1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// \brief
11 /// This file declares a class to represent arbitrary precision floating point
12 /// values and provide a variety of arithmetic operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_APFLOAT_H
17 #define LLVM_ADT_APFLOAT_H
18
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <memory>
23
24 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \
25 do { \
26 if (usesLayout<IEEEFloat>(getSemantics())) \
27 return U.IEEE.METHOD_CALL; \
28 if (usesLayout<DoubleAPFloat>(getSemantics())) \
29 return U.Double.METHOD_CALL; \
30 llvm_unreachable("Unexpected semantics"); \
31 } while (false)
32
33 namespace llvm {
34
35 struct fltSemantics;
36 class APSInt;
37 class StringRef;
38 class APFloat;
39 class raw_ostream;
40
41 template <typename T> class Expected;
42 template <typename T> class SmallVectorImpl;
43
44 /// Enum that represents what fraction of the LSB truncated bits of an fp number
45 /// represent.
46 ///
47 /// This essentially combines the roles of guard and sticky bits.
48 enum lostFraction { // Example of truncated bits:
49 lfExactlyZero, // 000000
50 lfLessThanHalf, // 0xxxxx x's not all zero
51 lfExactlyHalf, // 100000
52 lfMoreThanHalf // 1xxxxx x's not all zero
53 };
54
55 /// A self-contained host- and target-independent arbitrary-precision
56 /// floating-point software implementation.
57 ///
58 /// APFloat uses bignum integer arithmetic as provided by static functions in
59 /// the APInt class. The library will work with bignum integers whose parts are
60 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
61 ///
62 /// Written for clarity rather than speed, in particular with a view to use in
63 /// the front-end of a cross compiler so that target arithmetic can be correctly
64 /// performed on the host. Performance should nonetheless be reasonable,
65 /// particularly for its intended use. It may be useful as a base
66 /// implementation for a run-time library during development of a faster
67 /// target-specific one.
68 ///
69 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
70 /// implemented operations. Currently implemented operations are add, subtract,
71 /// multiply, divide, fused-multiply-add, conversion-to-float,
72 /// conversion-to-integer and conversion-from-integer. New rounding modes
73 /// (e.g. away from zero) can be added with three or four lines of code.
74 ///
75 /// Four formats are built-in: IEEE single precision, double precision,
76 /// quadruple precision, and x87 80-bit extended double (when operating with
77 /// full extended precision). Adding a new format that obeys IEEE semantics
78 /// only requires adding two lines of code: a declaration and definition of the
79 /// format.
80 ///
81 /// All operations return the status of that operation as an exception bit-mask,
82 /// so multiple operations can be done consecutively with their results or-ed
83 /// together. The returned status can be useful for compiler diagnostics; e.g.,
84 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
85 /// and compiler optimizers can determine what exceptions would be raised by
86 /// folding operations and optimize, or perhaps not optimize, accordingly.
87 ///
88 /// At present, underflow tininess is detected after rounding; it should be
89 /// straight forward to add support for the before-rounding case too.
90 ///
91 /// The library reads hexadecimal floating point numbers as per C99, and
92 /// correctly rounds if necessary according to the specified rounding mode.
93 /// Syntax is required to have been validated by the caller. It also converts
94 /// floating point numbers to hexadecimal text as per the C99 %a and %A
95 /// conversions. The output precision (or alternatively the natural minimal
96 /// precision) can be specified; if the requested precision is less than the
97 /// natural precision the output is correctly rounded for the specified rounding
98 /// mode.
99 ///
100 /// It also reads decimal floating point numbers and correctly rounds according
101 /// to the specified rounding mode.
102 ///
103 /// Conversion to decimal text is not currently implemented.
104 ///
105 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
106 /// signed exponent, and the significand as an array of integer parts. After
107 /// normalization of a number of precision P the exponent is within the range of
108 /// the format, and if the number is not denormal the P-th bit of the
109 /// significand is set as an explicit integer bit. For denormals the most
110 /// significant bit is shifted right so that the exponent is maintained at the
111 /// format's minimum, so that the smallest denormal has just the least
112 /// significant bit of the significand set. The sign of zeroes and infinities
113 /// is significant; the exponent and significand of such numbers is not stored,
114 /// but has a known implicit (deterministic) value: 0 for the significands, 0
115 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
116 /// significand are deterministic, although not really meaningful, and preserved
117 /// in non-conversion operations. The exponent is implicitly all 1 bits.
118 ///
119 /// APFloat does not provide any exception handling beyond default exception
120 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
121 /// by encoding Signaling NaNs with the first bit of its trailing significand as
122 /// 0.
123 ///
124 /// TODO
125 /// ====
126 ///
127 /// Some features that may or may not be worth adding:
128 ///
129 /// Binary to decimal conversion (hard).
130 ///
131 /// Optional ability to detect underflow tininess before rounding.
132 ///
133 /// New formats: x87 in single and double precision mode (IEEE apart from
134 /// extended exponent range) (hard).
135 ///
136 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
137 ///
138
139 // This is the common type definitions shared by APFloat and its internal
140 // implementation classes. This struct should not define any non-static data
141 // members.
142 struct APFloatBase {
143 typedef APInt::WordType integerPart;
144 static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
145
146 /// A signed type to represent a floating point numbers unbiased exponent.
147 typedef int32_t ExponentType;
148
149 /// \name Floating Point Semantics.
150 /// @{
151 enum Semantics {
152 S_IEEEhalf,
153 S_IEEEsingle,
154 S_IEEEdouble,
155 S_x87DoubleExtended,
156 S_IEEEquad,
157 S_PPCDoubleDouble
158 };
159
160 static const llvm::fltSemantics &EnumToSemantics(Semantics S);
161 static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
162
163 static const fltSemantics &IEEEhalf() LLVM_READNONE;
164 static const fltSemantics &IEEEsingle() LLVM_READNONE;
165 static const fltSemantics &IEEEdouble() LLVM_READNONE;
166 static const fltSemantics &IEEEquad() LLVM_READNONE;
167 static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
168 static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
169
170 /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
171 /// anything real.
