• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <climits>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <set>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "simplifycfg"
88 
89 // Chosen as 2 so as to be cheap, but still to have enough power to fold
90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
91 // To catch this, we need to fold a compare and a select, hence '2' being the
92 // minimum reasonable default.
93 static cl::opt<unsigned> PHINodeFoldingThreshold(
94     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
95     cl::desc(
96         "Control the amount of phi node folding to perform (default = 2)"));
97 
98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
99     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
100     cl::desc("Control the maximal total instruction cost that we are willing "
101              "to speculatively execute to fold a 2-entry PHI node into a "
102              "select (default = 4)"));
103 
104 static cl::opt<bool> DupRet(
105     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
106     cl::desc("Duplicate return instructions into unconditional branches"));
107 
108 static cl::opt<bool>
109     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
110                cl::desc("Sink common instructions down to the end block"));
111 
112 static cl::opt<bool> HoistCondStores(
113     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
114     cl::desc("Hoist conditional stores if an unconditional store precedes"));
115 
116 static cl::opt<bool> MergeCondStores(
117     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
118     cl::desc("Hoist conditional stores even if an unconditional store does not "
119              "precede - hoist multiple conditional stores into a single "
120              "predicated store"));
121 
122 static cl::opt<bool> MergeCondStoresAggressively(
123     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
124     cl::desc("When merging conditional stores, do so even if the resultant "
125              "basic blocks are unlikely to be if-converted as a result"));
126 
127 static cl::opt<bool> SpeculateOneExpensiveInst(
128     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
129     cl::desc("Allow exactly one expensive instruction to be speculatively "
130              "executed"));
131 
132 static cl::opt<unsigned> MaxSpeculationDepth(
133     "max-speculation-depth", cl::Hidden, cl::init(10),
134     cl::desc("Limit maximum recursion depth when calculating costs of "
135              "speculatively executed instructions"));
136 
137 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
138 STATISTIC(NumLinearMaps,
139           "Number of switch instructions turned into linear mapping");
140 STATISTIC(NumLookupTables,
141           "Number of switch instructions turned into lookup tables");
142 STATISTIC(
143     NumLookupTablesHoles,
144     "Number of switch instructions turned into lookup tables (holes checked)");
145 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
146 STATISTIC(NumSinkCommons,
147           "Number of common instructions sunk down to the end block");
148 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
149 
150 namespace {
151 
152 // The first field contains the value that the switch produces when a certain
153 // case group is selected, and the second field is a vector containing the
154 // cases composing the case group.
155 using SwitchCaseResultVectorTy =
156     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
157 
158 // The first field contains the phi node that generates a result of the switch
159 // and the second field contains the value generated for a certain case in the
160 // switch for that PHI.
161 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
162 
163 /// ValueEqualityComparisonCase - Represents a case of a switch.
164 struct ValueEqualityComparisonCase {
165   ConstantInt *Value;
166   BasicBlock *Dest;
167 
ValueEqualityComparisonCase__anon62d0d0740111::ValueEqualityComparisonCase168   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
169       : Value(Value), Dest(Dest) {}
170 
operator <__anon62d0d0740111::ValueEqualityComparisonCase171   bool operator<(ValueEqualityComparisonCase RHS) const {
172     // Comparing pointers is ok as we only rely on the order for uniquing.
173     return Value < RHS.Value;
174   }
175 
operator ==__anon62d0d0740111::ValueEqualityComparisonCase176   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
177 };
178 
179 class SimplifyCFGOpt {
180   const TargetTransformInfo &TTI;
181   const DataLayout &DL;
182   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
183   const SimplifyCFGOptions &Options;
184   bool Resimplify;
185 
186   Value *isValueEqualityComparison(Instruction *TI);
187   BasicBlock *GetValueEqualityComparisonCases(
188       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
189   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
190                                                      BasicBlock *Pred,
191                                                      IRBuilder<> &Builder);
192   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
193                                            IRBuilder<> &Builder);
194 
195   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
196   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
197   bool SimplifySingleResume(ResumeInst *RI);
198   bool SimplifyCommonResume(ResumeInst *RI);
199   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
200   bool SimplifyUnreachable(UnreachableInst *UI);
201   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
202   bool SimplifyIndirectBr(IndirectBrInst *IBI);
203   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
204   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
205 
206   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
207                                              IRBuilder<> &Builder);
208 
209 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,const DataLayout & DL,SmallPtrSetImpl<BasicBlock * > * LoopHeaders,const SimplifyCFGOptions & Opts)210   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
211                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
212                  const SimplifyCFGOptions &Opts)
213       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
214 
215   bool run(BasicBlock *BB);
216   bool simplifyOnce(BasicBlock *BB);
217 
218   // Helper to set Resimplify and return change indication.
requestResimplify()219   bool requestResimplify() {
220     Resimplify = true;
221     return true;
222   }
223 };
224 
225 } // end anonymous namespace
226 
227 /// Return true if it is safe to merge these two
228 /// terminator instructions together.
229 static bool
SafeToMergeTerminators(Instruction * SI1,Instruction * SI2,SmallSetVector<BasicBlock *,4> * FailBlocks=nullptr)230 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
231                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
232   if (SI1 == SI2)
233     return false; // Can't merge with self!
234 
235   // It is not safe to merge these two switch instructions if they have a common
236   // successor, and if that successor has a PHI node, and if *that* PHI node has
237   // conflicting incoming values from the two switch blocks.
238   BasicBlock *SI1BB = SI1->getParent();
239   BasicBlock *SI2BB = SI2->getParent();
240 
241   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
242   bool Fail = false;
243   for (BasicBlock *Succ : successors(SI2BB))
244     if (SI1Succs.count(Succ))
245       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
246         PHINode *PN = cast<PHINode>(BBI);
247         if (PN->getIncomingValueForBlock(SI1BB) !=
248             PN->getIncomingValueForBlock(SI2BB)) {
249           if (FailBlocks)
250             FailBlocks->insert(Succ);
251           Fail = true;
252         }
253       }
254 
255   return !Fail;
256 }
257 
258 /// Return true if it is safe and profitable to merge these two terminator
259 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
260 /// store all PHI nodes in common successors.
261 static bool
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)262 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
263                                 Instruction *Cond,
264                                 SmallVectorImpl<PHINode *> &PhiNodes) {
265   if (SI1 == SI2)
266     return false; // Can't merge with self!
267   assert(SI1->isUnconditional() && SI2->isConditional());
268 
269   // We fold the unconditional branch if we can easily update all PHI nodes in
270   // common successors:
271   // 1> We have a constant incoming value for the conditional branch;
272   // 2> We have "Cond" as the incoming value for the unconditional branch;
273   // 3> SI2->getCondition() and Cond have same operands.
274   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
275   if (!Ci2)
276     return false;
277   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
278         Cond->getOperand(1) == Ci2->getOperand(1)) &&
279       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
280         Cond->getOperand(1) == Ci2->getOperand(0)))
281     return false;
282 
283   BasicBlock *SI1BB = SI1->getParent();
284   BasicBlock *SI2BB = SI2->getParent();
285   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
286   for (BasicBlock *Succ : successors(SI2BB))
287     if (SI1Succs.count(Succ))
288       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
289         PHINode *PN = cast<PHINode>(BBI);
290         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
291             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
292           return false;
293         PhiNodes.push_back(PN);
294       }
295   return true;
296 }
297 
298 /// Update PHI nodes in Succ to indicate that there will now be entries in it
299 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
300 /// will be the same as those coming in from ExistPred, an existing predecessor
301 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred,MemorySSAUpdater * MSSAU=nullptr)302 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
303                                   BasicBlock *ExistPred,
304                                   MemorySSAUpdater *MSSAU = nullptr) {
305   for (PHINode &PN : Succ->phis())
306     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
307   if (MSSAU)
308     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
309       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
310 }
311 
312 /// Compute an abstract "cost" of speculating the given instruction,
313 /// which is assumed to be safe to speculate. TCC_Free means cheap,
314 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
315 /// expensive.
ComputeSpeculationCost(const User * I,const TargetTransformInfo & TTI)316 static unsigned ComputeSpeculationCost(const User *I,
317                                        const TargetTransformInfo &TTI) {
318   assert(isSafeToSpeculativelyExecute(I) &&
319          "Instruction is not safe to speculatively execute!");
320   return TTI.getUserCost(I);
321 }
322 
323 /// If we have a merge point of an "if condition" as accepted above,
324 /// return true if the specified value dominates the block.  We
325 /// don't handle the true generality of domination here, just a special case
326 /// which works well enough for us.
327 ///
328 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
329 /// see if V (which must be an instruction) and its recursive operands
330 /// that do not dominate BB have a combined cost lower than CostRemaining and
331 /// are non-trapping.  If both are true, the instruction is inserted into the
332 /// set and true is returned.
333 ///
334 /// The cost for most non-trapping instructions is defined as 1 except for
335 /// Select whose cost is 2.
336 ///
337 /// After this function returns, CostRemaining is decreased by the cost of
338 /// V plus its non-dominating operands.  If that cost is greater than
339 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > & AggressiveInsts,int & BudgetRemaining,const TargetTransformInfo & TTI,unsigned Depth=0)340 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
341                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
342                                 int &BudgetRemaining,
343                                 const TargetTransformInfo &TTI,
344                                 unsigned Depth = 0) {
345   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
346   // so limit the recursion depth.
347   // TODO: While this recursion limit does prevent pathological behavior, it
348   // would be better to track visited instructions to avoid cycles.
349   if (Depth == MaxSpeculationDepth)
350     return false;
351 
352   Instruction *I = dyn_cast<Instruction>(V);
353   if (!I) {
354     // Non-instructions all dominate instructions, but not all constantexprs
355     // can be executed unconditionally.
356     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
357       if (C->canTrap())
358         return false;
359     return true;
360   }
361   BasicBlock *PBB = I->getParent();
362 
363   // We don't want to allow weird loops that might have the "if condition" in
364   // the bottom of this block.
365   if (PBB == BB)
366     return false;
367 
368   // If this instruction is defined in a block that contains an unconditional
369   // branch to BB, then it must be in the 'conditional' part of the "if
370   // statement".  If not, it definitely dominates the region.
371   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
372   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
373     return true;
374 
375   // If we have seen this instruction before, don't count it again.
376   if (AggressiveInsts.count(I))
377     return true;
378 
379   // Okay, it looks like the instruction IS in the "condition".  Check to
380   // see if it's a cheap instruction to unconditionally compute, and if it
381   // only uses stuff defined outside of the condition.  If so, hoist it out.
382   if (!isSafeToSpeculativelyExecute(I))
383     return false;
384 
385   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
386 
387   // Allow exactly one instruction to be speculated regardless of its cost
388   // (as long as it is safe to do so).
389   // This is intended to flatten the CFG even if the instruction is a division
390   // or other expensive operation. The speculation of an expensive instruction
391   // is expected to be undone in CodeGenPrepare if the speculation has not
392   // enabled further IR optimizations.
393   if (BudgetRemaining < 0 &&
394       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
395     return false;
396 
397   // Okay, we can only really hoist these out if their operands do
398   // not take us over the cost threshold.
399   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
400     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
401                              Depth + 1))
402       return false;
403   // Okay, it's safe to do this!  Remember this instruction.
404   AggressiveInsts.insert(I);
405   return true;
406 }
407 
408 /// Extract ConstantInt from value, looking through IntToPtr
409 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)410 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
411   // Normal constant int.
412   ConstantInt *CI = dyn_cast<ConstantInt>(V);
413   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
414     return CI;
415 
416   // This is some kind of pointer constant. Turn it into a pointer-sized
417   // ConstantInt if possible.
418   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
419 
420   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
421   if (isa<ConstantPointerNull>(V))
422     return ConstantInt::get(PtrTy, 0);
423 
424   // IntToPtr const int.
425   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
426     if (CE->getOpcode() == Instruction::IntToPtr)
427       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
428         // The constant is very likely to have the right type already.
429         if (CI->getType() == PtrTy)
430           return CI;
431         else
432           return cast<ConstantInt>(
433               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
434       }
435   return nullptr;
436 }
437 
438 namespace {
439 
440 /// Given a chain of or (||) or and (&&) comparison of a value against a
441 /// constant, this will try to recover the information required for a switch
442 /// structure.
443 /// It will depth-first traverse the chain of comparison, seeking for patterns
444 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
445 /// representing the different cases for the switch.
446 /// Note that if the chain is composed of '||' it will build the set of elements
447 /// that matches the comparisons (i.e. any of this value validate the chain)
448 /// while for a chain of '&&' it will build the set elements that make the test
449 /// fail.
450 struct ConstantComparesGatherer {
451   const DataLayout &DL;
452 
453   /// Value found for the switch comparison
454   Value *CompValue = nullptr;
455 
456   /// Extra clause to be checked before the switch
457   Value *Extra = nullptr;
458 
459   /// Set of integers to match in switch
460   SmallVector<ConstantInt *, 8> Vals;
461 
462   /// Number of comparisons matched in the and/or chain
463   unsigned UsedICmps = 0;
464 
465   /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anon62d0d0740211::ConstantComparesGatherer466   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
467     gather(Cond);
468   }
469 
470   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
471   ConstantComparesGatherer &
472   operator=(const ConstantComparesGatherer &) = delete;
473 
474 private:
475   /// Try to set the current value used for the comparison, it succeeds only if
476   /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anon62d0d0740211::ConstantComparesGatherer477   bool setValueOnce(Value *NewVal) {
478     if (CompValue && CompValue != NewVal)
479       return false;
480     CompValue = NewVal;
481     return (CompValue != nullptr);
482   }
483 
484   /// Try to match Instruction "I" as a comparison against a constant and
485   /// populates the array Vals with the set of values that match (or do not
486   /// match depending on isEQ).
487   /// Return false on failure. On success, the Value the comparison matched
488   /// against is placed in CompValue.
489   /// If CompValue is already set, the function is expected to fail if a match
490   /// is found but the value compared to is different.
matchInstruction__anon62d0d0740211::ConstantComparesGatherer491   bool matchInstruction(Instruction *I, bool isEQ) {
492     // If this is an icmp against a constant, handle this as one of the cases.
493     ICmpInst *ICI;
494     ConstantInt *C;
495     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
496           (C = GetConstantInt(I->getOperand(1), DL)))) {
497       return false;
498     }
499 
500     Value *RHSVal;
501     const APInt *RHSC;
502 
503     // Pattern match a special case
504     // (x & ~2^z) == y --> x == y || x == y|2^z
505     // This undoes a transformation done by instcombine to fuse 2 compares.
506     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
507       // It's a little bit hard to see why the following transformations are
508       // correct. Here is a CVC3 program to verify them for 64-bit values:
509 
510       /*
511          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
512          x    : BITVECTOR(64);
513          y    : BITVECTOR(64);
514          z    : BITVECTOR(64);
515          mask : BITVECTOR(64) = BVSHL(ONE, z);
516          QUERY( (y & ~mask = y) =>
517                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
518          );
519          QUERY( (y |  mask = y) =>
520                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
521          );
522       */
523 
524       // Please note that each pattern must be a dual implication (<--> or
525       // iff). One directional implication can create spurious matches. If the
526       // implication is only one-way, an unsatisfiable condition on the left
527       // side can imply a satisfiable condition on the right side. Dual
528       // implication ensures that satisfiable conditions are transformed to
529       // other satisfiable conditions and unsatisfiable conditions are
530       // transformed to other unsatisfiable conditions.
531 
532       // Here is a concrete example of a unsatisfiable condition on the left
533       // implying a satisfiable condition on the right:
534       //
535       // mask = (1 << z)
536       // (x & ~mask) == y  --> (x == y || x == (y | mask))
537       //
538       // Substituting y = 3, z = 0 yields:
539       // (x & -2) == 3 --> (x == 3 || x == 2)
540 
541       // Pattern match a special case:
542       /*
543         QUERY( (y & ~mask = y) =>
544                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
545         );
546       */
547       if (match(ICI->getOperand(0),
548                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
549         APInt Mask = ~*RHSC;
550         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
551           // If we already have a value for the switch, it has to match!
552           if (!setValueOnce(RHSVal))
553             return false;
554 
555           Vals.push_back(C);
556           Vals.push_back(
557               ConstantInt::get(C->getContext(),
558                                C->getValue() | Mask));
559           UsedICmps++;
560           return true;
561         }
562       }
563 
564       // Pattern match a special case:
565       /*
566         QUERY( (y |  mask = y) =>
567                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
568         );
569       */
570       if (match(ICI->getOperand(0),
571                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
572         APInt Mask = *RHSC;
573         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
574           // If we already have a value for the switch, it has to match!
575           if (!setValueOnce(RHSVal))
576             return false;
577 
578           Vals.push_back(C);
579           Vals.push_back(ConstantInt::get(C->getContext(),
580                                           C->getValue() & ~Mask));
581           UsedICmps++;
582           return true;
583         }
584       }
585 
586       // If we already have a value for the switch, it has to match!
587       if (!setValueOnce(ICI->getOperand(0)))
588         return false;
589 
590       UsedICmps++;
591       Vals.push_back(C);
592       return ICI->getOperand(0);
593     }
594 
595     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
596     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
597         ICI->getPredicate(), C->getValue());
598 
599     // Shift the range if the compare is fed by an add. This is the range
600     // compare idiom as emitted by instcombine.
601     Value *CandidateVal = I->getOperand(0);
602     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
603       Span = Span.subtract(*RHSC);
604       CandidateVal = RHSVal;
605     }
606 
607     // If this is an and/!= check, then we are looking to build the set of
608     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
609     // x != 0 && x != 1.
610     if (!isEQ)
611       Span = Span.inverse();
612 
613     // If there are a ton of values, we don't want to make a ginormous switch.
614     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
615       return false;
616     }
617 
618     // If we already have a value for the switch, it has to match!
619     if (!setValueOnce(CandidateVal))
620       return false;
621 
622     // Add all values from the range to the set
623     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
624       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
625 
626     UsedICmps++;
627     return true;
628   }
629 
630   /// Given a potentially 'or'd or 'and'd together collection of icmp
631   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
632   /// the value being compared, and stick the list constants into the Vals
633   /// vector.
634   /// One "Extra" case is allowed to differ from the other.
gather__anon62d0d0740211::ConstantComparesGatherer635   void gather(Value *V) {
636     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
637 
638     // Keep a stack (SmallVector for efficiency) for depth-first traversal
639     SmallVector<Value *, 8> DFT;
640     SmallPtrSet<Value *, 8> Visited;
641 
642     // Initialize
643     Visited.insert(V);
644     DFT.push_back(V);
645 
646     while (!DFT.empty()) {
647       V = DFT.pop_back_val();
648 
649       if (Instruction *I = dyn_cast<Instruction>(V)) {
650         // If it is a || (or && depending on isEQ), process the operands.
651         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
652           if (Visited.insert(I->getOperand(1)).second)
653             DFT.push_back(I->getOperand(1));
654           if (Visited.insert(I->getOperand(0)).second)
655             DFT.push_back(I->getOperand(0));
656           continue;
657         }
658 
659         // Try to match the current instruction
660         if (matchInstruction(I, isEQ))
661           // Match succeed, continue the loop
662           continue;
663       }
664 
665       // One element of the sequence of || (or &&) could not be match as a
666       // comparison against the same value as the others.
667       // We allow only one "Extra" case to be checked before the switch
668       if (!Extra) {
669         Extra = V;
670         continue;
671       }
672       // Failed to parse a proper sequence, abort now
673       CompValue = nullptr;
674       break;
675     }
676   }
677 };
678 
679 } // end anonymous namespace
680 
EraseTerminatorAndDCECond(Instruction * TI,MemorySSAUpdater * MSSAU=nullptr)681 static void EraseTerminatorAndDCECond(Instruction *TI,
682                                       MemorySSAUpdater *MSSAU = nullptr) {
683   Instruction *Cond = nullptr;
684   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
685     Cond = dyn_cast<Instruction>(SI->getCondition());
686   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
687     if (BI->isConditional())
688       Cond = dyn_cast<Instruction>(BI->getCondition());
689   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
690     Cond = dyn_cast<Instruction>(IBI->getAddress());
691   }
692 
693   TI->eraseFromParent();
694   if (Cond)
695     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
696 }
697 
698 /// Return true if the specified terminator checks
699 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(Instruction * TI)700 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
701   Value *CV = nullptr;
702   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
703     // Do not permit merging of large switch instructions into their
704     // predecessors unless there is only one predecessor.
705     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
706       CV = SI->getCondition();
707   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
708     if (BI->isConditional() && BI->getCondition()->hasOneUse())
709       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
710         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
711           CV = ICI->getOperand(0);
712       }
713 
714   // Unwrap any lossless ptrtoint cast.
715   if (CV) {
716     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
717       Value *Ptr = PTII->getPointerOperand();
718       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
719         CV = Ptr;
720     }
721   }
722   return CV;
723 }
724 
725 /// Given a value comparison instruction,
726 /// decode all of the 'cases' that it represents and return the 'default' block.
GetValueEqualityComparisonCases(Instruction * TI,std::vector<ValueEqualityComparisonCase> & Cases)727 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
728     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
729   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
730     Cases.reserve(SI->getNumCases());
731     for (auto Case : SI->cases())
732       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
733                                                   Case.getCaseSuccessor()));
734     return SI->getDefaultDest();
735   }
736 
737   BranchInst *BI = cast<BranchInst>(TI);
738   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
739   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
740   Cases.push_back(ValueEqualityComparisonCase(
741       GetConstantInt(ICI->getOperand(1), DL), Succ));
742   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
743 }
744 
745 /// Given a vector of bb/value pairs, remove any entries
746 /// in the list that match the specified block.
747 static void
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)748 EliminateBlockCases(BasicBlock *BB,
749                     std::vector<ValueEqualityComparisonCase> &Cases) {
750   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
751 }
752 
753 /// Return true if there are any keys in C1 that exist in C2 as well.
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)754 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
755                           std::vector<ValueEqualityComparisonCase> &C2) {
756   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
757 
758   // Make V1 be smaller than V2.
759   if (V1->size() > V2->size())
760     std::swap(V1, V2);
761 
762   if (V1->empty())
763     return false;
764   if (V1->size() == 1) {
765     // Just scan V2.
766     ConstantInt *TheVal = (*V1)[0].Value;
767     for (unsigned i = 0, e = V2->size(); i != e; ++i)
768       if (TheVal == (*V2)[i].Value)
769         return true;
770   }
771 
772   // Otherwise, just sort both lists and compare element by element.
773   array_pod_sort(V1->begin(), V1->end());
774   array_pod_sort(V2->begin(), V2->end());
775   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
776   while (i1 != e1 && i2 != e2) {
777     if ((*V1)[i1].Value == (*V2)[i2].Value)
778       return true;
779     if ((*V1)[i1].Value < (*V2)[i2].Value)
780       ++i1;
781     else
782       ++i2;
783   }
784   return false;
785 }
786 
787 // Set branch weights on SwitchInst. This sets the metadata if there is at
788 // least one non-zero weight.
setBranchWeights(SwitchInst * SI,ArrayRef<uint32_t> Weights)789 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
790   // Check that there is at least one non-zero weight. Otherwise, pass
791   // nullptr to setMetadata which will erase the existing metadata.
792   MDNode *N = nullptr;
793   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
794     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
795   SI->setMetadata(LLVMContext::MD_prof, N);
796 }
797 
798 // Similar to the above, but for branch and select instructions that take
799 // exactly 2 weights.
setBranchWeights(Instruction * I,uint32_t TrueWeight,uint32_t FalseWeight)800 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
801                              uint32_t FalseWeight) {
802   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
803   // Check that there is at least one non-zero weight. Otherwise, pass
804   // nullptr to setMetadata which will erase the existing metadata.
805   MDNode *N = nullptr;
806   if (TrueWeight || FalseWeight)
807     N = MDBuilder(I->getParent()->getContext())
808             .createBranchWeights(TrueWeight, FalseWeight);
809   I->setMetadata(LLVMContext::MD_prof, N);
810 }
811 
812 /// If TI is known to be a terminator instruction and its block is known to
813 /// only have a single predecessor block, check to see if that predecessor is
814 /// also a value comparison with the same value, and if that comparison
815 /// determines the outcome of this comparison. If so, simplify TI. This does a
816 /// very limited form of jump threading.
SimplifyEqualityComparisonWithOnlyPredecessor(Instruction * TI,BasicBlock * Pred,IRBuilder<> & Builder)817 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
818     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
819   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
820   if (!PredVal)
821     return false; // Not a value comparison in predecessor.
822 
823   Value *ThisVal = isValueEqualityComparison(TI);
824   assert(ThisVal && "This isn't a value comparison!!");
825   if (ThisVal != PredVal)
826     return false; // Different predicates.
827 
828   // TODO: Preserve branch weight metadata, similarly to how
829   // FoldValueComparisonIntoPredecessors preserves it.
830 
831   // Find out information about when control will move from Pred to TI's block.
832   std::vector<ValueEqualityComparisonCase> PredCases;
833   BasicBlock *PredDef =
834       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
835   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
836 
837   // Find information about how control leaves this block.
838   std::vector<ValueEqualityComparisonCase> ThisCases;
839   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
840   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
841 
842   // If TI's block is the default block from Pred's comparison, potentially
843   // simplify TI based on this knowledge.
