __rcu	*ip_ptr;
2036 #if IS_ENABLED(CONFIG_DECNET)
2037 	struct dn_dev __rcu     *dn_ptr;
2038 #endif
2039 	struct inet6_dev __rcu	*ip6_ptr;
2040 #if IS_ENABLED(CONFIG_NEWIP)
2041 	struct ninet_dev __rcu	*nip_ptr; /* NIP */
2042 #endif
2043 #if IS_ENABLED(CONFIG_AX25)
2044 	void			*ax25_ptr;
2045 #endif
2046 	struct wireless_dev	*ieee80211_ptr;
2047 	struct wpan_dev		*ieee802154_ptr;
2048 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2049 	struct mpls_dev __rcu	*mpls_ptr;
2050 #endif
2051 
2052 /*
2053  * Cache lines mostly used on receive path (including eth_type_trans())
2054  */
2055 	/* Interface address info used in eth_type_trans() */
2056 	unsigned char		*dev_addr;
2057 
2058 	struct netdev_rx_queue	*_rx;
2059 	unsigned int		num_rx_queues;
2060 	unsigned int		real_num_rx_queues;
2061 
2062 	struct bpf_prog __rcu	*xdp_prog;
2063 	unsigned long		gro_flush_timeout;
2064 	int			napi_defer_hard_irqs;
2065 	rx_handler_func_t __rcu	*rx_handler;
2066 	void __rcu		*rx_handler_data;
2067 
2068 #ifdef CONFIG_NET_CLS_ACT
2069 	struct mini_Qdisc __rcu	*miniq_ingress;
2070 #endif
2071 	struct netdev_queue __rcu *ingress_queue;
2072 #ifdef CONFIG_NETFILTER_INGRESS
2073 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2074 #endif
2075 
2076 	unsigned char		broadcast[MAX_ADDR_LEN];
2077 #ifdef CONFIG_RFS_ACCEL
2078 	struct cpu_rmap		*rx_cpu_rmap;
2079 #endif
2080 	struct hlist_node	index_hlist;
2081 
2082 /*
2083  * Cache lines mostly used on transmit path
2084  */
2085 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2086 	unsigned int		num_tx_queues;
2087 	unsigned int		real_num_tx_queues;
2088 	struct Qdisc __rcu	*qdisc;
2089 	unsigned int		tx_queue_len;
2090 	spinlock_t		tx_global_lock;
2091 
2092 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2093 
2094 #ifdef CONFIG_XPS
2095 	struct xps_dev_maps __rcu *xps_cpus_map;
2096 	struct xps_dev_maps __rcu *xps_rxqs_map;
2097 #endif
2098 #ifdef CONFIG_NET_CLS_ACT
2099 	struct mini_Qdisc __rcu	*miniq_egress;
2100 #endif
2101 
2102 #ifdef CONFIG_NET_SCHED
2103 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2104 #endif
2105 	/* These may be needed for future network-power-down code. */
2106 	struct timer_list	watchdog_timer;
2107 	int			watchdog_timeo;
2108 
2109 	u32                     proto_down_reason;
2110 
2111 	struct list_head	todo_list;
2112 	int __percpu		*pcpu_refcnt;
2113 
2114 	struct list_head	link_watch_list;
2115 
2116 	enum { NETREG_UNINITIALIZED=0,
2117 	       NETREG_REGISTERED,	/* completed register_netdevice */
2118 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2119 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2120 	       NETREG_RELEASED,		/* called free_netdev */
2121 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2122 	} reg_state:8;
2123 
2124 	bool dismantle;
2125 
2126 	enum {
2127 		RTNL_LINK_INITIALIZED,
2128 		RTNL_LINK_INITIALIZING,
2129 	} rtnl_link_state:16;
2130 
2131 	bool needs_free_netdev;
2132 	void (*priv_destructor)(struct net_device *dev);
2133 
2134 #ifdef CONFIG_NETPOLL
2135 	struct netpoll_info __rcu	*npinfo;
2136 #endif
2137 
2138 	possible_net_t			nd_net;
2139 
2140 	/* mid-layer private */
2141 	void				*ml_priv;
2142 	enum netdev_ml_priv_type	ml_priv_type;
2143 
2144 	union {
2145 		struct pcpu_lstats __percpu		*lstats;
2146 		struct pcpu_sw_netstats __percpu	*tstats;
2147 		struct pcpu_dstats __percpu		*dstats;
2148 	};
2149 
2150 #if IS_ENABLED(CONFIG_GARP)
2151 	struct garp_port __rcu	*garp_port;
2152 #endif
2153 #if IS_ENABLED(CONFIG_MRP)
2154 	struct mrp_port __rcu	*mrp_port;
2155 #endif
2156 
2157 	struct device		dev;
2158 	const struct attribute_group *sysfs_groups[4];
2159 	const struct attribute_group *sysfs_rx_queue_group;
2160 
2161 	const struct rtnl_link_ops *rtnl_link_ops;
2162 
2163 	/* for setting kernel sock attribute on TCP connection setup */
2164 #define GSO_MAX_SIZE		65536
2165 	unsigned int		gso_max_size;
2166 #define GSO_MAX_SEGS		65535
2167 	u16			gso_max_segs;
2168 
2169 #ifdef CONFIG_DCB
2170 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2171 #endif
2172 	s16			num_tc;
2173 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2174 	u8			prio_tc_map[TC_BITMASK + 1];
2175 
2176 #if IS_ENABLED(CONFIG_FCOE)
2177 	unsigned int		fcoe_ddp_xid;
2178 #endif
2179 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2180 	struct netprio_map __rcu *priomap;
2181 #endif
2182 	struct phy_device	*phydev;
2183 	struct sfp_bus		*sfp_bus;
2184 	struct lock_class_key	*qdisc_tx_busylock;
2185 	struct lock_class_key	*qdisc_running_key;
2186 	bool			proto_down;
2187 	unsigned		wol_enabled:1;
2188 
2189 	struct list_head	net_notifier_list;
2190 
2191 #if IS_ENABLED(CONFIG_MACSEC)
2192 	/* MACsec management functions */
2193 	const struct macsec_ops *macsec_ops;
2194 #endif
2195 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2196 	struct udp_tunnel_nic	*udp_tunnel_nic;
2197 
2198 	/* protected by rtnl_lock */
2199 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2200 };
2201 #define to_net_dev(d) container_of(d, struct net_device, dev)
2202 
netif_elide_gro(const struct net_device * dev)2203 static inline bool netif_elide_gro(const struct net_device *dev)
2204 {
2205 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2206 		return true;
2207 	return false;
2208 }
2209 
2210 #define	NETDEV_ALIGN		32
2211 
2212 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2213 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2214 {
2215 	return dev->prio_tc_map[prio & TC_BITMASK];
2216 }
2217 
2218 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2219 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2220 {
2221 	if (tc >= dev->num_tc)
2222 		return -EINVAL;
2223 
2224 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2225 	return 0;
2226 }
2227 
2228 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2229 void netdev_reset_tc(struct net_device *dev);
2230 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2231 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2232 
2233 static inline
netdev_get_num_tc(struct net_device * dev)2234 int netdev_get_num_tc(struct net_device *dev)
2235 {
2236 	return dev->num_tc;
2237 }
2238 
net_prefetch(void * p)2239 static inline void net_prefetch(void *p)
2240 {
2241 	prefetch(p);
2242 #if L1_CACHE_BYTES < 128
2243 	prefetch((u8 *)p + L1_CACHE_BYTES);
2244 #endif
2245 }
2246 
net_prefetchw(void * p)2247 static inline void net_prefetchw(void *p)
2248 {
2249 	prefetchw(p);
2250 #if L1_CACHE_BYTES < 128
2251 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2252 #endif
2253 }
2254 
2255 void netdev_unbind_sb_channel(struct net_device *dev,
2256 			      struct net_device *sb_dev);
2257 int netdev_bind_sb_channel_queue(struct net_device *dev,
2258 				 struct net_device *sb_dev,
2259 				 u8 tc, u16 count, u16 offset);
2260 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2261 static inline int netdev_get_sb_channel(struct net_device *dev)
2262 {
2263 	return max_t(int, -dev->num_tc, 0);
2264 }
2265 
2266 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2267 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2268 					 unsigned int index)
2269 {
2270 	return &dev->_tx[index];
2271 }
2272 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2273 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2274 						    const struct sk_buff *skb)
2275 {
2276 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2277 }
2278 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2279 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2280 					    void (*f)(struct net_device *,
2281 						      struct netdev_queue *,
2282 						      void *),
2283 					    void *arg)
2284 {
2285 	unsigned int i;
2286 
2287 	for (i = 0; i < dev->num_tx_queues; i++)
2288 		f(dev, &dev->_tx[i], arg);
2289 }
2290 
2291 #define netdev_lockdep_set_classes(dev)				\
2292 {								\
2293 	static struct lock_class_key qdisc_tx_busylock_key;	\
2294 	static struct lock_class_key qdisc_running_key;		\
2295 	static struct lock_class_key qdisc_xmit_lock_key;	\
2296 	static struct lock_class_key dev_addr_list_lock_key;	\
2297 	unsigned int i;						\
2298 								\
2299 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2300 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2301 	lockdep_set_class(&(dev)->addr_list_lock,		\
2302 			  &dev_addr_list_lock_key);		\
2303 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2304 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2305 				  &qdisc_xmit_lock_key);	\
2306 }
2307 
2308 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2309 		     struct net_device *sb_dev);
2310 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2311 					 struct sk_buff *skb,
2312 					 struct net_device *sb_dev);
2313 
2314 /* returns the headroom that the master device needs to take in account
2315  * when forwarding to this dev
2316  */
netdev_get_fwd_headroom(struct net_device * dev)2317 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2318 {
2319 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2320 }
2321 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2322 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2323 {
2324 	if (dev->netdev_ops->ndo_set_rx_headroom)
2325 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2326 }
2327 
2328 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2329 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2330 {
2331 	netdev_set_rx_headroom(dev, -1);
2332 }
2333 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2334 static inline void *netdev_get_ml_priv(struct net_device *dev,
2335 				       enum netdev_ml_priv_type type)
2336 {
2337 	if (dev->ml_priv_type != type)
2338 		return NULL;
2339 
2340 	return dev->ml_priv;
2341 }
2342 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2343 static inline void netdev_set_ml_priv(struct net_device *dev,
2344 				      void *ml_priv,
2345 				      enum netdev_ml_priv_type type)
2346 {
2347 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2348 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2349 	     dev->ml_priv_type, type);
2350 	WARN(!dev->ml_priv_type && dev->ml_priv,
2351 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2352 
2353 	dev->ml_priv = ml_priv;
2354 	dev->ml_priv_type = type;
2355 }
2356 
2357 /*
2358  * Net namespace inlines
2359  */
2360 static inline
dev_net(const struct net_device * dev)2361 struct net *dev_net(const struct net_device *dev)
2362 {
2363 	return read_pnet(&dev->nd_net);
2364 }
2365 
2366 static inline
dev_net_set(struct net_device * dev,struct net * net)2367 void dev_net_set(struct net_device *dev, struct net *net)
2368 {
2369 	write_pnet(&dev->nd_net, net);
2370 }
2371 
2372 /**
2373  *	netdev_priv - access network device private data
2374  *	@dev: network device
2375  *
2376  * Get network device private data
2377  */
netdev_priv(const struct net_device * dev)2378 static inline void *netdev_priv(const struct net_device *dev)
2379 {
2380 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2381 }
2382 
2383 /* Set the sysfs physical device reference for the network logical device
2384  * if set prior to registration will cause a symlink during initialization.
2385  */
2386 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2387 
2388 /* Set the sysfs device type for the network logical device to allow
2389  * fine-grained identification of different network device types. For
2390  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2391  */
2392 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2393 
2394 /* Default NAPI poll() weight
2395  * Device drivers are strongly advised to not use bigger value
2396  */
2397 #define NAPI_POLL_WEIGHT 64
2398 
2399 /**
2400  *	netif_napi_add - initialize a NAPI context
2401  *	@dev:  network device
2402  *	@napi: NAPI context
2403  *	@poll: polling function
2404  *	@weight: default weight
2405  *
2406  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2407  * *any* of the other NAPI-related functions.
2408  */
2409 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2410 		    int (*poll)(struct napi_struct *, int), int weight);
2411 
2412 /**
2413  *	netif_tx_napi_add - initialize a NAPI context
2414  *	@dev:  network device
2415  *	@napi: NAPI context
2416  *	@poll: polling function
2417  *	@weight: default weight
2418  *
2419  * This variant of netif_napi_add() should be used from drivers using NAPI
2420  * to exclusively poll a TX queue.
