• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ScalarEvolutionExpander.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "indvars"
34 
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
39 STATISTIC(
40     NumSimplifiedSDiv,
41     "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43     NumSimplifiedSRem,
44     "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
46 
47 namespace {
48   /// This is a utility for simplifying induction variables
49   /// based on ScalarEvolution. It is the primary instrument of the
50   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51   /// other loop passes that preserve SCEV.
52   class SimplifyIndvar {
53     Loop             *L;
54     LoopInfo         *LI;
55     ScalarEvolution  *SE;
56     DominatorTree    *DT;
57     SCEVExpander     &Rewriter;
58     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
59 
60     bool Changed;
61 
62   public:
SimplifyIndvar(Loop * Loop,ScalarEvolution * SE,DominatorTree * DT,LoopInfo * LI,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & Dead)63     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
64                    LoopInfo *LI, SCEVExpander &Rewriter,
65                    SmallVectorImpl<WeakTrackingVH> &Dead)
66         : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
67           Changed(false) {
68       assert(LI && "IV simplification requires LoopInfo");
69     }
70 
hasChanged() const71     bool hasChanged() const { return Changed; }
72 
73     /// Iteratively perform simplification on a worklist of users of the
74     /// specified induction variable. This is the top-level driver that applies
75     /// all simplifications to users of an IV.
76     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
77 
78     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
79 
80     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82 
83     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
84     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
85     bool eliminateTrunc(TruncInst *TI);
86     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
87     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
88     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
89     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
90                              bool IsSigned);
91     void replaceRemWithNumerator(BinaryOperator *Rem);
92     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
93     void replaceSRemWithURem(BinaryOperator *Rem);
94     bool eliminateSDiv(BinaryOperator *SDiv);
95     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
96     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
97   };
98 }
99 
100 /// Fold an IV operand into its use.  This removes increments of an
101 /// aligned IV when used by a instruction that ignores the low bits.
102 ///
103 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
104 ///
105 /// Return the operand of IVOperand for this induction variable if IVOperand can
106 /// be folded (in case more folding opportunities have been exposed).
107 /// Otherwise return null.
foldIVUser(Instruction * UseInst,Instruction * IVOperand)108 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
109   Value *IVSrc = nullptr;
110   const unsigned OperIdx = 0;
111   const SCEV *FoldedExpr = nullptr;
112   bool MustDropExactFlag = false;
113   switch (UseInst->getOpcode()) {
114   default:
115     return nullptr;
116   case Instruction::UDiv:
117   case Instruction::LShr:
118     // We're only interested in the case where we know something about
119     // the numerator and have a constant denominator.
120     if (IVOperand != UseInst->getOperand(OperIdx) ||
121         !isa<ConstantInt>(UseInst->getOperand(1)))
122       return nullptr;
123 
124     // Attempt to fold a binary operator with constant operand.
125     // e.g. ((I + 1) >> 2) => I >> 2
126     if (!isa<BinaryOperator>(IVOperand)
127         || !isa<ConstantInt>(IVOperand->getOperand(1)))
128       return nullptr;
129 
130     IVSrc = IVOperand->getOperand(0);
131     // IVSrc must be the (SCEVable) IV, since the other operand is const.
132     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
133 
134     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
135     if (UseInst->getOpcode() == Instruction::LShr) {
136       // Get a constant for the divisor. See createSCEV.
137       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
138       if (D->getValue().uge(BitWidth))
139         return nullptr;
140 
141       D = ConstantInt::get(UseInst->getContext(),
142                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
143     }
144     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
145     // We might have 'exact' flag set at this point which will no longer be
146     // correct after we make the replacement.
147     if (UseInst->isExact() &&
148         SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
149       MustDropExactFlag = true;
150   }
151   // We have something that might fold it's operand. Compare SCEVs.
152   if (!SE->isSCEVable(UseInst->getType()))
153     return nullptr;
154 
155   // Bypass the operand if SCEV can prove it has no effect.