172 static const fltSemantics &Bogus() LLVM_READNONE;
173
174 /// @}
175
176 /// IEEE-754R 5.11: Floating Point Comparison Relations.
177 enum cmpResult {
178 cmpLessThan,
179 cmpEqual,
180 cmpGreaterThan,
181 cmpUnordered
182 };
183
184 /// IEEE-754R 4.3: Rounding-direction attributes.
185 enum roundingMode {
186 rmNearestTiesToEven,
187 rmTowardPositive,
188 rmTowardNegative,
189 rmTowardZero,
190 rmNearestTiesToAway
191 };
192
193 /// IEEE-754R 7: Default exception handling.
194 ///
195 /// opUnderflow or opOverflow are always returned or-ed with opInexact.
196 ///
197 /// APFloat models this behavior specified by IEEE-754:
198 /// "For operations producing results in floating-point format, the default
199 /// result of an operation that signals the invalid operation exception
200 /// shall be a quiet NaN."
201 enum opStatus {
202 opOK = 0x00,
203 opInvalidOp = 0x01,
204 opDivByZero = 0x02,
205 opOverflow = 0x04,
206 opUnderflow = 0x08,
207 opInexact = 0x10
208 };
209
210 /// Category of internally-represented number.
211 enum fltCategory {
212 fcInfinity,
213 fcNaN,
214 fcNormal,
215 fcZero
216 };
217
218 /// Convenience enum used to construct an uninitialized APFloat.
219 enum uninitializedTag {
220 uninitialized
221 };
222
223 /// Enumeration of \c ilogb error results.
224 enum IlogbErrorKinds {
225 IEK_Zero = INT_MIN + 1,
226 IEK_NaN = INT_MIN,
227 IEK_Inf = INT_MAX
228 };
229
230 static unsigned int semanticsPrecision(const fltSemantics &);
231 static ExponentType semanticsMinExponent(const fltSemantics &);
232 static ExponentType semanticsMaxExponent(const fltSemantics &);
233 static unsigned int semanticsSizeInBits(const fltSemantics &);
234
235 /// Returns the size of the floating point number (in bits) in the given
236 /// semantics.
237 static unsigned getSizeInBits(const fltSemantics &Sem);
238 };
239
240 namespace detail {
241
242 class IEEEFloat final : public APFloatBase {
243 public:
244 /// \name Constructors
245 /// @{
246
247 IEEEFloat(const fltSemantics &); // Default construct to 0.0
248 IEEEFloat(const fltSemantics &, integerPart);
249 IEEEFloat(const fltSemantics &, uninitializedTag);
250 IEEEFloat(const fltSemantics &, const APInt &);
251 explicit IEEEFloat(double d);
252 explicit IEEEFloat(float f);
253 IEEEFloat(const IEEEFloat &);
254 IEEEFloat(IEEEFloat &&);
255 ~IEEEFloat();
256
257 /// @}
258
259 /// Returns whether this instance allocated memory.
needsCleanup()260 bool needsCleanup() const { return partCount() > 1; }
261
262 /// \name Convenience "constructors"
263 /// @{
264
265 /// @}
266
267 /// \name Arithmetic
268 /// @{
269
270 opStatus add(const IEEEFloat &, roundingMode);
271 opStatus subtract(const IEEEFloat &, roundingMode);
272 opStatus multiply(const IEEEFloat &, roundingMode);
273 opStatus divide(const IEEEFloat &, roundingMode);
274 /// IEEE remainder.
275 opStatus remainder(const IEEEFloat &);
276 /// C fmod, or llvm frem.
277 opStatus mod(const IEEEFloat &);
278 opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
279 opStatus roundToIntegral(roundingMode);
280 /// IEEE-754R 5.3.1: nextUp/nextDown.
281 opStatus next(bool nextDown);
282
283 /// @}
284
285 /// \name Sign operations.
286 /// @{
287
288 void changeSign();
289
290 /// @}
291
292 /// \name Conversions
293 /// @{
294
295 opStatus convert(const fltSemantics &, roundingMode, bool *);
296 opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
297 roundingMode, bool *) const;
298 opStatus convertFromAPInt(const APInt &, bool, roundingMode);
299 opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
300 bool, roundingMode);
301 opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
302 bool, roundingMode);
303 Expected<opStatus> convertFromString(StringRef, roundingMode);
304 APInt bitcastToAPInt() const;
305 double convertToDouble() const;
306 float convertToFloat() const;
307
308 /// @}
309
310 /// The definition of equality is not straightforward for floating point, so
311 /// we won't use operator==. Use one of the following, or write whatever it
312 /// is you really mean.
313 bool operator==(const IEEEFloat &) const = delete;
314
315 /// IEEE comparison with another floating point number (NaNs compare
316 /// unordered, 0==-0).
317 cmpResult compare(const IEEEFloat &) const;
318
319 /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
320 bool bitwiseIsEqual(const IEEEFloat &) const;
321
322 /// Write out a hexadecimal representation of the floating point value to DST,
323 /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
324 /// Return the number of characters written, excluding the terminating NUL.
325 unsigned int convertToHexString(char *dst, unsigned int hexDigits,
326 bool upperCase, roundingMode) const;
327
328 /// \name IEEE-754R 5.7.2 General operations.
329 /// @{
330
331 /// IEEE-754R isSignMinus: Returns true if and only if the current value is
332 /// negative.
333 ///
334 /// This applies to zeros and NaNs as well.
isNegative()335 bool isNegative() const { return sign; }
336
337 /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
338 ///
339 /// This implies that the current value of the float is not zero, subnormal,
340 /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()341 bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
342
343 /// Returns true if and only if the current value is zero, subnormal, or
344 /// normal.
345 ///
346 /// This means that the value is not infinite or NaN.
isFinite()347 bool isFinite() const { return !isNaN() && !isInfinity(); }
348
349 /// Returns true if and only if the float is plus or minus zero.
isZero()350 bool isZero() const { return category == fcZero; }
351
352 /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
353 /// denormal.