2421  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2422  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2423 static inline void netif_tx_napi_add(struct net_device *dev,
2424 				     struct napi_struct *napi,
2425 				     int (*poll)(struct napi_struct *, int),
2426 				     int weight)
2427 {
2428 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2429 	netif_napi_add(dev, napi, poll, weight);
2430 }
2431 
2432 /**
2433  *  __netif_napi_del - remove a NAPI context
2434  *  @napi: NAPI context
2435  *
2436  * Warning: caller must observe RCU grace period before freeing memory
2437  * containing @napi. Drivers might want to call this helper to combine
2438  * all the needed RCU grace periods into a single one.
2439  */
2440 void __netif_napi_del(struct napi_struct *napi);
2441 
2442 /**
2443  *  netif_napi_del - remove a NAPI context
2444  *  @napi: NAPI context
2445  *
2446  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2447  */
netif_napi_del(struct napi_struct * napi)2448 static inline void netif_napi_del(struct napi_struct *napi)
2449 {
2450 	__netif_napi_del(napi);
2451 	synchronize_net();
2452 }
2453 
2454 struct napi_gro_cb {
2455 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2456 	void	*frag0;
2457 
2458 	/* Length of frag0. */
2459 	unsigned int frag0_len;
2460 
2461 	/* This indicates where we are processing relative to skb->data. */
2462 	int	data_offset;
2463 
2464 	/* This is non-zero if the packet cannot be merged with the new skb. */
2465 	u16	flush;
2466 
2467 	/* Save the IP ID here and check when we get to the transport layer */
2468 	u16	flush_id;
2469 
2470 	/* Number of segments aggregated. */
2471 	u16	count;
2472 
2473 	/* Start offset for remote checksum offload */
2474 	u16	gro_remcsum_start;
2475 
2476 	/* jiffies when first packet was created/queued */
2477 	unsigned long age;
2478 
2479 	/* Used in ipv6_gro_receive() and foo-over-udp */
2480 	u16	proto;
2481 
2482 	/* This is non-zero if the packet may be of the same flow. */
2483 	u8	same_flow:1;
2484 
2485 	/* Used in tunnel GRO receive */
2486 	u8	encap_mark:1;
2487 
2488 	/* GRO checksum is valid */
2489 	u8	csum_valid:1;
2490 
2491 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2492 	u8	csum_cnt:3;
2493 
2494 	/* Free the skb? */
2495 	u8	free:2;
2496 #define NAPI_GRO_FREE		  1
2497 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2498 
2499 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2500 	u8	is_ipv6:1;
2501 
2502 	/* Used in GRE, set in fou/gue_gro_receive */
2503 	u8	is_fou:1;
2504 
2505 	/* Used to determine if flush_id can be ignored */
2506 	u8	is_atomic:1;
2507 
2508 	/* Number of gro_receive callbacks this packet already went through */
2509 	u8 recursion_counter:4;
2510 
2511 	/* GRO is done by frag_list pointer chaining. */
2512 	u8	is_flist:1;
2513 
2514 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2515 	__wsum	csum;
2516 
2517 	/* used in skb_gro_receive() slow path */
2518 	struct sk_buff *last;
2519 };
2520 
2521 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2522 
2523 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2524 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2525 {
2526 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2527 }
2528 
2529 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2530 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2531 					       struct list_head *head,
2532 					       struct sk_buff *skb)
2533 {
2534 	if (unlikely(gro_recursion_inc_test(skb))) {
2535 		NAPI_GRO_CB(skb)->flush |= 1;
2536 		return NULL;
2537 	}
2538 
2539 	return cb(head, skb);
2540 }
2541 
2542 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2543 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2544 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2545 						  struct sock *sk,
2546 						  struct list_head *head,
2547 						  struct sk_buff *skb)
2548 {
2549 	if (unlikely(gro_recursion_inc_test(skb))) {
2550 		NAPI_GRO_CB(skb)->flush |= 1;
2551 		return NULL;
2552 	}
2553 
2554 	return cb(sk, head, skb);
2555 }
2556 
2557 struct packet_type {
2558 	__be16			type;	/* This is really htons(ether_type). */
2559 	bool			ignore_outgoing;
2560 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2561 	int			(*func) (struct sk_buff *,
2562 					 struct net_device *,
2563 					 struct packet_type *,
2564 					 struct net_device *);
2565 	void			(*list_func) (struct list_head *,
2566 					      struct packet_type *,
2567 					      struct net_device *);
2568 	bool			(*id_match)(struct packet_type *ptype,
2569 					    struct sock *sk);
2570 	struct net		*af_packet_net;
2571 	void			*af_packet_priv;
2572 	struct list_head	list;
2573 };
2574 
2575 struct offload_callbacks {
2576 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2577 						netdev_features_t features);
2578 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2579 						struct sk_buff *skb);
2580 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2581 };
2582 
2583 struct packet_offload {
2584 	__be16			 type;	/* This is really htons(ether_type). */
2585 	u16			 priority;
2586 	struct offload_callbacks callbacks;
2587 	struct list_head	 list;
2588 };
2589 
2590 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2591 struct pcpu_sw_netstats {
2592 	u64     rx_packets;
2593 	u64     rx_bytes;
2594 	u64     tx_packets;
2595 	u64     tx_bytes;
2596 	struct u64_stats_sync   syncp;
2597 } __aligned(4 * sizeof(u64));
2598 
2599 struct pcpu_lstats {
2600 	u64_stats_t packets;
2601 	u64_stats_t bytes;
2602 	struct u64_stats_sync syncp;
2603 } __aligned(2 * sizeof(u64));
2604 
2605 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2606 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2607 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2608 {
2609 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2610 
2611 	u64_stats_update_begin(&tstats->syncp);
2612 	tstats->rx_bytes += len;
2613 	tstats->rx_packets++;
2614 	u64_stats_update_end(&tstats->syncp);
2615 }
2616 
dev_lstats_add(struct net_device * dev,unsigned int len)2617 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2618 {
2619 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2620 
2621 	u64_stats_update_begin(&lstats->syncp);
2622 	u64_stats_add(&lstats->bytes, len);
2623 	u64_stats_inc(&lstats->packets);
2624 	u64_stats_update_end(&lstats->syncp);
2625 }
2626 
2627 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2628 ({									\
2629 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2630 	if (pcpu_stats)	{						\
2631 		int __cpu;						\
2632 		for_each_possible_cpu(__cpu) {				\
2633 			typeof(type) *stat;				\
2634 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2635 			u64_stats_init(&stat->syncp);			\
2636 		}							\
2637 	}								\
2638 	pcpu_stats;							\
2639 })
2640 
2641 #define netdev_alloc_pcpu_stats(type)					\
2642 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2643 
2644 enum netdev_lag_tx_type {
2645 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2646 	NETDEV_LAG_TX_TYPE_RANDOM,
2647 	NETDEV_LAG_TX_TYPE_BROADCAST,
2648 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2649 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2650 	NETDEV_LAG_TX_TYPE_HASH,
2651 };
2652 
2653 enum netdev_lag_hash {
2654 	NETDEV_LAG_HASH_NONE,
2655 	NETDEV_LAG_HASH_L2,
2656 	NETDEV_LAG_HASH_L34,
2657 	NETDEV_LAG_HASH_L23,
2658 	NETDEV_LAG_HASH_E23,
2659 	NETDEV_LAG_HASH_E34,
2660 	NETDEV_LAG_HASH_UNKNOWN,
2661 };
2662 
2663 struct netdev_lag_upper_info {
2664 	enum netdev_lag_tx_type tx_type;
2665 	enum netdev_lag_hash hash_type;
2666 };
2667 
2668 struct netdev_lag_lower_state_info {
2669 	u8 link_up : 1,
2670 	   tx_enabled : 1;
2671 };
2672 
2673 #include <linux/notifier.h>
2674 
2675 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2676  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2677  * adding new types.
2678  */
2679 enum netdev_cmd {
2680 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2681 	NETDEV_DOWN,
2682 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2683 				   detected a hardware crash and restarted
2684 				   - we can use this eg to kick tcp sessions
2685 				   once done */
2686 	NETDEV_CHANGE,		/* Notify device state change */
2687 	NETDEV_REGISTER,
2688 	NETDEV_UNREGISTER,
2689 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2690 	NETDEV_CHANGEADDR,	/* notify after the address change */
2691 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2692 	NETDEV_GOING_DOWN,
2693 	NETDEV_CHANGENAME,
2694 	NETDEV_FEAT_CHANGE,
2695 	NETDEV_BONDING_FAILOVER,
2696 	NETDEV_PRE_UP,
2697 	NETDEV_PRE_TYPE_CHANGE,
2698 	NETDEV_POST_TYPE_CHANGE,
2699 	NETDEV_POST_INIT,
2700 	NETDEV_RELEASE,
2701 	NETDEV_NOTIFY_PEERS,
2702 	NETDEV_JOIN,
2703 	NETDEV_CHANGEUPPER,
2704 	NETDEV_RESEND_IGMP,
2705 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2706 	NETDEV_CHANGEINFODATA,
2707 	NETDEV_BONDING_INFO,
2708 	NETDEV_PRECHANGEUPPER,
2709 	NETDEV_CHANGELOWERSTATE,
2710 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2711 	NETDEV_UDP_TUNNEL_DROP_INFO,
2712 	NETDEV_CHANGE_TX_QUEUE_LEN,
2713 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2714 	NETDEV_CVLAN_FILTER_DROP_INFO,
2715 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2716 	NETDEV_SVLAN_FILTER_DROP_INFO,
2717 };
2718 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2719 
2720 int register_netdevice_notifier(struct notifier_block *nb);
2721 int unregister_netdevice_notifier(struct notifier_block *nb);
2722 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2723 int unregister_netdevice_notifier_net(struct net *net,
2724 				      struct notifier_block *nb);
2725 int register_netdevice_notifier_dev_net(struct net_device *dev,
2726 					struct notifier_block *nb,
2727 					struct netdev_net_notifier *nn);
2728 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2729 					  struct notifier_block *nb,
2730 					  struct netdev_net_notifier *nn);
2731 
2732 struct netdev_notifier_info {
2733 	struct net_device	*dev;
2734 	struct netlink_ext_ack	*extack;
2735 };
2736 
2737 struct netdev_notifier_info_ext {
2738 	struct netdev_notifier_info info; /* must be first */
2739 	union {
2740 		u32 mtu;
2741 	} ext;
2742 };
2743 
2744 struct netdev_notifier_change_info {
2745 	struct netdev_notifier_info info; /* must be first */
2746 	unsigned int flags_changed;
2747 };
2748 
2749 struct netdev_notifier_changeupper_info {
2750 	struct netdev_notifier_info info; /* must be first */
2751 	struct net_device *upper_dev; /* new upper dev */
2752 	bool master; /* is upper dev master */
2753 	bool linking; /* is the notification for link or unlink */
2754 	void *upper_info; /* upper dev info */
2755 };
2756 
2757 struct netdev_notifier_changelowerstate_info {
2758 	struct netdev_notifier_info info; /* must be first */
2759 	void *lower_state_info; /* is lower dev state */
2760 };
2761 
2762 struct netdev_notifier_pre_changeaddr_info {
2763 	struct netdev_notifier_info info; /* must be first */
2764 	const unsigned char *dev_addr;
2765 };
2766 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2767 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2768 					     struct net_device *dev)
2769 {
2770 	info->dev = dev;
2771 	info->extack = NULL;
2772 }
2773 
2774 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2775 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2776 {
2777 	return info->dev;
2778 }
2779 
2780 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2781 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2782 {
2783 	return info->extack;
2784 }
2785 
2786 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2787 
2788 
2789 extern rwlock_t				dev_base_lock;		/* Device list lock */
2790 
2791 #define for_each_netdev(net, d)		\
2792 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2793 #define for_each_netdev_reverse(net, d)	\
2794 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2795 #define for_each_netdev_rcu(net, d)		\
2796 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2797 #define for_each_netdev_safe(net, d, n)	\
2798 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2799 #define for_each_netdev_continue(net, d)		\
2800 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2801 #define for_each_netdev_continue_reverse(net, d)		\
2802 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2803 						     dev_list)
2804 #define for_each_netdev_continue_rcu(net, d)		\
2805 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2807 		for_each_netdev_rcu(&init_net, slave)	\
2808 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2809 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2810 
next_net_device(struct net_device * dev)2811 static inline struct net_device *next_net_device(struct net_device *dev)
2812 {
2813 	struct list_head *lh;
2814 	struct net *net;
2815 
2816 	net = dev_net(dev);
2817 	lh = dev->dev_list.next;
2818 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2819 }
2820 
next_net_device_rcu(struct net_device * dev)2821 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2822 {
2823 	struct list_head *lh;
2824 	struct net *net;
2825 
2826 	net = dev_net(dev);
2827 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2828 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2829 }
2830 
first_net_device(struct net * net)2831 static inline struct net_device *first_net_device(struct net *net)
2832 {
2833 	return list_empty(&net->dev_base_head) ? NULL :
2834 		net_device_entry(net->dev_base_head.next);
2835 }
2836 
first_net_device_rcu(struct net * net)2837 static inline struct net_device *first_net_device_rcu(struct net *net)
2838 {
2839 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2840 
2841 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2842 }
2843 
2844 int netdev_boot_setup_check(struct net_device *dev);
2845 unsigned long netdev_boot_base(const char *prefix, int unit);
2846 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2847 				       const char *hwaddr);
2848 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2849 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2850 void dev_add_pack(struct packet_type *pt);