844   if (PredDef == TI->getParent()) {
845     // If we are here, we know that the value is none of those cases listed in
846     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
847     // can simplify TI.
848     if (!ValuesOverlap(PredCases, ThisCases))
849       return false;
850 
851     if (isa<BranchInst>(TI)) {
852       // Okay, one of the successors of this condbr is dead.  Convert it to a
853       // uncond br.
854       assert(ThisCases.size() == 1 && "Branch can only have one case!");
855       // Insert the new branch.
856       Instruction *NI = Builder.CreateBr(ThisDef);
857       (void)NI;
858 
859       // Remove PHI node entries for the dead edge.
860       ThisCases[0].Dest->removePredecessor(TI->getParent());
861 
862       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
863                         << "Through successor TI: " << *TI << "Leaving: " << *NI
864                         << "\n");
865 
866       EraseTerminatorAndDCECond(TI);
867       return true;
868     }
869 
870     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
871     // Okay, TI has cases that are statically dead, prune them away.
872     SmallPtrSet<Constant *, 16> DeadCases;
873     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
874       DeadCases.insert(PredCases[i].Value);
875 
876     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
877                       << "Through successor TI: " << *TI);
878 
879     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
880       --i;
881       if (DeadCases.count(i->getCaseValue())) {
882         i->getCaseSuccessor()->removePredecessor(TI->getParent());
883         SI.removeCase(i);
884       }
885     }
886     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
887     return true;
888   }
889 
890   // Otherwise, TI's block must correspond to some matched value.  Find out
891   // which value (or set of values) this is.
892   ConstantInt *TIV = nullptr;
893   BasicBlock *TIBB = TI->getParent();
894   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
895     if (PredCases[i].Dest == TIBB) {
896       if (TIV)
897         return false; // Cannot handle multiple values coming to this block.
898       TIV = PredCases[i].Value;
899     }
900   assert(TIV && "No edge from pred to succ?");
901 
902   // Okay, we found the one constant that our value can be if we get into TI's
903   // BB.  Find out which successor will unconditionally be branched to.
904   BasicBlock *TheRealDest = nullptr;
905   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
906     if (ThisCases[i].Value == TIV) {
907       TheRealDest = ThisCases[i].Dest;
908       break;
909     }
910 
911   // If not handled by any explicit cases, it is handled by the default case.
912   if (!TheRealDest)
913     TheRealDest = ThisDef;
914 
915   // Remove PHI node entries for dead edges.
916   BasicBlock *CheckEdge = TheRealDest;
917   for (BasicBlock *Succ : successors(TIBB))
918     if (Succ != CheckEdge)
919       Succ->removePredecessor(TIBB);
920     else
921       CheckEdge = nullptr;
922 
923   // Insert the new branch.
924   Instruction *NI = Builder.CreateBr(TheRealDest);
925   (void)NI;
926 
927   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
928                     << "Through successor TI: " << *TI << "Leaving: " << *NI
929                     << "\n");
930 
931   EraseTerminatorAndDCECond(TI);
932   return true;
933 }
934 
935 namespace {
936 
937 /// This class implements a stable ordering of constant
938 /// integers that does not depend on their address.  This is important for
939 /// applications that sort ConstantInt's to ensure uniqueness.
940 struct ConstantIntOrdering {
operator ()__anon62d0d0740411::ConstantIntOrdering941   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
942     return LHS->getValue().ult(RHS->getValue());
943   }
944 };
945 
946 } // end anonymous namespace
947 
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)948 static int ConstantIntSortPredicate(ConstantInt *const *P1,
949                                     ConstantInt *const *P2) {
950   const ConstantInt *LHS = *P1;
951   const ConstantInt *RHS = *P2;
952   if (LHS == RHS)
953     return 0;
954   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
955 }
956 
HasBranchWeights(const Instruction * I)957 static inline bool HasBranchWeights(const Instruction *I) {
958   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
959   if (ProfMD && ProfMD->getOperand(0))
960     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
961       return MDS->getString().equals("branch_weights");
962 
963   return false;
964 }
965 
966 /// Get Weights of a given terminator, the default weight is at the front
967 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
968 /// metadata.
GetBranchWeights(Instruction * TI,SmallVectorImpl<uint64_t> & Weights)969 static void GetBranchWeights(Instruction *TI,
970                              SmallVectorImpl<uint64_t> &Weights) {
971   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
972   assert(MD);
973   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
974     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
975     Weights.push_back(CI->getValue().getZExtValue());
976   }
977 
978   // If TI is a conditional eq, the default case is the false case,
979   // and the corresponding branch-weight data is at index 2. We swap the
980   // default weight to be the first entry.
981   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
982     assert(Weights.size() == 2);
983     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
984     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
985       std::swap(Weights.front(), Weights.back());
986   }
987 }
988 
989 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)990 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
991   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
992   if (Max > UINT_MAX) {
993     unsigned Offset = 32 - countLeadingZeros(Max);
994     for (uint64_t &I : Weights)
995       I >>= Offset;
996   }
997 }
998 
999 /// The specified terminator is a value equality comparison instruction
1000 /// (either a switch or a branch on "X == c").
1001 /// See if any of the predecessors of the terminator block are value comparisons
1002 /// on the same value.  If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(Instruction * TI,IRBuilder<> & Builder)1003 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1004                                                          IRBuilder<> &Builder) {
1005   BasicBlock *BB = TI->getParent();
1006   Value *CV = isValueEqualityComparison(TI); // CondVal
1007   assert(CV && "Not a comparison?");
1008   bool Changed = false;
1009 
1010   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1011   while (!Preds.empty()) {
1012     BasicBlock *Pred = Preds.pop_back_val();
1013 
1014     // See if the predecessor is a comparison with the same value.
1015     Instruction *PTI = Pred->getTerminator();
1016     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1017 
1018     if (PCV == CV && TI != PTI) {
1019       SmallSetVector<BasicBlock*, 4> FailBlocks;
1020       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1021         for (auto *Succ : FailBlocks) {
1022           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1023             return false;
1024         }
1025       }
1026 
1027       // Figure out which 'cases' to copy from SI to PSI.
1028       std::vector<ValueEqualityComparisonCase> BBCases;
1029       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1030 
1031       std::vector<ValueEqualityComparisonCase> PredCases;
1032       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1033 
1034       // Based on whether the default edge from PTI goes to BB or not, fill in
1035       // PredCases and PredDefault with the new switch cases we would like to
1036       // build.
1037       SmallVector<BasicBlock *, 8> NewSuccessors;
1038 
1039       // Update the branch weight metadata along the way
1040       SmallVector<uint64_t, 8> Weights;
1041       bool PredHasWeights = HasBranchWeights(PTI);
1042       bool SuccHasWeights = HasBranchWeights(TI);
1043 
1044       if (PredHasWeights) {
1045         GetBranchWeights(PTI, Weights);
1046         // branch-weight metadata is inconsistent here.
1047         if (Weights.size() != 1 + PredCases.size())
1048           PredHasWeights = SuccHasWeights = false;
1049       } else if (SuccHasWeights)
1050         // If there are no predecessor weights but there are successor weights,
1051         // populate Weights with 1, which will later be scaled to the sum of
1052         // successor's weights
1053         Weights.assign(1 + PredCases.size(), 1);
1054 
1055       SmallVector<uint64_t, 8> SuccWeights;
1056       if (SuccHasWeights) {
1057         GetBranchWeights(TI, SuccWeights);
1058         // branch-weight metadata is inconsistent here.
1059         if (SuccWeights.size() != 1 + BBCases.size())
1060           PredHasWeights = SuccHasWeights = false;
1061       } else if (PredHasWeights)
1062         SuccWeights.assign(1 + BBCases.size(), 1);
1063 
1064       if (PredDefault == BB) {
1065         // If this is the default destination from PTI, only the edges in TI
1066         // that don't occur in PTI, or that branch to BB will be activated.
1067         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1068         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1069           if (PredCases[i].Dest != BB)
1070             PTIHandled.insert(PredCases[i].Value);
1071           else {
1072             // The default destination is BB, we don't need explicit targets.
1073             std::swap(PredCases[i], PredCases.back());
1074 
1075             if (PredHasWeights || SuccHasWeights) {
1076               // Increase weight for the default case.
1077               Weights[0] += Weights[i + 1];
1078               std::swap(Weights[i + 1], Weights.back());
1079               Weights.pop_back();
1080             }
1081 
1082             PredCases.pop_back();
1083             --i;
1084             --e;
1085           }
1086 
1087         // Reconstruct the new switch statement we will be building.
1088         if (PredDefault != BBDefault) {
1089           PredDefault->removePredecessor(Pred);
1090           PredDefault = BBDefault;
1091           NewSuccessors.push_back(BBDefault);
1092         }
1093 
1094         unsigned CasesFromPred = Weights.size();
1095         uint64_t ValidTotalSuccWeight = 0;
1096         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1097           if (!PTIHandled.count(BBCases[i].Value) &&
1098               BBCases[i].Dest != BBDefault) {
1099             PredCases.push_back(BBCases[i]);
1100             NewSuccessors.push_back(BBCases[i].Dest);
1101             if (SuccHasWeights || PredHasWeights) {
1102               // The default weight is at index 0, so weight for the ith case
1103               // should be at index i+1. Scale the cases from successor by
1104               // PredDefaultWeight (Weights[0]).
1105               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1106               ValidTotalSuccWeight += SuccWeights[i + 1];
1107             }
1108           }
1109 
1110         if (SuccHasWeights || PredHasWeights) {
1111           ValidTotalSuccWeight += SuccWeights[0];
1112           // Scale the cases from predecessor by ValidTotalSuccWeight.
1113           for (unsigned i = 1; i < CasesFromPred; ++i)
1114             Weights[i] *= ValidTotalSuccWeight;
1115           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1116           Weights[0] *= SuccWeights[0];
1117         }
1118       } else {
1119         // If this is not the default destination from PSI, only the edges
1120         // in SI that occur in PSI with a destination of BB will be
1121         // activated.
1122         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1123         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1124         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1125           if (PredCases[i].Dest == BB) {
1126             PTIHandled.insert(PredCases[i].Value);
1127 
1128             if (PredHasWeights || SuccHasWeights) {
1129               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1130               std::swap(Weights[i + 1], Weights.back());
1131               Weights.pop_back();
1132             }
1133 
1134             std::swap(PredCases[i], PredCases.back());
1135             PredCases.pop_back();
1136             --i;
1137             --e;
1138           }
1139 
1140         // Okay, now we know which constants were sent to BB from the
1141         // predecessor.  Figure out where they will all go now.
1142         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1143           if (PTIHandled.count(BBCases[i].Value)) {
1144             // If this is one we are capable of getting...
1145             if (PredHasWeights || SuccHasWeights)
1146               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1147             PredCases.push_back(BBCases[i]);
1148             NewSuccessors.push_back(BBCases[i].Dest);
1149             PTIHandled.erase(
1150                 BBCases[i].Value); // This constant is taken care of
1151           }
1152 
1153         // If there are any constants vectored to BB that TI doesn't handle,
1154         // they must go to the default destination of TI.
1155         for (ConstantInt *I : PTIHandled) {
1156           if (PredHasWeights || SuccHasWeights)
1157             Weights.push_back(WeightsForHandled[I]);
1158           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1159           NewSuccessors.push_back(BBDefault);
1160         }
1161       }
1162 
1163       // Okay, at this point, we know which new successor Pred will get.  Make
1164       // sure we update the number of entries in the PHI nodes for these
1165       // successors.
1166       for (BasicBlock *NewSuccessor : NewSuccessors)
1167         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1168 
1169       Builder.SetInsertPoint(PTI);
1170       // Convert pointer to int before we switch.
1171       if (CV->getType()->isPointerTy()) {
1172         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1173                                     "magicptr");
1174       }
1175 
1176       // Now that the successors are updated, create the new Switch instruction.
1177       SwitchInst *NewSI =
1178           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1179       NewSI->setDebugLoc(PTI->getDebugLoc());
1180       for (ValueEqualityComparisonCase &V : PredCases)
1181         NewSI->addCase(V.Value, V.Dest);
1182 
1183       if (PredHasWeights || SuccHasWeights) {
1184         // Halve the weights if any of them cannot fit in an uint32_t
1185         FitWeights(Weights);
1186 
1187         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1188 
1189         setBranchWeights(NewSI, MDWeights);
1190       }
1191 
1192       EraseTerminatorAndDCECond(PTI);
1193 
1194       // Okay, last check.  If BB is still a successor of PSI, then we must
1195       // have an infinite loop case.  If so, add an infinitely looping block
1196       // to handle the case to preserve the behavior of the code.
1197       BasicBlock *InfLoopBlock = nullptr;
1198       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1199         if (NewSI->getSuccessor(i) == BB) {
1200           if (!InfLoopBlock) {
1201             // Insert it at the end of the function, because it's either code,
1202             // or it won't matter if it's hot. :)
1203             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1204                                               BB->getParent());
1205             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1206           }
1207           NewSI->setSuccessor(i, InfLoopBlock);
1208         }
1209 
1210       Changed = true;
1211     }
1212   }
1213   return Changed;
1214 }
1215 
1216 // If we would need to insert a select that uses the value of this invoke
1217 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1218 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1219 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1220                                 Instruction *I1, Instruction *I2) {
1221   for (BasicBlock *Succ : successors(BB1)) {
1222     for (const PHINode &PN : Succ->phis()) {
1223       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1224       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1225       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1226         return false;
1227       }
1228     }
1229   }
1230   return true;
1231 }
1232 
1233 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1234 
1235 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1236 /// in the two blocks up into the branch block. The caller of this function
1237 /// guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI)1238 static bool HoistThenElseCodeToIf(BranchInst *BI,
1239                                   const TargetTransformInfo &TTI) {
1240   // This does very trivial matching, with limited scanning, to find identical
1241   // instructions in the two blocks.  In particular, we don't want to get into
1242   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1243   // such, we currently just scan for obviously identical instructions in an
1244   // identical order.
1245   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1246   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1247 
1248   BasicBlock::iterator BB1_Itr = BB1->begin();
1249   BasicBlock::iterator BB2_Itr = BB2->begin();
1250 
1251   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1252   // Skip debug info if it is not identical.
1253   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1254   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1255   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1256     while (isa<DbgInfoIntrinsic>(I1))
1257       I1 = &*BB1_Itr++;
1258     while (isa<DbgInfoIntrinsic>(I2))
1259       I2 = &*BB2_Itr++;
1260   }
1261   // FIXME: Can we define a safety predicate for CallBr?
1262   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1263       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1264       isa<CallBrInst>(I1))
1265     return false;
1266 
1267   BasicBlock *BIParent = BI->getParent();
1268 
1269   bool Changed = false;
1270   do {
1271     // If we are hoisting the terminator instruction, don't move one (making a
1272     // broken BB), instead clone it, and remove BI.
1273     if (I1->isTerminator())
1274       goto HoistTerminator;
1275 
1276     // If we're going to hoist a call, make sure that the two instructions we're
1277     // commoning/hoisting are both marked with musttail, or neither of them is
1278     // marked as such. Otherwise, we might end up in a situation where we hoist
1279     // from a block where the terminator is a `ret` to a block where the terminator
1280     // is a `br`, and `musttail` calls expect to be followed by a return.
1281     auto *C1 = dyn_cast<CallInst>(I1);
1282     auto *C2 = dyn_cast<CallInst>(I2);
1283     if (C1 && C2)
1284       if (C1->isMustTailCall() != C2->isMustTailCall())
1285         return Changed;
1286 
1287     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1288       return Changed;
1289 
1290     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1291       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1292       // The debug location is an integral part of a debug info intrinsic
1293       // and can't be separated from it or replaced.  Instead of attempting
1294       // to merge locations, simply hoist both copies of the intrinsic.
1295       BIParent->getInstList().splice(BI->getIterator(),
1296                                      BB1->getInstList(), I1);
1297       BIParent->getInstList().splice(BI->getIterator(),
1298                                      BB2->getInstList(), I2);
1299       Changed = true;
1300     } else {
1301       // For a normal instruction, we just move one to right before the branch,
1302       // then replace all uses of the other with the first.  Finally, we remove
1303       // the now redundant second instruction.
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB1->getInstList(), I1);
1306       if (!I2->use_empty())
1307         I2->replaceAllUsesWith(I1);
1308       I1->andIRFlags(I2);
1309       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1310                              LLVMContext::MD_range,
1311                              LLVMContext::MD_fpmath,
1312                              LLVMContext::MD_invariant_load,
1313                              LLVMContext::MD_nonnull,
1314                              LLVMContext::MD_invariant_group,
1315                              LLVMContext::MD_align,
1316                              LLVMContext::MD_dereferenceable,
1317                              LLVMContext::MD_dereferenceable_or_null,
1318                              LLVMContext::MD_mem_parallel_loop_access,
1319                              LLVMContext::MD_access_group,
1320                              LLVMContext::MD_preserve_access_index};
1321       combineMetadata(I1, I2, KnownIDs, true);
1322 
1323       // I1 and I2 are being combined into a single instruction.  Its debug
1324       // location is the merged locations of the original instructions.
1325       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1326 
1327       I2->eraseFromParent();
1328       Changed = true;
1329     }
1330 
1331     I1 = &*BB1_Itr++;
1332     I2 = &*BB2_Itr++;
1333     // Skip debug info if it is not identical.
1334     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1335     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1336     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1337       while (isa<DbgInfoIntrinsic>(I1))
1338         I1 = &*BB1_Itr++;
1339       while (isa<DbgInfoIntrinsic>(I2))
1340         I2 = &*BB2_Itr++;
1341     }
1342   } while (I1->isIdenticalToWhenDefined(I2));
1343 
1344   return true;
1345 
1346 HoistTerminator:
1347   // It may not be possible to hoist an invoke.
1348   // FIXME: Can we define a safety predicate for CallBr?
1349   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1350     return Changed;
1351 
1352   // TODO: callbr hoisting currently disabled pending further study.
1353   if (isa<CallBrInst>(I1))
1354     return Changed;
1355 
1356   for (BasicBlock *Succ : successors(BB1)) {
1357     for (PHINode &PN : Succ->phis()) {
1358       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1359       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1360       if (BB1V == BB2V)
1361         continue;
1362 
1363       // Check for passingValueIsAlwaysUndefined here because we would rather
1364       // eliminate undefined control flow then converting it to a select.
1365       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1366           passingValueIsAlwaysUndefined(BB2V, &PN))
1367         return Changed;
1368 
1369       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1370         return Changed;
1371       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1372         return Changed;
1373     }
1374   }
1375 
1376   // Okay, it is safe to hoist the terminator.
1377   Instruction *NT = I1->clone();
1378   BIParent->getInstList().insert(BI->getIterator(), NT);
1379   if (!NT->getType()->isVoidTy()) {
1380     I1->replaceAllUsesWith(NT);
1381     I2->replaceAllUsesWith(NT);
1382     NT->takeName(I1);
1383   }
1384 
1385   // Ensure terminator gets a debug location, even an unknown one, in case
1386   // it involves inlinable calls.
1387   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1388 
1389   // PHIs created below will adopt NT's merged DebugLoc.
1390   IRBuilder<NoFolder> Builder(NT);
1391 
1392   // Hoisting one of the terminators from our successor is a great thing.
1393   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1394   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1395   // nodes, so we insert select instruction to compute the final result.
1396   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1397   for (BasicBlock *Succ : successors(BB1)) {
1398     for (PHINode &PN : Succ->phis()) {
1399       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1400       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1401       if (BB1V == BB2V)
1402         continue;
1403 
1404       // These values do not agree.  Insert a select instruction before NT
1405       // that determines the right value.
1406       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1407       if (!SI) {
1408         // Propagate fast-math-flags from phi node to its replacement select.
1409         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1410         if (isa<FPMathOperator>(PN))
1411           Builder.setFastMathFlags(PN.getFastMathFlags());
1412 
1413         SI = cast<SelectInst>(
1414             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1415                                  BB1V->getName() + "." + BB2V->getName(), BI));
1416       }
1417 
1418       // Make the PHI node use the select for all incoming values for BB1/BB2
1419       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1420         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1421           PN.setIncomingValue(i, SI);
1422     }
1423   }
1424 
1425   // Update any PHI nodes in our new successors.
1426   for (BasicBlock *Succ : successors(BB1))
1427     AddPredecessorToBlock(Succ, BIParent, BB1);
1428 
1429   EraseTerminatorAndDCECond(BI);
1430   return true;
1431 }
1432 
1433 // Check lifetime markers.
isLifeTimeMarker(const Instruction * I)1434 static bool isLifeTimeMarker(const Instruction *I) {
1435   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1436     switch (II->getIntrinsicID()) {
1437     default:
1438       break;
1439     case Intrinsic::lifetime_start:
1440     case Intrinsic::lifetime_end:
1441       return true;
1442     }
1443   }
1444   return false;
1445 }
1446 
1447 // All instructions in Insts belong to different blocks that all unconditionally
1448 // branch to a common successor. Analyze each instruction and return true if it
1449 // would be possible to sink them into their successor, creating one common
1450 // instruction instead. For every value that would be required to be provided by
1451 // PHI node (because an operand varies in each input block), add to PHIOperands.
canSinkInstructions(ArrayRef<Instruction * > Insts,DenseMap<Instruction *,SmallVector<Value *,4>> & PHIOperands)1452 static bool canSinkInstructions(
1453     ArrayRef<Instruction *> Insts,
1454     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1455   // Prune out obviously bad instructions to move. Each instruction must have
1456   // exactly zero or one use, and we check later that use is by a single, common
1457   // PHI instruction in the successor.
1458   bool HasUse = !Insts.front()->user_empty();
1459   for (auto *I : Insts) {
1460     // These instructions may change or break semantics if moved.
1461     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1462         I->getType()->isTokenTy())
1463       return false;
1464 
1465     // Conservatively return false if I is an inline-asm instruction. Sinking
1466     // and merging inline-asm instructions can potentially create arguments
1467     // that cannot satisfy the inline-asm constraints.
1468     if (const auto *C = dyn_cast<CallBase>(I))
1469       if (C->isInlineAsm())
1470         return false;
1471 
1472     // Each instruction must have zero or one use.
1473     if (HasUse && !I->hasOneUse())
1474       return false;
1475     if (!HasUse && !I->user_empty())
1476       return false;
1477   }
1478 
1479   const Instruction *I0 = Insts.front();
1480   for (auto *I : Insts)
1481     if (!I->isSameOperationAs(I0))
1482       return false;
1483 
1484   // All instructions in Insts are known to be the same opcode. If they have a
1485   // use, check that the only user is a PHI or in the same block as the
1486   // instruction, because if a user is in the same block as an instruction we're
1487   // contemplating sinking, it must already be determined to be sinkable.
1488   if (HasUse) {
1489     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1490     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1491     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1492           auto *U = cast<Instruction>(*I->user_begin());
1493           return (PNUse &&
1494                   PNUse->getParent() == Succ &&
1495                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1496                  U->getParent() == I->getParent();
1497         }))
1498       return false;
1499   }
1500 
1501   // Because SROA can't handle speculating stores of selects, try not to sink
1502   // loads, stores or lifetime markers of allocas when we'd have to create a
1503   // PHI for the address operand. Also, because it is likely that loads or
1504   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1505   // them.
1506   // This can cause code churn which can have unintended consequences down
1507   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1508   // FIXME: This is a workaround for a deficiency in SROA - see
1509   // https://llvm.org/bugs/show_bug.cgi?id=30188
1510   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1511         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1512       }))
1513     return false;
1514   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1515         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1516       }))
1517     return false;
1518   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1519         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1520       }))
1521     return false;
1522 
1523   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1524     if (I0->getOperand(OI)->getType()->isTokenTy())
1525       // Don't touch any operand of token type.
1526       return false;
1527 
1528     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1529       assert(I->getNumOperands() == I0->getNumOperands());
1530       return I->getOperand(OI) == I0->getOperand(OI);
1531     };
1532     if (!all_of(Insts, SameAsI0)) {
1533       if (!canReplaceOperandWithVariable(I0, OI))
1534         // We can't create a PHI from this GEP.
1535         return false;
1536       // Don't create indirect calls! The called value is the final operand.
1537       if (isa<CallBase>(I0) && OI == OE - 1) {
1538         // FIXME: if the call was *already* indirect, we should do this.
1539         return false;
1540       }
1541       for (auto *I : Insts)
1542         PHIOperands[I].push_back(I->getOperand(OI));
1543     }
1544   }
1545   return true;
1546 }
1547 
1548 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1549 // instruction of every block in Blocks to their common successor, commoning
1550 // into one instruction.
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks)1551 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1552   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1553 
1554   // canSinkLastInstruction returning true guarantees that every block has at
1555   // least one non-terminator instruction.
1556   SmallVector<Instruction*,4> Insts;
1557   for (auto *BB : Blocks) {
1558     Instruction *I = BB->getTerminator();
1559     do {
1560       I = I->getPrevNode();
1561     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1562     if (!isa<DbgInfoIntrinsic>(I))
1563       Insts.push_back(I);
1564   }
1565 
1566   // The only checking we need to do now is that all users of all instructions
1567   // are the same PHI node. canSinkLastInstruction should have checked this but
1568   // it is slightly over-aggressive - it gets confused by commutative instructions
1569   // so double-check it here.