156   if (SE->getSCEV(UseInst) != FoldedExpr)
157     return nullptr;
158 
159   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
160                     << " -> " << *UseInst << '\n');
161 
162   UseInst->setOperand(OperIdx, IVSrc);
163   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
164 
165   if (MustDropExactFlag)
166     UseInst->dropPoisonGeneratingFlags();
167 
168   ++NumElimOperand;
169   Changed = true;
170   if (IVOperand->use_empty())
171     DeadInsts.emplace_back(IVOperand);
172   return IVSrc;
173 }
174 
makeIVComparisonInvariant(ICmpInst * ICmp,Value * IVOperand)175 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
176                                                Value *IVOperand) {
177   unsigned IVOperIdx = 0;
178   ICmpInst::Predicate Pred = ICmp->getPredicate();
179   if (IVOperand != ICmp->getOperand(0)) {
180     // Swapped
181     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
182     IVOperIdx = 1;
183     Pred = ICmpInst::getSwappedPredicate(Pred);
184   }
185 
186   // Get the SCEVs for the ICmp operands (in the specific context of the
187   // current loop)
188   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
189   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
190   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
191 
192   ICmpInst::Predicate InvariantPredicate;
193   const SCEV *InvariantLHS, *InvariantRHS;
194 
195   auto *PN = dyn_cast<PHINode>(IVOperand);
196   if (!PN)
197     return false;
198   if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
199                                     InvariantLHS, InvariantRHS))
200     return false;
201 
202   // Rewrite the comparison to a loop invariant comparison if it can be done
203   // cheaply, where cheaply means "we don't need to emit any new
204   // instructions".
205 
206   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
207   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
208   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
209 
210   // TODO: Support multiple entry loops?  (We currently bail out of these in
211   // the IndVarSimplify pass)
212   if (auto *BB = L->getLoopPredecessor()) {
213     const int Idx = PN->getBasicBlockIndex(BB);
214     if (Idx >= 0) {
215       Value *Incoming = PN->getIncomingValue(Idx);
216       const SCEV *IncomingS = SE->getSCEV(Incoming);
217       CheapExpansions[IncomingS] = Incoming;
218     }
219   }
220   Value *NewLHS = CheapExpansions[InvariantLHS];
221   Value *NewRHS = CheapExpansions[InvariantRHS];
222 
223   if (!NewLHS)
224     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
225       NewLHS = ConstLHS->getValue();
226   if (!NewRHS)
227     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
228       NewRHS = ConstRHS->getValue();
229 
230   if (!NewLHS || !NewRHS)
231     // We could not find an existing value to replace either LHS or RHS.
232     // Generating new instructions has subtler tradeoffs, so avoid doing that
233     // for now.
234     return false;
235 
236   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
237   ICmp->setPredicate(InvariantPredicate);
238   ICmp->setOperand(0, NewLHS);
239   ICmp->setOperand(1, NewRHS);
240   return true;
241 }
242 
243 /// SimplifyIVUsers helper for eliminating useless
244 /// comparisons against an induction variable.
eliminateIVComparison(ICmpInst * ICmp,Value * IVOperand)245 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
246   unsigned IVOperIdx = 0;
247   ICmpInst::Predicate Pred = ICmp->getPredicate();
248   ICmpInst::Predicate OriginalPred = Pred;
249   if (IVOperand != ICmp->getOperand(0)) {
250     // Swapped
251     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
252     IVOperIdx = 1;
253     Pred = ICmpInst::getSwappedPredicate(Pred);
254   }
255 
256   // Get the SCEVs for the ICmp operands (in the specific context of the
257   // current loop)
258   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
259   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
260   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
261 
262   // If the condition is always true or always false, replace it with
263   // a constant value.
264   if (SE->isKnownPredicate(Pred, S, X)) {
265     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
266     DeadInsts.emplace_back(ICmp);
267     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
268   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
269     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
270     DeadInsts.emplace_back(ICmp);
271     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
272   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
273     // fallthrough to end of function
274   } else if (ICmpInst::isSigned(OriginalPred) &&
275              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
276     // If we were unable to make anything above, all we can is to canonicalize
277     // the comparison hoping that it will open the doors for other
278     // optimizations. If we find out that we compare two non-negative values,
279     // we turn the instruction's predicate to its unsigned version. Note that
280     // we cannot rely on Pred here unless we check if we have swapped it.
281     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
282     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
283                       << '\n');
284     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
285   } else
286     return;
287 
288   ++NumElimCmp;
289   Changed = true;
290 }
291 
eliminateSDiv(BinaryOperator * SDiv)292 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
293   // Get the SCEVs for the ICmp operands.
294   auto *N = SE->getSCEV(SDiv->getOperand(0));
295   auto *D = SE->getSCEV(SDiv->getOperand(1));
296 
297   // Simplify unnecessary loops away.