2851 void dev_remove_pack(struct packet_type *pt);
2852 void __dev_remove_pack(struct packet_type *pt);
2853 void dev_add_offload(struct packet_offload *po);
2854 void dev_remove_offload(struct packet_offload *po);
2855 
2856 int dev_get_iflink(const struct net_device *dev);
2857 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2858 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2859 				      unsigned short mask);
2860 struct net_device *dev_get_by_name(struct net *net, const char *name);
2861 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2862 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2863 int dev_alloc_name(struct net_device *dev, const char *name);
2864 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2865 void dev_close(struct net_device *dev);
2866 void dev_close_many(struct list_head *head, bool unlink);
2867 void dev_disable_lro(struct net_device *dev);
2868 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2869 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2870 		     struct net_device *sb_dev);
2871 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2872 		       struct net_device *sb_dev);
2873 
2874 int dev_queue_xmit(struct sk_buff *skb);
2875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2876 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2877 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2878 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2879 {
2880 	int ret;
2881 
2882 	ret = __dev_direct_xmit(skb, queue_id);
2883 	if (!dev_xmit_complete(ret))
2884 		kfree_skb(skb);
2885 	return ret;
2886 }
2887 
2888 int register_netdevice(struct net_device *dev);
2889 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2890 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2891 static inline void unregister_netdevice(struct net_device *dev)
2892 {
2893 	unregister_netdevice_queue(dev, NULL);
2894 }
2895 
2896 int netdev_refcnt_read(const struct net_device *dev);
2897 void free_netdev(struct net_device *dev);
2898 void netdev_freemem(struct net_device *dev);
2899 int init_dummy_netdev(struct net_device *dev);
2900 
2901 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2902 					 struct sk_buff *skb,
2903 					 bool all_slaves);
2904 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2905 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2906 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2907 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2908 int netdev_get_name(struct net *net, char *name, int ifindex);
2909 int dev_restart(struct net_device *dev);
2910 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2911 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2912 
skb_gro_offset(const struct sk_buff * skb)2913 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2914 {
2915 	return NAPI_GRO_CB(skb)->data_offset;
2916 }
2917 
skb_gro_len(const struct sk_buff * skb)2918 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2919 {
2920 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2921 }
2922 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2923 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2924 {
2925 	NAPI_GRO_CB(skb)->data_offset += len;
2926 }
2927 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2928 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2929 					unsigned int offset)
2930 {
2931 	return NAPI_GRO_CB(skb)->frag0 + offset;
2932 }
2933 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2934 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2935 {
2936 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2937 }
2938 
skb_gro_frag0_invalidate(struct sk_buff * skb)2939 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2940 {
2941 	NAPI_GRO_CB(skb)->frag0 = NULL;
2942 	NAPI_GRO_CB(skb)->frag0_len = 0;
2943 }
2944 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2945 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2946 					unsigned int offset)
2947 {
2948 	if (!pskb_may_pull(skb, hlen))
2949 		return NULL;
2950 
2951 	skb_gro_frag0_invalidate(skb);
2952 	return skb->data + offset;
2953 }
2954 
skb_gro_network_header(struct sk_buff * skb)2955 static inline void *skb_gro_network_header(struct sk_buff *skb)
2956 {
2957 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2958 	       skb_network_offset(skb);
2959 }
2960 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2961 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2962 					const void *start, unsigned int len)
2963 {
2964 	if (NAPI_GRO_CB(skb)->csum_valid)
2965 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2966 						  csum_partial(start, len, 0));
2967 }
2968 
2969 /* GRO checksum functions. These are logical equivalents of the normal
2970  * checksum functions (in skbuff.h) except that they operate on the GRO
2971  * offsets and fields in sk_buff.
2972  */
2973 
2974 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2975 
skb_at_gro_remcsum_start(struct sk_buff * skb)2976 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2977 {
2978 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2979 }
2980 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2981 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2982 						      bool zero_okay,
2983 						      __sum16 check)
2984 {
2985 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2986 		skb_checksum_start_offset(skb) <
2987 		 skb_gro_offset(skb)) &&
2988 		!skb_at_gro_remcsum_start(skb) &&
2989 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2990 		(!zero_okay || check));
2991 }
2992 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2993 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2994 							   __wsum psum)
2995 {
2996 	if (NAPI_GRO_CB(skb)->csum_valid &&
2997 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2998 		return 0;
2999 
3000 	NAPI_GRO_CB(skb)->csum = psum;
3001 
3002 	return __skb_gro_checksum_complete(skb);
3003 }
3004 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)3005 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3006 {
3007 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3008 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3009 		NAPI_GRO_CB(skb)->csum_cnt--;
3010 	} else {
3011 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3012 		 * verified a new top level checksum or an encapsulated one
3013 		 * during GRO. This saves work if we fallback to normal path.
3014 		 */
3015 		__skb_incr_checksum_unnecessary(skb);
3016 	}
3017 }
3018 
3019 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3020 				    compute_pseudo)			\
3021 ({									\
3022 	__sum16 __ret = 0;						\
3023 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3024 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3025 				compute_pseudo(skb, proto));		\
3026 	if (!__ret)							\
3027 		skb_gro_incr_csum_unnecessary(skb);			\
3028 	__ret;								\
3029 })
3030 
3031 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3032 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3033 
3034 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3035 					     compute_pseudo)		\
3036 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3037 
3038 #define skb_gro_checksum_simple_validate(skb)				\
3039 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3040 
__skb_gro_checksum_convert_check(struct sk_buff * skb)3041 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3042 {
3043 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3044 		!NAPI_GRO_CB(skb)->csum_valid);
3045 }
3046 
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3047 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3048 					      __wsum pseudo)
3049 {
3050 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3051 	NAPI_GRO_CB(skb)->csum_valid = 1;
3052 }
3053 
3054 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3055 do {									\
3056 	if (__skb_gro_checksum_convert_check(skb))			\
3057 		__skb_gro_checksum_convert(skb, 			\
3058 					   compute_pseudo(skb, proto));	\
3059 } while (0)
3060 
3061 struct gro_remcsum {
3062 	int offset;
3063 	__wsum delta;
3064 };
3065 
skb_gro_remcsum_init(struct gro_remcsum * grc)3066 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3067 {
3068 	grc->offset = 0;
3069 	grc->delta = 0;
3070 }
3071 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3072 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3073 					    unsigned int off, size_t hdrlen,
3074 					    int start, int offset,
3075 					    struct gro_remcsum *grc,
3076 					    bool nopartial)
3077 {
3078 	__wsum delta;
3079 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3080 
3081 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3082 
3083 	if (!nopartial) {
3084 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3085 		return ptr;
3086 	}
3087 
3088 	ptr = skb_gro_header_fast(skb, off);
3089 	if (skb_gro_header_hard(skb, off + plen)) {
3090 		ptr = skb_gro_header_slow(skb, off + plen, off);
3091 		if (!ptr)
3092 			return NULL;
3093 	}
3094 
3095 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3096 			       start, offset);
3097 
3098 	/* Adjust skb->csum since we changed the packet */
3099 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3100 
3101 	grc->offset = off + hdrlen + offset;
3102 	grc->delta = delta;
3103 
3104 	return ptr;
3105 }
3106 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3107 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3108 					   struct gro_remcsum *grc)
3109 {
3110 	void *ptr;
3111 	size_t plen = grc->offset + sizeof(u16);
3112 
3113 	if (!grc->delta)
3114 		return;
3115 
3116 	ptr = skb_gro_header_fast(skb, grc->offset);
3117 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3118 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3119 		if (!ptr)
3120 			return;
3121 	}
3122 
3123 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3124 }
3125 
3126 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3127 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3128 {
3129 	if (PTR_ERR(pp) != -EINPROGRESS)
3130 		NAPI_GRO_CB(skb)->flush |= flush;
3131 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3132 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3133 					       struct sk_buff *pp,
3134 					       int flush,
3135 					       struct gro_remcsum *grc)
3136 {
3137 	if (PTR_ERR(pp) != -EINPROGRESS) {
3138 		NAPI_GRO_CB(skb)->flush |= flush;
3139 		skb_gro_remcsum_cleanup(skb, grc);
3140 		skb->remcsum_offload = 0;
3141 	}
3142 }
3143 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3144 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3145 {
3146 	NAPI_GRO_CB(skb)->flush |= flush;
3147 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3148 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3149 					       struct sk_buff *pp,
3150 					       int flush,
3151 					       struct gro_remcsum *grc)
3152 {
3153 	NAPI_GRO_CB(skb)->flush |= flush;
3154 	skb_gro_remcsum_cleanup(skb, grc);
3155 	skb->remcsum_offload = 0;
3156 }
3157 #endif
3158 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3159 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3160 				  unsigned short type,
3161 				  const void *daddr, const void *saddr,
3162 				  unsigned int len)
3163 {
3164 	if (!dev->header_ops || !dev->header_ops->create)
3165 		return 0;
3166 
3167 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3168 }
3169 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3170 static inline int dev_parse_header(const struct sk_buff *skb,
3171 				   unsigned char *haddr)
3172 {
3173 	const struct net_device *dev = skb->dev;
3174 
3175 	if (!dev->header_ops || !dev->header_ops->parse)
3176 		return 0;
3177 	return dev->header_ops->parse(skb, haddr);
3178 }
3179 
dev_parse_header_protocol(const struct sk_buff * skb)3180 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3181 {
3182 	const struct net_device *dev = skb->dev;
3183 
3184 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3185 		return 0;
3186 	return dev->header_ops->parse_protocol(skb);
3187 }
3188 
3189 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3190 static inline bool dev_validate_header(const struct net_device *dev,
3191 				       char *ll_header, int len)
3192 {
3193 	if (likely(len >= dev->hard_header_len))
3194 		return true;
3195 	if (len < dev->min_header_len)
3196 		return false;
3197 
3198 	if (capable(CAP_SYS_RAWIO)) {
3199 		memset(ll_header + len, 0, dev->hard_header_len - len);
3200 		return true;
3201 	}
3202 
3203 	if (dev->header_ops && dev->header_ops->validate)
3204 		return dev->header_ops->validate(ll_header, len);
3205 
3206 	return false;
3207 }
3208 
dev_has_header(const struct net_device * dev)3209 static inline bool dev_has_header(const struct net_device *dev)
3210 {
3211 	return dev->header_ops && dev->header_ops->create;
3212 }
3213 
3214 #ifdef CONFIG_NET_FLOW_LIMIT
3215 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3216 struct sd_flow_limit {
3217 	u64			count;
3218 	unsigned int		num_buckets;
3219 	unsigned int		history_head;
3220 	u16			history[FLOW_LIMIT_HISTORY];
3221 	u8			buckets[];
3222 };
3223 
3224 extern int netdev_flow_limit_table_len;
3225 #endif /* CONFIG_NET_FLOW_LIMIT */
3226 
3227 /*
3228  * Incoming packets are placed on per-CPU queues
3229  */
3230 struct softnet_data {
3231 	struct list_head	poll_list;
3232 	struct sk_buff_head	process_queue;
3233 
3234 	/* stats */
3235 	unsigned int		processed;
3236 	unsigned int		time_squeeze;
3237 	unsigned int		received_rps;
3238 #ifdef CONFIG_RPS
3239 	struct softnet_data	*rps_ipi_list;
3240 #endif
3241 #ifdef CONFIG_NET_FLOW_LIMIT
3242 	struct sd_flow_limit __rcu *flow_limit;
3243 #endif
3244 	struct Qdisc		*output_queue;
3245 	struct Qdisc		**output_queue_tailp;
3246 	struct sk_buff		*completion_queue;
3247 #ifdef CONFIG_XFRM_OFFLOAD
3248 	struct sk_buff_head	xfrm_backlog;
3249 #endif
3250 	/* written and read only by owning cpu: */
3251 	struct {
3252 		u16 recursion;
3253 		u8  more;
3254 	} xmit;
3255 #ifdef CONFIG_RPS
3256 	/* input_queue_head should be written by cpu owning this struct,
3257 	 * and only read by other cpus. Worth using a cache line.