354 bool isDenormal() const;
355
356 /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()357 bool isInfinity() const { return category == fcInfinity; }
358
359 /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()360 bool isNaN() const { return category == fcNaN; }
361
362 /// Returns true if and only if the float is a signaling NaN.
363 bool isSignaling() const;
364
365 /// @}
366
367 /// \name Simple Queries
368 /// @{
369
getCategory()370 fltCategory getCategory() const { return category; }
getSemantics()371 const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()372 bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()373 bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()374 bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()375 bool isNegZero() const { return isZero() && isNegative(); }
376
377 /// Returns true if and only if the number has the smallest possible non-zero
378 /// magnitude in the current semantics.
379 bool isSmallest() const;
380
381 /// Returns true if and only if the number has the largest possible finite
382 /// magnitude in the current semantics.
383 bool isLargest() const;
384
385 /// Returns true if and only if the number is an exact integer.
386 bool isInteger() const;
387
388 /// @}
389
390 IEEEFloat &operator=(const IEEEFloat &);
391 IEEEFloat &operator=(IEEEFloat &&);
392
393 /// Overload to compute a hash code for an APFloat value.
394 ///
395 /// Note that the use of hash codes for floating point values is in general
396 /// frought with peril. Equality is hard to define for these values. For
397 /// example, should negative and positive zero hash to different codes? Are
398 /// they equal or not? This hash value implementation specifically
399 /// emphasizes producing different codes for different inputs in order to
400 /// be used in canonicalization and memoization. As such, equality is
401 /// bitwiseIsEqual, and 0 != -0.
402 friend hash_code hash_value(const IEEEFloat &Arg);
403
404 /// Converts this value into a decimal string.
405 ///
406 /// \param FormatPrecision The maximum number of digits of
407 /// precision to output. If there are fewer digits available,
408 /// zero padding will not be used unless the value is
409 /// integral and small enough to be expressed in
410 /// FormatPrecision digits. 0 means to use the natural
411 /// precision of the number.
412 /// \param FormatMaxPadding The maximum number of zeros to
413 /// consider inserting before falling back to scientific
414 /// notation. 0 means to always use scientific notation.
415 ///
416 /// \param TruncateZero Indicate whether to remove the trailing zero in
417 /// fraction part or not. Also setting this parameter to false forcing
418 /// producing of output more similar to default printf behavior.
419 /// Specifically the lower e is used as exponent delimiter and exponent
420 /// always contains no less than two digits.
421 ///
422 /// Number Precision MaxPadding Result
423 /// ------ --------- ---------- ------
424 /// 1.01E+4 5 2 10100
425 /// 1.01E+4 4 2 1.01E+4
426 /// 1.01E+4 5 1 1.01E+4
427 /// 1.01E-2 5 2 0.0101
428 /// 1.01E-2 4 2 0.0101
429 /// 1.01E-2 4 1 1.01E-2
430 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
431 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
432
433 /// If this value has an exact multiplicative inverse, store it in inv and
434 /// return true.
435 bool getExactInverse(APFloat *inv) const;
436
437 /// Returns the exponent of the internal representation of the APFloat.
438 ///
439 /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
440 /// For special APFloat values, this returns special error codes:
441 ///
442 /// NaN -> \c IEK_NaN
443 /// 0 -> \c IEK_Zero
444 /// Inf -> \c IEK_Inf
445 ///
446 friend int ilogb(const IEEEFloat &Arg);
447
448 /// Returns: X * 2^Exp for integral exponents.
449 friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
450
451 friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
452
453 /// \name Special value setters.
454 /// @{
455
456 void makeLargest(bool Neg = false);
457 void makeSmallest(bool Neg = false);
458 void makeNaN(bool SNaN = false, bool Neg = false,
459 const APInt *fill = nullptr);
460 void makeInf(bool Neg = false);
461 void makeZero(bool Neg = false);
462 void makeQuiet();
463
464 /// Returns the smallest (by magnitude) normalized finite number in the given
465 /// semantics.
466 ///
467 /// \param Negative - True iff the number should be negative
468 void makeSmallestNormalized(bool Negative = false);
469
470 /// @}
471
472 cmpResult compareAbsoluteValue(const IEEEFloat &) const;
473
474 private:
475 /// \name Simple Queries
476 /// @{
477
478 integerPart *significandParts();
479 const integerPart *significandParts() const;
480 unsigned int partCount() const;
481
482 /// @}
483
484 /// \name Significand operations.
485 /// @{
486
487 integerPart addSignificand(const IEEEFloat &);
488 integerPart subtractSignificand(const IEEEFloat &, integerPart);
489 lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
490 lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
491 lostFraction multiplySignificand(const IEEEFloat&);
492 lostFraction divideSignificand(const IEEEFloat &);
493 void incrementSignificand();
494 void initialize(const fltSemantics *);
495 void shiftSignificandLeft(unsigned int);
496 lostFraction shiftSignificandRight(unsigned int);
497 unsigned int significandLSB() const;
498 unsigned int significandMSB() const;
499 void zeroSignificand();
500 /// Return true if the significand excluding the integral bit is all ones.
501 bool isSignificandAllOnes() const;
502 /// Return true if the significand excluding the integral bit is all zeros.
503 bool isSignificandAllZeros() const;
504
505 /// @}
506
507 /// \name Arithmetic on special values.