298   const Loop *L = LI->getLoopFor(SDiv->getParent());
299   N = SE->getSCEVAtScope(N, L);
300   D = SE->getSCEVAtScope(D, L);
301 
302   // Replace sdiv by udiv if both of the operands are non-negative
303   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
304     auto *UDiv = BinaryOperator::Create(
305         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
306         SDiv->getName() + ".udiv", SDiv);
307     UDiv->setIsExact(SDiv->isExact());
308     SDiv->replaceAllUsesWith(UDiv);
309     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
310     ++NumSimplifiedSDiv;
311     Changed = true;
312     DeadInsts.push_back(SDiv);
313     return true;
314   }
315 
316   return false;
317 }
318 
319 // i %s n -> i %u n if i >= 0 and n >= 0
replaceSRemWithURem(BinaryOperator * Rem)320 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
321   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
322   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
323                                       Rem->getName() + ".urem", Rem);
324   Rem->replaceAllUsesWith(URem);
325   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
326   ++NumSimplifiedSRem;
327   Changed = true;
328   DeadInsts.emplace_back(Rem);
329 }
330 
331 // i % n  -->  i  if i is in [0,n).
replaceRemWithNumerator(BinaryOperator * Rem)332 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
333   Rem->replaceAllUsesWith(Rem->getOperand(0));
334   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
335   ++NumElimRem;
336   Changed = true;
337   DeadInsts.emplace_back(Rem);
338 }
339 
340 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
replaceRemWithNumeratorOrZero(BinaryOperator * Rem)341 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
342   auto *T = Rem->getType();
343   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
344   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
345   SelectInst *Sel =
346       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
347   Rem->replaceAllUsesWith(Sel);
348   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
349   ++NumElimRem;
350   Changed = true;
351   DeadInsts.emplace_back(Rem);
352 }
353 
354 /// SimplifyIVUsers helper for eliminating useless remainder operations
355 /// operating on an induction variable or replacing srem by urem.
simplifyIVRemainder(BinaryOperator * Rem,Value * IVOperand,bool IsSigned)356 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
357                                          bool IsSigned) {
358   auto *NValue = Rem->getOperand(0);
359   auto *DValue = Rem->getOperand(1);
360   // We're only interested in the case where we know something about
361   // the numerator, unless it is a srem, because we want to replace srem by urem
362   // in general.
363   bool UsedAsNumerator = IVOperand == NValue;
364   if (!UsedAsNumerator && !IsSigned)
365     return;
366 
367   const SCEV *N = SE->getSCEV(NValue);
368 
369   // Simplify unnecessary loops away.
370   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
371   N = SE->getSCEVAtScope(N, ICmpLoop);
372 
373   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
374 
375   // Do not proceed if the Numerator may be negative
376   if (!IsNumeratorNonNegative)
377     return;
378 
379   const SCEV *D = SE->getSCEV(DValue);
380   D = SE->getSCEVAtScope(D, ICmpLoop);
381 
382   if (UsedAsNumerator) {
383     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
384     if (SE->isKnownPredicate(LT, N, D)) {
385       replaceRemWithNumerator(Rem);
386       return;
387     }
388 
389     auto *T = Rem->getType();
390     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
391     if (SE->isKnownPredicate(LT, NLessOne, D)) {
392       replaceRemWithNumeratorOrZero(Rem);
393       return;
394     }
395   }
396 
397   // Try to replace SRem with URem, if both N and D are known non-negative.