1570   Instruction *I0 = Insts.front();
1571   if (!I0->user_empty()) {
1572     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1573     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1574           auto *U = cast<Instruction>(*I->user_begin());
1575           return U == PNUse;
1576         }))
1577       return false;
1578   }
1579 
1580   // We don't need to do any more checking here; canSinkLastInstruction should
1581   // have done it all for us.
1582   SmallVector<Value*, 4> NewOperands;
1583   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1584     // This check is different to that in canSinkLastInstruction. There, we
1585     // cared about the global view once simplifycfg (and instcombine) have
1586     // completed - it takes into account PHIs that become trivially
1587     // simplifiable.  However here we need a more local view; if an operand
1588     // differs we create a PHI and rely on instcombine to clean up the very
1589     // small mess we may make.
1590     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1591       return I->getOperand(O) != I0->getOperand(O);
1592     });
1593     if (!NeedPHI) {
1594       NewOperands.push_back(I0->getOperand(O));
1595       continue;
1596     }
1597 
1598     // Create a new PHI in the successor block and populate it.
1599     auto *Op = I0->getOperand(O);
1600     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1601     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1602                                Op->getName() + ".sink", &BBEnd->front());
1603     for (auto *I : Insts)
1604       PN->addIncoming(I->getOperand(O), I->getParent());
1605     NewOperands.push_back(PN);
1606   }
1607 
1608   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1609   // and move it to the start of the successor block.
1610   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1611     I0->getOperandUse(O).set(NewOperands[O]);
1612   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1613 
1614   // Update metadata and IR flags, and merge debug locations.
1615   for (auto *I : Insts)
1616     if (I != I0) {
1617       // The debug location for the "common" instruction is the merged locations
1618       // of all the commoned instructions.  We start with the original location
1619       // of the "common" instruction and iteratively merge each location in the
1620       // loop below.
1621       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1622       // However, as N-way merge for CallInst is rare, so we use simplified API
1623       // instead of using complex API for N-way merge.
1624       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1625       combineMetadataForCSE(I0, I, true);
1626       I0->andIRFlags(I);
1627     }
1628 
1629   if (!I0->user_empty()) {
1630     // canSinkLastInstruction checked that all instructions were used by
1631     // one and only one PHI node. Find that now, RAUW it to our common
1632     // instruction and nuke it.
1633     auto *PN = cast<PHINode>(*I0->user_begin());
1634     PN->replaceAllUsesWith(I0);
1635     PN->eraseFromParent();
1636   }
1637 
1638   // Finally nuke all instructions apart from the common instruction.
1639   for (auto *I : Insts)
1640     if (I != I0)
1641       I->eraseFromParent();
1642 
1643   return true;
1644 }
1645 
1646 namespace {
1647 
1648   // LockstepReverseIterator - Iterates through instructions
1649   // in a set of blocks in reverse order from the first non-terminator.
1650   // For example (assume all blocks have size n):
1651   //   LockstepReverseIterator I([B1, B2, B3]);
1652   //   *I-- = [B1[n], B2[n], B3[n]];
1653   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1654   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1655   //   ...
1656   class LockstepReverseIterator {
1657     ArrayRef<BasicBlock*> Blocks;
1658     SmallVector<Instruction*,4> Insts;
1659     bool Fail;
1660 
1661   public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)1662     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1663       reset();
1664     }
1665 
reset()1666     void reset() {
1667       Fail = false;
1668       Insts.clear();
1669       for (auto *BB : Blocks) {
1670         Instruction *Inst = BB->getTerminator();
1671         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1672           Inst = Inst->getPrevNode();
1673         if (!Inst) {
1674           // Block wasn't big enough.
1675           Fail = true;
1676           return;
1677         }
1678         Insts.push_back(Inst);
1679       }
1680     }
1681 
isValid() const1682     bool isValid() const {
1683       return !Fail;
1684     }
1685 
operator --()1686     void operator--() {
1687       if (Fail)
1688         return;
1689       for (auto *&Inst : Insts) {
1690         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1691           Inst = Inst->getPrevNode();
1692         // Already at beginning of block.
1693         if (!Inst) {
1694           Fail = true;
1695           return;
1696         }
1697       }
1698     }
1699 
operator *() const1700     ArrayRef<Instruction*> operator * () const {
1701       return Insts;
1702     }
1703   };
1704 
1705 } // end anonymous namespace
1706 
1707 /// Check whether BB's predecessors end with unconditional branches. If it is
1708 /// true, sink any common code from the predecessors to BB.
1709 /// We also allow one predecessor to end with conditional branch (but no more
1710 /// than one).
SinkCommonCodeFromPredecessors(BasicBlock * BB)1711 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1712   // We support two situations:
1713   //   (1) all incoming arcs are unconditional
1714   //   (2) one incoming arc is conditional
1715   //
1716   // (2) is very common in switch defaults and
1717   // else-if patterns;
1718   //
1719   //   if (a) f(1);
1720   //   else if (b) f(2);
1721   //
1722   // produces:
1723   //
1724   //       [if]
1725   //      /    \
1726   //    [f(1)] [if]
1727   //      |     | \
1728   //      |     |  |
1729   //      |  [f(2)]|
1730   //       \    | /
1731   //        [ end ]
1732   //
1733   // [end] has two unconditional predecessor arcs and one conditional. The
1734   // conditional refers to the implicit empty 'else' arc. This conditional
1735   // arc can also be caused by an empty default block in a switch.
1736   //
1737   // In this case, we attempt to sink code from all *unconditional* arcs.
1738   // If we can sink instructions from these arcs (determined during the scan
1739   // phase below) we insert a common successor for all unconditional arcs and
1740   // connect that to [end], to enable sinking:
1741   //
1742   //       [if]
1743   //      /    \
1744   //    [x(1)] [if]
1745   //      |     | \
1746   //      |     |  \
1747   //      |  [x(2)] |
1748   //       \   /    |
1749   //   [sink.split] |
1750   //         \     /
1751   //         [ end ]
1752   //
1753   SmallVector<BasicBlock*,4> UnconditionalPreds;
1754   Instruction *Cond = nullptr;
1755   for (auto *B : predecessors(BB)) {
1756     auto *T = B->getTerminator();
1757     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1758       UnconditionalPreds.push_back(B);
1759     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1760       Cond = T;
1761     else
1762       return false;
1763   }
1764   if (UnconditionalPreds.size() < 2)
1765     return false;
1766 
1767   bool Changed = false;
1768   // We take a two-step approach to tail sinking. First we scan from the end of
1769   // each block upwards in lockstep. If the n'th instruction from the end of each
1770   // block can be sunk, those instructions are added to ValuesToSink and we
1771   // carry on. If we can sink an instruction but need to PHI-merge some operands
1772   // (because they're not identical in each instruction) we add these to
1773   // PHIOperands.
1774   unsigned ScanIdx = 0;
1775   SmallPtrSet<Value*,4> InstructionsToSink;
1776   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1777   LockstepReverseIterator LRI(UnconditionalPreds);
1778   while (LRI.isValid() &&
1779          canSinkInstructions(*LRI, PHIOperands)) {
1780     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1781                       << "\n");
1782     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1783     ++ScanIdx;
1784     --LRI;
1785   }
1786 
1787   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1788     unsigned NumPHIdValues = 0;
1789     for (auto *I : *LRI)
1790       for (auto *V : PHIOperands[I])
1791         if (InstructionsToSink.count(V) == 0)
1792           ++NumPHIdValues;
1793     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1794     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1795     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1796         NumPHIInsts++;
1797 
1798     return NumPHIInsts <= 1;
1799   };
1800 
1801   if (ScanIdx > 0 && Cond) {
1802     // Check if we would actually sink anything first! This mutates the CFG and
1803     // adds an extra block. The goal in doing this is to allow instructions that
1804     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1805     // (such as trunc, add) can be sunk and predicated already. So we check that
1806     // we're going to sink at least one non-speculatable instruction.
1807     LRI.reset();
1808     unsigned Idx = 0;
1809     bool Profitable = false;
1810     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1811       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1812         Profitable = true;
1813         break;
1814       }
1815       --LRI;
1816       ++Idx;
1817     }
1818     if (!Profitable)
1819       return false;
1820 
1821     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1822     // We have a conditional edge and we're going to sink some instructions.
1823     // Insert a new block postdominating all blocks we're going to sink from.
1824     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1825       // Edges couldn't be split.
1826       return false;
1827     Changed = true;
1828   }
1829 
1830   // Now that we've analyzed all potential sinking candidates, perform the
1831   // actual sink. We iteratively sink the last non-terminator of the source
1832   // blocks into their common successor unless doing so would require too
1833   // many PHI instructions to be generated (currently only one PHI is allowed
1834   // per sunk instruction).
1835   //
1836   // We can use InstructionsToSink to discount values needing PHI-merging that will
1837   // actually be sunk in a later iteration. This allows us to be more
1838   // aggressive in what we sink. This does allow a false positive where we
1839   // sink presuming a later value will also be sunk, but stop half way through
1840   // and never actually sink it which means we produce more PHIs than intended.
1841   // This is unlikely in practice though.
1842   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1843     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1844                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1845                       << "\n");
1846 
1847     // Because we've sunk every instruction in turn, the current instruction to
1848     // sink is always at index 0.
1849     LRI.reset();
1850     if (!ProfitableToSinkInstruction(LRI)) {
1851       // Too many PHIs would be created.
1852       LLVM_DEBUG(
1853           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1854       break;
1855     }
1856 
1857     if (!sinkLastInstruction(UnconditionalPreds))
1858       return Changed;
1859     NumSinkCommons++;
1860     Changed = true;
1861   }
1862   return Changed;
1863 }
1864 
1865 /// Determine if we can hoist sink a sole store instruction out of a
1866 /// conditional block.
1867 ///
1868 /// We are looking for code like the following:
1869 ///   BrBB:
1870 ///     store i32 %add, i32* %arrayidx2
1871 ///     ... // No other stores or function calls (we could be calling a memory
1872 ///     ... // function).
1873 ///     %cmp = icmp ult %x, %y
1874 ///     br i1 %cmp, label %EndBB, label %ThenBB
1875 ///   ThenBB:
1876 ///     store i32 %add5, i32* %arrayidx2
1877 ///     br label EndBB
1878 ///   EndBB:
1879 ///     ...
1880 ///   We are going to transform this into:
1881 ///   BrBB:
1882 ///     store i32 %add, i32* %arrayidx2
1883 ///     ... //
1884 ///     %cmp = icmp ult %x, %y
1885 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1886 ///     store i32 %add.add5, i32* %arrayidx2
1887 ///     ...
1888 ///
1889 /// \return The pointer to the value of the previous store if the store can be
1890 ///         hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)1891 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1892                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1893   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1894   if (!StoreToHoist)
1895     return nullptr;
1896 
1897   // Volatile or atomic.
1898   if (!StoreToHoist->isSimple())
1899     return nullptr;
1900 
1901   Value *StorePtr = StoreToHoist->getPointerOperand();
1902 
1903   // Look for a store to the same pointer in BrBB.
1904   unsigned MaxNumInstToLookAt = 9;
1905   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1906     if (!MaxNumInstToLookAt)
1907       break;
1908     --MaxNumInstToLookAt;
1909 
1910     // Could be calling an instruction that affects memory like free().
1911     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1912       return nullptr;
1913 
1914     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1915       // Found the previous store make sure it stores to the same location.
1916       if (SI->getPointerOperand() == StorePtr)
1917         // Found the previous store, return its value operand.
1918         return SI->getValueOperand();
1919       return nullptr; // Unknown store.
1920     }
1921   }
1922 
1923   return nullptr;
1924 }
1925 
1926 /// Speculate a conditional basic block flattening the CFG.
1927 ///
1928 /// Note that this is a very risky transform currently. Speculating
1929 /// instructions like this is most often not desirable. Instead, there is an MI
1930 /// pass which can do it with full awareness of the resource constraints.
1931 /// However, some cases are "obvious" and we should do directly. An example of
1932 /// this is speculating a single, reasonably cheap instruction.
1933 ///
1934 /// There is only one distinct advantage to flattening the CFG at the IR level:
1935 /// it makes very common but simplistic optimizations such as are common in
1936 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1937 /// modeling their effects with easier to reason about SSA value graphs.
1938 ///
1939 ///
1940 /// An illustration of this transform is turning this IR:
1941 /// \code
1942 ///   BB:
1943 ///     %cmp = icmp ult %x, %y
1944 ///     br i1 %cmp, label %EndBB, label %ThenBB
1945 ///   ThenBB:
1946 ///     %sub = sub %x, %y
1947 ///     br label BB2
1948 ///   EndBB:
1949 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1950 ///     ...
1951 /// \endcode
1952 ///
1953 /// Into this IR:
1954 /// \code
1955 ///   BB:
1956 ///     %cmp = icmp ult %x, %y
1957 ///     %sub = sub %x, %y
1958 ///     %cond = select i1 %cmp, 0, %sub
1959 ///     ...
1960 /// \endcode
1961 ///
1962 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)1963 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1964                                    const TargetTransformInfo &TTI) {
1965   // Be conservative for now. FP select instruction can often be expensive.
1966   Value *BrCond = BI->getCondition();
1967   if (isa<FCmpInst>(BrCond))
1968     return false;
1969 
1970   BasicBlock *BB = BI->getParent();
1971   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1972 
1973   // If ThenBB is actually on the false edge of the conditional branch, remember
1974   // to swap the select operands later.
1975   bool Invert = false;
1976   if (ThenBB != BI->getSuccessor(0)) {
1977     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1978     Invert = true;
1979   }
1980   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1981 
1982   // Keep a count of how many times instructions are used within ThenBB when
1983   // they are candidates for sinking into ThenBB. Specifically:
1984   // - They are defined in BB, and
1985   // - They have no side effects, and
1986   // - All of their uses are in ThenBB.
1987   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1988 
1989   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1990 
1991   unsigned SpeculatedInstructions = 0;
1992   Value *SpeculatedStoreValue = nullptr;
1993   StoreInst *SpeculatedStore = nullptr;
1994   for (BasicBlock::iterator BBI = ThenBB->begin(),
1995                             BBE = std::prev(ThenBB->end());
1996        BBI != BBE; ++BBI) {
1997     Instruction *I = &*BBI;
1998     // Skip debug info.
1999     if (isa<DbgInfoIntrinsic>(I)) {
2000       SpeculatedDbgIntrinsics.push_back(I);
2001       continue;
2002     }
2003 
2004     // Only speculatively execute a single instruction (not counting the
2005     // terminator) for now.
2006     ++SpeculatedInstructions;
2007     if (SpeculatedInstructions > 1)
2008       return false;
2009 
2010     // Don't hoist the instruction if it's unsafe or expensive.
2011     if (!isSafeToSpeculativelyExecute(I) &&
2012         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2013                                   I, BB, ThenBB, EndBB))))
2014       return false;
2015     if (!SpeculatedStoreValue &&
2016         ComputeSpeculationCost(I, TTI) >
2017             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2018       return false;
2019 
2020     // Store the store speculation candidate.
2021     if (SpeculatedStoreValue)
2022       SpeculatedStore = cast<StoreInst>(I);
2023 
2024     // Do not hoist the instruction if any of its operands are defined but not
2025     // used in BB. The transformation will prevent the operand from
2026     // being sunk into the use block.
2027     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2028       Instruction *OpI = dyn_cast<Instruction>(*i);
2029       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2030         continue; // Not a candidate for sinking.
2031 
2032       ++SinkCandidateUseCounts[OpI];
2033     }
2034   }
2035 
2036   // Consider any sink candidates which are only used in ThenBB as costs for
2037   // speculation. Note, while we iterate over a DenseMap here, we are summing
2038   // and so iteration order isn't significant.
2039   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2040            I = SinkCandidateUseCounts.begin(),
2041            E = SinkCandidateUseCounts.end();
2042        I != E; ++I)
2043     if (I->first->hasNUses(I->second)) {
2044       ++SpeculatedInstructions;
2045       if (SpeculatedInstructions > 1)
2046         return false;
2047     }
2048 
2049   // Check that the PHI nodes can be converted to selects.
2050   bool HaveRewritablePHIs = false;
2051   for (PHINode &PN : EndBB->phis()) {
2052     Value *OrigV = PN.getIncomingValueForBlock(BB);
2053     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2054 
2055     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2056     // Skip PHIs which are trivial.
2057     if (ThenV == OrigV)
2058       continue;
2059 
2060     // Don't convert to selects if we could remove undefined behavior instead.
2061     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2062         passingValueIsAlwaysUndefined(ThenV, &PN))
2063       return false;
2064 
2065     HaveRewritablePHIs = true;
2066     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2067     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2068     if (!OrigCE && !ThenCE)
2069       continue; // Known safe and cheap.
2070 
2071     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2072         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2073       return false;
2074     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2075     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2076     unsigned MaxCost =
2077         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2078     if (OrigCost + ThenCost > MaxCost)
2079       return false;
2080 
2081     // Account for the cost of an unfolded ConstantExpr which could end up
2082     // getting expanded into Instructions.
2083     // FIXME: This doesn't account for how many operations are combined in the
2084     // constant expression.
2085     ++SpeculatedInstructions;
2086     if (SpeculatedInstructions > 1)
2087       return false;
2088   }
2089 
2090   // If there are no PHIs to process, bail early. This helps ensure idempotence
2091   // as well.
2092   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2093     return false;
2094 
2095   // If we get here, we can hoist the instruction and if-convert.
2096   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2097 
2098   // Insert a select of the value of the speculated store.
2099   if (SpeculatedStoreValue) {
2100     IRBuilder<NoFolder> Builder(BI);
2101     Value *TrueV = SpeculatedStore->getValueOperand();
2102     Value *FalseV = SpeculatedStoreValue;
2103     if (Invert)
2104       std::swap(TrueV, FalseV);
2105     Value *S = Builder.CreateSelect(
2106         BrCond, TrueV, FalseV, "spec.store.select", BI);
2107     SpeculatedStore->setOperand(0, S);
2108     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2109                                          SpeculatedStore->getDebugLoc());
2110   }
2111 
2112   // Metadata can be dependent on the condition we are hoisting above.
2113   // Conservatively strip all metadata on the instruction.
2114   for (auto &I : *ThenBB)
2115     I.dropUnknownNonDebugMetadata();
2116 
2117   // Hoist the instructions.
2118   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2119                            ThenBB->begin(), std::prev(ThenBB->end()));
2120 
2121   // Insert selects and rewrite the PHI operands.
2122   IRBuilder<NoFolder> Builder(BI);
2123   for (PHINode &PN : EndBB->phis()) {
2124     unsigned OrigI = PN.getBasicBlockIndex(BB);
2125     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2126     Value *OrigV = PN.getIncomingValue(OrigI);
2127     Value *ThenV = PN.getIncomingValue(ThenI);
2128 
2129     // Skip PHIs which are trivial.
2130     if (OrigV == ThenV)
2131       continue;
2132 
2133     // Create a select whose true value is the speculatively executed value and
2134     // false value is the preexisting value. Swap them if the branch
2135     // destinations were inverted.
2136     Value *TrueV = ThenV, *FalseV = OrigV;
2137     if (Invert)
2138       std::swap(TrueV, FalseV);
2139     Value *V = Builder.CreateSelect(
2140         BrCond, TrueV, FalseV, "spec.select", BI);
2141     PN.setIncomingValue(OrigI, V);
2142     PN.setIncomingValue(ThenI, V);
2143   }
2144 
2145   // Remove speculated dbg intrinsics.
2146   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2147   // dbg value for the different flows and inserting it after the select.
2148   for (Instruction *I : SpeculatedDbgIntrinsics)
2149     I->eraseFromParent();
2150 
2151   ++NumSpeculations;
2152   return true;
2153 }
2154 
2155 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)2156 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2157   unsigned Size = 0;
2158 
2159   for (Instruction &I : BB->instructionsWithoutDebug()) {
2160     if (Size > 10)
2161       return false; // Don't clone large BB's.
2162     ++Size;
2163 
2164     // We can only support instructions that do not define values that are
2165     // live outside of the current basic block.
2166     for (User *U : I.users()) {
2167       Instruction *UI = cast<Instruction>(U);
2168       if (UI->getParent() != BB || isa<PHINode>(UI))
2169         return false;
2170     }
2171 
2172     // Looks ok, continue checking.
2173   }
2174 
2175   return true;
2176 }
2177 
2178 /// If we have a conditional branch on a PHI node value that is defined in the
2179 /// same block as the branch and if any PHI entries are constants, thread edges
2180 /// corresponding to that entry to be branches to their ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const DataLayout & DL,AssumptionCache * AC)2181 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2182                                 AssumptionCache *AC) {
2183   BasicBlock *BB = BI->getParent();
2184   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2185   // NOTE: we currently cannot transform this case if the PHI node is used
2186   // outside of the block.
2187   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2188     return false;
2189 
2190   // Degenerate case of a single entry PHI.
2191   if (PN->getNumIncomingValues() == 1) {
2192     FoldSingleEntryPHINodes(PN->getParent());
2193     return true;
2194   }
2195 
2196   // Now we know that this block has multiple preds and two succs.
2197   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2198     return false;
2199 
2200   // Can't fold blocks that contain noduplicate or convergent calls.
2201   if (any_of(*BB, [](const Instruction &I) {
2202         const CallInst *CI = dyn_cast<CallInst>(&I);
2203         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2204       }))
2205     return false;
2206 
2207   // Okay, this is a simple enough basic block.  See if any phi values are
2208   // constants.
2209   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2210     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2211     if (!CB || !CB->getType()->isIntegerTy(1))
2212       continue;
2213 
2214     // Okay, we now know that all edges from PredBB should be revectored to
2215     // branch to RealDest.
2216     BasicBlock *PredBB = PN->getIncomingBlock(i);
2217     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2218 
2219     if (RealDest == BB)
2220       continue; // Skip self loops.
2221     // Skip if the predecessor's terminator is an indirect branch.
2222     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2223       continue;
2224 
2225     // The dest block might have PHI nodes, other predecessors and other
2226     // difficult cases.  Instead of being smart about this, just insert a new
2227     // block that jumps to the destination block, effectively splitting
2228     // the edge we are about to create.
2229     BasicBlock *EdgeBB =
2230         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2231                            RealDest->getParent(), RealDest);
2232     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2233     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2234 
2235     // Update PHI nodes.
2236     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2237 
2238     // BB may have instructions that are being threaded over.  Clone these
2239     // instructions into EdgeBB.  We know that there will be no uses of the
2240     // cloned instructions outside of EdgeBB.
2241     BasicBlock::iterator InsertPt = EdgeBB->begin();
2242     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2243     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2244       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2245         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2246         continue;
2247       }
2248       // Clone the instruction.
2249       Instruction *N = BBI->clone();
2250       if (BBI->hasName())
2251         N->setName(BBI->getName() + ".c");
2252 
2253       // Update operands due to translation.
2254       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2255         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2256         if (PI != TranslateMap.end())
2257           *i = PI->second;
2258       }
2259 
2260       // Check for trivial simplification.
2261       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2262         if (!BBI->use_empty())
2263           TranslateMap[&*BBI] = V;
2264         if (!N->mayHaveSideEffects()) {
2265           N->deleteValue(); // Instruction folded away, don't need actual inst
2266           N = nullptr;
2267         }
2268       } else {
2269         if (!BBI->use_empty())
2270           TranslateMap[&*BBI] = N;
2271       }
2272       if (N) {
2273         // Insert the new instruction into its new home.
2274         EdgeBB->getInstList().insert(InsertPt, N);
2275 
2276         // Register the new instruction with the assumption cache if necessary.
2277         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2278           AC->registerAssumption(cast<IntrinsicInst>(N));
2279       }
2280     }
2281 
2282     // Loop over all of the edges from PredBB to BB, changing them to branch
2283     // to EdgeBB instead.
2284     Instruction *PredBBTI = PredBB->getTerminator();
2285     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2286       if (PredBBTI->getSuccessor(i) == BB) {
2287         BB->removePredecessor(PredBB);
2288         PredBBTI->setSuccessor(i, EdgeBB);
2289       }
2290 
2291     // Recurse, simplifying any other constants.
2292     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2293   }
2294 
2295   return false;
2296 }
2297 
2298 /// Given a BB that starts with the specified two-entry PHI node,
2299 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,const DataLayout & DL)2300 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2301                                 const DataLayout &DL) {
2302   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2303   // statement", which has a very simple dominance structure.  Basically, we
2304   // are trying to find the condition that is being branched on, which
2305   // subsequently causes this merge to happen.  We really want control
2306   // dependence information for this check, but simplifycfg can't keep it up
2307   // to date, and this catches most of the cases we care about anyway.
2308   BasicBlock *BB = PN->getParent();
2309   const Function *Fn = BB->getParent();
2310   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2311     return false;
2312 
2313   BasicBlock *IfTrue, *IfFalse;
2314   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2315   if (!IfCond ||
2316       // Don't bother if the branch will be constant folded trivially.
2317       isa<ConstantInt>(IfCond))
2318     return false;
2319 
2320   // Okay, we found that we can merge this two-entry phi node into a select.
2321   // Doing so would require us to fold *all* two entry phi nodes in this block.