3258 	 */
3259 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3260 
3261 	/* Elements below can be accessed between CPUs for RPS/RFS */
3262 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3263 	struct softnet_data	*rps_ipi_next;
3264 	unsigned int		cpu;
3265 	unsigned int		input_queue_tail;
3266 #endif
3267 	unsigned int		dropped;
3268 	struct sk_buff_head	input_pkt_queue;
3269 	struct napi_struct	backlog;
3270 
3271 };
3272 
input_queue_head_incr(struct softnet_data * sd)3273 static inline void input_queue_head_incr(struct softnet_data *sd)
3274 {
3275 #ifdef CONFIG_RPS
3276 	sd->input_queue_head++;
3277 #endif
3278 }
3279 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3280 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3281 					      unsigned int *qtail)
3282 {
3283 #ifdef CONFIG_RPS
3284 	*qtail = ++sd->input_queue_tail;
3285 #endif
3286 }
3287 
3288 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3289 
dev_recursion_level(void)3290 static inline int dev_recursion_level(void)
3291 {
3292 	return this_cpu_read(softnet_data.xmit.recursion);
3293 }
3294 
3295 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3296 static inline bool dev_xmit_recursion(void)
3297 {
3298 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3299 			XMIT_RECURSION_LIMIT);
3300 }
3301 
dev_xmit_recursion_inc(void)3302 static inline void dev_xmit_recursion_inc(void)
3303 {
3304 	__this_cpu_inc(softnet_data.xmit.recursion);
3305 }
3306 
dev_xmit_recursion_dec(void)3307 static inline void dev_xmit_recursion_dec(void)
3308 {
3309 	__this_cpu_dec(softnet_data.xmit.recursion);
3310 }
3311 
3312 void __netif_schedule(struct Qdisc *q);
3313 void netif_schedule_queue(struct netdev_queue *txq);
3314 
netif_tx_schedule_all(struct net_device * dev)3315 static inline void netif_tx_schedule_all(struct net_device *dev)
3316 {
3317 	unsigned int i;
3318 
3319 	for (i = 0; i < dev->num_tx_queues; i++)
3320 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3321 }
3322 
netif_tx_start_queue(struct netdev_queue * dev_queue)3323 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3324 {
3325 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3326 }
3327 
3328 /**
3329  *	netif_start_queue - allow transmit
3330  *	@dev: network device
3331  *
3332  *	Allow upper layers to call the device hard_start_xmit routine.
3333  */
netif_start_queue(struct net_device * dev)3334 static inline void netif_start_queue(struct net_device *dev)
3335 {
3336 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3337 }
3338 
netif_tx_start_all_queues(struct net_device * dev)3339 static inline void netif_tx_start_all_queues(struct net_device *dev)
3340 {
3341 	unsigned int i;
3342 
3343 	for (i = 0; i < dev->num_tx_queues; i++) {
3344 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3345 		netif_tx_start_queue(txq);
3346 	}
3347 }
3348 
3349 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3350 
3351 /**
3352  *	netif_wake_queue - restart transmit
3353  *	@dev: network device
3354  *
3355  *	Allow upper layers to call the device hard_start_xmit routine.
3356  *	Used for flow control when transmit resources are available.
3357  */
netif_wake_queue(struct net_device * dev)3358 static inline void netif_wake_queue(struct net_device *dev)
3359 {
3360 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3361 }
3362 
netif_tx_wake_all_queues(struct net_device * dev)3363 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3364 {
3365 	unsigned int i;
3366 
3367 	for (i = 0; i < dev->num_tx_queues; i++) {
3368 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3369 		netif_tx_wake_queue(txq);
3370 	}
3371 }
3372 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3373 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3374 {
3375 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3376 }
3377 
3378 /**
3379  *	netif_stop_queue - stop transmitted packets
3380  *	@dev: network device
3381  *
3382  *	Stop upper layers calling the device hard_start_xmit routine.
3383  *	Used for flow control when transmit resources are unavailable.
3384  */
netif_stop_queue(struct net_device * dev)3385 static inline void netif_stop_queue(struct net_device *dev)
3386 {
3387 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3388 }
3389 
3390 void netif_tx_stop_all_queues(struct net_device *dev);
3391 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3392 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3393 {
3394 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3395 }
3396 
3397 /**
3398  *	netif_queue_stopped - test if transmit queue is flowblocked
3399  *	@dev: network device
3400  *
3401  *	Test if transmit queue on device is currently unable to send.
3402  */
netif_queue_stopped(const struct net_device * dev)3403 static inline bool netif_queue_stopped(const struct net_device *dev)
3404 {
3405 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3406 }
3407 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3408 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3409 {
3410 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3411 }
3412 
3413 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3414 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3415 {
3416 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3417 }
3418 
3419 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3420 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3421 {
3422 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3423 }
3424 
3425 /**
3426  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3427  *	@dev_queue: pointer to transmit queue
3428  *
3429  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3430  * to give appropriate hint to the CPU.
3431  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3432 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3433 {
3434 #ifdef CONFIG_BQL
3435 	prefetchw(&dev_queue->dql.num_queued);
3436 #endif
3437 }
3438 
3439 /**
3440  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3441  *	@dev_queue: pointer to transmit queue
3442  *
3443  * BQL enabled drivers might use this helper in their TX completion path,
3444  * to give appropriate hint to the CPU.
3445  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3446 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3447 {
3448 #ifdef CONFIG_BQL
3449 	prefetchw(&dev_queue->dql.limit);
3450 #endif
3451 }
3452 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3453 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3454 					unsigned int bytes)
3455 {
3456 #ifdef CONFIG_BQL
3457 	dql_queued(&dev_queue->dql, bytes);
3458 
3459 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3460 		return;
3461 
3462 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3463 
3464 	/*
3465 	 * The XOFF flag must be set before checking the dql_avail below,
3466 	 * because in netdev_tx_completed_queue we update the dql_completed
3467 	 * before checking the XOFF flag.
3468 	 */
3469 	smp_mb();
3470 
3471 	/* check again in case another CPU has just made room avail */
3472 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3473 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3474 #endif
3475 }
3476 
3477 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3478  * that they should not test BQL status themselves.
3479  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3480  * skb of a batch.
3481  * Returns true if the doorbell must be used to kick the NIC.
3482  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3483 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3484 					  unsigned int bytes,
3485 					  bool xmit_more)
3486 {
3487 	if (xmit_more) {
3488 #ifdef CONFIG_BQL
3489 		dql_queued(&dev_queue->dql, bytes);
3490 #endif
3491 		return netif_tx_queue_stopped(dev_queue);
3492 	}
3493 	netdev_tx_sent_queue(dev_queue, bytes);
3494 	return true;
3495 }
3496 
3497 /**
3498  * 	netdev_sent_queue - report the number of bytes queued to hardware
3499  * 	@dev: network device
3500  * 	@bytes: number of bytes queued to the hardware device queue
3501  *
3502  * 	Report the number of bytes queued for sending/completion to the network
3503  * 	device hardware queue. @bytes should be a good approximation and should
3504  * 	exactly match netdev_completed_queue() @bytes
3505  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3506 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3507 {
3508 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3509 }
3510 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3511 static inline bool __netdev_sent_queue(struct net_device *dev,
3512 				       unsigned int bytes,
3513 				       bool xmit_more)
3514 {
3515 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3516 				      xmit_more);
3517 }
3518 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3519 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3520 					     unsigned int pkts, unsigned int bytes)
3521 {
3522 #ifdef CONFIG_BQL
3523 	if (unlikely(!bytes))
3524 		return;
3525 
3526 	dql_completed(&dev_queue->dql, bytes);
3527 
3528 	/*
3529 	 * Without the memory barrier there is a small possiblity that
3530 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3531 	 * be stopped forever
3532 	 */
3533 	smp_mb();
3534 
3535 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3536 		return;
3537 
3538 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3539 		netif_schedule_queue(dev_queue);
3540 #endif
3541 }
3542 
3543 /**
3544  * 	netdev_completed_queue - report bytes and packets completed by device
3545  * 	@dev: network device
3546  * 	@pkts: actual number of packets sent over the medium
3547  * 	@bytes: actual number of bytes sent over the medium
3548  *
3549  * 	Report the number of bytes and packets transmitted by the network device
3550  * 	hardware queue over the physical medium, @bytes must exactly match the
3551  * 	@bytes amount passed to netdev_sent_queue()
3552  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3553 static inline void netdev_completed_queue(struct net_device *dev,
3554 					  unsigned int pkts, unsigned int bytes)
3555 {
3556 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3557 }
3558 
netdev_tx_reset_queue(struct netdev_queue * q)3559 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3560 {
3561 #ifdef CONFIG_BQL
3562 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3563 	dql_reset(&q->dql);
3564 #endif
3565 }
3566 
3567 /**
3568  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3569  * 	@dev_queue: network device
3570  *
3571  * 	Reset the bytes and packet count of a network device and clear the
3572  * 	software flow control OFF bit for this network device
3573  */
netdev_reset_queue(struct net_device * dev_queue)3574 static inline void netdev_reset_queue(struct net_device *dev_queue)
3575 {
3576 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3577 }
3578 
3579 /**
3580  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3581  * 	@dev: network device
3582  * 	@queue_index: given tx queue index
3583  *
3584  * 	Returns 0 if given tx queue index >= number of device tx queues,
3585  * 	otherwise returns the originally passed tx queue index.
3586  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3587 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3588 {
3589 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3590 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3591 				     dev->name, queue_index,
3592 				     dev->real_num_tx_queues);
3593 		return 0;
3594 	}
3595 
3596 	return queue_index;
3597 }
3598 
3599 /**
3600  *	netif_running - test if up
3601  *	@dev: network device
3602  *
3603  *	Test if the device has been brought up.
3604  */
netif_running(const struct net_device * dev)3605 static inline bool netif_running(const struct net_device *dev)
3606 {
3607 	return test_bit(__LINK_STATE_START, &dev->state);
3608 }
3609 
3610 /*
3611  * Routines to manage the subqueues on a device.  We only need start,
3612  * stop, and a check if it's stopped.  All other device management is
3613  * done at the overall netdevice level.
3614  * Also test the device if we're multiqueue.
3615  */
3616 
3617 /**
3618  *	netif_start_subqueue - allow sending packets on subqueue
3619  *	@dev: network device
3620  *	@queue_index: sub queue index
3621  *
3622  * Start individual transmit queue of a device with multiple transmit queues.
3623  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3624 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3625 {
3626 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3627 
3628 	netif_tx_start_queue(txq);
3629 }
3630 
3631 /**
3632  *	netif_stop_subqueue - stop sending packets on subqueue
3633  *	@dev: network device
3634  *	@queue_index: sub queue index
3635  *
3636  * Stop individual transmit queue of a device with multiple transmit queues.
3637  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3638 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3639 {
3640 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3641 	netif_tx_stop_queue(txq);
3642 }
3643 
3644 /**
3645  *	netif_subqueue_stopped - test status of subqueue
3646  *	@dev: network device
3647  *	@queue_index: sub queue index
3648  *
3649  * Check individual transmit queue of a device with multiple transmit queues.
3650  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3651 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3652 					    u16 queue_index)
3653 {
3654 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3655 
3656 	return netif_tx_queue_stopped(txq);
3657 }
3658 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3659 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3660 					  struct sk_buff *skb)
3661 {
3662 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3663 }
3664 
3665 /**
3666  *	netif_wake_subqueue - allow sending packets on subqueue
3667  *	@dev: network device
3668  *	@queue_index: sub queue index
3669  *
3670  * Resume individual transmit queue of a device with multiple transmit queues.