398   // Since we had already check N, we only need to check D now
399   if (!IsSigned || !SE->isKnownNonNegative(D))
400     return;
401 
402   replaceSRemWithURem(Rem);
403 }
404 
willNotOverflow(ScalarEvolution * SE,Instruction::BinaryOps BinOp,bool Signed,const SCEV * LHS,const SCEV * RHS)405 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
406                             bool Signed, const SCEV *LHS, const SCEV *RHS) {
407   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
408                                             SCEV::NoWrapFlags, unsigned);
409   switch (BinOp) {
410   default:
411     llvm_unreachable("Unsupported binary op");
412   case Instruction::Add:
413     Operation = &ScalarEvolution::getAddExpr;
414     break;
415   case Instruction::Sub:
416     Operation = &ScalarEvolution::getMinusSCEV;
417     break;
418   case Instruction::Mul:
419     Operation = &ScalarEvolution::getMulExpr;
420     break;
421   }
422 
423   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
424       Signed ? &ScalarEvolution::getSignExtendExpr
425              : &ScalarEvolution::getZeroExtendExpr;
426 
427   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
428   auto *NarrowTy = cast<IntegerType>(LHS->getType());
429   auto *WideTy =
430     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
431 
432   const SCEV *A =
433       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
434                        WideTy, 0);
435   const SCEV *B =
436       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
437                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
438   return A == B;
439 }
440 
eliminateOverflowIntrinsic(WithOverflowInst * WO)441 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
442   const SCEV *LHS = SE->getSCEV(WO->getLHS());
443   const SCEV *RHS = SE->getSCEV(WO->getRHS());
444   if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
445     return false;
446 
447   // Proved no overflow, nuke the overflow check and, if possible, the overflow
448   // intrinsic as well.
449 
450   BinaryOperator *NewResult = BinaryOperator::Create(
451       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
452 
453   if (WO->isSigned())
454     NewResult->setHasNoSignedWrap(true);
455   else
456     NewResult->setHasNoUnsignedWrap(true);
457 
458   SmallVector<ExtractValueInst *, 4> ToDelete;
459 
460   for (auto *U : WO->users()) {
461     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
462       if (EVI->getIndices()[0] == 1)
463         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
464       else {
465         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
466         EVI->replaceAllUsesWith(NewResult);
467       }
468       ToDelete.push_back(EVI);
469     }
470   }
471 
472   for (auto *EVI : ToDelete)
473     EVI->eraseFromParent();
474 
475   if (WO->use_empty())
476     WO->eraseFromParent();
477 
478   return true;
479 }
480 
eliminateSaturatingIntrinsic(SaturatingInst * SI)481 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
482   const SCEV *LHS = SE->getSCEV(SI->getLHS());
483   const SCEV *RHS = SE->getSCEV(SI->getRHS());
484   if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
485     return false;
486 
487   BinaryOperator *BO = BinaryOperator::Create(
488       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
489   if (SI->isSigned())
490     BO->setHasNoSignedWrap();
491   else
492     BO->setHasNoUnsignedWrap();
493 
494   SI->replaceAllUsesWith(BO);
495   DeadInsts.emplace_back(SI);
496   Changed = true;
497   return true;
498 }
499 
eliminateTrunc(TruncInst * TI)500 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
501   // It is always legal to replace
502   //   icmp <pred> i32 trunc(iv), n
503   // with
504   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
505   // Or with
506   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
507   // Or with either of these if pred is an equality predicate.
508   //
509   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
510   // every comparison which uses trunc, it means that we can replace each of
511   // them with comparison of iv against sext/zext(n). We no longer need trunc
512   // after that.
513   //
514   // TODO: Should we do this if we can widen *some* comparisons, but not all
515   // of them? Sometimes it is enough to enable other optimizations, but the
516   // trunc instruction will stay in the loop.
517   Value *IV = TI->getOperand(0);
518   Type *IVTy = IV->getType();
519   const SCEV *IVSCEV = SE->getSCEV(IV);
520   const SCEV *TISCEV = SE->getSCEV(TI);
521 
522   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
523   // get rid of trunc
524   bool DoesSExtCollapse = false;
525   bool DoesZExtCollapse = false;
526   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
527     DoesSExtCollapse = true;
528   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
529     DoesZExtCollapse = true;
530 
531   // If neither sext nor zext does collapse, it is not profitable to do any
532   // transform. Bail.
533   if (!DoesSExtCollapse && !DoesZExtCollapse)
534     return false;
535 
536   // Collect users of the trunc that look like comparisons against invariants.
537   // Bail if we find something different.
538   SmallVector<ICmpInst *, 4> ICmpUsers;
539   for (auto *U : TI->users()) {
540     // We don't care about users in unreachable blocks.
541     if (isa<Instruction>(U) &&
542         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
543       continue;
544     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
545     if (!ICI) return false;
546     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
547     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
548         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
549       return false;
550     // If we cannot get rid of trunc, bail.
551     if (ICI->isSigned() && !DoesSExtCollapse)
552       return false;
553     if (ICI->isUnsigned() && !DoesZExtCollapse)
554       return false;
555     // For equality, either signed or unsigned works.
