1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/IR/Argument.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include "llvm/Transforms/Utils/PredicateInfo.h"
111 #include "llvm/Transforms/Utils/VNCoercion.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstdint>
115 #include <iterator>
116 #include <map>
117 #include <memory>
118 #include <set>
119 #include <string>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123
124 using namespace llvm;
125 using namespace llvm::GVNExpression;
126 using namespace llvm::VNCoercion;
127 using namespace llvm::PatternMatch;
128
129 #define DEBUG_TYPE "newgvn"
130
131 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
132 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
133 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
134 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
135 STATISTIC(NumGVNMaxIterations,
136 "Maximum Number of iterations it took to converge GVN");
137 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
138 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
139 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
140 "Number of avoided sorted leader changes");
141 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
142 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
143 STATISTIC(NumGVNPHIOfOpsEliminations,
144 "Number of things eliminated using PHI of ops");
145 DEBUG_COUNTER(VNCounter, "newgvn-vn",
146 "Controls which instructions are value numbered");
147 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
148 "Controls which instructions we create phi of ops for");
149 // Currently store defining access refinement is too slow due to basicaa being
150 // egregiously slow. This flag lets us keep it working while we work on this
151 // issue.
152 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
153 cl::init(false), cl::Hidden);
154
155 /// Currently, the generation "phi of ops" can result in correctness issues.
156 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
157 cl::Hidden);
158
159 //===----------------------------------------------------------------------===//
160 // GVN Pass
161 //===----------------------------------------------------------------------===//
162
163 // Anchor methods.
164 namespace llvm {
165 namespace GVNExpression {
166
167 Expression::~Expression() = default;
168 BasicExpression::~BasicExpression() = default;
169 CallExpression::~CallExpression() = default;
170 LoadExpression::~LoadExpression() = default;
171 StoreExpression::~StoreExpression() = default;
172 AggregateValueExpression::~AggregateValueExpression() = default;
173 PHIExpression::~PHIExpression() = default;
174
175 } // end namespace GVNExpression
176 } // end namespace llvm
177
178 namespace {
179
180 // Tarjan's SCC finding algorithm with Nuutila's improvements
181 // SCCIterator is actually fairly complex for the simple thing we want.
182 // It also wants to hand us SCC's that are unrelated to the phi node we ask
183 // about, and have us process them there or risk redoing work.
184 // Graph traits over a filter iterator also doesn't work that well here.
185 // This SCC finder is specialized to walk use-def chains, and only follows
186 // instructions,
187 // not generic values (arguments, etc).
188 struct TarjanSCC {
TarjanSCC__anon5ca5bcb10111::TarjanSCC189 TarjanSCC() : Components(1) {}
190
Start__anon5ca5bcb10111::TarjanSCC191 void Start(const Instruction *Start) {
192 if (Root.lookup(Start) == 0)
193 FindSCC(Start);
194 }
195
getComponentFor__anon5ca5bcb10111::TarjanSCC196 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
197 unsigned ComponentID = ValueToComponent.lookup(V);
198
199 assert(ComponentID > 0 &&
200 "Asking for a component for a value we never processed");
201 return Components[ComponentID];
202 }
203
204 private:
FindSCC__anon5ca5bcb10111::TarjanSCC205 void FindSCC(const Instruction *I) {
206 Root[I] = ++DFSNum;
207 // Store the DFS Number we had before it possibly gets incremented.
208 unsigned int OurDFS = DFSNum;
209 for (auto &Op : I->operands()) {
210 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
211 if (Root.lookup(Op) == 0)
212 FindSCC(InstOp);
213 if (!InComponent.count(Op))
214 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
215 }
216 }
217 // See if we really were the root of a component, by seeing if we still have
218 // our DFSNumber. If we do, we are the root of the component, and we have
219 // completed a component. If we do not, we are not the root of a component,
220 // and belong on the component stack.
221 if (Root.lookup(I) == OurDFS) {
222 unsigned ComponentID = Components.size();
223 Components.resize(Components.size() + 1);
224 auto &Component = Components.back();
225 Component.insert(I);
226 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
227 InComponent.insert(I);
228 ValueToComponent[I] = ComponentID;
229 // Pop a component off the stack and label it.
230 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
231 auto *Member = Stack.back();
232 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
233 Component.insert(Member);
234 InComponent.insert(Member);
235 ValueToComponent[Member] = ComponentID;
236 Stack.pop_back();
237 }
238 } else {
239 // Part of a component, push to stack
240 Stack.push_back(I);
241 }
242 }
243
244 unsigned int DFSNum = 1;
245 SmallPtrSet<const Value *, 8> InComponent;
246 DenseMap<const Value *, unsigned int> Root;
247 SmallVector<const Value *, 8> Stack;
248
249 // Store the components as vector of ptr sets, because we need the topo order
250 // of SCC's, but not individual member order
251 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
252
253 DenseMap<const Value *, unsigned> ValueToComponent;
254 };
255
256 // Congruence classes represent the set of expressions/instructions
257 // that are all the same *during some scope in the function*.
258 // That is, because of the way we perform equality propagation, and
259 // because of memory value numbering, it is not correct to assume
260 // you can willy-nilly replace any member with any other at any
261 // point in the function.
262 //
263 // For any Value in the Member set, it is valid to replace any dominated member
264 // with that Value.
265 //
266 // Every congruence class has a leader, and the leader is used to symbolize
267 // instructions in a canonical way (IE every operand of an instruction that is a
268 // member of the same congruence class will always be replaced with leader
269 // during symbolization). To simplify symbolization, we keep the leader as a
270 // constant if class can be proved to be a constant value. Otherwise, the
271 // leader is the member of the value set with the smallest DFS number. Each
272 // congruence class also has a defining expression, though the expression may be
273 // null. If it exists, it can be used for forward propagation and reassociation
274 // of values.