3671  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3672 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3673 {
3674 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3675 
3676 	netif_tx_wake_queue(txq);
3677 }
3678 
3679 #ifdef CONFIG_XPS
3680 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3681 			u16 index);
3682 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3683 			  u16 index, bool is_rxqs_map);
3684 
3685 /**
3686  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3687  *	@j: CPU/Rx queue index
3688  *	@mask: bitmask of all cpus/rx queues
3689  *	@nr_bits: number of bits in the bitmask
3690  *
3691  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3692  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3693 static inline bool netif_attr_test_mask(unsigned long j,
3694 					const unsigned long *mask,
3695 					unsigned int nr_bits)
3696 {
3697 	cpu_max_bits_warn(j, nr_bits);
3698 	return test_bit(j, mask);
3699 }
3700 
3701 /**
3702  *	netif_attr_test_online - Test for online CPU/Rx queue
3703  *	@j: CPU/Rx queue index
3704  *	@online_mask: bitmask for CPUs/Rx queues that are online
3705  *	@nr_bits: number of bits in the bitmask
3706  *
3707  * Returns true if a CPU/Rx queue is online.
3708  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3709 static inline bool netif_attr_test_online(unsigned long j,
3710 					  const unsigned long *online_mask,
3711 					  unsigned int nr_bits)
3712 {
3713 	cpu_max_bits_warn(j, nr_bits);
3714 
3715 	if (online_mask)
3716 		return test_bit(j, online_mask);
3717 
3718 	return (j < nr_bits);
3719 }
3720 
3721 /**
3722  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3723  *	@n: CPU/Rx queue index
3724  *	@srcp: the cpumask/Rx queue mask pointer
3725  *	@nr_bits: number of bits in the bitmask
3726  *
3727  * Returns >= nr_bits if no further CPUs/Rx queues set.
3728  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3729 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3730 					       unsigned int nr_bits)
3731 {
3732 	/* -1 is a legal arg here. */
3733 	if (n != -1)
3734 		cpu_max_bits_warn(n, nr_bits);
3735 
3736 	if (srcp)
3737 		return find_next_bit(srcp, nr_bits, n + 1);
3738 
3739 	return n + 1;
3740 }
3741 
3742 /**
3743  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3744  *	@n: CPU/Rx queue index
3745  *	@src1p: the first CPUs/Rx queues mask pointer
3746  *	@src2p: the second CPUs/Rx queues mask pointer
3747  *	@nr_bits: number of bits in the bitmask
3748  *
3749  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3750  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3751 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3752 					  const unsigned long *src2p,
3753 					  unsigned int nr_bits)
3754 {
3755 	/* -1 is a legal arg here. */
3756 	if (n != -1)
3757 		cpu_max_bits_warn(n, nr_bits);
3758 
3759 	if (src1p && src2p)
3760 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3761 	else if (src1p)
3762 		return find_next_bit(src1p, nr_bits, n + 1);
3763 	else if (src2p)
3764 		return find_next_bit(src2p, nr_bits, n + 1);
3765 
3766 	return n + 1;
3767 }
3768 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3769 static inline int netif_set_xps_queue(struct net_device *dev,
3770 				      const struct cpumask *mask,
3771 				      u16 index)
3772 {
3773 	return 0;
3774 }
3775 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3776 static inline int __netif_set_xps_queue(struct net_device *dev,
3777 					const unsigned long *mask,
3778 					u16 index, bool is_rxqs_map)
3779 {
3780 	return 0;
3781 }
3782 #endif
3783 
3784 /**
3785  *	netif_is_multiqueue - test if device has multiple transmit queues
3786  *	@dev: network device
3787  *
3788  * Check if device has multiple transmit queues
3789  */
netif_is_multiqueue(const struct net_device * dev)3790 static inline bool netif_is_multiqueue(const struct net_device *dev)
3791 {
3792 	return dev->num_tx_queues > 1;
3793 }
3794 
3795 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3796 
3797 #ifdef CONFIG_SYSFS
3798 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3799 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3800 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3801 						unsigned int rxqs)
3802 {
3803 	dev->real_num_rx_queues = rxqs;
3804 	return 0;
3805 }
3806 #endif
3807 
3808 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3809 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3810 {
3811 	return dev->_rx + rxq;
3812 }
3813 
3814 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3815 static inline unsigned int get_netdev_rx_queue_index(
3816 		struct netdev_rx_queue *queue)
3817 {
3818 	struct net_device *dev = queue->dev;
3819 	int index = queue - dev->_rx;
3820 
3821 	BUG_ON(index >= dev->num_rx_queues);
3822 	return index;
3823 }
3824 #endif
3825 
3826 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3827 int netif_get_num_default_rss_queues(void);
3828 
3829 enum skb_free_reason {
3830 	SKB_REASON_CONSUMED,
3831 	SKB_REASON_DROPPED,
3832 };
3833 
3834 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3835 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3836 
3837 /*
3838  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3839  * interrupt context or with hardware interrupts being disabled.
3840  * (in_irq() || irqs_disabled())
3841  *
3842  * We provide four helpers that can be used in following contexts :
3843  *
3844  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3845  *  replacing kfree_skb(skb)
3846  *
3847  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3848  *  Typically used in place of consume_skb(skb) in TX completion path
3849  *
3850  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3851  *  replacing kfree_skb(skb)
3852  *
3853  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3854  *  and consumed a packet. Used in place of consume_skb(skb)
3855  */
dev_kfree_skb_irq(struct sk_buff * skb)3856 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3857 {
3858 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3859 }
3860 
dev_consume_skb_irq(struct sk_buff * skb)3861 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3862 {
3863 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3864 }
3865 
dev_kfree_skb_any(struct sk_buff * skb)3866 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3867 {
3868 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3869 }
3870 
dev_consume_skb_any(struct sk_buff * skb)3871 static inline void dev_consume_skb_any(struct sk_buff *skb)
3872 {
3873 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3874 }
3875 
3876 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3877 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3878 int netif_rx(struct sk_buff *skb);
3879 int netif_rx_ni(struct sk_buff *skb);
3880 int netif_rx_any_context(struct sk_buff *skb);
3881 int netif_receive_skb(struct sk_buff *skb);
3882 int netif_receive_skb_core(struct sk_buff *skb);
3883 void netif_receive_skb_list(struct list_head *head);
3884 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3885 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3886 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3887 gro_result_t napi_gro_frags(struct napi_struct *napi);
3888 struct packet_offload *gro_find_receive_by_type(__be16 type);
3889 struct packet_offload *gro_find_complete_by_type(__be16 type);
3890 
napi_free_frags(struct napi_struct * napi)3891 static inline void napi_free_frags(struct napi_struct *napi)
3892 {
3893 	kfree_skb(napi->skb);
3894 	napi->skb = NULL;
3895 }
3896 
3897 bool netdev_is_rx_handler_busy(struct net_device *dev);
3898 int netdev_rx_handler_register(struct net_device *dev,
3899 			       rx_handler_func_t *rx_handler,
3900 			       void *rx_handler_data);
3901 void netdev_rx_handler_unregister(struct net_device *dev);
3902 
3903 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3904 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3905 {
3906 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3907 }
3908 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3909 		bool *need_copyout);
3910 int dev_ifconf(struct net *net, struct ifconf *, int);
3911 int dev_ethtool(struct net *net, struct ifreq *);
3912 unsigned int dev_get_flags(const struct net_device *);
3913 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3914 		       struct netlink_ext_ack *extack);
3915 int dev_change_flags(struct net_device *dev, unsigned int flags,
3916 		     struct netlink_ext_ack *extack);
3917 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3918 			unsigned int gchanges);
3919 int dev_change_name(struct net_device *, const char *);
3920 int dev_set_alias(struct net_device *, const char *, size_t);
3921 int dev_get_alias(const struct net_device *, char *, size_t);
3922 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3923 int __dev_set_mtu(struct net_device *, int);
3924 int dev_validate_mtu(struct net_device *dev, int mtu,
3925 		     struct netlink_ext_ack *extack);
3926 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3927 		    struct netlink_ext_ack *extack);
3928 int dev_set_mtu(struct net_device *, int);
3929 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3930 void dev_set_group(struct net_device *, int);
3931 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3932 			      struct netlink_ext_ack *extack);
3933 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3934 			struct netlink_ext_ack *extack);
3935 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3936 			     struct netlink_ext_ack *extack);
3937 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3938 int dev_change_carrier(struct net_device *, bool new_carrier);
3939 int dev_get_phys_port_id(struct net_device *dev,
3940 			 struct netdev_phys_item_id *ppid);
3941 int dev_get_phys_port_name(struct net_device *dev,
3942 			   char *name, size_t len);
3943 int dev_get_port_parent_id(struct net_device *dev,
3944 			   struct netdev_phys_item_id *ppid, bool recurse);
3945 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3946 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3947 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3948 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3949 				  u32 value);
3950 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3951 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3952 				    struct netdev_queue *txq, int *ret);
3953 
3954 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3955 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3956 		      int fd, int expected_fd, u32 flags);
3957 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3958 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3959 
3960 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3961 
3962 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3963 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3964 bool is_skb_forwardable(const struct net_device *dev,
3965 			const struct sk_buff *skb);
3966 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3967 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3968 					       struct sk_buff *skb)
3969 {
3970 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3971 	    unlikely(!is_skb_forwardable(dev, skb))) {
3972 		atomic_long_inc(&dev->rx_dropped);
3973 		kfree_skb(skb);
3974 		return NET_RX_DROP;
3975 	}
3976 
3977 	skb_scrub_packet(skb, true);
3978 	skb->priority = 0;
3979 	return 0;
3980 }
3981 
3982 bool dev_nit_active(struct net_device *dev);
3983 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3984 
3985 extern int		netdev_budget;
3986 extern unsigned int	netdev_budget_usecs;
3987 
3988 /* Called by rtnetlink.c:rtnl_unlock() */
3989 void netdev_run_todo(void);
3990 
3991 /**
3992  *	dev_put - release reference to device
3993  *	@dev: network device
3994  *
3995  * Release reference to device to allow it to be freed.
3996  */
dev_put(struct net_device * dev)3997 static inline void dev_put(struct net_device *dev)
3998 {
3999 	if (dev)
4000 		this_cpu_dec(*dev->pcpu_refcnt);
4001 }
4002 
4003 /**
4004  *	dev_hold - get reference to device
4005  *	@dev: network device
4006  *
4007  * Hold reference to device to keep it from being freed.
4008  */
dev_hold(struct net_device * dev)4009 static inline void dev_hold(struct net_device *dev)
4010 {
4011 	if (dev)
4012 		this_cpu_inc(*dev->pcpu_refcnt);
4013 }
4014 
4015 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4016  * and _off may be called from IRQ context, but it is caller
4017  * who is responsible for serialization of these calls.
4018  *
4019  * The name carrier is inappropriate, these functions should really be
4020  * called netif_lowerlayer_*() because they represent the state of any
4021  * kind of lower layer not just hardware media.
4022  */
4023 
4024 void linkwatch_init_dev(struct net_device *dev);
4025 void linkwatch_fire_event(struct net_device *dev);
4026 void linkwatch_forget_dev(struct net_device *dev);
4027 
4028 /**
4029  *	netif_carrier_ok - test if carrier present
4030  *	@dev: network device
4031  *
4032  * Check if carrier is present on device
4033  */
netif_carrier_ok(const struct net_device * dev)4034 static inline bool netif_carrier_ok(const struct net_device *dev)
4035 {
4036 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4037 }
4038 
4039 unsigned long dev_trans_start(struct net_device *dev);
4040 
4041 void __netdev_watchdog_up(struct net_device *dev);
4042 
4043 void netif_carrier_on(struct net_device *dev);
4044 
4045 void netif_carrier_off(struct net_device *dev);
4046 
4047 /**
4048  *	netif_dormant_on - mark device as dormant.
4049  *	@dev: network device
4050  *
4051  * Mark device as dormant (as per RFC2863).
4052  *
4053  * The dormant state indicates that the relevant interface is not
4054  * actually in a condition to pass packets (i.e., it is not 'up') but is
4055  * in a "pending" state, waiting for some external event.  For "on-
4056  * demand" interfaces, this new state identifies the situation where the
4057  * interface is waiting for events to place it in the up state.
4058  */
netif_dormant_on(struct net_device * dev)4059 static inline void netif_dormant_on(struct net_device *dev)
4060 {
4061 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4062 		linkwatch_fire_event(dev);
4063 }
4064 
4065 /**
4066  *	netif_dormant_off - set device as not dormant.
4067  *	@dev: network device
4068  *
4069  * Device is not in dormant state.
4070  */
netif_dormant_off(struct net_device * dev)4071 static inline void netif_dormant_off(struct net_device *dev)
4072 {
4073 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4074 		linkwatch_fire_event(dev);
4075 }
4076 
4077 /**
4078  *	netif_dormant - test if device is dormant
4079  *	@dev: network device
4080  *
4081  * Check if device is dormant.