556     ICmpUsers.push_back(ICI);
557   }
558 
559   auto CanUseZExt = [&](ICmpInst *ICI) {
560     // Unsigned comparison can be widened as unsigned.
561     if (ICI->isUnsigned())
562       return true;
563     // Is it profitable to do zext?
564     if (!DoesZExtCollapse)
565       return false;
566     // For equality, we can safely zext both parts.
567     if (ICI->isEquality())
568       return true;
569     // Otherwise we can only use zext when comparing two non-negative or two
570     // negative values. But in practice, we will never pass DoesZExtCollapse
571     // check for a negative value, because zext(trunc(x)) is non-negative. So
572     // it only make sense to check for non-negativity here.
573     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
574     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
575     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
576   };
577   // Replace all comparisons against trunc with comparisons against IV.
578   for (auto *ICI : ICmpUsers) {
579     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
580     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
581     Instruction *Ext = nullptr;
582     // For signed/unsigned predicate, replace the old comparison with comparison
583     // of immediate IV against sext/zext of the invariant argument. If we can
584     // use either sext or zext (i.e. we are dealing with equality predicate),
585     // then prefer zext as a more canonical form.
586     // TODO: If we see a signed comparison which can be turned into unsigned,
587     // we can do it here for canonicalization purposes.
588     ICmpInst::Predicate Pred = ICI->getPredicate();
589     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
590     if (CanUseZExt(ICI)) {
591       assert(DoesZExtCollapse && "Unprofitable zext?");
592       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
593       Pred = ICmpInst::getUnsignedPredicate(Pred);
594     } else {
595       assert(DoesSExtCollapse && "Unprofitable sext?");
596       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
597       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
598     }
599     bool Changed;
600     L->makeLoopInvariant(Ext, Changed);
601     (void)Changed;
602     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
603     ICI->replaceAllUsesWith(NewICI);
604     DeadInsts.emplace_back(ICI);
605   }
606 
607   // Trunc no longer needed.
608   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
609   DeadInsts.emplace_back(TI);
610   return true;
611 }
612 
613 /// Eliminate an operation that consumes a simple IV and has no observable
614 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
615 /// but UseInst may not be.
eliminateIVUser(Instruction * UseInst,Instruction * IVOperand)616 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
617                                      Instruction *IVOperand) {
618   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
619     eliminateIVComparison(ICmp, IVOperand);
620     return true;
621   }
622   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
623     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
624     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
625       simplifyIVRemainder(Bin, IVOperand, IsSRem);
626       return true;
627     }
628 
629     if (Bin->getOpcode() == Instruction::SDiv)
630       return eliminateSDiv(Bin);
631   }
632 
633   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
634     if (eliminateOverflowIntrinsic(WO))
635       return true;
636 
637   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
638     if (eliminateSaturatingIntrinsic(SI))
639       return true;
640 
641   if (auto *TI = dyn_cast<TruncInst>(UseInst))
642     if (eliminateTrunc(TI))
643       return true;
644 
645   if (eliminateIdentitySCEV(UseInst, IVOperand))
646     return true;
647 
648   return false;
649 }
650 
GetLoopInvariantInsertPosition(Loop * L,Instruction * Hint)651 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
652   if (auto *BB = L->getLoopPreheader())
653     return BB->getTerminator();
654 
655   return Hint;
656 }
657 
658 /// Replace the UseInst with a constant if possible.
replaceIVUserWithLoopInvariant(Instruction * I)659 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
660   if (!SE->isSCEVable(I->getType()))
661     return false;
662 
663   // Get the symbolic expression for this instruction.
664   const SCEV *S = SE->getSCEV(I);
665 
666   if (!SE->isLoopInvariant(S, L))
667     return false;
668 
669   // Do not generate something ridiculous even if S is loop invariant.