508 /// @{
509
510 opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
511 opStatus divideSpecials(const IEEEFloat &);
512 opStatus multiplySpecials(const IEEEFloat &);
513 opStatus modSpecials(const IEEEFloat &);
514
515 /// @}
516
517 /// \name Miscellany
518 /// @{
519
520 bool convertFromStringSpecials(StringRef str);
521 opStatus normalize(roundingMode, lostFraction);
522 opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
523 opStatus handleOverflow(roundingMode);
524 bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
525 opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
526 unsigned int, bool, roundingMode,
527 bool *) const;
528 opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
529 roundingMode);
530 Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
531 Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
532 char *convertNormalToHexString(char *, unsigned int, bool,
533 roundingMode) const;
534 opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
535 roundingMode);
536
537 /// @}
538
539 APInt convertHalfAPFloatToAPInt() const;
540 APInt convertFloatAPFloatToAPInt() const;
541 APInt convertDoubleAPFloatToAPInt() const;
542 APInt convertQuadrupleAPFloatToAPInt() const;
543 APInt convertF80LongDoubleAPFloatToAPInt() const;
544 APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
545 void initFromAPInt(const fltSemantics *Sem, const APInt &api);
546 void initFromHalfAPInt(const APInt &api);
547 void initFromFloatAPInt(const APInt &api);
548 void initFromDoubleAPInt(const APInt &api);
549 void initFromQuadrupleAPInt(const APInt &api);
550 void initFromF80LongDoubleAPInt(const APInt &api);
551 void initFromPPCDoubleDoubleAPInt(const APInt &api);
552
553 void assign(const IEEEFloat &);
554 void copySignificand(const IEEEFloat &);
555 void freeSignificand();
556
557 /// Note: this must be the first data member.
558 /// The semantics that this value obeys.
559 const fltSemantics *semantics;
560
561 /// A binary fraction with an explicit integer bit.
562 ///
563 /// The significand must be at least one bit wider than the target precision.
564 union Significand {
565 integerPart part;
566 integerPart *parts;
567 } significand;
568
569 /// The signed unbiased exponent of the value.
570 ExponentType exponent;
571
572 /// What kind of floating point number this is.
573 ///
574 /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
575 /// Using the extra bit keeps it from failing under VisualStudio.
576 fltCategory category : 3;
577
578 /// Sign bit of the number.
579 unsigned int sign : 1;
580 };
581
582 hash_code hash_value(const IEEEFloat &Arg);
583 int ilogb(const IEEEFloat &Arg);
584 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
585 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
586
587 // This mode implements more precise float in terms of two APFloats.
588 // The interface and layout is designed for arbitray underlying semantics,
589 // though currently only PPCDoubleDouble semantics are supported, whose
590 // corresponding underlying semantics are IEEEdouble.
591 class DoubleAPFloat final : public APFloatBase {
592 // Note: this must be the first data member.
593 const fltSemantics *Semantics;
594 std::unique_ptr<APFloat[]> Floats;
595
596 opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
597 const APFloat &cc, roundingMode RM);
598
599 opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
600 DoubleAPFloat &Out, roundingMode RM);
601
602 public:
603 DoubleAPFloat(const fltSemantics &S);
604 DoubleAPFloat(const fltSemantics &S, uninitializedTag);
605 DoubleAPFloat(const fltSemantics &S, integerPart);
606 DoubleAPFloat(const fltSemantics &S, const APInt &I);
607 DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
608 DoubleAPFloat(const DoubleAPFloat &RHS);
609 DoubleAPFloat(DoubleAPFloat &&RHS);
610
611 DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
612
613 DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
614 if (this != &RHS) {
615 this->~DoubleAPFloat();
616 new (this) DoubleAPFloat(std::move(RHS));
617 }
618 return *this;
619 }
620
needsCleanup()621 bool needsCleanup() const { return Floats != nullptr; }
622
getFirst()623 APFloat &getFirst() { return Floats[0]; }
getFirst()624 const APFloat &getFirst() const { return Floats[0]; }
getSecond()625 APFloat &getSecond() { return Floats[1]; }
getSecond()626 const APFloat &getSecond() const { return Floats[1]; }
627
628 opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
629 opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
630 opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
631 opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
632 opStatus remainder(const DoubleAPFloat &RHS);
633 opStatus mod(const DoubleAPFloat &RHS);
634 opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
635 const DoubleAPFloat &Addend, roundingMode RM);
636 opStatus roundToIntegral(roundingMode RM);
637 void changeSign();
638 cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
639
640 fltCategory getCategory() const;
641 bool isNegative() const;
642
643 void makeInf(bool Neg);
644 void makeZero(bool Neg);
645 void makeLargest(bool Neg);
646 void makeSmallest(bool Neg);
647 void makeSmallestNormalized(bool Neg);
648 void makeNaN(bool SNaN, bool Neg, const APInt *fill);
649
650 cmpResult compare(const DoubleAPFloat &RHS) const;
651 bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
652 APInt bitcastToAPInt() const;
653 Expected<opStatus> convertFromString(StringRef, roundingMode);
654 opStatus next(bool nextDown);
655
656 opStatus convertToInteger(MutableArrayRef<integerPart> Input,
657 unsigned int Width, bool IsSigned, roundingMode RM,
658 bool *IsExact) const;
659 opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
660 opStatus convertFromSignExtendedInteger(const integerPart *Input,
661 unsigned int InputSize, bool IsSigned,
662 roundingMode RM);
663 opStatus convertFromZeroExtendedInteger(const integerPart *Input,
664 unsigned int InputSize, bool IsSigned,
665 roundingMode RM);
666 unsigned int convertToHexString(char *DST, unsigned int HexDigits,
667 bool UpperCase, roundingMode RM) const;
668
669 bool isDenormal() const;
670 bool isSmallest() const;
671 bool isLargest() const;
672 bool isInteger() const;
673
674 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
675 unsigned FormatMaxPadding, bool TruncateZero = true) const;
676
677 bool getExactInverse(APFloat *inv) const;
678
679 friend int ilogb(const DoubleAPFloat &Arg);
680 friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
681 friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
682 friend hash_code hash_value(const DoubleAPFloat &Arg);
683 };
684
685 hash_code hash_value(const DoubleAPFloat &Arg);
686
687 } // End detail namespace
688
689 // This is a interface class that is currently forwarding functionalities from
690 // detail::IEEEFloat.