4082  */
netif_dormant(const struct net_device * dev)4083 static inline bool netif_dormant(const struct net_device *dev)
4084 {
4085 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4086 }
4087 
4088 
4089 /**
4090  *	netif_testing_on - mark device as under test.
4091  *	@dev: network device
4092  *
4093  * Mark device as under test (as per RFC2863).
4094  *
4095  * The testing state indicates that some test(s) must be performed on
4096  * the interface. After completion, of the test, the interface state
4097  * will change to up, dormant, or down, as appropriate.
4098  */
netif_testing_on(struct net_device * dev)4099 static inline void netif_testing_on(struct net_device *dev)
4100 {
4101 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4102 		linkwatch_fire_event(dev);
4103 }
4104 
4105 /**
4106  *	netif_testing_off - set device as not under test.
4107  *	@dev: network device
4108  *
4109  * Device is not in testing state.
4110  */
netif_testing_off(struct net_device * dev)4111 static inline void netif_testing_off(struct net_device *dev)
4112 {
4113 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4114 		linkwatch_fire_event(dev);
4115 }
4116 
4117 /**
4118  *	netif_testing - test if device is under test
4119  *	@dev: network device
4120  *
4121  * Check if device is under test
4122  */
netif_testing(const struct net_device * dev)4123 static inline bool netif_testing(const struct net_device *dev)
4124 {
4125 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4126 }
4127 
4128 
4129 /**
4130  *	netif_oper_up - test if device is operational
4131  *	@dev: network device
4132  *
4133  * Check if carrier is operational
4134  */
netif_oper_up(const struct net_device * dev)4135 static inline bool netif_oper_up(const struct net_device *dev)
4136 {
4137 	return (dev->operstate == IF_OPER_UP ||
4138 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4139 }
4140 
4141 /**
4142  *	netif_device_present - is device available or removed
4143  *	@dev: network device
4144  *
4145  * Check if device has not been removed from system.
4146  */
netif_device_present(struct net_device * dev)4147 static inline bool netif_device_present(struct net_device *dev)
4148 {
4149 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4150 }
4151 
4152 void netif_device_detach(struct net_device *dev);
4153 
4154 void netif_device_attach(struct net_device *dev);
4155 
4156 /*
4157  * Network interface message level settings
4158  */
4159 
4160 enum {
4161 	NETIF_MSG_DRV_BIT,
4162 	NETIF_MSG_PROBE_BIT,
4163 	NETIF_MSG_LINK_BIT,
4164 	NETIF_MSG_TIMER_BIT,
4165 	NETIF_MSG_IFDOWN_BIT,
4166 	NETIF_MSG_IFUP_BIT,
4167 	NETIF_MSG_RX_ERR_BIT,
4168 	NETIF_MSG_TX_ERR_BIT,
4169 	NETIF_MSG_TX_QUEUED_BIT,
4170 	NETIF_MSG_INTR_BIT,
4171 	NETIF_MSG_TX_DONE_BIT,
4172 	NETIF_MSG_RX_STATUS_BIT,
4173 	NETIF_MSG_PKTDATA_BIT,
4174 	NETIF_MSG_HW_BIT,
4175 	NETIF_MSG_WOL_BIT,
4176 
4177 	/* When you add a new bit above, update netif_msg_class_names array
4178 	 * in net/ethtool/common.c
4179 	 */
4180 	NETIF_MSG_CLASS_COUNT,
4181 };
4182 /* Both ethtool_ops interface and internal driver implementation use u32 */
4183 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4184 
4185 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4186 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4187 
4188 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4189 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4190 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4191 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4192 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4193 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4194 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4195 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4196 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4197 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4198 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4199 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4200 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4201 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4202 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4203 
4204 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4205 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4206 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4207 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4208 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4209 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4210 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4211 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4212 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4213 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4214 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4215 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4216 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4217 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4218 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4219 
netif_msg_init(int debug_value,int default_msg_enable_bits)4220 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4221 {
4222 	/* use default */
4223 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4224 		return default_msg_enable_bits;
4225 	if (debug_value == 0)	/* no output */
4226 		return 0;
4227 	/* set low N bits */
4228 	return (1U << debug_value) - 1;
4229 }
4230 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4231 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4232 {
4233 	spin_lock(&txq->_xmit_lock);
4234 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4235 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4236 }
4237 
__netif_tx_acquire(struct netdev_queue * txq)4238 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4239 {
4240 	__acquire(&txq->_xmit_lock);
4241 	return true;
4242 }
4243 
__netif_tx_release(struct netdev_queue * txq)4244 static inline void __netif_tx_release(struct netdev_queue *txq)
4245 {
4246 	__release(&txq->_xmit_lock);
4247 }
4248 
__netif_tx_lock_bh(struct netdev_queue * txq)4249 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4250 {
4251 	spin_lock_bh(&txq->_xmit_lock);
4252 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4253 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4254 }
4255 
__netif_tx_trylock(struct netdev_queue * txq)4256 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4257 {
4258 	bool ok = spin_trylock(&txq->_xmit_lock);
4259 
4260 	if (likely(ok)) {
4261 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4262 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4263 	}
4264 	return ok;
4265 }
4266 
__netif_tx_unlock(struct netdev_queue * txq)4267 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4268 {
4269 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4270 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4271 	spin_unlock(&txq->_xmit_lock);
4272 }
4273 
__netif_tx_unlock_bh(struct netdev_queue * txq)4274 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4275 {
4276 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4277 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4278 	spin_unlock_bh(&txq->_xmit_lock);
4279 }
4280 
txq_trans_update(struct netdev_queue * txq)4281 static inline void txq_trans_update(struct netdev_queue *txq)
4282 {
4283 	if (txq->xmit_lock_owner != -1)
4284 		txq->trans_start = jiffies;
4285 }
4286 
4287 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4288 static inline void netif_trans_update(struct net_device *dev)
4289 {
4290 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4291 
4292 	if (txq->trans_start != jiffies)
4293 		txq->trans_start = jiffies;
4294 }
4295 
4296 /**
4297  *	netif_tx_lock - grab network device transmit lock
4298  *	@dev: network device
4299  *
4300  * Get network device transmit lock
4301  */
netif_tx_lock(struct net_device * dev)4302 static inline void netif_tx_lock(struct net_device *dev)
4303 {
4304 	unsigned int i;
4305 	int cpu;
4306 
4307 	spin_lock(&dev->tx_global_lock);
4308 	cpu = smp_processor_id();
4309 	for (i = 0; i < dev->num_tx_queues; i++) {
4310 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4311 
4312 		/* We are the only thread of execution doing a
4313 		 * freeze, but we have to grab the _xmit_lock in
4314 		 * order to synchronize with threads which are in
4315 		 * the ->hard_start_xmit() handler and already
4316 		 * checked the frozen bit.
4317 		 */
4318 		__netif_tx_lock(txq, cpu);
4319 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4320 		__netif_tx_unlock(txq);
4321 	}
4322 }
4323 
netif_tx_lock_bh(struct net_device * dev)4324 static inline void netif_tx_lock_bh(struct net_device *dev)
4325 {
4326 	local_bh_disable();
4327 	netif_tx_lock(dev);
4328 }
4329 
netif_tx_unlock(struct net_device * dev)4330 static inline void netif_tx_unlock(struct net_device *dev)
4331 {
4332 	unsigned int i;
4333 
4334 	for (i = 0; i < dev->num_tx_queues; i++) {
4335 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4336 
4337 		/* No need to grab the _xmit_lock here.  If the
4338 		 * queue is not stopped for another reason, we
4339 		 * force a schedule.
4340 		 */
4341 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4342 		netif_schedule_queue(txq);
4343 	}
4344 	spin_unlock(&dev->tx_global_lock);
4345 }
4346 
netif_tx_unlock_bh(struct net_device * dev)4347 static inline void netif_tx_unlock_bh(struct net_device *dev)
4348 {
4349 	netif_tx_unlock(dev);
4350 	local_bh_enable();
4351 }
4352 
4353 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4354 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4355 		__netif_tx_lock(txq, cpu);		\
4356 	} else {					\
4357 		__netif_tx_acquire(txq);		\
4358 	}						\
4359 }
4360 
4361 #define HARD_TX_TRYLOCK(dev, txq)			\
4362 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4363 		__netif_tx_trylock(txq) :		\
4364 		__netif_tx_acquire(txq))
4365 
4366 #define HARD_TX_UNLOCK(dev, txq) {			\
4367 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4368 		__netif_tx_unlock(txq);			\
4369 	} else {					\
4370 		__netif_tx_release(txq);		\
4371 	}						\
4372 }
4373 
netif_tx_disable(struct net_device * dev)4374 static inline void netif_tx_disable(struct net_device *dev)
4375 {
4376 	unsigned int i;
4377 	int cpu;
4378 
4379 	local_bh_disable();
4380 	cpu = smp_processor_id();
4381 	spin_lock(&dev->tx_global_lock);
4382 	for (i = 0; i < dev->num_tx_queues; i++) {
4383 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4384 
4385 		__netif_tx_lock(txq, cpu);
4386 		netif_tx_stop_queue(txq);
4387 		__netif_tx_unlock(txq);
4388 	}
4389 	spin_unlock(&dev->tx_global_lock);
4390 	local_bh_enable();
4391 }
4392 
netif_addr_lock(struct net_device * dev)4393 static inline void netif_addr_lock(struct net_device *dev)
4394 {
4395 	unsigned char nest_level = 0;
4396 
4397 #ifdef CONFIG_LOCKDEP
4398 	nest_level = dev->nested_level;
4399 #endif
4400 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4401 }
4402 
netif_addr_lock_bh(struct net_device * dev)4403 static inline void netif_addr_lock_bh(struct net_device *dev)
4404 {
4405 	unsigned char nest_level = 0;
4406 
4407 #ifdef CONFIG_LOCKDEP
4408 	nest_level = dev->nested_level;
4409 #endif
4410 	local_bh_disable();
4411 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4412 }
4413 
netif_addr_unlock(struct net_device * dev)4414 static inline void netif_addr_unlock(struct net_device *dev)
4415 {
4416 	spin_unlock(&dev->addr_list_lock);
4417 }
4418 
netif_addr_unlock_bh(struct net_device * dev)4419 static inline void netif_addr_unlock_bh(struct net_device *dev)
4420 {
4421 	spin_unlock_bh(&dev->addr_list_lock);
4422 }
4423 
4424 /*
4425  * dev_addrs walker. Should be used only for read access. Call with
4426  * rcu_read_lock held.
4427  */
4428 #define for_each_dev_addr(dev, ha) \
4429 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4430 
4431 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4432 
4433 void ether_setup(struct net_device *dev);
4434 
4435 /* Support for loadable net-drivers */
4436 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4437 				    unsigned char name_assign_type,
4438 				    void (*setup)(struct net_device *),
4439 				    unsigned int txqs, unsigned int rxqs);
4440 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4441 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4442 
4443 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4444 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4445 			 count)
4446 
4447 int register_netdev(struct net_device *dev);
4448 void unregister_netdev(struct net_device *dev);
4449 
4450 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4451 
4452 /* General hardware address lists handling functions */
4453 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4454 		   struct netdev_hw_addr_list *from_list, int addr_len);
4455 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4456 		      struct netdev_hw_addr_list *from_list, int addr_len);
4457 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4458 		       struct net_device *dev,
4459 		       int (*sync)(struct net_device *, const unsigned char *),
4460 		       int (*unsync)(struct net_device *,
4461 				     const unsigned char *));
4462 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4463 			   struct net_device *dev,
4464 			   int (*sync)(struct net_device *,
4465 				       const unsigned char *, int),
4466 			   int (*unsync)(struct net_device *,
4467 					 const unsigned char *, int));
4468 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4469 			      struct net_device *dev,
4470 			      int (*unsync)(struct net_device *,
4471 					    const unsigned char *, int));
4472 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4473 			  struct net_device *dev,
4474 			  int (*unsync)(struct net_device *,
4475 					const unsigned char *));
4476 void __hw_addr_init(struct netdev_hw_addr_list *list);
4477 
4478 /* Functions used for device addresses handling */
4479 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4480 		 unsigned char addr_type);
4481 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4482 		 unsigned char addr_type);
4483 void dev_addr_flush(struct net_device *dev);
4484 int dev_addr_init(struct net_device *dev);
4485 
4486 /* Functions used for unicast addresses handling */
4487 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4488 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4489 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4490 int dev_uc_sync(struct net_device *to, struct net_device *from);
4491 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4492 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4493 void dev_uc_flush(struct net_device *dev);
4494 void dev_uc_init(struct net_device *dev);
4495 
4496 /**
4497  *  __dev_uc_sync - Synchonize device's unicast list
4498  *  @dev:  device to sync
4499  *  @sync: function to call if address should be added
4500  *  @unsync: function to call if address should be removed
4501  *
4502  *  Add newly added addresses to the interface, and release
4503  *  addresses that have been deleted.