670   if (Rewriter.isHighCostExpansion(S, L, I))
671     return false;
672 
673   auto *IP = GetLoopInvariantInsertPosition(L, I);
674   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
675 
676   I->replaceAllUsesWith(Invariant);
677   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
678                     << " with loop invariant: " << *S << '\n');
679   ++NumFoldedUser;
680   Changed = true;
681   DeadInsts.emplace_back(I);
682   return true;
683 }
684 
685 /// Eliminate any operation that SCEV can prove is an identity function.
eliminateIdentitySCEV(Instruction * UseInst,Instruction * IVOperand)686 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
687                                            Instruction *IVOperand) {
688   if (!SE->isSCEVable(UseInst->getType()) ||
689       (UseInst->getType() != IVOperand->getType()) ||
690       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
691     return false;
692 
693   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
694   // dominator tree, even if X is an operand to Y.  For instance, in
695   //
696   //     %iv = phi i32 {0,+,1}
697   //     br %cond, label %left, label %merge
698   //
699   //   left:
700   //     %X = add i32 %iv, 0
701   //     br label %merge
702   //
703   //   merge:
704   //     %M = phi (%X, %iv)
705   //
706   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
707   // %M.replaceAllUsesWith(%X) would be incorrect.
708 
709   if (isa<PHINode>(UseInst))
710     // If UseInst is not a PHI node then we know that IVOperand dominates
711     // UseInst directly from the legality of SSA.
712     if (!DT || !DT->dominates(IVOperand, UseInst))
713       return false;
714 
715   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
716     return false;
717 
718   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
719 
720   UseInst->replaceAllUsesWith(IVOperand);
721   ++NumElimIdentity;
722   Changed = true;
723   DeadInsts.emplace_back(UseInst);
724   return true;
725 }
726 
727 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
728 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
strengthenOverflowingOperation(BinaryOperator * BO,Value * IVOperand)729 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
730                                                     Value *IVOperand) {
731   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
732   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
733     return false;
734 
735   if (BO->getOpcode() != Instruction::Add &&
736       BO->getOpcode() != Instruction::Sub &&
737       BO->getOpcode() != Instruction::Mul)
738     return false;
739 
740   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
741   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
742   bool Changed = false;
743 
744   if (!BO->hasNoUnsignedWrap() &&
745       willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
746     BO->setHasNoUnsignedWrap();
747     SE->forgetValue(BO);
748     Changed = true;
749   }
750 
751   if (!BO->hasNoSignedWrap() &&
752       willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
753     BO->setHasNoSignedWrap();
754     SE->forgetValue(BO);
755     Changed = true;
756   }
757 
758   return Changed;
759 }
760 
761 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
762 /// information from the IV's range. Returns true if anything changed, false
763 /// otherwise.
strengthenRightShift(BinaryOperator * BO,Value * IVOperand)764 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
765                                           Value *IVOperand) {
766   using namespace llvm::PatternMatch;
767 
768   if (BO->getOpcode() == Instruction::Shl) {
769     bool Changed = false;
770     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
771     for (auto *U : BO->users()) {
772       const APInt *C;
773       if (match(U,
774                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
775           match(U,
776                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
777         BinaryOperator *Shr = cast<BinaryOperator>(U);
778         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
779           Shr->setIsExact(true);
780           Changed = true;
781         }
782       }
783     }
784     return Changed;
785   }
786 
787   return false;
788 }
789 
790 /// Add all uses of Def to the current IV's worklist.
pushIVUsers(Instruction * Def,Loop * L,SmallPtrSet<Instruction *,16> & Simplified,SmallVectorImpl<std::pair<Instruction *,Instruction * >> & SimpleIVUsers)791 static void pushIVUsers(
792   Instruction *Def, Loop *L,
793   SmallPtrSet<Instruction*,16> &Simplified,
794   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
795 
796   for (User *U : Def->users()) {
797     Instruction *UI = cast<Instruction>(U);
798 
799     // Avoid infinite or exponential worklist processing.
800     // Also ensure unique worklist users.
801     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
802     // self edges first.
803     if (UI == Def)
804       continue;
805 
806     // Only change the current Loop, do not change the other parts (e.g. other
807     // Loops).
808     if (!L->contains(UI))
809       continue;
810 
811     // Do not push the same instruction more than once.
812     if (!Simplified.insert(UI).second)
813       continue;
814 
815     SimpleIVUsers.push_back(std::make_pair(UI, Def));
816   }
817 }
818 
819 /// Return true if this instruction generates a simple SCEV
820 /// expression in terms of that IV.
821 ///
822 /// This is similar to IVUsers' isInteresting() but processes each instruction
823 /// non-recursively when the operand is already known to be a simpleIVUser.
824 ///
isSimpleIVUser(Instruction * I,const Loop * L,ScalarEvolution * SE)825 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
826   if (!SE->isSCEVable(I->getType()))
827     return false;
828 
829   // Get the symbolic expression for this instruction.