691 class APFloat : public APFloatBase {
692 typedef detail::IEEEFloat IEEEFloat;
693 typedef detail::DoubleAPFloat DoubleAPFloat;
694
695 static_assert(std::is_standard_layout<IEEEFloat>::value, "");
696
697 union Storage {
698 const fltSemantics *semantics;
699 IEEEFloat IEEE;
700 DoubleAPFloat Double;
701
702 explicit Storage(IEEEFloat F, const fltSemantics &S);
Storage(DoubleAPFloat F,const fltSemantics & S)703 explicit Storage(DoubleAPFloat F, const fltSemantics &S)
704 : Double(std::move(F)) {
705 assert(&S == &PPCDoubleDouble());
706 }
707
708 template <typename... ArgTypes>
Storage(const fltSemantics & Semantics,ArgTypes &&...Args)709 Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
710 if (usesLayout<IEEEFloat>(Semantics)) {
711 new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
712 return;
713 }
714 if (usesLayout<DoubleAPFloat>(Semantics)) {
715 new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
716 return;
717 }
718 llvm_unreachable("Unexpected semantics");
719 }
720
~Storage()721 ~Storage() {
722 if (usesLayout<IEEEFloat>(*semantics)) {
723 IEEE.~IEEEFloat();
724 return;
725 }
726 if (usesLayout<DoubleAPFloat>(*semantics)) {
727 Double.~DoubleAPFloat();
728 return;
729 }
730 llvm_unreachable("Unexpected semantics");
731 }
732
Storage(const Storage & RHS)733 Storage(const Storage &RHS) {
734 if (usesLayout<IEEEFloat>(*RHS.semantics)) {
735 new (this) IEEEFloat(RHS.IEEE);
736 return;
737 }
738 if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
739 new (this) DoubleAPFloat(RHS.Double);
740 return;
741 }
742 llvm_unreachable("Unexpected semantics");
743 }
744
Storage(Storage && RHS)745 Storage(Storage &&RHS) {
746 if (usesLayout<IEEEFloat>(*RHS.semantics)) {
747 new (this) IEEEFloat(std::move(RHS.IEEE));
748 return;
749 }
750 if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
751 new (this) DoubleAPFloat(std::move(RHS.Double));
752 return;
753 }
754 llvm_unreachable("Unexpected semantics");
755 }
756
757 Storage &operator=(const Storage &RHS) {
758 if (usesLayout<IEEEFloat>(*semantics) &&
759 usesLayout<IEEEFloat>(*RHS.semantics)) {
760 IEEE = RHS.IEEE;
761 } else if (usesLayout<DoubleAPFloat>(*semantics) &&
762 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
763 Double = RHS.Double;
764 } else if (this != &RHS) {
765 this->~Storage();
766 new (this) Storage(RHS);
767 }
768 return *this;
769 }
770
771 Storage &operator=(Storage &&RHS) {
772 if (usesLayout<IEEEFloat>(*semantics) &&
773 usesLayout<IEEEFloat>(*RHS.semantics)) {
774 IEEE = std::move(RHS.IEEE);
775 } else if (usesLayout<DoubleAPFloat>(*semantics) &&
776 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
777 Double = std::move(RHS.Double);
778 } else if (this != &RHS) {
779 this->~Storage();
780 new (this) Storage(std::move(RHS));
781 }
782 return *this;
783 }
784 } U;
785
usesLayout(const fltSemantics & Semantics)786 template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
787 static_assert(std::is_same<T, IEEEFloat>::value ||
788 std::is_same<T, DoubleAPFloat>::value, "");
789 if (std::is_same<T, DoubleAPFloat>::value) {
790 return &Semantics == &PPCDoubleDouble();
791 }
792 return &Semantics != &PPCDoubleDouble();
793 }
794
getIEEE()795 IEEEFloat &getIEEE() {
796 if (usesLayout<IEEEFloat>(*U.semantics))
797 return U.IEEE;
798 if (usesLayout<DoubleAPFloat>(*U.semantics))
799 return U.Double.getFirst().U.IEEE;
800 llvm_unreachable("Unexpected semantics");
801 }
802
getIEEE()803 const IEEEFloat &getIEEE() const {
804 if (usesLayout<IEEEFloat>(*U.semantics))
805 return U.IEEE;
806 if (usesLayout<DoubleAPFloat>(*U.semantics))
807 return U.Double.getFirst().U.IEEE;
808 llvm_unreachable("Unexpected semantics");
809 }
810
makeZero(bool Neg)811 void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
812
makeInf(bool Neg)813 void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
814
makeNaN(bool SNaN,bool Neg,const APInt * fill)815 void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
816 APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
817 }
818
makeLargest(bool Neg)819 void makeLargest(bool Neg) {
820 APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
821 }
822
makeSmallest(bool Neg)823 void makeSmallest(bool Neg) {
824 APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
825 }
826
makeSmallestNormalized(bool Neg)827 void makeSmallestNormalized(bool Neg) {
828 APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
829 }
830
831 // FIXME: This is due to clang 3.3 (or older version) always checks for the
832 // default constructor in an array aggregate initialization, even if no
833 // elements in the array is default initialized.
APFloat()834 APFloat() : U(IEEEdouble()) {
835 llvm_unreachable("This is a workaround for old clang.");
836 }
837
APFloat(IEEEFloat F,const fltSemantics & S)838 explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
APFloat(DoubleAPFloat F,const fltSemantics & S)839 explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
840 : U(std::move(F), S) {}
841
compareAbsoluteValue(const APFloat & RHS)842 cmpResult compareAbsoluteValue(const APFloat &RHS) const {
843 assert(&getSemantics() == &RHS.getSemantics() &&
844 "Should only compare APFloats with the same semantics");
845 if (usesLayout<IEEEFloat>(getSemantics()))
846 return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
847 if (usesLayout<DoubleAPFloat>(getSemantics()))
848 return U.Double.compareAbsoluteValue(RHS.U.Double);
849 llvm_unreachable("Unexpected semantics");
850 }
851
852 public:
APFloat(const fltSemantics & Semantics)853 APFloat(const fltSemantics &Semantics) : U(Semantics) {}
854 APFloat(const fltSemantics &Semantics, StringRef S);
APFloat(const fltSemantics & Semantics,integerPart I)855 APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
856 template <typename T, typename = typename std::enable_if<
857 std::is_floating_point<T>::value>::type>
858 APFloat(const fltSemantics &Semantics, T V) = delete;
859 // TODO: Remove this constructor. This isn't faster than the first one.