4504  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4505 static inline int __dev_uc_sync(struct net_device *dev,
4506 				int (*sync)(struct net_device *,
4507 					    const unsigned char *),
4508 				int (*unsync)(struct net_device *,
4509 					      const unsigned char *))
4510 {
4511 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4512 }
4513 
4514 /**
4515  *  __dev_uc_unsync - Remove synchronized addresses from device
4516  *  @dev:  device to sync
4517  *  @unsync: function to call if address should be removed
4518  *
4519  *  Remove all addresses that were added to the device by dev_uc_sync().
4520  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4521 static inline void __dev_uc_unsync(struct net_device *dev,
4522 				   int (*unsync)(struct net_device *,
4523 						 const unsigned char *))
4524 {
4525 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4526 }
4527 
4528 /* Functions used for multicast addresses handling */
4529 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4530 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4531 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4532 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4533 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4534 int dev_mc_sync(struct net_device *to, struct net_device *from);
4535 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4536 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4537 void dev_mc_flush(struct net_device *dev);
4538 void dev_mc_init(struct net_device *dev);
4539 
4540 /**
4541  *  __dev_mc_sync - Synchonize device's multicast list
4542  *  @dev:  device to sync
4543  *  @sync: function to call if address should be added
4544  *  @unsync: function to call if address should be removed
4545  *
4546  *  Add newly added addresses to the interface, and release
4547  *  addresses that have been deleted.
4548  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4549 static inline int __dev_mc_sync(struct net_device *dev,
4550 				int (*sync)(struct net_device *,
4551 					    const unsigned char *),
4552 				int (*unsync)(struct net_device *,
4553 					      const unsigned char *))
4554 {
4555 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4556 }
4557 
4558 /**
4559  *  __dev_mc_unsync - Remove synchronized addresses from device
4560  *  @dev:  device to sync
4561  *  @unsync: function to call if address should be removed
4562  *
4563  *  Remove all addresses that were added to the device by dev_mc_sync().
4564  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4565 static inline void __dev_mc_unsync(struct net_device *dev,
4566 				   int (*unsync)(struct net_device *,
4567 						 const unsigned char *))
4568 {
4569 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4570 }
4571 
4572 /* Functions used for secondary unicast and multicast support */
4573 void dev_set_rx_mode(struct net_device *dev);
4574 void __dev_set_rx_mode(struct net_device *dev);
4575 int dev_set_promiscuity(struct net_device *dev, int inc);
4576 int dev_set_allmulti(struct net_device *dev, int inc);
4577 void netdev_state_change(struct net_device *dev);
4578 void netdev_notify_peers(struct net_device *dev);
4579 void netdev_features_change(struct net_device *dev);
4580 /* Load a device via the kmod */
4581 void dev_load(struct net *net, const char *name);
4582 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4583 					struct rtnl_link_stats64 *storage);
4584 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4585 			     const struct net_device_stats *netdev_stats);
4586 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4587 			   const struct pcpu_sw_netstats __percpu *netstats);
4588 
4589 extern int		netdev_max_backlog;
4590 extern int		netdev_tstamp_prequeue;
4591 extern int		weight_p;
4592 extern int		dev_weight_rx_bias;
4593 extern int		dev_weight_tx_bias;
4594 extern int		dev_rx_weight;
4595 extern int		dev_tx_weight;
4596 extern int		gro_normal_batch;
4597 
4598 enum {
4599 	NESTED_SYNC_IMM_BIT,
4600 	NESTED_SYNC_TODO_BIT,
4601 };
4602 
4603 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4604 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4605 
4606 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4607 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4608 
4609 struct netdev_nested_priv {
4610 	unsigned char flags;
4611 	void *data;
4612 };
4613 
4614 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4615 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4616 						     struct list_head **iter);
4617 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4618 						     struct list_head **iter);
4619 
4620 #ifdef CONFIG_LOCKDEP
4621 static LIST_HEAD(net_unlink_list);
4622 
net_unlink_todo(struct net_device * dev)4623 static inline void net_unlink_todo(struct net_device *dev)
4624 {
4625 	if (list_empty(&dev->unlink_list))
4626 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4627 }
4628 #endif
4629 
4630 /* iterate through upper list, must be called under RCU read lock */
4631 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4632 	for (iter = &(dev)->adj_list.upper, \
4633 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4634 	     updev; \
4635 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4636 
4637 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4638 				  int (*fn)(struct net_device *upper_dev,
4639 					    struct netdev_nested_priv *priv),
4640 				  struct netdev_nested_priv *priv);
4641 
4642 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4643 				  struct net_device *upper_dev);
4644 
4645 bool netdev_has_any_upper_dev(struct net_device *dev);
4646 
4647 void *netdev_lower_get_next_private(struct net_device *dev,
4648 				    struct list_head **iter);
4649 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4650 					struct list_head **iter);
4651 
4652 #define netdev_for_each_lower_private(dev, priv, iter) \
4653 	for (iter = (dev)->adj_list.lower.next, \
4654 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4655 	     priv; \
4656 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4657 
4658 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4659 	for (iter = &(dev)->adj_list.lower, \
4660 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4661 	     priv; \
4662 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4663 
4664 void *netdev_lower_get_next(struct net_device *dev,
4665 				struct list_head **iter);
4666 
4667 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4668 	for (iter = (dev)->adj_list.lower.next, \
4669 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4670 	     ldev; \
4671 	     ldev = netdev_lower_get_next(dev, &(iter)))
4672 
4673 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4674 					     struct list_head **iter);
4675 int netdev_walk_all_lower_dev(struct net_device *dev,
4676 			      int (*fn)(struct net_device *lower_dev,
4677 					struct netdev_nested_priv *priv),
4678 			      struct netdev_nested_priv *priv);
4679 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4680 				  int (*fn)(struct net_device *lower_dev,
4681 					    struct netdev_nested_priv *priv),
4682 				  struct netdev_nested_priv *priv);
4683 
4684 void *netdev_adjacent_get_private(struct list_head *adj_list);
4685 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4686 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4687 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4688 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4689 			  struct netlink_ext_ack *extack);
4690 int netdev_master_upper_dev_link(struct net_device *dev,
4691 				 struct net_device *upper_dev,
4692 				 void *upper_priv, void *upper_info,
4693 				 struct netlink_ext_ack *extack);
4694 void netdev_upper_dev_unlink(struct net_device *dev,
4695 			     struct net_device *upper_dev);
4696 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4697 				   struct net_device *new_dev,
4698 				   struct net_device *dev,
4699 				   struct netlink_ext_ack *extack);
4700 void netdev_adjacent_change_commit(struct net_device *old_dev,
4701 				   struct net_device *new_dev,
4702 				   struct net_device *dev);
4703 void netdev_adjacent_change_abort(struct net_device *old_dev,
4704 				  struct net_device *new_dev,
4705 				  struct net_device *dev);
4706 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4707 void *netdev_lower_dev_get_private(struct net_device *dev,
4708 				   struct net_device *lower_dev);
4709 void netdev_lower_state_changed(struct net_device *lower_dev,
4710 				void *lower_state_info);
4711 
4712 /* RSS keys are 40 or 52 bytes long */
4713 #define NETDEV_RSS_KEY_LEN 52
4714 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4715 void netdev_rss_key_fill(void *buffer, size_t len);
4716 
4717 int skb_checksum_help(struct sk_buff *skb);
4718 int skb_crc32c_csum_help(struct sk_buff *skb);
4719 int skb_csum_hwoffload_help(struct sk_buff *skb,
4720 			    const netdev_features_t features);
4721 
4722 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4723 				  netdev_features_t features, bool tx_path);
4724 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4725 				    netdev_features_t features);
4726 
4727 struct netdev_bonding_info {
4728 	ifslave	slave;
4729 	ifbond	master;
4730 };
4731 
4732 struct netdev_notifier_bonding_info {
4733 	struct netdev_notifier_info info; /* must be first */
4734 	struct netdev_bonding_info  bonding_info;
4735 };
4736 
4737 void netdev_bonding_info_change(struct net_device *dev,
4738 				struct netdev_bonding_info *bonding_info);
4739 
4740 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4741 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4742 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4743 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4744 				  const void *data)
4745 {
4746 }
4747 #endif
4748 
4749 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4750 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4751 {
4752 	return __skb_gso_segment(skb, features, true);
4753 }
4754 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4755 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4756 static inline bool can_checksum_protocol(netdev_features_t features,
4757 					 __be16 protocol)
4758 {
4759 	if (protocol == htons(ETH_P_FCOE))
4760 		return !!(features & NETIF_F_FCOE_CRC);
4761 
4762 	/* Assume this is an IP checksum (not SCTP CRC) */
4763 
4764 	if (features & NETIF_F_HW_CSUM) {
4765 		/* Can checksum everything */
4766 		return true;
4767 	}
4768 
4769 	switch (protocol) {
4770 	case htons(ETH_P_IP):
4771 		return !!(features & NETIF_F_IP_CSUM);
4772 	case htons(ETH_P_IPV6):
4773 		return !!(features & NETIF_F_IPV6_CSUM);
4774 	default:
4775 		return false;
4776 	}
4777 }
4778 
4779 #ifdef CONFIG_BUG
4780 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4781 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4782 static inline void netdev_rx_csum_fault(struct net_device *dev,
4783 					struct sk_buff *skb)
4784 {
4785 }
4786 #endif
4787 /* rx skb timestamps */
4788 void net_enable_timestamp(void);
4789 void net_disable_timestamp(void);
4790 
4791 #ifdef CONFIG_PROC_FS
4792 int __init dev_proc_init(void);
4793 #else
4794 #define dev_proc_init() 0
4795 #endif
4796 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4797 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4798 					      struct sk_buff *skb, struct net_device *dev,
4799 					      bool more)
4800 {
4801 	__this_cpu_write(softnet_data.xmit.more, more);
4802 	return ops->ndo_start_xmit(skb, dev);
4803 }
4804 
netdev_xmit_more(void)4805 static inline bool netdev_xmit_more(void)
4806 {
4807 	return __this_cpu_read(softnet_data.xmit.more);
4808 }
4809 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4810 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4811 					    struct netdev_queue *txq, bool more)
4812 {
4813 	const struct net_device_ops *ops = dev->netdev_ops;
4814 	netdev_tx_t rc;
4815 
4816 	rc = __netdev_start_xmit(ops, skb, dev, more);
4817 	if (rc == NETDEV_TX_OK)
4818 		txq_trans_update(txq);
4819 
4820 	return rc;
4821 }
4822 
4823 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4824 				const void *ns);
4825 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4826 				 const void *ns);
4827 
4828 extern const struct kobj_ns_type_operations net_ns_type_operations;
4829 
4830 const char *netdev_drivername(const struct net_device *dev);
4831 
4832 void linkwatch_run_queue(void);
4833 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4834 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4835 							  netdev_features_t f2)
4836 {
4837 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4838 		if (f1 & NETIF_F_HW_CSUM)
4839 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4840 		else
4841 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4842 	}
4843 
4844 	return f1 & f2;
4845 }
4846 
netdev_get_wanted_features(struct net_device * dev)4847 static inline netdev_features_t netdev_get_wanted_features(
4848 	struct net_device *dev)
4849 {
4850 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4851 }
4852 netdev_features_t netdev_increment_features(netdev_features_t all,
4853 	netdev_features_t one, netdev_features_t mask);
4854 
4855 /* Allow TSO being used on stacked device :
4856  * Performing the GSO segmentation before last device
4857  * is a performance improvement.