2322   // At some point this becomes non-profitable (particularly if the target
2323   // doesn't support cmov's).  Only do this transformation if there are two or
2324   // fewer PHI nodes in this block.
2325   unsigned NumPhis = 0;
2326   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2327     if (NumPhis > 2)
2328       return false;
2329 
2330   // Loop over the PHI's seeing if we can promote them all to select
2331   // instructions.  While we are at it, keep track of the instructions
2332   // that need to be moved to the dominating block.
2333   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2334   int BudgetRemaining =
2335       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2336 
2337   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2338     PHINode *PN = cast<PHINode>(II++);
2339     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2340       PN->replaceAllUsesWith(V);
2341       PN->eraseFromParent();
2342       continue;
2343     }
2344 
2345     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2346                              BudgetRemaining, TTI) ||
2347         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2348                              BudgetRemaining, TTI))
2349       return false;
2350   }
2351 
2352   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2353   // we ran out of PHIs then we simplified them all.
2354   PN = dyn_cast<PHINode>(BB->begin());
2355   if (!PN)
2356     return true;
2357 
2358   // Return true if at least one of these is a 'not', and another is either
2359   // a 'not' too, or a constant.
2360   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2361     if (!match(V0, m_Not(m_Value())))
2362       std::swap(V0, V1);
2363     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2364     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2365   };
2366 
2367   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2368   // of the incoming values is an 'not' and another one is freely invertible.
2369   // These can often be turned into switches and other things.
2370   if (PN->getType()->isIntegerTy(1) &&
2371       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2372        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2373        isa<BinaryOperator>(IfCond)) &&
2374       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2375                                  PN->getIncomingValue(1)))
2376     return false;
2377 
2378   // If all PHI nodes are promotable, check to make sure that all instructions
2379   // in the predecessor blocks can be promoted as well. If not, we won't be able
2380   // to get rid of the control flow, so it's not worth promoting to select
2381   // instructions.
2382   BasicBlock *DomBlock = nullptr;
2383   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2384   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2385   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2386     IfBlock1 = nullptr;
2387   } else {
2388     DomBlock = *pred_begin(IfBlock1);
2389     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2390       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2391         // This is not an aggressive instruction that we can promote.
2392         // Because of this, we won't be able to get rid of the control flow, so
2393         // the xform is not worth it.
2394         return false;
2395       }
2396   }
2397 
2398   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2399     IfBlock2 = nullptr;
2400   } else {
2401     DomBlock = *pred_begin(IfBlock2);
2402     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2403       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2404         // This is not an aggressive instruction that we can promote.
2405         // Because of this, we won't be able to get rid of the control flow, so
2406         // the xform is not worth it.
2407         return false;
2408       }
2409   }
2410   assert(DomBlock && "Failed to find root DomBlock");
2411 
2412   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2413                     << "  T: " << IfTrue->getName()
2414                     << "  F: " << IfFalse->getName() << "\n");
2415 
2416   // If we can still promote the PHI nodes after this gauntlet of tests,
2417   // do all of the PHI's now.
2418   Instruction *InsertPt = DomBlock->getTerminator();
2419   IRBuilder<NoFolder> Builder(InsertPt);
2420 
2421   // Move all 'aggressive' instructions, which are defined in the
2422   // conditional parts of the if's up to the dominating block.
2423   if (IfBlock1)
2424     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2425   if (IfBlock2)
2426     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2427 
2428   // Propagate fast-math-flags from phi nodes to replacement selects.
2429   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2430   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2431     if (isa<FPMathOperator>(PN))
2432       Builder.setFastMathFlags(PN->getFastMathFlags());
2433 
2434     // Change the PHI node into a select instruction.
2435     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2436     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2437 
2438     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2439     PN->replaceAllUsesWith(Sel);
2440     Sel->takeName(PN);
2441     PN->eraseFromParent();
2442   }
2443 
2444   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2445   // has been flattened.  Change DomBlock to jump directly to our new block to
2446   // avoid other simplifycfg's kicking in on the diamond.
2447   Instruction *OldTI = DomBlock->getTerminator();
2448   Builder.SetInsertPoint(OldTI);
2449   Builder.CreateBr(BB);
2450   OldTI->eraseFromParent();
2451   return true;
2452 }
2453 
2454 /// If we found a conditional branch that goes to two returning blocks,
2455 /// try to merge them together into one return,
2456 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)2457 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2458                                            IRBuilder<> &Builder) {
2459   assert(BI->isConditional() && "Must be a conditional branch");
2460   BasicBlock *TrueSucc = BI->getSuccessor(0);
2461   BasicBlock *FalseSucc = BI->getSuccessor(1);
2462   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2463   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2464 
2465   // Check to ensure both blocks are empty (just a return) or optionally empty
2466   // with PHI nodes.  If there are other instructions, merging would cause extra
2467   // computation on one path or the other.
2468   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2469     return false;
2470   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2471     return false;
2472 
2473   Builder.SetInsertPoint(BI);
2474   // Okay, we found a branch that is going to two return nodes.  If
2475   // there is no return value for this function, just change the
2476   // branch into a return.
2477   if (FalseRet->getNumOperands() == 0) {
2478     TrueSucc->removePredecessor(BI->getParent());
2479     FalseSucc->removePredecessor(BI->getParent());
2480     Builder.CreateRetVoid();
2481     EraseTerminatorAndDCECond(BI);
2482     return true;
2483   }
2484 
2485   // Otherwise, figure out what the true and false return values are
2486   // so we can insert a new select instruction.
2487   Value *TrueValue = TrueRet->getReturnValue();
2488   Value *FalseValue = FalseRet->getReturnValue();
2489 
2490   // Unwrap any PHI nodes in the return blocks.
2491   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2492     if (TVPN->getParent() == TrueSucc)
2493       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2494   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2495     if (FVPN->getParent() == FalseSucc)
2496       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2497 
2498   // In order for this transformation to be safe, we must be able to
2499   // unconditionally execute both operands to the return.  This is
2500   // normally the case, but we could have a potentially-trapping
2501   // constant expression that prevents this transformation from being
2502   // safe.
2503   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2504     if (TCV->canTrap())
2505       return false;
2506   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2507     if (FCV->canTrap())
2508       return false;
2509 
2510   // Okay, we collected all the mapped values and checked them for sanity, and
2511   // defined to really do this transformation.  First, update the CFG.
2512   TrueSucc->removePredecessor(BI->getParent());
2513   FalseSucc->removePredecessor(BI->getParent());
2514 
2515   // Insert select instructions where needed.
2516   Value *BrCond = BI->getCondition();
2517   if (TrueValue) {
2518     // Insert a select if the results differ.
2519     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2520     } else if (isa<UndefValue>(TrueValue)) {
2521       TrueValue = FalseValue;
2522     } else {
2523       TrueValue =
2524           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2525     }
2526   }
2527 
2528   Value *RI =
2529       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2530 
2531   (void)RI;
2532 
2533   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2534                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2535                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2536 
2537   EraseTerminatorAndDCECond(BI);
2538 
2539   return true;
2540 }
2541 
2542 /// Return true if the given instruction is available
2543 /// in its predecessor block. If yes, the instruction will be removed.
tryCSEWithPredecessor(Instruction * Inst,BasicBlock * PB)2544 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2545   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2546     return false;
2547   for (Instruction &I : *PB) {
2548     Instruction *PBI = &I;
2549     // Check whether Inst and PBI generate the same value.
2550     if (Inst->isIdenticalTo(PBI)) {
2551       Inst->replaceAllUsesWith(PBI);
2552       Inst->eraseFromParent();
2553       return true;
2554     }
2555   }
2556   return false;
2557 }
2558 
2559 /// Return true if either PBI or BI has branch weight available, and store
2560 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2561 /// not have branch weight, use 1:1 as its weight.
extractPredSuccWeights(BranchInst * PBI,BranchInst * BI,uint64_t & PredTrueWeight,uint64_t & PredFalseWeight,uint64_t & SuccTrueWeight,uint64_t & SuccFalseWeight)2562 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2563                                    uint64_t &PredTrueWeight,
2564                                    uint64_t &PredFalseWeight,
2565                                    uint64_t &SuccTrueWeight,
2566                                    uint64_t &SuccFalseWeight) {
2567   bool PredHasWeights =
2568       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2569   bool SuccHasWeights =
2570       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2571   if (PredHasWeights || SuccHasWeights) {
2572     if (!PredHasWeights)
2573       PredTrueWeight = PredFalseWeight = 1;
2574     if (!SuccHasWeights)
2575       SuccTrueWeight = SuccFalseWeight = 1;
2576     return true;
2577   } else {
2578     return false;
2579   }
2580 }
2581 
2582 /// If this basic block is simple enough, and if a predecessor branches to us
2583 /// and one of our successors, fold the block into the predecessor and use
2584 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,MemorySSAUpdater * MSSAU,unsigned BonusInstThreshold)2585 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2586                                   unsigned BonusInstThreshold) {
2587   BasicBlock *BB = BI->getParent();
2588 
2589   const unsigned PredCount = pred_size(BB);
2590 
2591   Instruction *Cond = nullptr;
2592   if (BI->isConditional())
2593     Cond = dyn_cast<Instruction>(BI->getCondition());
2594   else {
2595     // For unconditional branch, check for a simple CFG pattern, where
2596     // BB has a single predecessor and BB's successor is also its predecessor's
2597     // successor. If such pattern exists, check for CSE between BB and its
2598     // predecessor.
2599     if (BasicBlock *PB = BB->getSinglePredecessor())
2600       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2601         if (PBI->isConditional() &&
2602             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2603              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2604           for (auto I = BB->instructionsWithoutDebug().begin(),
2605                     E = BB->instructionsWithoutDebug().end();
2606                I != E;) {
2607             Instruction *Curr = &*I++;
2608             if (isa<CmpInst>(Curr)) {
2609               Cond = Curr;
2610               break;
2611             }
2612             // Quit if we can't remove this instruction.
2613             if (!tryCSEWithPredecessor(Curr, PB))
2614               return false;
2615           }
2616         }
2617 
2618     if (!Cond)
2619       return false;
2620   }
2621 
2622   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2623       Cond->getParent() != BB || !Cond->hasOneUse())
2624     return false;
2625 
2626   // Make sure the instruction after the condition is the cond branch.
2627   BasicBlock::iterator CondIt = ++Cond->getIterator();
2628 
2629   // Ignore dbg intrinsics.
2630   while (isa<DbgInfoIntrinsic>(CondIt))
2631     ++CondIt;
2632 
2633   if (&*CondIt != BI)
2634     return false;
2635 
2636   // Only allow this transformation if computing the condition doesn't involve
2637   // too many instructions and these involved instructions can be executed
2638   // unconditionally. We denote all involved instructions except the condition
2639   // as "bonus instructions", and only allow this transformation when the
2640   // number of the bonus instructions we'll need to create when cloning into
2641   // each predecessor does not exceed a certain threshold.
2642   unsigned NumBonusInsts = 0;
2643   for (auto I = BB->begin(); Cond != &*I; ++I) {
2644     // Ignore dbg intrinsics.
2645     if (isa<DbgInfoIntrinsic>(I))
2646       continue;
2647     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2648       return false;
2649     // I has only one use and can be executed unconditionally.
2650     Instruction *User = dyn_cast<Instruction>(I->user_back());
2651     if (User == nullptr || User->getParent() != BB)
2652       return false;
2653     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2654     // to use any other instruction, User must be an instruction between next(I)
2655     // and Cond.
2656 
2657     // Account for the cost of duplicating this instruction into each
2658     // predecessor.
2659     NumBonusInsts += PredCount;
2660     // Early exits once we reach the limit.
2661     if (NumBonusInsts > BonusInstThreshold)
2662       return false;
2663   }
2664 
2665   // Cond is known to be a compare or binary operator.  Check to make sure that
2666   // neither operand is a potentially-trapping constant expression.
2667   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2668     if (CE->canTrap())
2669       return false;
2670   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2671     if (CE->canTrap())
2672       return false;
2673 
2674   // Finally, don't infinitely unroll conditional loops.
2675   BasicBlock *TrueDest = BI->getSuccessor(0);
2676   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2677   if (TrueDest == BB || FalseDest == BB)
2678     return false;
2679 
2680   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2681     BasicBlock *PredBlock = *PI;
2682     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2683 
2684     // Check that we have two conditional branches.  If there is a PHI node in
2685     // the common successor, verify that the same value flows in from both
2686     // blocks.
2687     SmallVector<PHINode *, 4> PHIs;
2688     if (!PBI || PBI->isUnconditional() ||
2689         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2690         (!BI->isConditional() &&
2691          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2692       continue;
2693 
2694     // Determine if the two branches share a common destination.
2695     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2696     bool InvertPredCond = false;
2697 
2698     if (BI->isConditional()) {
2699       if (PBI->getSuccessor(0) == TrueDest) {
2700         Opc = Instruction::Or;
2701       } else if (PBI->getSuccessor(1) == FalseDest) {
2702         Opc = Instruction::And;
2703       } else if (PBI->getSuccessor(0) == FalseDest) {
2704         Opc = Instruction::And;
2705         InvertPredCond = true;
2706       } else if (PBI->getSuccessor(1) == TrueDest) {
2707         Opc = Instruction::Or;
2708         InvertPredCond = true;
2709       } else {
2710         continue;
2711       }
2712     } else {
2713       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2714         continue;
2715     }
2716 
2717     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2718     IRBuilder<> Builder(PBI);
2719 
2720     // If we need to invert the condition in the pred block to match, do so now.
2721     if (InvertPredCond) {
2722       Value *NewCond = PBI->getCondition();
2723 
2724       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2725         CmpInst *CI = cast<CmpInst>(NewCond);
2726         CI->setPredicate(CI->getInversePredicate());
2727       } else {
2728         NewCond =
2729             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2730       }
2731 
2732       PBI->setCondition(NewCond);
2733       PBI->swapSuccessors();
2734     }
2735 
2736     // If we have bonus instructions, clone them into the predecessor block.
2737     // Note that there may be multiple predecessor blocks, so we cannot move
2738     // bonus instructions to a predecessor block.
2739     ValueToValueMapTy VMap; // maps original values to cloned values
2740     // We already make sure Cond is the last instruction before BI. Therefore,
2741     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2742     // instructions.
2743     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2744       if (isa<DbgInfoIntrinsic>(BonusInst))
2745         continue;
2746       Instruction *NewBonusInst = BonusInst->clone();
2747       RemapInstruction(NewBonusInst, VMap,
2748                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2749       VMap[&*BonusInst] = NewBonusInst;
2750 
2751       // If we moved a load, we cannot any longer claim any knowledge about
2752       // its potential value. The previous information might have been valid
2753       // only given the branch precondition.
2754       // For an analogous reason, we must also drop all the metadata whose
2755       // semantics we don't understand.
2756       NewBonusInst->dropUnknownNonDebugMetadata();
2757 
2758       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2759       NewBonusInst->takeName(&*BonusInst);
2760       BonusInst->setName(BonusInst->getName() + ".old");
2761     }
2762 
2763     // Clone Cond into the predecessor basic block, and or/and the
2764     // two conditions together.
2765     Instruction *CondInPred = Cond->clone();
2766     RemapInstruction(CondInPred, VMap,
2767                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2768     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2769     CondInPred->takeName(Cond);
2770     Cond->setName(CondInPred->getName() + ".old");
2771 
2772     if (BI->isConditional()) {
2773       Instruction *NewCond = cast<Instruction>(
2774           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2775       PBI->setCondition(NewCond);
2776 
2777       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2778       bool HasWeights =
2779           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2780                                  SuccTrueWeight, SuccFalseWeight);
2781       SmallVector<uint64_t, 8> NewWeights;
2782 
2783       if (PBI->getSuccessor(0) == BB) {
2784         if (HasWeights) {
2785           // PBI: br i1 %x, BB, FalseDest
2786           // BI:  br i1 %y, TrueDest, FalseDest
2787           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2788           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2789           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2790           //               TrueWeight for PBI * FalseWeight for BI.
2791           // We assume that total weights of a BranchInst can fit into 32 bits.
2792           // Therefore, we will not have overflow using 64-bit arithmetic.
2793           NewWeights.push_back(PredFalseWeight *
2794                                    (SuccFalseWeight + SuccTrueWeight) +
2795                                PredTrueWeight * SuccFalseWeight);
2796         }
2797         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2798         PBI->setSuccessor(0, TrueDest);
2799       }
2800       if (PBI->getSuccessor(1) == BB) {
2801         if (HasWeights) {
2802           // PBI: br i1 %x, TrueDest, BB
2803           // BI:  br i1 %y, TrueDest, FalseDest
2804           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2805           //              FalseWeight for PBI * TrueWeight for BI.
2806           NewWeights.push_back(PredTrueWeight *
2807                                    (SuccFalseWeight + SuccTrueWeight) +
2808                                PredFalseWeight * SuccTrueWeight);
2809           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2810           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2811         }
2812         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2813         PBI->setSuccessor(1, FalseDest);
2814       }
2815       if (NewWeights.size() == 2) {
2816         // Halve the weights if any of them cannot fit in an uint32_t
2817         FitWeights(NewWeights);
2818 
2819         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2820                                            NewWeights.end());
2821         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2822       } else
2823         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2824     } else {
2825       // Update PHI nodes in the common successors.
2826       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2827         ConstantInt *PBI_C = cast<ConstantInt>(
2828             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2829         assert(PBI_C->getType()->isIntegerTy(1));
2830         Instruction *MergedCond = nullptr;
2831         if (PBI->getSuccessor(0) == TrueDest) {
2832           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2833           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2834           //       is false: !PBI_Cond and BI_Value
2835           Instruction *NotCond = cast<Instruction>(
2836               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2837           MergedCond = cast<Instruction>(
2838                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2839                                    "and.cond"));
2840           if (PBI_C->isOne())
2841             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2842                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2843         } else {
2844           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2845           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2846           //       is false: PBI_Cond and BI_Value
2847           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2848               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2849           if (PBI_C->isOne()) {
2850             Instruction *NotCond = cast<Instruction>(
2851                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2852             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2853                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2854           }
2855         }
2856         // Update PHI Node.
2857 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2858       }
2859 
2860       // PBI is changed to branch to TrueDest below. Remove itself from
2861       // potential phis from all other successors.
2862       if (MSSAU)
2863         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2864 
2865       // Change PBI from Conditional to Unconditional.
2866       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2867       EraseTerminatorAndDCECond(PBI, MSSAU);
2868       PBI = New_PBI;
2869     }
2870 
2871     // If BI was a loop latch, it may have had associated loop metadata.
2872     // We need to copy it to the new latch, that is, PBI.
2873     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2874       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2875 
2876     // TODO: If BB is reachable from all paths through PredBlock, then we
2877     // could replace PBI's branch probabilities with BI's.
2878 
2879     // Copy any debug value intrinsics into the end of PredBlock.
2880     for (Instruction &I : *BB)
2881       if (isa<DbgInfoIntrinsic>(I))
2882         I.clone()->insertBefore(PBI);
2883 
2884     return true;
2885   }
2886   return false;
2887 }
2888 
2889 // If there is only one store in BB1 and BB2, return it, otherwise return
2890 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)2891 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2892   StoreInst *S = nullptr;
2893   for (auto *BB : {BB1, BB2}) {
2894     if (!BB)
2895       continue;
2896     for (auto &I : *BB)
2897       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2898         if (S)
2899           // Multiple stores seen.
2900           return nullptr;
2901         else
2902           S = SI;
2903       }
2904   }
2905   return S;
2906 }
2907 
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)2908 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2909                                               Value *AlternativeV = nullptr) {
2910   // PHI is going to be a PHI node that allows the value V that is defined in
2911   // BB to be referenced in BB's only successor.
2912   //
2913   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2914   // doesn't matter to us what the other operand is (it'll never get used). We
2915   // could just create a new PHI with an undef incoming value, but that could
2916   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2917   // other PHI. So here we directly look for some PHI in BB's successor with V
2918   // as an incoming operand. If we find one, we use it, else we create a new
2919   // one.
2920   //
2921   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2922   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2923   // where OtherBB is the single other predecessor of BB's only successor.
2924   PHINode *PHI = nullptr;
2925   BasicBlock *Succ = BB->getSingleSuccessor();
2926 
2927   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2928     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2929       PHI = cast<PHINode>(I);
2930       if (!AlternativeV)
2931         break;
2932 
2933       assert(Succ->hasNPredecessors(2));
2934       auto PredI = pred_begin(Succ);
2935       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2936       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2937         break;
2938       PHI = nullptr;
2939     }
2940   if (PHI)
2941     return PHI;
2942 
2943   // If V is not an instruction defined in BB, just return it.
2944   if (!AlternativeV &&
2945       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2946     return V;
2947 
2948   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2949   PHI->addIncoming(V, BB);
2950   for (BasicBlock *PredBB : predecessors(Succ))
2951     if (PredBB != BB)
2952       PHI->addIncoming(
2953           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2954   return PHI;
2955 }
2956 
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond,const DataLayout & DL,const TargetTransformInfo & TTI)2957 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2958                                            BasicBlock *QTB, BasicBlock *QFB,
2959                                            BasicBlock *PostBB, Value *Address,
2960                                            bool InvertPCond, bool InvertQCond,
2961                                            const DataLayout &DL,
2962                                            const TargetTransformInfo &TTI) {
2963   // For every pointer, there must be exactly two stores, one coming from
2964   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2965   // store (to any address) in PTB,PFB or QTB,QFB.
2966   // FIXME: We could relax this restriction with a bit more work and performance
2967   // testing.
2968   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2969   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2970   if (!PStore || !QStore)
2971     return false;
2972 
2973   // Now check the stores are compatible.
2974   if (!QStore->isUnordered() || !PStore->isUnordered())
2975     return false;
2976 
2977   // Check that sinking the store won't cause program behavior changes. Sinking
2978   // the store out of the Q blocks won't change any behavior as we're sinking
2979   // from a block to its unconditional successor. But we're moving a store from
2980   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2981   // So we need to check that there are no aliasing loads or stores in
2982   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2983   // operations between PStore and the end of its parent block.
2984   //
2985   // The ideal way to do this is to query AliasAnalysis, but we don't
2986   // preserve AA currently so that is dangerous. Be super safe and just
2987   // check there are no other memory operations at all.
2988   for (auto &I : *QFB->getSinglePredecessor())
2989     if (I.mayReadOrWriteMemory())
2990       return false;
2991   for (auto &I : *QFB)
2992     if (&I != QStore && I.mayReadOrWriteMemory())
2993       return false;
2994   if (QTB)
2995     for (auto &I : *QTB)
2996       if (&I != QStore && I.mayReadOrWriteMemory())
2997         return false;
2998   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2999        I != E; ++I)
3000     if (&*I != PStore && I->mayReadOrWriteMemory())
3001       return false;
3002 
3003   // If we're not in aggressive mode, we only optimize if we have some
3004   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3005   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3006     if (!BB)
3007       return true;
3008     // Heuristic: if the block can be if-converted/phi-folded and the
3009     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3010     // thread this store.
3011     int BudgetRemaining =
3012         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3013     for (auto &I : BB->instructionsWithoutDebug()) {
3014       // Consider terminator instruction to be free.
3015       if (I.isTerminator())
3016         continue;
3017       // If this is one the stores that we want to speculate out of this BB,
3018       // then don't count it's cost, consider it to be free.
3019       if (auto *S = dyn_cast<StoreInst>(&I))
3020         if (llvm::find(FreeStores, S))
3021           continue;
3022       // Else, we have a white-list of instructions that we are ak speculating.
3023       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3024         return false; // Not in white-list - not worthwhile folding.
3025       // And finally, if this is a non-free instruction that we are okay
3026       // speculating, ensure that we consider the speculation budget.
3027       BudgetRemaining -= TTI.getUserCost(&I);
3028       if (BudgetRemaining < 0)
3029         return false; // Eagerly refuse to fold as soon as we're out of budget.
3030     }
3031     assert(BudgetRemaining >= 0 &&
3032            "When we run out of budget we will eagerly return from within the "
3033            "per-instruction loop.");
3034     return true;
3035   };
3036 
3037   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3038   if (!MergeCondStoresAggressively &&
3039       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3040        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3041     return false;
3042 
3043   // If PostBB has more than two predecessors, we need to split it so we can
3044   // sink the store.
3045   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3046     // We know that QFB's only successor is PostBB. And QFB has a single
3047     // predecessor. If QTB exists, then its only successor is also PostBB.
3048     // If QTB does not exist, then QFB's only predecessor has a conditional
3049     // branch to QFB and PostBB.
3050     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3051     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3052                                                "condstore.split");
3053     if (!NewBB)
3054       return false;
3055     PostBB = NewBB;
3056   }
3057 
3058   // OK, we're going to sink the stores to PostBB. The store has to be
3059   // conditional though, so first create the predicate.