APFloat(const fltSemantics & Semantics,uninitializedTag)860 APFloat(const fltSemantics &Semantics, uninitializedTag)
861 : U(Semantics, uninitialized) {}
APFloat(const fltSemantics & Semantics,const APInt & I)862 APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
APFloat(double d)863 explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
APFloat(float f)864 explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
865 APFloat(const APFloat &RHS) = default;
866 APFloat(APFloat &&RHS) = default;
867
868 ~APFloat() = default;
869
needsCleanup()870 bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
871
872 /// Factory for Positive and Negative Zero.
873 ///
874 /// \param Negative True iff the number should be negative.
875 static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
876 APFloat Val(Sem, uninitialized);
877 Val.makeZero(Negative);
878 return Val;
879 }
880
881 /// Factory for Positive and Negative Infinity.
882 ///
883 /// \param Negative True iff the number should be negative.
884 static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
885 APFloat Val(Sem, uninitialized);
886 Val.makeInf(Negative);
887 return Val;
888 }
889
890 /// Factory for NaN values.
891 ///
892 /// \param Negative - True iff the NaN generated should be negative.
893 /// \param payload - The unspecified fill bits for creating the NaN, 0 by
894 /// default. The value is truncated as necessary.
895 static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
896 uint64_t payload = 0) {
897 if (payload) {
898 APInt intPayload(64, payload);
899 return getQNaN(Sem, Negative, &intPayload);
900 } else {
901 return getQNaN(Sem, Negative, nullptr);
902 }
903 }
904
905 /// Factory for QNaN values.
906 static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
907 const APInt *payload = nullptr) {
908 APFloat Val(Sem, uninitialized);
909 Val.makeNaN(false, Negative, payload);
910 return Val;
911 }
912
913 /// Factory for SNaN values.
914 static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
915 const APInt *payload = nullptr) {
916 APFloat Val(Sem, uninitialized);
917 Val.makeNaN(true, Negative, payload);
918 return Val;
919 }
920
921 /// Returns the largest finite number in the given semantics.
922 ///
923 /// \param Negative - True iff the number should be negative
924 static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
925 APFloat Val(Sem, uninitialized);
926 Val.makeLargest(Negative);
927 return Val;
928 }
929
930 /// Returns the smallest (by magnitude) finite number in the given semantics.
931 /// Might be denormalized, which implies a relative loss of precision.
932 ///
933 /// \param Negative - True iff the number should be negative
934 static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
935 APFloat Val(Sem, uninitialized);
936 Val.makeSmallest(Negative);
937 return Val;
938 }
939
940 /// Returns the smallest (by magnitude) normalized finite number in the given
941 /// semantics.
942 ///
943 /// \param Negative - True iff the number should be negative
944 static APFloat getSmallestNormalized(const fltSemantics &Sem,
945 bool Negative = false) {
946 APFloat Val(Sem, uninitialized);
947 Val.makeSmallestNormalized(Negative);
948 return Val;
949 }
950
951 /// Returns a float which is bitcasted from an all one value int.
952 ///
953 /// \param BitWidth - Select float type
954 /// \param isIEEE - If 128 bit number, select between PPC and IEEE
955 static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
956
957 /// Used to insert APFloat objects, or objects that contain APFloat objects,
958 /// into FoldingSets.
959 void Profile(FoldingSetNodeID &NID) const;
960
add(const APFloat & RHS,roundingMode RM)961 opStatus add(const APFloat &RHS, roundingMode RM) {
962 assert(&getSemantics() == &RHS.getSemantics() &&
963 "Should only call on two APFloats with the same semantics");
964 if (usesLayout<IEEEFloat>(getSemantics()))
965 return U.IEEE.add(RHS.U.IEEE, RM);
966 if (usesLayout<DoubleAPFloat>(getSemantics()))
967 return U.Double.add(RHS.U.Double, RM);
968 llvm_unreachable("Unexpected semantics");
969 }
subtract(const APFloat & RHS,roundingMode RM)970 opStatus subtract(const APFloat &RHS, roundingMode RM) {
971 assert(&getSemantics() == &RHS.getSemantics() &&
972 "Should only call on two APFloats with the same semantics");
973 if (usesLayout<IEEEFloat>(getSemantics()))
974 return U.IEEE.subtract(RHS.U.IEEE, RM);
975 if (usesLayout<DoubleAPFloat>(getSemantics()))
976 return U.Double.subtract(RHS.U.Double, RM);
977 llvm_unreachable("Unexpected semantics");
978 }
multiply(const APFloat & RHS,roundingMode RM)979 opStatus multiply(const APFloat &RHS, roundingMode RM) {
980 assert(&getSemantics() == &RHS.getSemantics() &&
981 "Should only call on two APFloats with the same semantics");
982 if (usesLayout<IEEEFloat>(getSemantics()))
983 return U.IEEE.multiply(RHS.U.IEEE, RM);
984 if (usesLayout<DoubleAPFloat>(getSemantics()))
985 return U.Double.multiply(RHS.U.Double, RM);
986 llvm_unreachable("Unexpected semantics");
987 }
divide(const APFloat & RHS,roundingMode RM)988 opStatus divide(const APFloat &RHS, roundingMode RM) {
989 assert(&getSemantics() == &RHS.getSemantics() &&
990 "Should only call on two APFloats with the same semantics");
991 if (usesLayout<IEEEFloat>(getSemantics()))
992 return U.IEEE.divide(RHS.U.IEEE, RM);
993 if (usesLayout<DoubleAPFloat>(getSemantics()))
994 return U.Double.divide(RHS.U.Double, RM);
995 llvm_unreachable("Unexpected semantics");
996 }
remainder(const APFloat & RHS)997 opStatus remainder(const APFloat &RHS) {
998 assert(&getSemantics() == &RHS.getSemantics() &&
999 "Should only call on two APFloats with the same semantics");
1000 if (usesLayout<IEEEFloat>(getSemantics()))
1001 return U.IEEE.remainder(RHS.U.IEEE);
1002 if (usesLayout<DoubleAPFloat>(getSemantics()))
1003 return U.Double.remainder(RHS.U.Double);
1004 llvm_unreachable("Unexpected semantics");
1005 }
mod(const APFloat & RHS)1006 opStatus mod(const APFloat &RHS) {