4858  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4859 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4860 							netdev_features_t mask)
4861 {
4862 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4863 }
4864 
4865 int __netdev_update_features(struct net_device *dev);
4866 void netdev_update_features(struct net_device *dev);
4867 void netdev_change_features(struct net_device *dev);
4868 
4869 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4870 					struct net_device *dev);
4871 
4872 netdev_features_t passthru_features_check(struct sk_buff *skb,
4873 					  struct net_device *dev,
4874 					  netdev_features_t features);
4875 netdev_features_t netif_skb_features(struct sk_buff *skb);
4876 
net_gso_ok(netdev_features_t features,int gso_type)4877 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4878 {
4879 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4880 
4881 	/* check flags correspondence */
4882 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4883 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4886 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4887 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4888 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4889 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4890 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4891 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4892 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4893 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4894 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4895 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4896 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4897 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4898 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4899 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4900 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4901 
4902 	return (features & feature) == feature;
4903 }
4904 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4905 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4906 {
4907 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4908 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4909 }
4910 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4911 static inline bool netif_needs_gso(struct sk_buff *skb,
4912 				   netdev_features_t features)
4913 {
4914 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4915 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4916 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4917 }
4918 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4919 static inline void netif_set_gso_max_size(struct net_device *dev,
4920 					  unsigned int size)
4921 {
4922 	dev->gso_max_size = size;
4923 }
4924 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4925 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4926 					int pulled_hlen, u16 mac_offset,
4927 					int mac_len)
4928 {
4929 	skb->protocol = protocol;
4930 	skb->encapsulation = 1;
4931 	skb_push(skb, pulled_hlen);
4932 	skb_reset_transport_header(skb);
4933 	skb->mac_header = mac_offset;
4934 	skb->network_header = skb->mac_header + mac_len;
4935 	skb->mac_len = mac_len;
4936 }
4937 
netif_is_macsec(const struct net_device * dev)4938 static inline bool netif_is_macsec(const struct net_device *dev)
4939 {
4940 	return dev->priv_flags & IFF_MACSEC;
4941 }
4942 
netif_is_macvlan(const struct net_device * dev)4943 static inline bool netif_is_macvlan(const struct net_device *dev)
4944 {
4945 	return dev->priv_flags & IFF_MACVLAN;
4946 }
4947 
netif_is_macvlan_port(const struct net_device * dev)4948 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4949 {
4950 	return dev->priv_flags & IFF_MACVLAN_PORT;
4951 }
4952 
netif_is_bond_master(const struct net_device * dev)4953 static inline bool netif_is_bond_master(const struct net_device *dev)
4954 {
4955 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4956 }
4957 
netif_is_bond_slave(const struct net_device * dev)4958 static inline bool netif_is_bond_slave(const struct net_device *dev)
4959 {
4960 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4961 }
4962 
netif_supports_nofcs(struct net_device * dev)4963 static inline bool netif_supports_nofcs(struct net_device *dev)
4964 {
4965 	return dev->priv_flags & IFF_SUPP_NOFCS;
4966 }
4967 
netif_has_l3_rx_handler(const struct net_device * dev)4968 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4969 {
4970 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4971 }
4972 
netif_is_l3_master(const struct net_device * dev)4973 static inline bool netif_is_l3_master(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4976 }
4977 
netif_is_l3_slave(const struct net_device * dev)4978 static inline bool netif_is_l3_slave(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4981 }
4982 
netif_is_bridge_master(const struct net_device * dev)4983 static inline bool netif_is_bridge_master(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_EBRIDGE;
4986 }
4987 
netif_is_bridge_port(const struct net_device * dev)4988 static inline bool netif_is_bridge_port(const struct net_device *dev)
4989 {
4990 	return dev->priv_flags & IFF_BRIDGE_PORT;
4991 }
4992 
netif_is_ovs_master(const struct net_device * dev)4993 static inline bool netif_is_ovs_master(const struct net_device *dev)
4994 {
4995 	return dev->priv_flags & IFF_OPENVSWITCH;
4996 }
4997 
netif_is_ovs_port(const struct net_device * dev)4998 static inline bool netif_is_ovs_port(const struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_OVS_DATAPATH;
5001 }
5002 
netif_is_any_bridge_port(const struct net_device * dev)5003 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5004 {
5005 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5006 }
5007 
netif_is_team_master(const struct net_device * dev)5008 static inline bool netif_is_team_master(const struct net_device *dev)
5009 {
5010 	return dev->priv_flags & IFF_TEAM;
5011 }
5012 
netif_is_team_port(const struct net_device * dev)5013 static inline bool netif_is_team_port(const struct net_device *dev)
5014 {
5015 	return dev->priv_flags & IFF_TEAM_PORT;
5016 }
5017 
netif_is_lag_master(const struct net_device * dev)5018 static inline bool netif_is_lag_master(const struct net_device *dev)
5019 {
5020 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5021 }
5022 
netif_is_lag_port(const struct net_device * dev)5023 static inline bool netif_is_lag_port(const struct net_device *dev)
5024 {
5025 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5026 }
5027 
netif_is_rxfh_configured(const struct net_device * dev)5028 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5029 {
5030 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5031 }
5032 
netif_is_failover(const struct net_device * dev)5033 static inline bool netif_is_failover(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_FAILOVER;
5036 }
5037 
netif_is_failover_slave(const struct net_device * dev)5038 static inline bool netif_is_failover_slave(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5041 }
5042 
5043 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5044 static inline void netif_keep_dst(struct net_device *dev)
5045 {
5046 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5047 }
5048 
5049 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5050 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5051 {
5052 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5053 	return dev->priv_flags & IFF_MACSEC;
5054 }
5055 
5056 extern struct pernet_operations __net_initdata loopback_net_ops;
5057 
5058 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5059 
5060 /* netdev_printk helpers, similar to dev_printk */
5061 
netdev_name(const struct net_device * dev)5062 static inline const char *netdev_name(const struct net_device *dev)
5063 {
5064 	if (!dev->name[0] || strchr(dev->name, '%'))
5065 		return "(unnamed net_device)";
5066 	return dev->name;
5067 }
5068 
netdev_unregistering(const struct net_device * dev)5069 static inline bool netdev_unregistering(const struct net_device *dev)
5070 {
5071 	return dev->reg_state == NETREG_UNREGISTERING;
5072 }
5073 
netdev_reg_state(const struct net_device * dev)5074 static inline const char *netdev_reg_state(const struct net_device *dev)
5075 {
5076 	switch (dev->reg_state) {
5077 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5078 	case NETREG_REGISTERED: return "";
5079 	case NETREG_UNREGISTERING: return " (unregistering)";
5080 	case NETREG_UNREGISTERED: return " (unregistered)";
5081 	case NETREG_RELEASED: return " (released)";
5082 	case NETREG_DUMMY: return " (dummy)";
5083 	}
5084 
5085 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5086 	return " (unknown)";
5087 }
5088 
5089 __printf(3, 4) __cold
5090 void netdev_printk(const char *level, const struct net_device *dev,
5091 		   const char *format, ...);
5092 __printf(2, 3) __cold
5093 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5094 __printf(2, 3) __cold
5095 void netdev_alert(const struct net_device *dev, const char *format, ...);
5096 __printf(2, 3) __cold
5097 void netdev_crit(const struct net_device *dev, const char *format, ...);
5098 __printf(2, 3) __cold
5099 void netdev_err(const struct net_device *dev, const char *format, ...);
5100 __printf(2, 3) __cold
5101 void netdev_warn(const struct net_device *dev, const char *format, ...);
5102 __printf(2, 3) __cold
5103 void netdev_notice(const struct net_device *dev, const char *format, ...);
5104 __printf(2, 3) __cold
5105 void netdev_info(const struct net_device *dev, const char *format, ...);
5106 
5107 #define netdev_level_once(level, dev, fmt, ...)			\
5108 do {								\
5109 	static bool __print_once __read_mostly;			\
5110 								\
5111 	if (!__print_once) {					\
5112 		__print_once = true;				\
5113 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5114 	}							\
5115 } while (0)
5116 
5117 #define netdev_emerg_once(dev, fmt, ...) \
5118 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5119 #define netdev_alert_once(dev, fmt, ...) \
5120 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5121 #define netdev_crit_once(dev, fmt, ...) \
5122 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5123 #define netdev_err_once(dev, fmt, ...) \
5124 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5125 #define netdev_warn_once(dev, fmt, ...) \
5126 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5127 #define netdev_notice_once(dev, fmt, ...) \
5128 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5129 #define netdev_info_once(dev, fmt, ...) \
5130 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5131 
5132 #define MODULE_ALIAS_NETDEV(device) \
5133 	MODULE_ALIAS("netdev-" device)
5134 
5135 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5136 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5137 #define netdev_dbg(__dev, format, args...)			\
5138 do {								\
5139 	dynamic_netdev_dbg(__dev, format, ##args);		\
5140 } while (0)
5141 #elif defined(DEBUG)
5142 #define netdev_dbg(__dev, format, args...)			\
5143 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5144 #else
5145 #define netdev_dbg(__dev, format, args...)			\
5146 ({								\
5147 	if (0)							\
5148 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5149 })
5150 #endif
5151 
5152 #if defined(VERBOSE_DEBUG)
5153 #define netdev_vdbg	netdev_dbg
5154 #else
5155 
5156 #define netdev_vdbg(dev, format, args...)			\
5157 ({								\
5158 	if (0)							\
5159 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5160 	0;							\
5161 })
5162 #endif
5163 
5164 /*
5165  * netdev_WARN() acts like dev_printk(), but with the key difference
5166  * of using a WARN/WARN_ON to get the message out, including the
5167  * file/line information and a backtrace.
5168  */
5169 #define netdev_WARN(dev, format, args...)			\
5170 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5171 	     netdev_reg_state(dev), ##args)
5172 
5173 #define netdev_WARN_ONCE(dev, format, args...)				\
5174 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5175 		  netdev_reg_state(dev), ##args)
5176 
5177 /* netif printk helpers, similar to netdev_printk */
5178 
5179 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5180 do {					  			\
5181 	if (netif_msg_##type(priv))				\
5182 		netdev_printk(level, (dev), fmt, ##args);	\
5183 } while (0)
5184 
5185 #define netif_level(level, priv, type, dev, fmt, args...)	\
5186 do {								\
5187 	if (netif_msg_##type(priv))				\
5188 		netdev_##level(dev, fmt, ##args);		\
5189 } while (0)
5190 
5191 #define netif_emerg(priv, type, dev, fmt, args...)		\
5192 	netif_level(emerg, priv, type, dev, fmt, ##args)
5193 #define netif_alert(priv, type, dev, fmt, args...)		\
5194 	netif_level(alert, priv, type, dev, fmt, ##args)
5195 #define netif_crit(priv, type, dev, fmt, args...)		\
5196 	netif_level(crit, priv, type, dev, fmt, ##args)
5197 #define netif_err(priv, type, dev, fmt, args...)		\
5198 	netif_level(err, priv, type, dev, fmt, ##args)
5199 #define netif_warn(priv, type, dev, fmt, args...)		\
5200 	netif_level(warn, priv, type, dev, fmt, ##args)
5201 #define netif_notice(priv, type, dev, fmt, args...)		\
5202 	netif_level(notice, priv, type, dev, fmt, ##args)
5203 #define netif_info(priv, type, dev, fmt, args...)		\
5204 	netif_level(info, priv, type, dev, fmt, ##args)
5205 
5206 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5207 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5208 #define netif_dbg(priv, type, netdev, format, args...)		\
5209 do {								\
5210 	if (netif_msg_##type(priv))				\
5211 		dynamic_netdev_dbg(netdev, format, ##args);	\
5212 } while (0)
5213 #elif defined(DEBUG)
5214 #define netif_dbg(priv, type, dev, format, args...)		\
5215 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5216 #else
5217 #define netif_dbg(priv, type, dev, format, args...)			\
5218 ({									\
5219 	if (0)								\
5220 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5221 	0;								\
5222 })
5223 #endif
5224 
5225 /* if @cond then downgrade to debug, else print at @level */
5226 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5227 	do {                                                              \
5228 		if (cond)                                                 \
5229 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5230 		else                                                      \
5231 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5232 	} while (0)
5233 
5234 #if defined(VERBOSE_DEBUG)
5235 #define netif_vdbg	netif_dbg
5236 #else
5237 #define netif_vdbg(priv, type, dev, format, args...)		\
5238 ({								\
5239 	if (0)							\
5240 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5241 	0;							\
5242 })
5243 #endif
5244 
5245 /*
5246  *	The list of packet types we will receive (as opposed to discard)
5247  *	and the routines to invoke.
5248  *
5249  *	Why 16. Because with 16 the only overlap we get on a hash of the
5250  *	low nibble of the protocol value is RARP/SNAP/X.25.
5251  *
5252  *		0800	IP
5253  *		0001	802.3
5254  *		0002	AX.25
5255  *		0004	802.2
5256  *		8035	RARP
5257  *		0005	SNAP
5258  *		0805	X.25
5259  *		0806	ARP
5260  *		8137	IPX
5261  *		0009	Localtalk
5262  *		86DD	IPv6
5263  */
5264 #define PTYPE_HASH_SIZE	(16)
5265 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5266 
5267 extern struct net_device *blackhole_netdev;
5268 
5269 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5270 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5271 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5272 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5273 
5274 #endif	/* _LINUX_NETDEVICE_H */
5275