3060   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3061                      ->getCondition();
3062   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3063                      ->getCondition();
3064 
3065   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3066                                                 PStore->getParent());
3067   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3068                                                 QStore->getParent(), PPHI);
3069 
3070   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3071 
3072   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3073   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3074 
3075   if (InvertPCond)
3076     PPred = QB.CreateNot(PPred);
3077   if (InvertQCond)
3078     QPred = QB.CreateNot(QPred);
3079   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3080 
3081   auto *T =
3082       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3083   QB.SetInsertPoint(T);
3084   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3085   AAMDNodes AAMD;
3086   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3087   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3088   SI->setAAMetadata(AAMD);
3089   unsigned PAlignment = PStore->getAlignment();
3090   unsigned QAlignment = QStore->getAlignment();
3091   unsigned TypeAlignment =
3092       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3093   unsigned MinAlignment;
3094   unsigned MaxAlignment;
3095   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3096   // Choose the minimum alignment. If we could prove both stores execute, we
3097   // could use biggest one.  In this case, though, we only know that one of the
3098   // stores executes.  And we don't know it's safe to take the alignment from a
3099   // store that doesn't execute.
3100   if (MinAlignment != 0) {
3101     // Choose the minimum of all non-zero alignments.
3102     SI->setAlignment(Align(MinAlignment));
3103   } else if (MaxAlignment != 0) {
3104     // Choose the minimal alignment between the non-zero alignment and the ABI
3105     // default alignment for the type of the stored value.
3106     SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3107   } else {
3108     // If both alignments are zero, use ABI default alignment for the type of
3109     // the stored value.
3110     SI->setAlignment(Align(TypeAlignment));
3111   }
3112 
3113   QStore->eraseFromParent();
3114   PStore->eraseFromParent();
3115 
3116   return true;
3117 }
3118 
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI,const DataLayout & DL,const TargetTransformInfo & TTI)3119 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3120                                    const DataLayout &DL,
3121                                    const TargetTransformInfo &TTI) {
3122   // The intention here is to find diamonds or triangles (see below) where each
3123   // conditional block contains a store to the same address. Both of these
3124   // stores are conditional, so they can't be unconditionally sunk. But it may
3125   // be profitable to speculatively sink the stores into one merged store at the
3126   // end, and predicate the merged store on the union of the two conditions of
3127   // PBI and QBI.
3128   //
3129   // This can reduce the number of stores executed if both of the conditions are
3130   // true, and can allow the blocks to become small enough to be if-converted.
3131   // This optimization will also chain, so that ladders of test-and-set
3132   // sequences can be if-converted away.
3133   //
3134   // We only deal with simple diamonds or triangles:
3135   //
3136   //     PBI       or      PBI        or a combination of the two
3137   //    /   \               | \
3138   //   PTB  PFB             |  PFB
3139   //    \   /               | /
3140   //     QBI                QBI
3141   //    /  \                | \
3142   //   QTB  QFB             |  QFB
3143   //    \  /                | /
3144   //    PostBB            PostBB
3145   //
3146   // We model triangles as a type of diamond with a nullptr "true" block.
3147   // Triangles are canonicalized so that the fallthrough edge is represented by
3148   // a true condition, as in the diagram above.
3149   BasicBlock *PTB = PBI->getSuccessor(0);
3150   BasicBlock *PFB = PBI->getSuccessor(1);
3151   BasicBlock *QTB = QBI->getSuccessor(0);
3152   BasicBlock *QFB = QBI->getSuccessor(1);
3153   BasicBlock *PostBB = QFB->getSingleSuccessor();
3154 
3155   // Make sure we have a good guess for PostBB. If QTB's only successor is
3156   // QFB, then QFB is a better PostBB.
3157   if (QTB->getSingleSuccessor() == QFB)
3158     PostBB = QFB;
3159 
3160   // If we couldn't find a good PostBB, stop.
3161   if (!PostBB)
3162     return false;
3163 
3164   bool InvertPCond = false, InvertQCond = false;
3165   // Canonicalize fallthroughs to the true branches.
3166   if (PFB == QBI->getParent()) {
3167     std::swap(PFB, PTB);
3168     InvertPCond = true;
3169   }
3170   if (QFB == PostBB) {
3171     std::swap(QFB, QTB);
3172     InvertQCond = true;
3173   }
3174 
3175   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3176   // and QFB may not. Model fallthroughs as a nullptr block.
3177   if (PTB == QBI->getParent())
3178     PTB = nullptr;
3179   if (QTB == PostBB)
3180     QTB = nullptr;
3181 
3182   // Legality bailouts. We must have at least the non-fallthrough blocks and
3183   // the post-dominating block, and the non-fallthroughs must only have one
3184   // predecessor.
3185   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3186     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3187   };
3188   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3189       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3190     return false;
3191   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3192       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3193     return false;
3194   if (!QBI->getParent()->hasNUses(2))
3195     return false;
3196 
3197   // OK, this is a sequence of two diamonds or triangles.
3198   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3199   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3200   for (auto *BB : {PTB, PFB}) {
3201     if (!BB)
3202       continue;
3203     for (auto &I : *BB)
3204       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3205         PStoreAddresses.insert(SI->getPointerOperand());
3206   }
3207   for (auto *BB : {QTB, QFB}) {
3208     if (!BB)
3209       continue;
3210     for (auto &I : *BB)
3211       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3212         QStoreAddresses.insert(SI->getPointerOperand());
3213   }
3214 
3215   set_intersect(PStoreAddresses, QStoreAddresses);
3216   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3217   // clear what it contains.
3218   auto &CommonAddresses = PStoreAddresses;
3219 
3220   bool Changed = false;
3221   for (auto *Address : CommonAddresses)
3222     Changed |= mergeConditionalStoreToAddress(
3223         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3224   return Changed;
3225 }
3226 
3227 
3228 /// If the previous block ended with a widenable branch, determine if reusing
3229 /// the target block is profitable and legal.  This will have the effect of
3230 /// "widening" PBI, but doesn't require us to reason about hosting safety.
tryWidenCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI)3231 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3232   // TODO: This can be generalized in two important ways:
3233   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3234   //    values from the PBI edge.
3235   // 2) We can sink side effecting instructions into BI's fallthrough
3236   //    successor provided they doesn't contribute to computation of
3237   //    BI's condition.
3238   Value *CondWB, *WC;
3239   BasicBlock *IfTrueBB, *IfFalseBB;
3240   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3241       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3242     return false;
3243   if (!IfFalseBB->phis().empty())
3244     return false; // TODO
3245   // Use lambda to lazily compute expensive condition after cheap ones.
3246   auto NoSideEffects = [](BasicBlock &BB) {
3247     return !llvm::any_of(BB, [](const Instruction &I) {
3248         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3249       });
3250   };
3251   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3252       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3253       NoSideEffects(*BI->getParent())) {
3254     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3255     BI->setSuccessor(1, IfFalseBB);
3256     return true;
3257   }
3258   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3259       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3260       NoSideEffects(*BI->getParent())) {
3261     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3262     BI->setSuccessor(0, IfFalseBB);
3263     return true;
3264   }
3265   return false;
3266 }
3267 
3268 /// If we have a conditional branch as a predecessor of another block,
3269 /// this function tries to simplify it.  We know
3270 /// that PBI and BI are both conditional branches, and BI is in one of the
3271 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,const DataLayout & DL,const TargetTransformInfo & TTI)3272 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3273                                            const DataLayout &DL,
3274                                            const TargetTransformInfo &TTI) {
3275   assert(PBI->isConditional() && BI->isConditional());
3276   BasicBlock *BB = BI->getParent();
3277 
3278   // If this block ends with a branch instruction, and if there is a
3279   // predecessor that ends on a branch of the same condition, make
3280   // this conditional branch redundant.
3281   if (PBI->getCondition() == BI->getCondition() &&
3282       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3283     // Okay, the outcome of this conditional branch is statically
3284     // knowable.  If this block had a single pred, handle specially.
3285     if (BB->getSinglePredecessor()) {
3286       // Turn this into a branch on constant.
3287       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3288       BI->setCondition(
3289           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3290       return true; // Nuke the branch on constant.
3291     }
3292 
3293     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3294     // in the constant and simplify the block result.  Subsequent passes of
3295     // simplifycfg will thread the block.
3296     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3297       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3298       PHINode *NewPN = PHINode::Create(
3299           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3300           BI->getCondition()->getName() + ".pr", &BB->front());
3301       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3302       // predecessor, compute the PHI'd conditional value for all of the preds.
3303       // Any predecessor where the condition is not computable we keep symbolic.
3304       for (pred_iterator PI = PB; PI != PE; ++PI) {
3305         BasicBlock *P = *PI;
3306         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3307             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3308             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3309           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3310           NewPN->addIncoming(
3311               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3312               P);
3313         } else {
3314           NewPN->addIncoming(BI->getCondition(), P);
3315         }
3316       }
3317 
3318       BI->setCondition(NewPN);
3319       return true;
3320     }
3321   }
3322 
3323   // If the previous block ended with a widenable branch, determine if reusing
3324   // the target block is profitable and legal.  This will have the effect of
3325   // "widening" PBI, but doesn't require us to reason about hosting safety.
3326   if (tryWidenCondBranchToCondBranch(PBI, BI))
3327     return true;
3328 
3329   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3330     if (CE->canTrap())
3331       return false;
3332 
3333   // If both branches are conditional and both contain stores to the same
3334   // address, remove the stores from the conditionals and create a conditional
3335   // merged store at the end.
3336   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3337     return true;
3338 
3339   // If this is a conditional branch in an empty block, and if any
3340   // predecessors are a conditional branch to one of our destinations,
3341   // fold the conditions into logical ops and one cond br.
3342 
3343   // Ignore dbg intrinsics.
3344   if (&*BB->instructionsWithoutDebug().begin() != BI)
3345     return false;
3346 
3347   int PBIOp, BIOp;
3348   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3349     PBIOp = 0;
3350     BIOp = 0;
3351   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3352     PBIOp = 0;
3353     BIOp = 1;
3354   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3355     PBIOp = 1;
3356     BIOp = 0;
3357   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3358     PBIOp = 1;
3359     BIOp = 1;
3360   } else {
3361     return false;
3362   }
3363 
3364   // Check to make sure that the other destination of this branch
3365   // isn't BB itself.  If so, this is an infinite loop that will
3366   // keep getting unwound.
3367   if (PBI->getSuccessor(PBIOp) == BB)
3368     return false;
3369 
3370   // Do not perform this transformation if it would require
3371   // insertion of a large number of select instructions. For targets
3372   // without predication/cmovs, this is a big pessimization.
3373 
3374   // Also do not perform this transformation if any phi node in the common
3375   // destination block can trap when reached by BB or PBB (PR17073). In that
3376   // case, it would be unsafe to hoist the operation into a select instruction.
3377 
3378   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3379   unsigned NumPhis = 0;
3380   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3381        ++II, ++NumPhis) {
3382     if (NumPhis > 2) // Disable this xform.
3383       return false;
3384 
3385     PHINode *PN = cast<PHINode>(II);
3386     Value *BIV = PN->getIncomingValueForBlock(BB);
3387     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3388       if (CE->canTrap())
3389         return false;
3390 
3391     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3392     Value *PBIV = PN->getIncomingValue(PBBIdx);
3393     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3394       if (CE->canTrap())
3395         return false;
3396   }
3397 
3398   // Finally, if everything is ok, fold the branches to logical ops.
3399   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3400 
3401   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3402                     << "AND: " << *BI->getParent());
3403 
3404   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3405   // branch in it, where one edge (OtherDest) goes back to itself but the other
3406   // exits.  We don't *know* that the program avoids the infinite loop
3407   // (even though that seems likely).  If we do this xform naively, we'll end up
3408   // recursively unpeeling the loop.  Since we know that (after the xform is
3409   // done) that the block *is* infinite if reached, we just make it an obviously
3410   // infinite loop with no cond branch.
3411   if (OtherDest == BB) {
3412     // Insert it at the end of the function, because it's either code,
3413     // or it won't matter if it's hot. :)
3414     BasicBlock *InfLoopBlock =
3415         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3416     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3417     OtherDest = InfLoopBlock;
3418   }
3419 
3420   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3421 
3422   // BI may have other predecessors.  Because of this, we leave
3423   // it alone, but modify PBI.
3424 
3425   // Make sure we get to CommonDest on True&True directions.
3426   Value *PBICond = PBI->getCondition();
3427   IRBuilder<NoFolder> Builder(PBI);
3428   if (PBIOp)
3429     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3430 
3431   Value *BICond = BI->getCondition();
3432   if (BIOp)
3433     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3434 
3435   // Merge the conditions.
3436   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3437 
3438   // Modify PBI to branch on the new condition to the new dests.
3439   PBI->setCondition(Cond);
3440   PBI->setSuccessor(0, CommonDest);
3441   PBI->setSuccessor(1, OtherDest);
3442 
3443   // Update branch weight for PBI.
3444   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3445   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3446   bool HasWeights =
3447       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3448                              SuccTrueWeight, SuccFalseWeight);
3449   if (HasWeights) {
3450     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3451     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3452     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3453     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3454     // The weight to CommonDest should be PredCommon * SuccTotal +
3455     //                                    PredOther * SuccCommon.
3456     // The weight to OtherDest should be PredOther * SuccOther.
3457     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3458                                   PredOther * SuccCommon,
3459                               PredOther * SuccOther};
3460     // Halve the weights if any of them cannot fit in an uint32_t
3461     FitWeights(NewWeights);
3462 
3463     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3464   }
3465 
3466   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3467   // block that are identical to the entries for BI's block.
3468   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3469 
3470   // We know that the CommonDest already had an edge from PBI to
3471   // it.  If it has PHIs though, the PHIs may have different
3472   // entries for BB and PBI's BB.  If so, insert a select to make
3473   // them agree.
3474   for (PHINode &PN : CommonDest->phis()) {
3475     Value *BIV = PN.getIncomingValueForBlock(BB);
3476     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3477     Value *PBIV = PN.getIncomingValue(PBBIdx);
3478     if (BIV != PBIV) {
3479       // Insert a select in PBI to pick the right value.
3480       SelectInst *NV = cast<SelectInst>(
3481           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3482       PN.setIncomingValue(PBBIdx, NV);
3483       // Although the select has the same condition as PBI, the original branch
3484       // weights for PBI do not apply to the new select because the select's
3485       // 'logical' edges are incoming edges of the phi that is eliminated, not
3486       // the outgoing edges of PBI.
3487       if (HasWeights) {
3488         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3489         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3490         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3491         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3492         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3493         // The weight to PredOtherDest should be PredOther * SuccCommon.
3494         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3495                                   PredOther * SuccCommon};
3496 
3497         FitWeights(NewWeights);
3498 
3499         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3500       }
3501     }
3502   }
3503 
3504   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3505   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3506 
3507   // This basic block is probably dead.  We know it has at least
3508   // one fewer predecessor.
3509   return true;
3510 }
3511 
3512 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3513 // true or to FalseBB if Cond is false.
3514 // Takes care of updating the successors and removing the old terminator.
3515 // Also makes sure not to introduce new successors by assuming that edges to
3516 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(Instruction * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)3517 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3518                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3519                                        uint32_t TrueWeight,
3520                                        uint32_t FalseWeight) {
3521   // Remove any superfluous successor edges from the CFG.
3522   // First, figure out which successors to preserve.
3523   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3524   // successor.
3525   BasicBlock *KeepEdge1 = TrueBB;
3526   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3527 
3528   // Then remove the rest.
3529   for (BasicBlock *Succ : successors(OldTerm)) {
3530     // Make sure only to keep exactly one copy of each edge.
3531     if (Succ == KeepEdge1)
3532       KeepEdge1 = nullptr;
3533     else if (Succ == KeepEdge2)
3534       KeepEdge2 = nullptr;
3535     else
3536       Succ->removePredecessor(OldTerm->getParent(),
3537                               /*KeepOneInputPHIs=*/true);
3538   }
3539 
3540   IRBuilder<> Builder(OldTerm);
3541   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3542 
3543   // Insert an appropriate new terminator.
3544   if (!KeepEdge1 && !KeepEdge2) {
3545     if (TrueBB == FalseBB)
3546       // We were only looking for one successor, and it was present.
3547       // Create an unconditional branch to it.
3548       Builder.CreateBr(TrueBB);
3549     else {
3550       // We found both of the successors we were looking for.
3551       // Create a conditional branch sharing the condition of the select.
3552       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3553       if (TrueWeight != FalseWeight)
3554         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3555     }
3556   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3557     // Neither of the selected blocks were successors, so this
3558     // terminator must be unreachable.
3559     new UnreachableInst(OldTerm->getContext(), OldTerm);
3560   } else {
3561     // One of the selected values was a successor, but the other wasn't.
3562     // Insert an unconditional branch to the one that was found;
3563     // the edge to the one that wasn't must be unreachable.
3564     if (!KeepEdge1)
3565       // Only TrueBB was found.
3566       Builder.CreateBr(TrueBB);
3567     else
3568       // Only FalseBB was found.
3569       Builder.CreateBr(FalseBB);
3570   }
3571 
3572   EraseTerminatorAndDCECond(OldTerm);
3573   return true;
3574 }
3575 
3576 // Replaces
3577 //   (switch (select cond, X, Y)) on constant X, Y
3578 // with a branch - conditional if X and Y lead to distinct BBs,
3579 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)3580 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3581   // Check for constant integer values in the select.
3582   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3583   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3584   if (!TrueVal || !FalseVal)
3585     return false;
3586 
3587   // Find the relevant condition and destinations.
3588   Value *Condition = Select->getCondition();
3589   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3590   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3591 
3592   // Get weight for TrueBB and FalseBB.
3593   uint32_t TrueWeight = 0, FalseWeight = 0;
3594   SmallVector<uint64_t, 8> Weights;
3595   bool HasWeights = HasBranchWeights(SI);
3596   if (HasWeights) {
3597     GetBranchWeights(SI, Weights);
3598     if (Weights.size() == 1 + SI->getNumCases()) {
3599       TrueWeight =
3600           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3601       FalseWeight =
3602           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3603     }
3604   }
3605 
3606   // Perform the actual simplification.
3607   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3608                                     FalseWeight);
3609 }
3610 
3611 // Replaces
3612 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3613 //                             blockaddress(@fn, BlockB)))
3614 // with
3615 //   (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)3616 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3617   // Check that both operands of the select are block addresses.
3618   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3619   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3620   if (!TBA || !FBA)
3621     return false;
3622 
3623   // Extract the actual blocks.
3624   BasicBlock *TrueBB = TBA->getBasicBlock();
3625   BasicBlock *FalseBB = FBA->getBasicBlock();
3626 
3627   // Perform the actual simplification.
3628   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3629                                     0);
3630 }
3631 
3632 /// This is called when we find an icmp instruction
3633 /// (a seteq/setne with a constant) as the only instruction in a
3634 /// block that ends with an uncond branch.  We are looking for a very specific
3635 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3636 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3637 /// default value goes to an uncond block with a seteq in it, we get something
3638 /// like:
3639 ///
3640 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3641 /// DEFAULT:
3642 ///   %tmp = icmp eq i8 %A, 92
3643 ///   br label %end
3644 /// end:
3645 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3646 ///
3647 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3648 /// the PHI, merging the third icmp into the switch.
tryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder)3649 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3650     ICmpInst *ICI, IRBuilder<> &Builder) {
3651   BasicBlock *BB = ICI->getParent();
3652 
3653   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3654   // complex.
3655   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3656     return false;
3657 
3658   Value *V = ICI->getOperand(0);
3659   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3660 
3661   // The pattern we're looking for is where our only predecessor is a switch on
3662   // 'V' and this block is the default case for the switch.  In this case we can
3663   // fold the compared value into the switch to simplify things.
3664   BasicBlock *Pred = BB->getSinglePredecessor();
3665   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3666     return false;
3667 
3668   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3669   if (SI->getCondition() != V)
3670     return false;
3671 
3672   // If BB is reachable on a non-default case, then we simply know the value of
3673   // V in this block.  Substitute it and constant fold the icmp instruction
3674   // away.
3675   if (SI->getDefaultDest() != BB) {
3676     ConstantInt *VVal = SI->findCaseDest(BB);
3677     assert(VVal && "Should have a unique destination value");
3678     ICI->setOperand(0, VVal);
3679 
3680     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3681       ICI->replaceAllUsesWith(V);
3682       ICI->eraseFromParent();
3683     }
3684     // BB is now empty, so it is likely to simplify away.
3685     return requestResimplify();
3686   }
3687 
3688   // Ok, the block is reachable from the default dest.  If the constant we're
3689   // comparing exists in one of the other edges, then we can constant fold ICI
3690   // and zap it.
3691   if (SI->findCaseValue(Cst) != SI->case_default()) {
3692     Value *V;
3693     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3694       V = ConstantInt::getFalse(BB->getContext());
3695     else
3696       V = ConstantInt::getTrue(BB->getContext());
3697 
3698     ICI->replaceAllUsesWith(V);
3699     ICI->eraseFromParent();
3700     // BB is now empty, so it is likely to simplify away.
3701     return requestResimplify();
3702   }
3703 
3704   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3705   // the block.
3706   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3707   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3708   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3709       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3710     return false;
3711 
3712   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3713   // true in the PHI.
3714   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3715   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3716 
3717   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3718     std::swap(DefaultCst, NewCst);
3719 
3720   // Replace ICI (which is used by the PHI for the default value) with true or
3721   // false depending on if it is EQ or NE.
3722   ICI->replaceAllUsesWith(DefaultCst);
3723   ICI->eraseFromParent();
3724 
3725   // Okay, the switch goes to this block on a default value.  Add an edge from
3726   // the switch to the merge point on the compared value.
3727   BasicBlock *NewBB =
3728       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3729   {
3730     SwitchInstProfUpdateWrapper SIW(*SI);
3731     auto W0 = SIW.getSuccessorWeight(0);
3732     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3733     if (W0) {
3734       NewW = ((uint64_t(*W0) + 1) >> 1);
3735       SIW.setSuccessorWeight(0, *NewW);
3736     }
3737     SIW.addCase(Cst, NewBB, NewW);
3738   }
3739 
3740   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3741   Builder.SetInsertPoint(NewBB);
3742   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3743   Builder.CreateBr(SuccBlock);
3744   PHIUse->addIncoming(NewCst, NewBB);
3745   return true;
3746 }
3747 
3748 /// The specified branch is a conditional branch.
3749 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3750 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)3751 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3752                                       const DataLayout &DL) {
3753   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3754   if (!Cond)
3755     return false;
3756 
3757   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3758   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3759   // 'setne's and'ed together, collect them.
3760 
3761   // Try to gather values from a chain of and/or to be turned into a switch
3762   ConstantComparesGatherer ConstantCompare(Cond, DL);
3763   // Unpack the result
3764   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3765   Value *CompVal = ConstantCompare.CompValue;
3766   unsigned UsedICmps = ConstantCompare.UsedICmps;
3767   Value *ExtraCase = ConstantCompare.Extra;
3768 
3769   // If we didn't have a multiply compared value, fail.
3770   if (!CompVal)
3771     return false;
3772 
3773   // Avoid turning single icmps into a switch.
3774   if (UsedICmps <= 1)
3775     return false;
3776 
3777   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3778 
3779   // There might be duplicate constants in the list, which the switch
3780   // instruction can't handle, remove them now.
3781   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3782   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3783 
3784   // If Extra was used, we require at least two switch values to do the
3785   // transformation.  A switch with one value is just a conditional branch.
3786   if (ExtraCase && Values.size() < 2)
3787     return false;
3788 
3789   // TODO: Preserve branch weight metadata, similarly to how
3790   // FoldValueComparisonIntoPredecessors preserves it.
3791 
3792   // Figure out which block is which destination.
3793   BasicBlock *DefaultBB = BI->getSuccessor(1);
3794   BasicBlock *EdgeBB = BI->getSuccessor(0);
3795   if (!TrueWhenEqual)
3796     std::swap(DefaultBB, EdgeBB);
3797 
3798   BasicBlock *BB = BI->getParent();
3799 
3800   // MSAN does not like undefs as branch condition which can be introduced
3801   // with "explicit branch".
3802   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3803     return false;
3804 
3805   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3806                     << " cases into SWITCH.  BB is:\n"
3807                     << *BB);
3808 
3809   // If there are any extra values that couldn't be folded into the switch
3810   // then we evaluate them with an explicit branch first. Split the block
3811   // right before the condbr to handle it.
3812   if (ExtraCase) {
3813     BasicBlock *NewBB =
3814         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3815     // Remove the uncond branch added to the old block.
3816     Instruction *OldTI = BB->getTerminator();
3817     Builder.SetInsertPoint(OldTI);
3818 
3819     if (TrueWhenEqual)
3820       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3821     else
3822       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3823 
3824     OldTI->eraseFromParent();
3825 
3826     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3827     // for the edge we just added.
3828     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3829 
3830     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3831                       << "\nEXTRABB = " << *BB);
3832     BB = NewBB;
3833   }
3834 
3835   Builder.SetInsertPoint(BI);
3836   // Convert pointer to int before we switch.
3837   if (CompVal->getType()->isPointerTy()) {
3838     CompVal = Builder.CreatePtrToInt(
3839         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3840   }
3841 
3842   // Create the new switch instruction now.
3843   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3844 
3845   // Add all of the 'cases' to the switch instruction.
3846   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3847     New->addCase(Values[i], EdgeBB);
3848 
3849   // We added edges from PI to the EdgeBB.  As such, if there were any
3850   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3851   // the number of edges added.