1007 assert(&getSemantics() == &RHS.getSemantics() &&
1008 "Should only call on two APFloats with the same semantics");
1009 if (usesLayout<IEEEFloat>(getSemantics()))
1010 return U.IEEE.mod(RHS.U.IEEE);
1011 if (usesLayout<DoubleAPFloat>(getSemantics()))
1012 return U.Double.mod(RHS.U.Double);
1013 llvm_unreachable("Unexpected semantics");
1014 }
fusedMultiplyAdd(const APFloat & Multiplicand,const APFloat & Addend,roundingMode RM)1015 opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1016 roundingMode RM) {
1017 assert(&getSemantics() == &Multiplicand.getSemantics() &&
1018 "Should only call on APFloats with the same semantics");
1019 assert(&getSemantics() == &Addend.getSemantics() &&
1020 "Should only call on APFloats with the same semantics");
1021 if (usesLayout<IEEEFloat>(getSemantics()))
1022 return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1023 if (usesLayout<DoubleAPFloat>(getSemantics()))
1024 return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1025 RM);
1026 llvm_unreachable("Unexpected semantics");
1027 }
roundToIntegral(roundingMode RM)1028 opStatus roundToIntegral(roundingMode RM) {
1029 APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1030 }
1031
1032 // TODO: bool parameters are not readable and a source of bugs.
1033 // Do something.
next(bool nextDown)1034 opStatus next(bool nextDown) {
1035 APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1036 }
1037
1038 /// Add two APFloats, rounding ties to the nearest even.
1039 /// No error checking.
1040 APFloat operator+(const APFloat &RHS) const {
1041 APFloat Result(*this);
1042 (void)Result.add(RHS, rmNearestTiesToEven);
1043 return Result;
1044 }
1045
1046 /// Subtract two APFloats, rounding ties to the nearest even.
1047 /// No error checking.
1048 APFloat operator-(const APFloat &RHS) const {
1049 APFloat Result(*this);
1050 (void)Result.subtract(RHS, rmNearestTiesToEven);
1051 return Result;
1052 }
1053
1054 /// Multiply two APFloats, rounding ties to the nearest even.
1055 /// No error checking.
1056 APFloat operator*(const APFloat &RHS) const {
1057 APFloat Result(*this);
1058 (void)Result.multiply(RHS, rmNearestTiesToEven);
1059 return Result;
1060 }
1061
1062 /// Divide the first APFloat by the second, rounding ties to the nearest even.
1063 /// No error checking.
1064 APFloat operator/(const APFloat &RHS) const {
1065 APFloat Result(*this);
1066 (void)Result.divide(RHS, rmNearestTiesToEven);
1067 return Result;
1068 }
1069
changeSign()1070 void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
clearSign()1071 void clearSign() {
1072 if (isNegative())
1073 changeSign();
1074 }
copySign(const APFloat & RHS)1075 void copySign(const APFloat &RHS) {
1076 if (isNegative() != RHS.isNegative())
1077 changeSign();
1078 }
1079
1080 /// A static helper to produce a copy of an APFloat value with its sign
1081 /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)1082 static APFloat copySign(APFloat Value, const APFloat &Sign) {
1083 Value.copySign(Sign);
1084 return Value;
1085 }
1086
1087 opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1088 bool *losesInfo);
convertToInteger(MutableArrayRef<integerPart> Input,unsigned int Width,bool IsSigned,roundingMode RM,bool * IsExact)1089 opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1090 unsigned int Width, bool IsSigned, roundingMode RM,
1091 bool *IsExact) const {
1092 APFLOAT_DISPATCH_ON_SEMANTICS(
1093 convertToInteger(Input, Width, IsSigned, RM, IsExact));
1094 }
1095 opStatus convertToInteger(APSInt &Result, roundingMode RM,
1096 bool *IsExact) const;
convertFromAPInt(const APInt & Input,bool IsSigned,roundingMode RM)1097 opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1098 roundingMode RM) {
1099 APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1100 }
convertFromSignExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1101 opStatus convertFromSignExtendedInteger(const integerPart *Input,
1102 unsigned int InputSize, bool IsSigned,
1103 roundingMode RM) {
1104 APFLOAT_DISPATCH_ON_SEMANTICS(
1105 convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1106 }
convertFromZeroExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1107 opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1108 unsigned int InputSize, bool IsSigned,
1109 roundingMode RM) {
1110 APFLOAT_DISPATCH_ON_SEMANTICS(
1111 convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1112 }
1113 Expected<opStatus> convertFromString(StringRef, roundingMode);
bitcastToAPInt()1114 APInt bitcastToAPInt() const {
1115 APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1116 }
convertToDouble()1117 double convertToDouble() const { return getIEEE().convertToDouble(); }
convertToFloat()1118 float convertToFloat() const { return getIEEE().convertToFloat(); }
1119
1120 bool operator==(const APFloat &) const = delete;
1121
compare(const APFloat & RHS)1122 cmpResult compare(const APFloat &RHS) const {
1123 assert(&getSemantics() == &RHS.getSemantics() &&
1124 "Should only compare APFloats with the same semantics");
1125 if (usesLayout<IEEEFloat>(getSemantics()))
1126 return U.IEEE.compare(RHS.U.IEEE);
1127 if (usesLayout<DoubleAPFloat>(getSemantics()))
1128 return U.Double.compare(RHS.U.Double);
1129 llvm_unreachable("Unexpected semantics");
1130 }
1131
bitwiseIsEqual(const APFloat & RHS)1132 bool bitwiseIsEqual(const APFloat &RHS) const {
1133 if (&getSemantics() != &RHS.getSemantics())
1134 return false;
1135 if (usesLayout<IEEEFloat>(getSemantics()))
1136 return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1137 if (usesLayout<DoubleAPFloat>(getSemantics()))
1138 return U.Double.bitwiseIsEqual(RHS.U.Double);
1139 llvm_unreachable("Unexpected semantics");
1140 }
1141
1142 /// We don't rely on operator== working on double values, as
1143 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1144 /// As such, this method can be used to do an exact bit-for-bit comparison of
1145 /// two floating point values.