830   const SCEV *S = SE->getSCEV(I);
831 
832   // Only consider affine recurrences.
833   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
834   if (AR && AR->getLoop() == L)
835     return true;
836 
837   return false;
838 }
839 
840 /// Iteratively perform simplification on a worklist of users
841 /// of the specified induction variable. Each successive simplification may push
842 /// more users which may themselves be candidates for simplification.
843 ///
844 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
845 /// instructions in-place during analysis. Rather than rewriting induction
846 /// variables bottom-up from their users, it transforms a chain of IVUsers
847 /// top-down, updating the IR only when it encounters a clear optimization
848 /// opportunity.
849 ///
850 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
851 ///
simplifyUsers(PHINode * CurrIV,IVVisitor * V)852 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
853   if (!SE->isSCEVable(CurrIV->getType()))
854     return;
855 
856   // Instructions processed by SimplifyIndvar for CurrIV.
857   SmallPtrSet<Instruction*,16> Simplified;
858 
859   // Use-def pairs if IV users waiting to be processed for CurrIV.
860   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
861 
862   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
863   // called multiple times for the same LoopPhi. This is the proper thing to
864   // do for loop header phis that use each other.
865   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
866 
867   while (!SimpleIVUsers.empty()) {
868     std::pair<Instruction*, Instruction*> UseOper =
869       SimpleIVUsers.pop_back_val();
870     Instruction *UseInst = UseOper.first;
871 
872     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
873     // rather than try to do some complex analysis or transformation (such as
874     // widening) basing on it.
875     // TODO: Propagate TLI and pass it here to handle more cases.
876     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
877       DeadInsts.emplace_back(UseInst);
878       continue;
879     }
880 
881     // Bypass back edges to avoid extra work.
882     if (UseInst == CurrIV) continue;
883 
884     // Try to replace UseInst with a loop invariant before any other
885     // simplifications.
886     if (replaceIVUserWithLoopInvariant(UseInst))
887       continue;
888 
889     Instruction *IVOperand = UseOper.second;
890     for (unsigned N = 0; IVOperand; ++N) {
891       assert(N <= Simplified.size() && "runaway iteration");
892 
893       Value *NewOper = foldIVUser(UseInst, IVOperand);
894       if (!NewOper)
895         break; // done folding
896       IVOperand = dyn_cast<Instruction>(NewOper);
897     }
898     if (!IVOperand)
899       continue;
900 
901     if (eliminateIVUser(UseInst, IVOperand)) {
902       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
903       continue;
904     }
905 
906     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
907       if ((isa<OverflowingBinaryOperator>(BO) &&
908            strengthenOverflowingOperation(BO, IVOperand)) ||
909           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
910         // re-queue uses of the now modified binary operator and fall
911         // through to the checks that remain.
912         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
913       }
914     }
915 
916     CastInst *Cast = dyn_cast<CastInst>(UseInst);
917     if (V && Cast) {
918       V->visitCast(Cast);
919       continue;
920     }
921     if (isSimpleIVUser(UseInst, L, SE)) {
922       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
923     }
924   }
925 }
926 
927 namespace llvm {
928 
anchor()929 void IVVisitor::anchor() { }
930 
931 /// Simplify instructions that use this induction variable
932 /// by using ScalarEvolution to analyze the IV's recurrence.
simplifyUsersOfIV(PHINode * CurrIV,ScalarEvolution * SE,DominatorTree * DT,LoopInfo * LI,SmallVectorImpl<WeakTrackingVH> & Dead,SCEVExpander & Rewriter,IVVisitor * V)933 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
934                        LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
935                        SCEVExpander &Rewriter, IVVisitor *V) {
936   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
937                      Dead);
938   SIV.simplifyUsers(CurrIV, V);
939   return SIV.hasChanged();
940 }
941 
942 /// Simplify users of induction variables within this
943 /// loop. This does not actually change or add IVs.
simplifyLoopIVs(Loop * L,ScalarEvolution * SE,DominatorTree * DT,LoopInfo * LI,SmallVectorImpl<WeakTrackingVH> & Dead)944 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
945                      LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
946   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
947 #ifndef NDEBUG
948   Rewriter.setDebugType(DEBUG_TYPE);
949 #endif
950   bool Changed = false;
951   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
952     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
953   }
954   return Changed;
955 }
956 
957 } // namespace llvm
958