3852   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3853     PHINode *PN = cast<PHINode>(BBI);
3854     Value *InVal = PN->getIncomingValueForBlock(BB);
3855     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3856       PN->addIncoming(InVal, BB);
3857   }
3858 
3859   // Erase the old branch instruction.
3860   EraseTerminatorAndDCECond(BI);
3861 
3862   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3863   return true;
3864 }
3865 
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)3866 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3867   if (isa<PHINode>(RI->getValue()))
3868     return SimplifyCommonResume(RI);
3869   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3870            RI->getValue() == RI->getParent()->getFirstNonPHI())
3871     // The resume must unwind the exception that caused control to branch here.
3872     return SimplifySingleResume(RI);
3873 
3874   return false;
3875 }
3876 
3877 // Simplify resume that is shared by several landing pads (phi of landing pad).
SimplifyCommonResume(ResumeInst * RI)3878 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3879   BasicBlock *BB = RI->getParent();
3880 
3881   // Check that there are no other instructions except for debug intrinsics
3882   // between the phi of landing pads (RI->getValue()) and resume instruction.
3883   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3884                        E = RI->getIterator();
3885   while (++I != E)
3886     if (!isa<DbgInfoIntrinsic>(I))
3887       return false;
3888 
3889   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3890   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3891 
3892   // Check incoming blocks to see if any of them are trivial.
3893   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3894        Idx++) {
3895     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3896     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3897 
3898     // If the block has other successors, we can not delete it because
3899     // it has other dependents.
3900     if (IncomingBB->getUniqueSuccessor() != BB)
3901       continue;
3902 
3903     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3904     // Not the landing pad that caused the control to branch here.
3905     if (IncomingValue != LandingPad)
3906       continue;
3907 
3908     bool isTrivial = true;
3909 
3910     I = IncomingBB->getFirstNonPHI()->getIterator();
3911     E = IncomingBB->getTerminator()->getIterator();
3912     while (++I != E)
3913       if (!isa<DbgInfoIntrinsic>(I)) {
3914         isTrivial = false;
3915         break;
3916       }
3917 
3918     if (isTrivial)
3919       TrivialUnwindBlocks.insert(IncomingBB);
3920   }
3921 
3922   // If no trivial unwind blocks, don't do any simplifications.
3923   if (TrivialUnwindBlocks.empty())
3924     return false;
3925 
3926   // Turn all invokes that unwind here into calls.
3927   for (auto *TrivialBB : TrivialUnwindBlocks) {
3928     // Blocks that will be simplified should be removed from the phi node.
3929     // Note there could be multiple edges to the resume block, and we need
3930     // to remove them all.
3931     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3932       BB->removePredecessor(TrivialBB, true);
3933 
3934     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3935          PI != PE;) {
3936       BasicBlock *Pred = *PI++;
3937       removeUnwindEdge(Pred);
3938     }
3939 
3940     // In each SimplifyCFG run, only the current processed block can be erased.
3941     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3942     // of erasing TrivialBB, we only remove the branch to the common resume
3943     // block so that we can later erase the resume block since it has no
3944     // predecessors.
3945     TrivialBB->getTerminator()->eraseFromParent();
3946     new UnreachableInst(RI->getContext(), TrivialBB);
3947   }
3948 
3949   // Delete the resume block if all its predecessors have been removed.
3950   if (pred_empty(BB))
3951     BB->eraseFromParent();
3952 
3953   return !TrivialUnwindBlocks.empty();
3954 }
3955 
3956 // Simplify resume that is only used by a single (non-phi) landing pad.
SimplifySingleResume(ResumeInst * RI)3957 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3958   BasicBlock *BB = RI->getParent();
3959   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
3960   assert(RI->getValue() == LPInst &&
3961          "Resume must unwind the exception that caused control to here");
3962 
3963   // Check that there are no other instructions except for debug intrinsics.
3964   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3965   while (++I != E)
3966     if (!isa<DbgInfoIntrinsic>(I))
3967       return false;
3968 
3969   // Turn all invokes that unwind here into calls and delete the basic block.
3970   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3971     BasicBlock *Pred = *PI++;
3972     removeUnwindEdge(Pred);
3973   }
3974 
3975   // The landingpad is now unreachable.  Zap it.
3976   if (LoopHeaders)
3977     LoopHeaders->erase(BB);
3978   BB->eraseFromParent();
3979   return true;
3980 }
3981 
removeEmptyCleanup(CleanupReturnInst * RI)3982 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3983   // If this is a trivial cleanup pad that executes no instructions, it can be
3984   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3985   // that is an EH pad will be updated to continue to the caller and any
3986   // predecessor that terminates with an invoke instruction will have its invoke
3987   // instruction converted to a call instruction.  If the cleanup pad being
3988   // simplified does not continue to the caller, each predecessor will be
3989   // updated to continue to the unwind destination of the cleanup pad being
3990   // simplified.
3991   BasicBlock *BB = RI->getParent();
3992   CleanupPadInst *CPInst = RI->getCleanupPad();
3993   if (CPInst->getParent() != BB)
3994     // This isn't an empty cleanup.
3995     return false;
3996 
3997   // We cannot kill the pad if it has multiple uses.  This typically arises
3998   // from unreachable basic blocks.
3999   if (!CPInst->hasOneUse())
4000     return false;
4001 
4002   // Check that there are no other instructions except for benign intrinsics.
4003   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
4004   while (++I != E) {
4005     auto *II = dyn_cast<IntrinsicInst>(I);
4006     if (!II)
4007       return false;
4008 
4009     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4010     switch (IntrinsicID) {
4011     case Intrinsic::dbg_declare:
4012     case Intrinsic::dbg_value:
4013     case Intrinsic::dbg_label:
4014     case Intrinsic::lifetime_end:
4015       break;
4016     default:
4017       return false;
4018     }
4019   }
4020 
4021   // If the cleanup return we are simplifying unwinds to the caller, this will
4022   // set UnwindDest to nullptr.
4023   BasicBlock *UnwindDest = RI->getUnwindDest();
4024   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4025 
4026   // We're about to remove BB from the control flow.  Before we do, sink any
4027   // PHINodes into the unwind destination.  Doing this before changing the
4028   // control flow avoids some potentially slow checks, since we can currently
4029   // be certain that UnwindDest and BB have no common predecessors (since they
4030   // are both EH pads).
4031   if (UnwindDest) {
4032     // First, go through the PHI nodes in UnwindDest and update any nodes that
4033     // reference the block we are removing
4034     for (BasicBlock::iterator I = UnwindDest->begin(),
4035                               IE = DestEHPad->getIterator();
4036          I != IE; ++I) {
4037       PHINode *DestPN = cast<PHINode>(I);
4038 
4039       int Idx = DestPN->getBasicBlockIndex(BB);
4040       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4041       assert(Idx != -1);
4042       // This PHI node has an incoming value that corresponds to a control
4043       // path through the cleanup pad we are removing.  If the incoming
4044       // value is in the cleanup pad, it must be a PHINode (because we
4045       // verified above that the block is otherwise empty).  Otherwise, the
4046       // value is either a constant or a value that dominates the cleanup
4047       // pad being removed.
4048       //
4049       // Because BB and UnwindDest are both EH pads, all of their
4050       // predecessors must unwind to these blocks, and since no instruction
4051       // can have multiple unwind destinations, there will be no overlap in
4052       // incoming blocks between SrcPN and DestPN.
4053       Value *SrcVal = DestPN->getIncomingValue(Idx);
4054       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4055 
4056       // Remove the entry for the block we are deleting.
4057       DestPN->removeIncomingValue(Idx, false);
4058 
4059       if (SrcPN && SrcPN->getParent() == BB) {
4060         // If the incoming value was a PHI node in the cleanup pad we are
4061         // removing, we need to merge that PHI node's incoming values into
4062         // DestPN.
4063         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4064              SrcIdx != SrcE; ++SrcIdx) {
4065           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4066                               SrcPN->getIncomingBlock(SrcIdx));
4067         }
4068       } else {
4069         // Otherwise, the incoming value came from above BB and
4070         // so we can just reuse it.  We must associate all of BB's
4071         // predecessors with this value.
4072         for (auto *pred : predecessors(BB)) {
4073           DestPN->addIncoming(SrcVal, pred);
4074         }
4075       }
4076     }
4077 
4078     // Sink any remaining PHI nodes directly into UnwindDest.
4079     Instruction *InsertPt = DestEHPad;
4080     for (BasicBlock::iterator I = BB->begin(),
4081                               IE = BB->getFirstNonPHI()->getIterator();
4082          I != IE;) {
4083       // The iterator must be incremented here because the instructions are
4084       // being moved to another block.
4085       PHINode *PN = cast<PHINode>(I++);
4086       if (PN->use_empty())
4087         // If the PHI node has no uses, just leave it.  It will be erased
4088         // when we erase BB below.
4089         continue;
4090 
4091       // Otherwise, sink this PHI node into UnwindDest.
4092       // Any predecessors to UnwindDest which are not already represented
4093       // must be back edges which inherit the value from the path through
4094       // BB.  In this case, the PHI value must reference itself.
4095       for (auto *pred : predecessors(UnwindDest))
4096         if (pred != BB)
4097           PN->addIncoming(PN, pred);
4098       PN->moveBefore(InsertPt);
4099     }
4100   }
4101 
4102   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4103     // The iterator must be updated here because we are removing this pred.
4104     BasicBlock *PredBB = *PI++;
4105     if (UnwindDest == nullptr) {
4106       removeUnwindEdge(PredBB);
4107     } else {
4108       Instruction *TI = PredBB->getTerminator();
4109       TI->replaceUsesOfWith(BB, UnwindDest);
4110     }
4111   }
4112 
4113   // The cleanup pad is now unreachable.  Zap it.
4114   BB->eraseFromParent();
4115   return true;
4116 }
4117 
4118 // Try to merge two cleanuppads together.
mergeCleanupPad(CleanupReturnInst * RI)4119 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4120   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4121   // with.
4122   BasicBlock *UnwindDest = RI->getUnwindDest();
4123   if (!UnwindDest)
4124     return false;
4125 
4126   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4127   // be safe to merge without code duplication.
4128   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4129     return false;
4130 
4131   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4132   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4133   if (!SuccessorCleanupPad)
4134     return false;
4135 
4136   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4137   // Replace any uses of the successor cleanupad with the predecessor pad
4138   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4139   // funclet bundle operands.
4140   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4141   // Remove the old cleanuppad.
4142   SuccessorCleanupPad->eraseFromParent();
4143   // Now, we simply replace the cleanupret with a branch to the unwind
4144   // destination.
4145   BranchInst::Create(UnwindDest, RI->getParent());
4146   RI->eraseFromParent();
4147 
4148   return true;
4149 }
4150 
SimplifyCleanupReturn(CleanupReturnInst * RI)4151 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4152   // It is possible to transiantly have an undef cleanuppad operand because we
4153   // have deleted some, but not all, dead blocks.
4154   // Eventually, this block will be deleted.
4155   if (isa<UndefValue>(RI->getOperand(0)))
4156     return false;
4157 
4158   if (mergeCleanupPad(RI))
4159     return true;
4160 
4161   if (removeEmptyCleanup(RI))
4162     return true;
4163 
4164   return false;
4165 }
4166 
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)4167 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4168   BasicBlock *BB = RI->getParent();
4169   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4170     return false;
4171 
4172   // Find predecessors that end with branches.
4173   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4174   SmallVector<BranchInst *, 8> CondBranchPreds;
4175   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4176     BasicBlock *P = *PI;
4177     Instruction *PTI = P->getTerminator();
4178     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4179       if (BI->isUnconditional())
4180         UncondBranchPreds.push_back(P);
4181       else
4182         CondBranchPreds.push_back(BI);
4183     }
4184   }
4185 
4186   // If we found some, do the transformation!
4187   if (!UncondBranchPreds.empty() && DupRet) {
4188     while (!UncondBranchPreds.empty()) {
4189       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4190       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4191                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4192       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4193     }
4194 
4195     // If we eliminated all predecessors of the block, delete the block now.
4196     if (pred_empty(BB)) {
4197       // We know there are no successors, so just nuke the block.
4198       if (LoopHeaders)
4199         LoopHeaders->erase(BB);
4200       BB->eraseFromParent();
4201     }
4202 
4203     return true;
4204   }
4205 
4206   // Check out all of the conditional branches going to this return
4207   // instruction.  If any of them just select between returns, change the
4208   // branch itself into a select/return pair.
4209   while (!CondBranchPreds.empty()) {
4210     BranchInst *BI = CondBranchPreds.pop_back_val();
4211 
4212     // Check to see if the non-BB successor is also a return block.
4213     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4214         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4215         SimplifyCondBranchToTwoReturns(BI, Builder))
4216       return true;
4217   }
4218   return false;
4219 }
4220 
SimplifyUnreachable(UnreachableInst * UI)4221 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4222   BasicBlock *BB = UI->getParent();
4223 
4224   bool Changed = false;
4225 
4226   // If there are any instructions immediately before the unreachable that can
4227   // be removed, do so.
4228   while (UI->getIterator() != BB->begin()) {
4229     BasicBlock::iterator BBI = UI->getIterator();
4230     --BBI;
4231     // Do not delete instructions that can have side effects which might cause
4232     // the unreachable to not be reachable; specifically, calls and volatile
4233     // operations may have this effect.
4234     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4235       break;
4236 
4237     if (BBI->mayHaveSideEffects()) {
4238       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4239         if (SI->isVolatile())
4240           break;
4241       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4242         if (LI->isVolatile())
4243           break;
4244       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4245         if (RMWI->isVolatile())
4246           break;
4247       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4248         if (CXI->isVolatile())
4249           break;
4250       } else if (isa<CatchPadInst>(BBI)) {
4251         // A catchpad may invoke exception object constructors and such, which
4252         // in some languages can be arbitrary code, so be conservative by
4253         // default.
4254         // For CoreCLR, it just involves a type test, so can be removed.
4255         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4256             EHPersonality::CoreCLR)
4257           break;
4258       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4259                  !isa<LandingPadInst>(BBI)) {
4260         break;
4261       }
4262       // Note that deleting LandingPad's here is in fact okay, although it
4263       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4264       // all the predecessors of this block will be the unwind edges of Invokes,
4265       // and we can therefore guarantee this block will be erased.
4266     }
4267 
4268     // Delete this instruction (any uses are guaranteed to be dead)
4269     if (!BBI->use_empty())
4270       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4271     BBI->eraseFromParent();
4272     Changed = true;
4273   }
4274 
4275   // If the unreachable instruction is the first in the block, take a gander
4276   // at all of the predecessors of this instruction, and simplify them.
4277   if (&BB->front() != UI)
4278     return Changed;
4279 
4280   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4281   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4282     Instruction *TI = Preds[i]->getTerminator();
4283     IRBuilder<> Builder(TI);
4284     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4285       if (BI->isUnconditional()) {
4286         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4287         new UnreachableInst(TI->getContext(), TI);
4288         TI->eraseFromParent();
4289         Changed = true;
4290       } else {
4291         Value* Cond = BI->getCondition();
4292         if (BI->getSuccessor(0) == BB) {
4293           Builder.CreateAssumption(Builder.CreateNot(Cond));
4294           Builder.CreateBr(BI->getSuccessor(1));
4295         } else {
4296           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4297           Builder.CreateAssumption(Cond);
4298           Builder.CreateBr(BI->getSuccessor(0));
4299         }
4300         EraseTerminatorAndDCECond(BI);
4301         Changed = true;
4302       }
4303     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4304       SwitchInstProfUpdateWrapper SU(*SI);
4305       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4306         if (i->getCaseSuccessor() != BB) {
4307           ++i;
4308           continue;
4309         }
4310         BB->removePredecessor(SU->getParent());
4311         i = SU.removeCase(i);
4312         e = SU->case_end();
4313         Changed = true;
4314       }
4315     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4316       if (II->getUnwindDest() == BB) {
4317         removeUnwindEdge(TI->getParent());
4318         Changed = true;
4319       }
4320     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4321       if (CSI->getUnwindDest() == BB) {
4322         removeUnwindEdge(TI->getParent());
4323         Changed = true;
4324         continue;
4325       }
4326 
4327       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4328                                              E = CSI->handler_end();
4329            I != E; ++I) {
4330         if (*I == BB) {
4331           CSI->removeHandler(I);
4332           --I;
4333           --E;
4334           Changed = true;
4335         }
4336       }
4337       if (CSI->getNumHandlers() == 0) {
4338         BasicBlock *CatchSwitchBB = CSI->getParent();
4339         if (CSI->hasUnwindDest()) {
4340           // Redirect preds to the unwind dest
4341           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4342         } else {
4343           // Rewrite all preds to unwind to caller (or from invoke to call).
4344           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4345           for (BasicBlock *EHPred : EHPreds)
4346             removeUnwindEdge(EHPred);
4347         }
4348         // The catchswitch is no longer reachable.
4349         new UnreachableInst(CSI->getContext(), CSI);
4350         CSI->eraseFromParent();
4351         Changed = true;
4352       }
4353     } else if (isa<CleanupReturnInst>(TI)) {
4354       new UnreachableInst(TI->getContext(), TI);
4355       TI->eraseFromParent();
4356       Changed = true;
4357     }
4358   }
4359 
4360   // If this block is now dead, remove it.
4361   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4362     // We know there are no successors, so just nuke the block.
4363     if (LoopHeaders)
4364       LoopHeaders->erase(BB);
4365     BB->eraseFromParent();
4366     return true;
4367   }
4368 
4369   return Changed;
4370 }
4371 
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)4372 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4373   assert(Cases.size() >= 1);
4374 
4375   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4376   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4377     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4378       return false;
4379   }
4380   return true;
4381 }
4382 
createUnreachableSwitchDefault(SwitchInst * Switch)4383 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4384   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4385   BasicBlock *NewDefaultBlock =
4386      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4387   Switch->setDefaultDest(&*NewDefaultBlock);
4388   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4389   auto *NewTerminator = NewDefaultBlock->getTerminator();
4390   new UnreachableInst(Switch->getContext(), NewTerminator);
4391   EraseTerminatorAndDCECond(NewTerminator);
4392 }
4393 
4394 /// Turn a switch with two reachable destinations into an integer range
4395 /// comparison and branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)4396 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4397   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4398 
4399   bool HasDefault =
4400       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4401 
4402   // Partition the cases into two sets with different destinations.
4403   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4404   BasicBlock *DestB = nullptr;
4405   SmallVector<ConstantInt *, 16> CasesA;
4406   SmallVector<ConstantInt *, 16> CasesB;
4407 
4408   for (auto Case : SI->cases()) {
4409     BasicBlock *Dest = Case.getCaseSuccessor();
4410     if (!DestA)
4411       DestA = Dest;
4412     if (Dest == DestA) {
4413       CasesA.push_back(Case.getCaseValue());
4414       continue;
4415     }
4416     if (!DestB)
4417       DestB = Dest;
4418     if (Dest == DestB) {
4419       CasesB.push_back(Case.getCaseValue());
4420       continue;
4421     }
4422     return false; // More than two destinations.
4423   }
4424 
4425   assert(DestA && DestB &&
4426          "Single-destination switch should have been folded.");
4427   assert(DestA != DestB);
4428   assert(DestB != SI->getDefaultDest());
4429   assert(!CasesB.empty() && "There must be non-default cases.");
4430   assert(!CasesA.empty() || HasDefault);
4431 
4432   // Figure out if one of the sets of cases form a contiguous range.
4433   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4434   BasicBlock *ContiguousDest = nullptr;
4435   BasicBlock *OtherDest = nullptr;
4436   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4437     ContiguousCases = &CasesA;
4438     ContiguousDest = DestA;
4439     OtherDest = DestB;
4440   } else if (CasesAreContiguous(CasesB)) {
4441     ContiguousCases = &CasesB;
4442     ContiguousDest = DestB;
4443     OtherDest = DestA;
4444   } else
4445     return false;
4446 
4447   // Start building the compare and branch.
4448 
4449   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4450   Constant *NumCases =
4451       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4452 
4453   Value *Sub = SI->getCondition();
4454   if (!Offset->isNullValue())
4455     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4456 
4457   Value *Cmp;
4458   // If NumCases overflowed, then all possible values jump to the successor.
4459   if (NumCases->isNullValue() && !ContiguousCases->empty())
4460     Cmp = ConstantInt::getTrue(SI->getContext());
4461   else
4462     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4463   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4464 
4465   // Update weight for the newly-created conditional branch.
4466   if (HasBranchWeights(SI)) {
4467     SmallVector<uint64_t, 8> Weights;
4468     GetBranchWeights(SI, Weights);
4469     if (Weights.size() == 1 + SI->getNumCases()) {
4470       uint64_t TrueWeight = 0;
4471       uint64_t FalseWeight = 0;
4472       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4473         if (SI->getSuccessor(I) == ContiguousDest)
4474           TrueWeight += Weights[I];
4475         else
4476           FalseWeight += Weights[I];
4477       }
4478       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4479         TrueWeight /= 2;
4480         FalseWeight /= 2;
4481       }
4482       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4483     }
4484   }
4485 
4486   // Prune obsolete incoming values off the successors' PHI nodes.
4487   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4488     unsigned PreviousEdges = ContiguousCases->size();
4489     if (ContiguousDest == SI->getDefaultDest())
4490       ++PreviousEdges;
4491     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4492       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4493   }
4494   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4495     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4496     if (OtherDest == SI->getDefaultDest())
4497       ++PreviousEdges;
4498     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4499       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4500   }
4501 
4502   // Clean up the default block - it may have phis or other instructions before
4503   // the unreachable terminator.
4504   if (!HasDefault)
4505     createUnreachableSwitchDefault(SI);
4506 
4507   // Drop the switch.
4508   SI->eraseFromParent();
4509 
4510   return true;
4511 }
4512 
4513 /// Compute masked bits for the condition of a switch
4514 /// and use it to remove dead cases.
eliminateDeadSwitchCases(SwitchInst * SI,AssumptionCache * AC,const DataLayout & DL)4515 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4516                                      const DataLayout &DL) {
4517   Value *Cond = SI->getCondition();
4518   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4519   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4520 
4521   // We can also eliminate cases by determining that their values are outside of
4522   // the limited range of the condition based on how many significant (non-sign)
4523   // bits are in the condition value.
4524   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4525   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4526 
4527   // Gather dead cases.
4528   SmallVector<ConstantInt *, 8> DeadCases;
4529   for (auto &Case : SI->cases()) {
4530     const APInt &CaseVal = Case.getCaseValue()->getValue();
4531     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4532         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4533       DeadCases.push_back(Case.getCaseValue());
4534       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4535                         << " is dead.\n");
4536     }
4537   }
4538 
4539   // If we can prove that the cases must cover all possible values, the
4540   // default destination becomes dead and we can remove it.  If we know some
4541   // of the bits in the value, we can use that to more precisely compute the
4542   // number of possible unique case values.
4543   bool HasDefault =
4544       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4545   const unsigned NumUnknownBits =
4546       Bits - (Known.Zero | Known.One).countPopulation();
4547   assert(NumUnknownBits <= Bits);
4548   if (HasDefault && DeadCases.empty() &&
4549       NumUnknownBits < 64 /* avoid overflow */ &&
4550       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4551     createUnreachableSwitchDefault(SI);
4552     return true;
4553   }
4554 
4555   if (DeadCases.empty())
4556     return false;
4557 
4558   SwitchInstProfUpdateWrapper SIW(*SI);
4559   for (ConstantInt *DeadCase : DeadCases) {
4560     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4561     assert(CaseI != SI->case_default() &&
4562            "Case was not found. Probably mistake in DeadCases forming.");
4563     // Prune unused values from PHI nodes.
4564     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4565     SIW.removeCase(CaseI);
4566   }
4567 
4568   return true;
4569 }
4570 
4571 /// If BB would be eligible for simplification by
4572 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4573 /// by an unconditional branch), look at the phi node for BB in the successor
4574 /// block and see if the incoming value is equal to CaseValue. If so, return
4575 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)4576 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4577                                               BasicBlock *BB, int *PhiIndex) {
4578   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4579     return nullptr; // BB must be empty to be a candidate for simplification.
4580   if (!BB->getSinglePredecessor())
4581     return nullptr; // BB must be dominated by the switch.
4582 
4583   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4584   if (!Branch || !Branch->isUnconditional())
4585     return nullptr; // Terminator must be unconditional branch.
4586 
4587   BasicBlock *Succ = Branch->getSuccessor(0);
4588 
4589   for (PHINode &PHI : Succ->phis()) {
4590     int Idx = PHI.getBasicBlockIndex(BB);
4591     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4592 
4593     Value *InValue = PHI.getIncomingValue(Idx);
4594     if (InValue != CaseValue)
4595       continue;
4596 
4597     *PhiIndex = Idx;
4598     return &PHI;
4599   }
4600 
4601   return nullptr;
4602 }
4603 
4604 /// Try to forward the condition of a switch instruction to a phi node
4605 /// dominated by the switch, if that would mean that some of the destination
4606 /// blocks of the switch can be folded away. Return true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)4607 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4608   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4609 
4610   ForwardingNodesMap ForwardingNodes;
4611   BasicBlock *SwitchBlock = SI->getParent();
4612   bool Changed = false;
4613   for (auto &Case : SI->cases()) {
4614     ConstantInt *CaseValue = Case.getCaseValue();
4615     BasicBlock *CaseDest = Case.getCaseSuccessor();
4616 
4617     // Replace phi operands in successor blocks that are using the constant case
4618     // value rather than the switch condition variable:
4619     //   switchbb:
4620     //   switch i32 %x, label %default [
4621     //     i32 17, label %succ
4622     //   ...