1146 ///
1147 /// We leave the version with the double argument here because it's just so
1148 /// convenient to write "2.0" and the like. Without this function we'd
1149 /// have to duplicate its logic everywhere it's called.
isExactlyValue(double V)1150 bool isExactlyValue(double V) const {
1151 bool ignored;
1152 APFloat Tmp(V);
1153 Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1154 return bitwiseIsEqual(Tmp);
1155 }
1156
convertToHexString(char * DST,unsigned int HexDigits,bool UpperCase,roundingMode RM)1157 unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1158 bool UpperCase, roundingMode RM) const {
1159 APFLOAT_DISPATCH_ON_SEMANTICS(
1160 convertToHexString(DST, HexDigits, UpperCase, RM));
1161 }
1162
isZero()1163 bool isZero() const { return getCategory() == fcZero; }
isInfinity()1164 bool isInfinity() const { return getCategory() == fcInfinity; }
isNaN()1165 bool isNaN() const { return getCategory() == fcNaN; }
1166
isNegative()1167 bool isNegative() const { return getIEEE().isNegative(); }
isDenormal()1168 bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
isSignaling()1169 bool isSignaling() const { return getIEEE().isSignaling(); }
1170
isNormal()1171 bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
isFinite()1172 bool isFinite() const { return !isNaN() && !isInfinity(); }
1173
getCategory()1174 fltCategory getCategory() const { return getIEEE().getCategory(); }
getSemantics()1175 const fltSemantics &getSemantics() const { return *U.semantics; }
isNonZero()1176 bool isNonZero() const { return !isZero(); }
isFiniteNonZero()1177 bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()1178 bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()1179 bool isNegZero() const { return isZero() && isNegative(); }
isSmallest()1180 bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
isLargest()1181 bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
isInteger()1182 bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1183
1184 APFloat &operator=(const APFloat &RHS) = default;
1185 APFloat &operator=(APFloat &&RHS) = default;
1186
1187 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1188 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1189 APFLOAT_DISPATCH_ON_SEMANTICS(
1190 toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1191 }
1192
1193 void print(raw_ostream &) const;
1194 void dump() const;
1195
getExactInverse(APFloat * inv)1196 bool getExactInverse(APFloat *inv) const {
1197 APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1198 }
1199
1200 friend hash_code hash_value(const APFloat &Arg);
ilogb(const APFloat & Arg)1201 friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1202 friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1203 friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1204 friend IEEEFloat;
1205 friend DoubleAPFloat;
1206 };
1207
1208 /// See friend declarations above.
1209 ///
1210 /// These additional declarations are required in order to compile LLVM with IBM
1211 /// xlC compiler.
1212 hash_code hash_value(const APFloat &Arg);
scalbn(APFloat X,int Exp,APFloat::roundingMode RM)1213 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1214 if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1215 return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1216 if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1217 return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1218 llvm_unreachable("Unexpected semantics");
1219 }
1220
1221 /// Equivalent of C standard library function.
1222 ///
1223 /// While the C standard says Exp is an unspecified value for infinity and nan,
1224 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
frexp(const APFloat & X,int & Exp,APFloat::roundingMode RM)1225 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1226 if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1227 return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1228 if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1229 return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1230 llvm_unreachable("Unexpected semantics");
1231 }
1232 /// Returns the absolute value of the argument.
abs(APFloat X)1233 inline APFloat abs(APFloat X) {
1234 X.clearSign();
1235 return X;
1236 }
1237
1238 /// Returns the negated value of the argument.
neg(APFloat X)1239 inline APFloat neg(APFloat X) {
1240 X.changeSign();
1241 return X;
1242 }
1243
1244 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1245 /// both are not NaN. If either argument is a NaN, returns the other argument.
1246 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)1247 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1248 if (A.isNaN())
1249 return B;
1250 if (B.isNaN())
1251 return A;
1252 return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
1253 }
1254
1255 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1256 /// both are not NaN. If either argument is a NaN, returns the other argument.
1257 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)1258 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1259 if (A.isNaN())
1260 return B;
1261 if (B.isNaN())
1262 return A;
1263 return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
1264 }
1265
1266 /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
1267 /// arguments, propagating NaNs and treating -0 as less than +0.
1268 LLVM_READONLY
minimum(const APFloat & A,const APFloat & B)1269 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1270 if (A.isNaN())
1271 return A;
1272 if (B.isNaN())
1273 return B;
1274 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1275 return A.isNegative() ? A : B;
1276 return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
1277 }
1278
1279 /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
1280 /// arguments, propagating NaNs and treating -0 as less than +0.
1281 LLVM_READONLY
maximum(const APFloat & A,const APFloat & B)1282 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1283 if (A.isNaN())
1284 return A;
1285 if (B.isNaN())
1286 return B;
1287 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1288 return A.isNegative() ? B : A;
1289 return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
1290 }
1291
1292 } // namespace llvm
1293
1294 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1295 #endif // LLVM_ADT_APFLOAT_H
1296