4623     //   succ:
4624     //     %r = phi i32 ... [ 17, %switchbb ] ...
4625     // -->
4626     //     %r = phi i32 ... [ %x, %switchbb ] ...
4627 
4628     for (PHINode &Phi : CaseDest->phis()) {
4629       // This only works if there is exactly 1 incoming edge from the switch to
4630       // a phi. If there is >1, that means multiple cases of the switch map to 1
4631       // value in the phi, and that phi value is not the switch condition. Thus,
4632       // this transform would not make sense (the phi would be invalid because
4633       // a phi can't have different incoming values from the same block).
4634       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4635       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4636           count(Phi.blocks(), SwitchBlock) == 1) {
4637         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4638         Changed = true;
4639       }
4640     }
4641 
4642     // Collect phi nodes that are indirectly using this switch's case constants.
4643     int PhiIdx;
4644     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4645       ForwardingNodes[Phi].push_back(PhiIdx);
4646   }
4647 
4648   for (auto &ForwardingNode : ForwardingNodes) {
4649     PHINode *Phi = ForwardingNode.first;
4650     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4651     if (Indexes.size() < 2)
4652       continue;
4653 
4654     for (int Index : Indexes)
4655       Phi->setIncomingValue(Index, SI->getCondition());
4656     Changed = true;
4657   }
4658 
4659   return Changed;
4660 }
4661 
4662 /// Return true if the backend will be able to handle
4663 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C,const TargetTransformInfo & TTI)4664 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4665   if (C->isThreadDependent())
4666     return false;
4667   if (C->isDLLImportDependent())
4668     return false;
4669 
4670   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4671       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4672       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4673     return false;
4674 
4675   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4676     if (!CE->isGEPWithNoNotionalOverIndexing())
4677       return false;
4678     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4679       return false;
4680   }
4681 
4682   if (!TTI.shouldBuildLookupTablesForConstant(C))
4683     return false;
4684 
4685   return true;
4686 }
4687 
4688 /// If V is a Constant, return it. Otherwise, try to look up
4689 /// its constant value in ConstantPool, returning 0 if it's not there.
4690 static Constant *
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)4691 LookupConstant(Value *V,
4692                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4693   if (Constant *C = dyn_cast<Constant>(V))
4694     return C;
4695   return ConstantPool.lookup(V);
4696 }
4697 
4698 /// Try to fold instruction I into a constant. This works for
4699 /// simple instructions such as binary operations where both operands are
4700 /// constant or can be replaced by constants from the ConstantPool. Returns the
4701 /// resulting constant on success, 0 otherwise.
4702 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)4703 ConstantFold(Instruction *I, const DataLayout &DL,
4704              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4705   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4706     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4707     if (!A)
4708       return nullptr;
4709     if (A->isAllOnesValue())
4710       return LookupConstant(Select->getTrueValue(), ConstantPool);
4711     if (A->isNullValue())
4712       return LookupConstant(Select->getFalseValue(), ConstantPool);
4713     return nullptr;
4714   }
4715 
4716   SmallVector<Constant *, 4> COps;
4717   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4718     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4719       COps.push_back(A);
4720     else
4721       return nullptr;
4722   }
4723 
4724   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4725     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4726                                            COps[1], DL);
4727   }
4728 
4729   return ConstantFoldInstOperands(I, COps, DL);
4730 }
4731 
4732 /// Try to determine the resulting constant values in phi nodes
4733 /// at the common destination basic block, *CommonDest, for one of the case
4734 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4735 /// case), of a switch instruction SI.
4736 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL,const TargetTransformInfo & TTI)4737 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4738                BasicBlock **CommonDest,
4739                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4740                const DataLayout &DL, const TargetTransformInfo &TTI) {
4741   // The block from which we enter the common destination.
4742   BasicBlock *Pred = SI->getParent();
4743 
4744   // If CaseDest is empty except for some side-effect free instructions through
4745   // which we can constant-propagate the CaseVal, continue to its successor.
4746   SmallDenseMap<Value *, Constant *> ConstantPool;
4747   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4748   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4749     if (I.isTerminator()) {
4750       // If the terminator is a simple branch, continue to the next block.
4751       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4752         return false;
4753       Pred = CaseDest;
4754       CaseDest = I.getSuccessor(0);
4755     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4756       // Instruction is side-effect free and constant.
4757 
4758       // If the instruction has uses outside this block or a phi node slot for
4759       // the block, it is not safe to bypass the instruction since it would then
4760       // no longer dominate all its uses.
4761       for (auto &Use : I.uses()) {
4762         User *User = Use.getUser();
4763         if (Instruction *I = dyn_cast<Instruction>(User))
4764           if (I->getParent() == CaseDest)
4765             continue;
4766         if (PHINode *Phi = dyn_cast<PHINode>(User))
4767           if (Phi->getIncomingBlock(Use) == CaseDest)
4768             continue;
4769         return false;
4770       }
4771 
4772       ConstantPool.insert(std::make_pair(&I, C));
4773     } else {
4774       break;
4775     }
4776   }
4777 
4778   // If we did not have a CommonDest before, use the current one.
4779   if (!*CommonDest)
4780     *CommonDest = CaseDest;
4781   // If the destination isn't the common one, abort.
4782   if (CaseDest != *CommonDest)
4783     return false;
4784 
4785   // Get the values for this case from phi nodes in the destination block.
4786   for (PHINode &PHI : (*CommonDest)->phis()) {
4787     int Idx = PHI.getBasicBlockIndex(Pred);
4788     if (Idx == -1)
4789       continue;
4790 
4791     Constant *ConstVal =
4792         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4793     if (!ConstVal)
4794       return false;
4795 
4796     // Be conservative about which kinds of constants we support.
4797     if (!ValidLookupTableConstant(ConstVal, TTI))
4798       return false;
4799 
4800     Res.push_back(std::make_pair(&PHI, ConstVal));
4801   }
4802 
4803   return Res.size() > 0;
4804 }
4805 
4806 // Helper function used to add CaseVal to the list of cases that generate
4807 // Result. Returns the updated number of cases that generate this result.
MapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)4808 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4809                                  SwitchCaseResultVectorTy &UniqueResults,
4810                                  Constant *Result) {
4811   for (auto &I : UniqueResults) {
4812     if (I.first == Result) {
4813       I.second.push_back(CaseVal);
4814       return I.second.size();
4815     }
4816   }
4817   UniqueResults.push_back(
4818       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4819   return 1;
4820 }
4821 
4822 // Helper function that initializes a map containing
4823 // results for the PHI node of the common destination block for a switch
4824 // instruction. Returns false if multiple PHI nodes have been found or if
4825 // there is not a common destination block for the switch.
4826 static bool
InitializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL,const TargetTransformInfo & TTI,uintptr_t MaxUniqueResults,uintptr_t MaxCasesPerResult)4827 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4828                       SwitchCaseResultVectorTy &UniqueResults,
4829                       Constant *&DefaultResult, const DataLayout &DL,
4830                       const TargetTransformInfo &TTI,
4831                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4832   for (auto &I : SI->cases()) {
4833     ConstantInt *CaseVal = I.getCaseValue();
4834 
4835     // Resulting value at phi nodes for this case value.
4836     SwitchCaseResultsTy Results;
4837     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4838                         DL, TTI))
4839       return false;
4840 
4841     // Only one value per case is permitted.
4842     if (Results.size() > 1)
4843       return false;
4844 
4845     // Add the case->result mapping to UniqueResults.
4846     const uintptr_t NumCasesForResult =
4847         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4848 
4849     // Early out if there are too many cases for this result.
4850     if (NumCasesForResult > MaxCasesPerResult)
4851       return false;
4852 
4853     // Early out if there are too many unique results.
4854     if (UniqueResults.size() > MaxUniqueResults)
4855       return false;
4856 
4857     // Check the PHI consistency.
4858     if (!PHI)
4859       PHI = Results[0].first;
4860     else if (PHI != Results[0].first)
4861       return false;
4862   }
4863   // Find the default result value.
4864   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4865   BasicBlock *DefaultDest = SI->getDefaultDest();
4866   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4867                  DL, TTI);
4868   // If the default value is not found abort unless the default destination
4869   // is unreachable.
4870   DefaultResult =
4871       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4872   if ((!DefaultResult &&
4873        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4874     return false;
4875 
4876   return true;
4877 }
4878 
4879 // Helper function that checks if it is possible to transform a switch with only
4880 // two cases (or two cases + default) that produces a result into a select.
4881 // Example:
4882 // switch (a) {
4883 //   case 10:                %0 = icmp eq i32 %a, 10
4884 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4885 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4886 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4887 //   default:
4888 //     return 4;
4889 // }
ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)4890 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4891                                    Constant *DefaultResult, Value *Condition,
4892                                    IRBuilder<> &Builder) {
4893   assert(ResultVector.size() == 2 &&
4894          "We should have exactly two unique results at this point");
4895   // If we are selecting between only two cases transform into a simple
4896   // select or a two-way select if default is possible.
4897   if (ResultVector[0].second.size() == 1 &&
4898       ResultVector[1].second.size() == 1) {
4899     ConstantInt *const FirstCase = ResultVector[0].second[0];
4900     ConstantInt *const SecondCase = ResultVector[1].second[0];
4901 
4902     bool DefaultCanTrigger = DefaultResult;
4903     Value *SelectValue = ResultVector[1].first;
4904     if (DefaultCanTrigger) {
4905       Value *const ValueCompare =
4906           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4907       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4908                                          DefaultResult, "switch.select");
4909     }
4910     Value *const ValueCompare =
4911         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4912     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4913                                 SelectValue, "switch.select");
4914   }
4915 
4916   return nullptr;
4917 }
4918 
4919 // Helper function to cleanup a switch instruction that has been converted into
4920 // a select, fixing up PHI nodes and basic blocks.
RemoveSwitchAfterSelectConversion(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder)4921 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4922                                               Value *SelectValue,
4923                                               IRBuilder<> &Builder) {
4924   BasicBlock *SelectBB = SI->getParent();
4925   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4926     PHI->removeIncomingValue(SelectBB);
4927   PHI->addIncoming(SelectValue, SelectBB);
4928 
4929   Builder.CreateBr(PHI->getParent());
4930 
4931   // Remove the switch.
4932   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4933     BasicBlock *Succ = SI->getSuccessor(i);
4934 
4935     if (Succ == PHI->getParent())
4936       continue;
4937     Succ->removePredecessor(SelectBB);
4938   }
4939   SI->eraseFromParent();
4940 }
4941 
4942 /// If the switch is only used to initialize one or more
4943 /// phi nodes in a common successor block with only two different
4944 /// constant values, replace the switch with select.
switchToSelect(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)4945 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4946                            const DataLayout &DL,
4947                            const TargetTransformInfo &TTI) {
4948   Value *const Cond = SI->getCondition();
4949   PHINode *PHI = nullptr;
4950   BasicBlock *CommonDest = nullptr;
4951   Constant *DefaultResult;
4952   SwitchCaseResultVectorTy UniqueResults;
4953   // Collect all the cases that will deliver the same value from the switch.
4954   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4955                              DL, TTI, 2, 1))
4956     return false;
4957   // Selects choose between maximum two values.
4958   if (UniqueResults.size() != 2)
4959     return false;
4960   assert(PHI != nullptr && "PHI for value select not found");
4961 
4962   Builder.SetInsertPoint(SI);
4963   Value *SelectValue =
4964       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4965   if (SelectValue) {
4966     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4967     return true;
4968   }
4969   // The switch couldn't be converted into a select.
4970   return false;
4971 }
4972 
4973 namespace {
4974 
4975 /// This class represents a lookup table that can be used to replace a switch.
4976 class SwitchLookupTable {
4977 public:
4978   /// Create a lookup table to use as a switch replacement with the contents
4979   /// of Values, using DefaultValue to fill any holes in the table.
4980   SwitchLookupTable(
4981       Module &M, uint64_t TableSize, ConstantInt *Offset,
4982       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4983       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4984 
4985   /// Build instructions with Builder to retrieve the value at
4986   /// the position given by Index in the lookup table.
4987   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4988 
4989   /// Return true if a table with TableSize elements of
4990   /// type ElementType would fit in a target-legal register.
4991   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4992                                  Type *ElementType);
4993 
4994 private:
4995   // Depending on the contents of the table, it can be represented in
4996   // different ways.
4997   enum {
4998     // For tables where each element contains the same value, we just have to
4999     // store that single value and return it for each lookup.
5000     SingleValueKind,
5001 
5002     // For tables where there is a linear relationship between table index
5003     // and values. We calculate the result with a simple multiplication
5004     // and addition instead of a table lookup.
5005     LinearMapKind,
5006 
5007     // For small tables with integer elements, we can pack them into a bitmap
5008     // that fits into a target-legal register. Values are retrieved by
5009     // shift and mask operations.
5010     BitMapKind,
5011 
5012     // The table is stored as an array of values. Values are retrieved by load
5013     // instructions from the table.
5014     ArrayKind
5015   } Kind;
5016 
5017   // For SingleValueKind, this is the single value.
5018   Constant *SingleValue = nullptr;
5019 
5020   // For BitMapKind, this is the bitmap.
5021   ConstantInt *BitMap = nullptr;
5022   IntegerType *BitMapElementTy = nullptr;
5023 
5024   // For LinearMapKind, these are the constants used to derive the value.
5025   ConstantInt *LinearOffset = nullptr;
5026   ConstantInt *LinearMultiplier = nullptr;
5027 
5028   // For ArrayKind, this is the array.
5029   GlobalVariable *Array = nullptr;
5030 };
5031 
5032 } // end anonymous namespace
5033 
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL,const StringRef & FuncName)5034 SwitchLookupTable::SwitchLookupTable(
5035     Module &M, uint64_t TableSize, ConstantInt *Offset,
5036     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5037     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5038   assert(Values.size() && "Can't build lookup table without values!");
5039   assert(TableSize >= Values.size() && "Can't fit values in table!");
5040 
5041   // If all values in the table are equal, this is that value.
5042   SingleValue = Values.begin()->second;
5043 
5044   Type *ValueType = Values.begin()->second->getType();
5045 
5046   // Build up the table contents.
5047   SmallVector<Constant *, 64> TableContents(TableSize);
5048   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5049     ConstantInt *CaseVal = Values[I].first;
5050     Constant *CaseRes = Values[I].second;
5051     assert(CaseRes->getType() == ValueType);
5052 
5053     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5054     TableContents[Idx] = CaseRes;
5055 
5056     if (CaseRes != SingleValue)
5057       SingleValue = nullptr;
5058   }
5059 
5060   // Fill in any holes in the table with the default result.
5061   if (Values.size() < TableSize) {
5062     assert(DefaultValue &&
5063            "Need a default value to fill the lookup table holes.");
5064     assert(DefaultValue->getType() == ValueType);
5065     for (uint64_t I = 0; I < TableSize; ++I) {
5066       if (!TableContents[I])
5067         TableContents[I] = DefaultValue;
5068     }
5069 
5070     if (DefaultValue != SingleValue)
5071       SingleValue = nullptr;
5072   }
5073 
5074   // If each element in the table contains the same value, we only need to store
5075   // that single value.
5076   if (SingleValue) {
5077     Kind = SingleValueKind;
5078     return;
5079   }
5080 
5081   // Check if we can derive the value with a linear transformation from the
5082   // table index.
5083   if (isa<IntegerType>(ValueType)) {
5084     bool LinearMappingPossible = true;
5085     APInt PrevVal;
5086     APInt DistToPrev;
5087     assert(TableSize >= 2 && "Should be a SingleValue table.");
5088     // Check if there is the same distance between two consecutive values.
5089     for (uint64_t I = 0; I < TableSize; ++I) {
5090       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5091       if (!ConstVal) {
5092         // This is an undef. We could deal with it, but undefs in lookup tables
5093         // are very seldom. It's probably not worth the additional complexity.
5094         LinearMappingPossible = false;
5095         break;
5096       }
5097       const APInt &Val = ConstVal->getValue();
5098       if (I != 0) {
5099         APInt Dist = Val - PrevVal;
5100         if (I == 1) {
5101           DistToPrev = Dist;
5102         } else if (Dist != DistToPrev) {
5103           LinearMappingPossible = false;
5104           break;
5105         }
5106       }
5107       PrevVal = Val;
5108     }
5109     if (LinearMappingPossible) {
5110       LinearOffset = cast<ConstantInt>(TableContents[0]);
5111       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5112       Kind = LinearMapKind;
5113       ++NumLinearMaps;
5114       return;
5115     }
5116   }
5117 
5118   // If the type is integer and the table fits in a register, build a bitmap.
5119   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5120     IntegerType *IT = cast<IntegerType>(ValueType);
5121     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5122     for (uint64_t I = TableSize; I > 0; --I) {
5123       TableInt <<= IT->getBitWidth();
5124       // Insert values into the bitmap. Undef values are set to zero.
5125       if (!isa<UndefValue>(TableContents[I - 1])) {
5126         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5127         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5128       }
5129     }
5130     BitMap = ConstantInt::get(M.getContext(), TableInt);
5131     BitMapElementTy = IT;
5132     Kind = BitMapKind;
5133     ++NumBitMaps;
5134     return;
5135   }
5136 
5137   // Store the table in an array.
5138   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5139   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5140 
5141   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5142                              GlobalVariable::PrivateLinkage, Initializer,
5143                              "switch.table." + FuncName);
5144   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5145   // Set the alignment to that of an array items. We will be only loading one
5146   // value out of it.
5147   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5148   Kind = ArrayKind;
5149 }
5150 
BuildLookup(Value * Index,IRBuilder<> & Builder)5151 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5152   switch (Kind) {
5153   case SingleValueKind:
5154     return SingleValue;
5155   case LinearMapKind: {
5156     // Derive the result value from the input value.
5157     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5158                                           false, "switch.idx.cast");
5159     if (!LinearMultiplier->isOne())
5160       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5161     if (!LinearOffset->isZero())
5162       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5163     return Result;
5164   }
5165   case BitMapKind: {
5166     // Type of the bitmap (e.g. i59).
5167     IntegerType *MapTy = BitMap->getType();
5168 
5169     // Cast Index to the same type as the bitmap.
5170     // Note: The Index is <= the number of elements in the table, so
5171     // truncating it to the width of the bitmask is safe.
5172     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5173 
5174     // Multiply the shift amount by the element width.
5175     ShiftAmt = Builder.CreateMul(
5176         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5177         "switch.shiftamt");
5178 
5179     // Shift down.
5180     Value *DownShifted =
5181         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5182     // Mask off.
5183     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5184   }
5185   case ArrayKind: {
5186     // Make sure the table index will not overflow when treated as signed.
5187     IntegerType *IT = cast<IntegerType>(Index->getType());
5188     uint64_t TableSize =
5189         Array->getInitializer()->getType()->getArrayNumElements();
5190     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5191       Index = Builder.CreateZExt(
5192           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5193           "switch.tableidx.zext");
5194 
5195     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5196     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5197                                            GEPIndices, "switch.gep");
5198     return Builder.CreateLoad(
5199         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5200         "switch.load");
5201   }
5202   }
5203   llvm_unreachable("Unknown lookup table kind!");
5204 }
5205 
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)5206 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5207                                            uint64_t TableSize,
5208                                            Type *ElementType) {
5209   auto *IT = dyn_cast<IntegerType>(ElementType);
5210   if (!IT)
5211     return false;
5212   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5213   // are <= 15, we could try to narrow the type.
5214 
5215   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5216   if (TableSize >= UINT_MAX / IT->getBitWidth())
5217     return false;
5218   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5219 }
5220 
5221 /// Determine whether a lookup table should be built for this switch, based on
5222 /// the number of cases, size of the table, and the types of the results.
5223 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)5224 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5225                        const TargetTransformInfo &TTI, const DataLayout &DL,
5226                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5227   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5228     return false; // TableSize overflowed, or mul below might overflow.
5229 
5230   bool AllTablesFitInRegister = true;
5231   bool HasIllegalType = false;
5232   for (const auto &I : ResultTypes) {
5233     Type *Ty = I.second;
5234 
5235     // Saturate this flag to true.
5236     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5237 
5238     // Saturate this flag to false.
5239     AllTablesFitInRegister =
5240         AllTablesFitInRegister &&
5241         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5242 
5243     // If both flags saturate, we're done. NOTE: This *only* works with
5244     // saturating flags, and all flags have to saturate first due to the
5245     // non-deterministic behavior of iterating over a dense map.
5246     if (HasIllegalType && !AllTablesFitInRegister)
5247       break;
5248   }
5249 
5250   // If each table would fit in a register, we should build it anyway.
5251   if (AllTablesFitInRegister)
5252     return true;
5253 
5254   // Don't build a table that doesn't fit in-register if it has illegal types.
5255   if (HasIllegalType)
5256     return false;
5257 
5258   // The table density should be at least 40%. This is the same criterion as for
5259   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5260   // FIXME: Find the best cut-off.
5261   return SI->getNumCases() * 10 >= TableSize * 4;
5262 }
5263 
5264 /// Try to reuse the switch table index compare. Following pattern:
5265 /// \code
5266 ///     if (idx < tablesize)
5267 ///        r = table[idx]; // table does not contain default_value
5268 ///     else
5269 ///        r = default_value;
5270 ///     if (r != default_value)
5271 ///        ...
5272 /// \endcode
5273 /// Is optimized to:
5274 /// \code
5275 ///     cond = idx < tablesize;
5276 ///     if (cond)
5277 ///        r = table[idx];
5278 ///     else
5279 ///        r = default_value;
5280 ///     if (cond)
5281 ///        ...
5282 /// \endcode
5283 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)5284 static void reuseTableCompare(
5285     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5286     Constant *DefaultValue,
5287     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5288   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5289   if (!CmpInst)
5290     return;
5291 
5292   // We require that the compare is in the same block as the phi so that jump
5293   // threading can do its work afterwards.
5294   if (CmpInst->getParent() != PhiBlock)
5295     return;
5296 
5297   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5298   if (!CmpOp1)
5299     return;
5300 
5301   Value *RangeCmp = RangeCheckBranch->getCondition();
5302   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5303   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5304 
5305   // Check if the compare with the default value is constant true or false.
5306   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5307                                                  DefaultValue, CmpOp1, true);
5308   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5309     return;
5310 
5311   // Check if the compare with the case values is distinct from the default
5312   // compare result.
5313   for (auto ValuePair : Values) {
5314     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5315                                                 ValuePair.second, CmpOp1, true);
5316     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5317       return;
5318     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5319            "Expect true or false as compare result.");
5320   }
5321 
5322   // Check if the branch instruction dominates the phi node. It's a simple
5323   // dominance check, but sufficient for our needs.
5324   // Although this check is invariant in the calling loops, it's better to do it
5325   // at this late stage. Practically we do it at most once for a switch.
5326   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5327   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5328     BasicBlock *Pred = *PI;
5329     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5330       return;
5331   }
5332 
5333   if (DefaultConst == FalseConst) {
5334     // The compare yields the same result. We can replace it.
5335     CmpInst->replaceAllUsesWith(RangeCmp);
5336     ++NumTableCmpReuses;
5337   } else {
5338     // The compare yields the same result, just inverted. We can replace it.
5339     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5340         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5341         RangeCheckBranch);
5342     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5343     ++NumTableCmpReuses;
5344   }
5345 }
5346 
5347 /// If the switch is only used to initialize one or more phi nodes in a common
5348 /// successor block with different constant values, replace the switch with
5349 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)5350 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5351                                 const DataLayout &DL,
5352                                 const TargetTransformInfo &TTI) {
5353   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5354 
5355   Function *Fn = SI->getParent()->getParent();
5356   // Only build lookup table when we have a target that supports it or the
5357   // attribute is not set.
5358   if (!TTI.shouldBuildLookupTables() ||
5359       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5360     return false;
5361 
5362   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5363   // split off a dense part and build a lookup table for that.
5364 
5365   // FIXME: This creates arrays of GEPs to constant strings, which means each
5366   // GEP needs a runtime relocation in PIC code. We should just build one big
5367   // string and lookup indices into that.
5368 
5369   // Ignore switches with less than three cases. Lookup tables will not make
5370   // them faster, so we don't analyze them.
5371   if (SI->getNumCases() < 3)
5372     return false;
5373 
5374   // Figure out the corresponding result for each case value and phi node in the
5375   // common destination, as well as the min and max case values.
5376   assert(!SI->cases().empty());
5377   SwitchInst::CaseIt CI = SI->case_begin();
5378   ConstantInt *MinCaseVal = CI->getCaseValue();
5379   ConstantInt *MaxCaseVal = CI->getCaseValue();
5380 
5381   BasicBlock *CommonDest = nullptr;
5382 
5383   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5384   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5385 
5386   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5387   SmallDenseMap<PHINode *, Type *> ResultTypes;
5388   SmallVector<PHINode *, 4> PHIs;
5389 
5390   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5391     ConstantInt *CaseVal = CI->getCaseValue();
5392     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5393       MinCaseVal = CaseVal;
5394     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5395       MaxCaseVal = CaseVal;
5396 
5397     // Resulting value at phi nodes for this case value.
5398     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5399     ResultsTy Results;
5400     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5401                         Results, DL, TTI))
5402       return false;
5403 
5404     // Append the result from this case to the list for each phi.
5405     for (const auto &I : Results) {
5406       PHINode *PHI = I.first;
5407       Constant *Value = I.second;
5408       if (!ResultLists.count(PHI))
5409         PHIs.push_back(PHI);
5410       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5411     }
5412   }
5413 
5414   // Keep track of the result types.
5415   for (PHINode *PHI : PHIs) {
5416     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5417   }
5418 
5419   uint64_t NumResults = ResultLists[PHIs[0]].size();
5420   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5421   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5422   bool TableHasHoles = (NumResults < TableSize);
5423 
5424   // If the table has holes, we need a constant result for the default case
5425   // or a bitmask that fits in a register.
5426   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5427   bool HasDefaultResults =
5428       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5429                      DefaultResultsList, DL, TTI);
5430 
5431   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5432   if (NeedMask) {
5433     // As an extra penalty for the validity test we require more cases.
5434     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5435       return false;
5436     if (!DL.fitsInLegalInteger(TableSize))
5437       return false;
5438   }
5439 
5440   for (const auto &I : DefaultResultsList) {
5441     PHINode *PHI = I.first;
5442     Constant *Result = I.second;
5443     DefaultResults[PHI] = Result;
5444   }
5445 
5446   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5447     return false;
5448 
5449   // Create the BB that does the lookups.
5450   Module &Mod = *CommonDest->getParent()->getParent();
5451   BasicBlock *LookupBB = BasicBlock::Create(
5452       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5453 
5454   // Compute the table index value.
5455   Builder.SetInsertPoint(SI);
5456   Value *TableIndex;
5457   if (MinCaseVal->isNullValue())
5458     TableIndex = SI->getCondition();
5459   else
5460     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5461                                    "switch.tableidx");
5462 
5463   // Compute the maximum table size representable by the integer type we are
5464   // switching upon.
5465   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5466   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5467   assert(MaxTableSize >= TableSize &&
5468          "It is impossible for a switch to have more entries than the max "
5469          "representable value of its input integer type's size.");
5470 
5471   // If the default destination is unreachable, or if the lookup table covers
5472   // all values of the conditional variable, branch directly to the lookup table
5473   // BB. Otherwise, check that the condition is within the case range.
5474   const bool DefaultIsReachable =
5475       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5476   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5477   BranchInst *RangeCheckBranch = nullptr;
5478 
5479   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5480     Builder.CreateBr(LookupBB);
5481     // Note: We call removeProdecessor later since we need to be able to get the
5482     // PHI value for the default case in case we're using a bit mask.
5483   } else {
5484     Value *Cmp = Builder.CreateICmpULT(
5485         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5486     RangeCheckBranch =
5487         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5488   }
5489 
5490   // Populate the BB that does the lookups.
5491   Builder.SetInsertPoint(LookupBB);
5492 
5493   if (NeedMask) {
5494     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5495     // re-purposed to do the hole check, and we create a new LookupBB.
5496     BasicBlock *MaskBB = LookupBB;
5497     MaskBB->setName("switch.hole_check");
5498     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5499                                   CommonDest->getParent(), CommonDest);
5500 
5501     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5502     // unnecessary illegal types.
5503     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5504     APInt MaskInt(TableSizePowOf2, 0);
5505     APInt One(TableSizePowOf2, 1);
5506     // Build bitmask; fill in a 1 bit for every case.
5507     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5508     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5509       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5510                          .getLimitedValue();
5511       MaskInt |= One << Idx;
5512     }
5513     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5514 
5515     // Get the TableIndex'th bit of the bitmask.
5516     // If this bit is 0 (meaning hole) jump to the default destination,
5517     // else continue with table lookup.
5518     IntegerType *MapTy = TableMask->getType();
5519     Value *MaskIndex =
5520         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5521     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5522     Value *LoBit = Builder.CreateTrunc(
5523         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5524     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5525 
5526     Builder.SetInsertPoint(LookupBB);
5527     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5528   }
5529 
5530   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5531     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5532     // do not delete PHINodes here.
5533     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5534                                             /*KeepOneInputPHIs=*/true);
5535   }
5536 
5537   bool ReturnedEarly = false;
5538   for (PHINode *PHI : PHIs) {
5539     const ResultListTy &ResultList = ResultLists[PHI];
5540 
5541     // If using a bitmask, use any value to fill the lookup table holes.
5542     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5543     StringRef FuncName = Fn->getName();
5544     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5545                             FuncName);
5546 
5547     Value *Result = Table.BuildLookup(TableIndex, Builder);
5548 
5549     // If the result is used to return immediately from the function, we want to
5550     // do that right here.
5551     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5552         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5553       Builder.CreateRet(Result);
5554       ReturnedEarly = true;
5555       break;
5556     }
5557 
5558     // Do a small peephole optimization: re-use the switch table compare if
5559     // possible.
5560     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5561       BasicBlock *PhiBlock = PHI->getParent();
5562       // Search for compare instructions which use the phi.
5563       for (auto *User : PHI->users()) {
5564         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5565       }
5566     }
5567 
5568     PHI->addIncoming(Result, LookupBB);
5569   }
5570 
5571   if (!ReturnedEarly)
5572     Builder.CreateBr(CommonDest);
5573 
5574   // Remove the switch.
5575   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5576     BasicBlock *Succ = SI->getSuccessor(i);
5577 
5578     if (Succ == SI->getDefaultDest())
5579       continue;
5580     Succ->removePredecessor(SI->getParent());
5581   }
5582   SI->eraseFromParent();
5583 
5584   ++NumLookupTables;
5585   if (NeedMask)
5586     ++NumLookupTablesHoles;
5587   return true;
5588 }
5589 
isSwitchDense(ArrayRef<int64_t> Values)5590 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5591   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5592   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5593   uint64_t Range = Diff + 1;
5594   uint64_t NumCases = Values.size();
5595   // 40% is the default density for building a jump table in optsize/minsize mode.
5596   uint64_t MinDensity = 40;
5597 
5598   return NumCases * 100 >= Range * MinDensity;
5599 }
5600 
5601 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5602 /// of cases.
5603 ///
5604 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5605 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5606 ///
5607 /// This converts a sparse switch into a dense switch which allows better
5608 /// lowering and could also allow transforming into a lookup table.
ReduceSwitchRange(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)5609 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5610                               const DataLayout &DL,
5611                               const TargetTransformInfo &TTI) {
5612   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5613   if (CondTy->getIntegerBitWidth() > 64 ||
5614       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5615     return false;
5616   // Only bother with this optimization if there are more than 3 switch cases;
5617   // SDAG will only bother creating jump tables for 4 or more cases.
5618   if (SI->getNumCases() < 4)
5619     return false;
5620 
5621   // This transform is agnostic to the signedness of the input or case values. We
5622   // can treat the case values as signed or unsigned. We can optimize more common
5623   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5624   // as signed.
5625   SmallVector<int64_t,4> Values;
5626   for (auto &C : SI->cases())
5627     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5628   llvm::sort(Values);
5629 
5630   // If the switch is already dense, there's nothing useful to do here.
5631   if (isSwitchDense(Values))
5632     return false;
5633 
5634   // First, transform the values such that they start at zero and ascend.
5635   int64_t Base = Values[0];
5636   for (auto &V : Values)
5637     V -= (uint64_t)(Base);
5638 
5639   // Now we have signed numbers that have been shifted so that, given enough
5640   // precision, there are no negative values. Since the rest of the transform
5641   // is bitwise only, we switch now to an unsigned representation.
5642 
5643   // This transform can be done speculatively because it is so cheap - it
5644   // results in a single rotate operation being inserted.
5645   // FIXME: It's possible that optimizing a switch on powers of two might also
5646   // be beneficial - flag values are often powers of two and we could use a CLZ
5647   // as the key function.
5648 
5649   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5650   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5651   // less than 64.
5652   unsigned Shift = 64;
5653   for (auto &V : Values)
5654     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5655   assert(Shift < 64);
5656   if (Shift > 0)
5657     for (auto &V : Values)
5658       V = (int64_t)((uint64_t)V >> Shift);
5659 
5660   if (!isSwitchDense(Values))
5661     // Transform didn't create a dense switch.
5662     return false;
5663 
5664   // The obvious transform is to shift the switch condition right and emit a
5665   // check that the condition actually cleanly divided by GCD, i.e.
5666   //   C & (1 << Shift - 1) == 0
5667   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5668   //
5669   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5670   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5671   // are nonzero then the switch condition will be very large and will hit the
5672   // default case.
5673 
5674   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5675   Builder.SetInsertPoint(SI);
5676   auto *ShiftC = ConstantInt::get(Ty, Shift);
5677   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5678   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5679   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5680   auto *Rot = Builder.CreateOr(LShr, Shl);
5681   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5682 
5683   for (auto Case : SI->cases()) {
5684     auto *Orig = Case.getCaseValue();
5685     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5686     Case.setValue(
5687         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5688   }
5689   return true;
5690 }
5691 
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)5692 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5693   BasicBlock *BB = SI->getParent();
5694 
5695   if (isValueEqualityComparison(SI)) {
5696     // If we only have one predecessor, and if it is a branch on this value,
5697     // see if that predecessor totally determines the outcome of this switch.
5698     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5699       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5700         return requestResimplify();
5701 
5702     Value *Cond = SI->getCondition();
5703     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5704       if (SimplifySwitchOnSelect(SI, Select))
5705         return requestResimplify();
5706 
5707     // If the block only contains the switch, see if we can fold the block
5708     // away into any preds.
5709     if (SI == &*BB->instructionsWithoutDebug().begin())
5710       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5711         return requestResimplify();
5712   }
5713 
5714   // Try to transform the switch into an icmp and a branch.
5715   if (TurnSwitchRangeIntoICmp(SI, Builder))
5716     return requestResimplify();
5717 
5718   // Remove unreachable cases.
5719   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5720     return requestResimplify();
5721 
5722   if (switchToSelect(SI, Builder, DL, TTI))
5723     return requestResimplify();
5724 
5725   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5726     return requestResimplify();
5727 
5728   // The conversion from switch to lookup tables results in difficult-to-analyze
5729   // code and makes pruning branches much harder. This is a problem if the
5730   // switch expression itself can still be restricted as a result of inlining or
5731   // CVP. Therefore, only apply this transformation during late stages of the
5732   // optimisation pipeline.
5733   if (Options.ConvertSwitchToLookupTable &&
5734       SwitchToLookupTable(SI, Builder, DL, TTI))
5735     return requestResimplify();
5736 
5737   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5738     return requestResimplify();
5739 
5740   return false;
5741 }
5742 
SimplifyIndirectBr(IndirectBrInst * IBI)5743 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5744   BasicBlock *BB = IBI->getParent();
5745   bool Changed = false;
5746 
5747   // Eliminate redundant destinations.
5748   SmallPtrSet<Value *, 8> Succs;
5749   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5750     BasicBlock *Dest = IBI->getDestination(i);
5751     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5752       Dest->removePredecessor(BB);
5753       IBI->removeDestination(i);
5754       --i;
5755       --e;
5756       Changed = true;
5757     }
5758   }
5759 
5760   if (IBI->getNumDestinations() == 0) {
5761     // If the indirectbr has no successors, change it to unreachable.
5762     new UnreachableInst(IBI->getContext(), IBI);
5763     EraseTerminatorAndDCECond(IBI);
5764     return true;
5765   }
5766 
5767   if (IBI->getNumDestinations() == 1) {
5768     // If the indirectbr has one successor, change it to a direct branch.
5769     BranchInst::Create(IBI->getDestination(0), IBI);
5770     EraseTerminatorAndDCECond(IBI);
5771     return true;
5772   }
5773 
5774   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5775     if (SimplifyIndirectBrOnSelect(IBI, SI))
5776       return requestResimplify();
5777   }
5778   return Changed;
5779 }
5780 
5781 /// Given an block with only a single landing pad and a unconditional branch
5782 /// try to find another basic block which this one can be merged with.  This
5783 /// handles cases where we have multiple invokes with unique landing pads, but
5784 /// a shared handler.
5785 ///
5786 /// We specifically choose to not worry about merging non-empty blocks
5787 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5788 /// practice, the optimizer produces empty landing pad blocks quite frequently
5789 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5790 /// sinking in this file)
5791 ///
5792 /// This is primarily a code size optimization.  We need to avoid performing
5793 /// any transform which might inhibit optimization (such as our ability to
5794 /// specialize a particular handler via tail commoning).  We do this by not
5795 /// merging any blocks which require us to introduce a phi.  Since the same
5796 /// values are flowing through both blocks, we don't lose any ability to
5797 /// specialize.  If anything, we make such specialization more likely.
5798 ///
5799 /// TODO - This transformation could remove entries from a phi in the target
5800 /// block when the inputs in the phi are the same for the two blocks being
5801 /// merged.  In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB)5802 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5803                                  BasicBlock *BB) {
5804   auto Succ = BB->getUniqueSuccessor();
5805   assert(Succ);
5806   // If there's a phi in the successor block, we'd likely have to introduce
5807   // a phi into the merged landing pad block.
5808   if (isa<PHINode>(*Succ->begin()))
5809     return false;
5810 
5811   for (BasicBlock *OtherPred : predecessors(Succ)) {
5812     if (BB == OtherPred)
5813       continue;
5814     BasicBlock::iterator I = OtherPred->begin();
5815     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5816     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5817       continue;
5818     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5819       ;
5820     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5821     if (!BI2 || !BI2->isIdenticalTo(BI))
5822       continue;
5823 
5824     // We've found an identical block.  Update our predecessors to take that
5825     // path instead and make ourselves dead.
5826     SmallPtrSet<BasicBlock *, 16> Preds;
5827     Preds.insert(pred_begin(BB), pred_end(BB));
5828     for (BasicBlock *Pred : Preds) {
5829       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5830       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5831              "unexpected successor");
5832       II->setUnwindDest(OtherPred);
5833     }
5834 
5835     // The debug info in OtherPred doesn't cover the merged control flow that
5836     // used to go through BB.  We need to delete it or update it.
5837     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5838       Instruction &Inst = *I;
5839       I++;
5840       if (isa<DbgInfoIntrinsic>(Inst))
5841         Inst.eraseFromParent();
5842     }
5843 
5844     SmallPtrSet<BasicBlock *, 16> Succs;
5845     Succs.insert(succ_begin(BB), succ_end(BB));
5846     for (BasicBlock *Succ : Succs) {
5847       Succ->removePredecessor(BB);
5848     }
5849 
5850     IRBuilder<> Builder(BI);
5851     Builder.CreateUnreachable();
5852     BI->eraseFromParent();
5853     return true;
5854   }
5855   return false;
5856 }
5857 
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)5858 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5859                                           IRBuilder<> &Builder) {
5860   BasicBlock *BB = BI->getParent();
5861   BasicBlock *Succ = BI->getSuccessor(0);
5862 
5863   // If the Terminator is the only non-phi instruction, simplify the block.
5864   // If LoopHeader is provided, check if the block or its successor is a loop
5865   // header. (This is for early invocations before loop simplify and
5866   // vectorization to keep canonical loop forms for nested loops. These blocks
5867   // can be eliminated when the pass is invoked later in the back-end.)
5868   // Note that if BB has only one predecessor then we do not introduce new
5869   // backedge, so we can eliminate BB.
5870   bool NeedCanonicalLoop =
5871       Options.NeedCanonicalLoop &&
5872       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5873        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5874   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5875   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5876       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5877     return true;
5878 
5879   // If the only instruction in the block is a seteq/setne comparison against a
5880   // constant, try to simplify the block.
5881   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5882     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5883       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5884         ;
5885       if (I->isTerminator() &&
5886           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5887         return true;
5888     }
5889 
5890   // See if we can merge an empty landing pad block with another which is
5891   // equivalent.
5892   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5893     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5894       ;
5895     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5896       return true;
5897   }
5898 
5899   // If this basic block is ONLY a compare and a branch, and if a predecessor
5900   // branches to us and our successor, fold the comparison into the
5901   // predecessor and use logical operations to update the incoming value
5902   // for PHI nodes in common successor.
5903   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5904     return requestResimplify();
5905   return false;
5906 }
5907 
allPredecessorsComeFromSameSource(BasicBlock * BB)5908 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5909   BasicBlock *PredPred = nullptr;
5910   for (auto *P : predecessors(BB)) {
5911     BasicBlock *PPred = P->getSinglePredecessor();
5912     if (!PPred || (PredPred && PredPred != PPred))
5913       return nullptr;
5914     PredPred = PPred;
5915   }
5916   return PredPred;
5917 }
5918 
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)5919 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5920   BasicBlock *BB = BI->getParent();
5921   const Function *Fn = BB->getParent();
5922   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5923     return false;
5924 
5925   // Conditional branch
5926   if (isValueEqualityComparison(BI)) {
5927     // If we only have one predecessor, and if it is a branch on this value,
5928     // see if that predecessor totally determines the outcome of this
5929     // switch.
5930     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5931       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5932         return requestResimplify();
5933 
5934     // This block must be empty, except for the setcond inst, if it exists.
5935     // Ignore dbg intrinsics.
5936     auto I = BB->instructionsWithoutDebug().begin();
5937     if (&*I == BI) {
5938       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5939         return requestResimplify();
5940     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5941       ++I;
5942       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5943         return requestResimplify();
5944     }
5945   }
5946 
5947   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5948   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5949     return true;
5950 
5951   // If this basic block has dominating predecessor blocks and the dominating
5952   // blocks' conditions imply BI's condition, we know the direction of BI.
5953   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5954   if (Imp) {
5955     // Turn this into a branch on constant.
5956     auto *OldCond = BI->getCondition();
5957     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5958                              : ConstantInt::getFalse(BB->getContext());
5959     BI->setCondition(TorF);
5960     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5961     return requestResimplify();
5962   }
5963 
5964   // If this basic block is ONLY a compare and a branch, and if a predecessor
5965   // branches to us and one of our successors, fold the comparison into the
5966   // predecessor and use logical operations to pick the right destination.
5967   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5968     return requestResimplify();
5969 
5970   // We have a conditional branch to two blocks that are only reachable
5971   // from BI.  We know that the condbr dominates the two blocks, so see if
5972   // there is any identical code in the "then" and "else" blocks.  If so, we
5973   // can hoist it up to the branching block.
5974   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5975     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5976       if (HoistThenElseCodeToIf(BI, TTI))
5977         return requestResimplify();
5978     } else {
5979       // If Successor #1 has multiple preds, we may be able to conditionally
5980       // execute Successor #0 if it branches to Successor #1.
5981       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5982       if (Succ0TI->getNumSuccessors() == 1 &&
5983           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5984         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5985           return requestResimplify();
5986     }
5987   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5988     // If Successor #0 has multiple preds, we may be able to conditionally
5989     // execute Successor #1 if it branches to Successor #0.
5990     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5991     if (Succ1TI->getNumSuccessors() == 1 &&
5992         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5993       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5994         return requestResimplify();
5995   }
5996 
5997   // If this is a branch on a phi node in the current block, thread control
5998   // through this block if any PHI node entries are constants.
5999   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6000     if (PN->getParent() == BI->getParent())
6001       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6002         return requestResimplify();
6003 
6004   // Scan predecessor blocks for conditional branches.
6005   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6006     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6007       if (PBI != BI && PBI->isConditional())
6008         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6009           return requestResimplify();
6010 
6011   // Look for diamond patterns.
6012   if (MergeCondStores)
6013     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6014       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6015         if (PBI != BI && PBI->isConditional())
6016           if (mergeConditionalStores(PBI, BI, DL, TTI))
6017             return requestResimplify();
6018 
6019   return false;
6020 }
6021 
6022 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)6023 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6024   Constant *C = dyn_cast<Constant>(V);
6025   if (!C)
6026     return false;
6027 
6028   if (I->use_empty())
6029     return false;
6030 
6031   if (C->isNullValue() || isa<UndefValue>(C)) {
6032     // Only look at the first use, avoid hurting compile time with long uselists
6033     User *Use = *I->user_begin();
6034 
6035     // Now make sure that there are no instructions in between that can alter
6036     // control flow (eg. calls)
6037     for (BasicBlock::iterator
6038              i = ++BasicBlock::iterator(I),
6039              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6040          i != UI; ++i)
6041       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6042         return false;
6043 
6044     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6045     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6046       if (GEP->getPointerOperand() == I)
6047         return passingValueIsAlwaysUndefined(V, GEP);
6048 
6049     // Look through bitcasts.
6050     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6051       return passingValueIsAlwaysUndefined(V, BC);
6052 
6053     // Load from null is undefined.
6054     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6055       if (!LI->isVolatile())
6056         return !NullPointerIsDefined(LI->getFunction(),
6057                                      LI->getPointerAddressSpace());
6058 
6059     // Store to null is undefined.
6060     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6061       if (!SI->isVolatile())
6062         return (!NullPointerIsDefined(SI->getFunction(),
6063                                       SI->getPointerAddressSpace())) &&
6064                SI->getPointerOperand() == I;
6065 
6066     // A call to null is undefined.
6067     if (auto CS = CallSite(Use))
6068       return !NullPointerIsDefined(CS->getFunction()) &&
6069              CS.getCalledValue() == I;
6070   }
6071   return false;
6072 }
6073 
6074 /// If BB has an incoming value that will always trigger undefined behavior
6075 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)6076 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6077   for (PHINode &PHI : BB->phis())
6078     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6079       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6080         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6081         IRBuilder<> Builder(T);
6082         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6083           BB->removePredecessor(PHI.getIncomingBlock(i));
6084           // Turn uncoditional branches into unreachables and remove the dead
6085           // destination from conditional branches.
6086           if (BI->isUnconditional())
6087             Builder.CreateUnreachable();
6088           else
6089             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6090                                                        : BI->getSuccessor(0));
6091           BI->eraseFromParent();
6092           return true;
6093         }
6094         // TODO: SwitchInst.
6095       }
6096 
6097   return false;
6098 }
6099 
simplifyOnce(BasicBlock * BB)6100 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6101   bool Changed = false;
6102 
6103   assert(BB && BB->getParent() && "Block not embedded in function!");
6104   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6105 
6106   // Remove basic blocks that have no predecessors (except the entry block)...
6107   // or that just have themself as a predecessor.  These are unreachable.
6108   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6109       BB->getSinglePredecessor() == BB) {
6110     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6111     DeleteDeadBlock(BB);
6112     return true;
6113   }
6114 
6115   // Check to see if we can constant propagate this terminator instruction
6116   // away...
6117   Changed |= ConstantFoldTerminator(BB, true);
6118 
6119   // Check for and eliminate duplicate PHI nodes in this block.
6120   Changed |= EliminateDuplicatePHINodes(BB);
6121 
6122   // Check for and remove branches that will always cause undefined behavior.
6123   Changed |= removeUndefIntroducingPredecessor(BB);
6124 
6125   // Merge basic blocks into their predecessor if there is only one distinct
6126   // pred, and if there is only one distinct successor of the predecessor, and
6127   // if there are no PHI nodes.
6128   if (MergeBlockIntoPredecessor(BB))
6129     return true;
6130 
6131   if (SinkCommon && Options.SinkCommonInsts)
6132     Changed |= SinkCommonCodeFromPredecessors(BB);
6133 
6134   IRBuilder<> Builder(BB);
6135 
6136   // If there is a trivial two-entry PHI node in this basic block, and we can
6137   // eliminate it, do so now.
6138   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6139     if (PN->getNumIncomingValues() == 2)
6140       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6141 
6142   Builder.SetInsertPoint(BB->getTerminator());
6143   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6144     if (BI->isUnconditional()) {
6145       if (SimplifyUncondBranch(BI, Builder))
6146         return true;
6147     } else {
6148       if (SimplifyCondBranch(BI, Builder))
6149         return true;
6150     }
6151   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6152     if (SimplifyReturn(RI, Builder))
6153       return true;
6154   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6155     if (SimplifyResume(RI, Builder))
6156       return true;
6157   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6158     if (SimplifyCleanupReturn(RI))
6159       return true;
6160   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6161     if (SimplifySwitch(SI, Builder))
6162       return true;
6163   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6164     if (SimplifyUnreachable(UI))
6165       return true;
6166   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6167     if (SimplifyIndirectBr(IBI))
6168       return true;
6169   }
6170 
6171   return Changed;
6172 }
6173 
run(BasicBlock * BB)6174 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6175   bool Changed = false;
6176 
6177   // Repeated simplify BB as long as resimplification is requested.
6178   do {
6179     Resimplify = false;
6180 
6181     // Perform one round of simplifcation. Resimplify flag will be set if
6182     // another iteration is requested.
6183     Changed |= simplifyOnce(BB);
6184   } while (Resimplify);
6185 
6186   return Changed;
6187 }
6188 
simplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,const SimplifyCFGOptions & Options,SmallPtrSetImpl<BasicBlock * > * LoopHeaders)6189 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6190                        const SimplifyCFGOptions &Options,
6191                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6192   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6193                         Options)
6194       .run(BB);
6195 }
6196