275
276 // For memory, we also track a representative MemoryAccess, and a set of memory
277 // members for MemoryPhis (which have no real instructions). Note that for
278 // memory, it seems tempting to try to split the memory members into a
279 // MemoryCongruenceClass or something. Unfortunately, this does not work
280 // easily. The value numbering of a given memory expression depends on the
281 // leader of the memory congruence class, and the leader of memory congruence
282 // class depends on the value numbering of a given memory expression. This
283 // leads to wasted propagation, and in some cases, missed optimization. For
284 // example: If we had value numbered two stores together before, but now do not,
285 // we move them to a new value congruence class. This in turn will move at one
286 // of the memorydefs to a new memory congruence class. Which in turn, affects
287 // the value numbering of the stores we just value numbered (because the memory
288 // congruence class is part of the value number). So while theoretically
289 // possible to split them up, it turns out to be *incredibly* complicated to get
290 // it to work right, because of the interdependency. While structurally
291 // slightly messier, it is algorithmically much simpler and faster to do what we
292 // do here, and track them both at once in the same class.
293 // Note: The default iterators for this class iterate over values
294 class CongruenceClass {
295 public:
296 using MemberType = Value;
297 using MemberSet = SmallPtrSet<MemberType *, 4>;
298 using MemoryMemberType = MemoryPhi;
299 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
300
CongruenceClass(unsigned ID)301 explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID,Value * Leader,const Expression * E)302 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
303 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
304
getID() const305 unsigned getID() const { return ID; }
306
307 // True if this class has no members left. This is mainly used for assertion
308 // purposes, and for skipping empty classes.
isDead() const309 bool isDead() const {
310 // If it's both dead from a value perspective, and dead from a memory
311 // perspective, it's really dead.
312 return empty() && memory_empty();
313 }
314
315 // Leader functions
getLeader() const316 Value *getLeader() const { return RepLeader; }
setLeader(Value * Leader)317 void setLeader(Value *Leader) { RepLeader = Leader; }
getNextLeader() const318 const std::pair<Value *, unsigned int> &getNextLeader() const {
319 return NextLeader;
320 }
resetNextLeader()321 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
addPossibleNextLeader(std::pair<Value *,unsigned int> LeaderPair)322 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
323 if (LeaderPair.second < NextLeader.second)
324 NextLeader = LeaderPair;
325 }
326
getStoredValue() const327 Value *getStoredValue() const { return RepStoredValue; }
setStoredValue(Value * Leader)328 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
getMemoryLeader() const329 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
setMemoryLeader(const MemoryAccess * Leader)330 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
331
332 // Forward propagation info
getDefiningExpr() const333 const Expression *getDefiningExpr() const { return DefiningExpr; }
334
335 // Value member set
empty() const336 bool empty() const { return Members.empty(); }
size() const337 unsigned size() const { return Members.size(); }
begin() const338 MemberSet::const_iterator begin() const { return Members.begin(); }
end() const339 MemberSet::const_iterator end() const { return Members.end(); }
insert(MemberType * M)340 void insert(MemberType *M) { Members.insert(M); }
erase(MemberType * M)341 void erase(MemberType *M) { Members.erase(M); }
swap(MemberSet & Other)342 void swap(MemberSet &Other) { Members.swap(Other); }
343
344 // Memory member set
memory_empty() const345 bool memory_empty() const { return MemoryMembers.empty(); }
memory_size() const346 unsigned memory_size() const { return MemoryMembers.size(); }
memory_begin() const347 MemoryMemberSet::const_iterator memory_begin() const {
348 return MemoryMembers.begin();
349 }
memory_end() const350 MemoryMemberSet::const_iterator memory_end() const {
351 return MemoryMembers.end();
352 }
memory() const353 iterator_range<MemoryMemberSet::const_iterator> memory() const {
354 return make_range(memory_begin(), memory_end());
355 }
356
memory_insert(const MemoryMemberType * M)357 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
memory_erase(const MemoryMemberType * M)358 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
359
360 // Store count
getStoreCount() const361 unsigned getStoreCount() const { return StoreCount; }
incStoreCount()362 void incStoreCount() { ++StoreCount; }
decStoreCount()363 void decStoreCount() {
364 assert(StoreCount != 0 && "Store count went negative");
365 --StoreCount;
366 }
367
368 // True if this class has no memory members.
definesNoMemory() const369 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
370
371 // Return true if two congruence classes are equivalent to each other. This
372 // means that every field but the ID number and the dead field are equivalent.
isEquivalentTo(const CongruenceClass * Other) const373 bool isEquivalentTo(const CongruenceClass *Other) const {
374 if (!Other)
375 return false;
376 if (this == Other)
377 return true;
378
379 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
380 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
381 Other->RepMemoryAccess))
382 return false;
383 if (DefiningExpr != Other->DefiningExpr)
384 if (!DefiningExpr || !Other->DefiningExpr ||
385 *DefiningExpr != *Other->DefiningExpr)
386 return false;
387
388 if (Members.size() != Other->Members.size())
389 return false;
390
391 return all_of(Members,
392 [&](const Value *V) { return Other->Members.count(V); });
393 }
394
395 private:
396 unsigned ID;
397
398 // Representative leader.
399 Value *RepLeader = nullptr;
400
401 // The most dominating leader after our current leader, because the member set
402 // is not sorted and is expensive to keep sorted all the time.
403 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404
405 // If this is represented by a store, the value of the store.
406 Value *RepStoredValue = nullptr;
407
408 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409 // access.
410 const MemoryAccess *RepMemoryAccess = nullptr;
411
412 // Defining Expression.
413 const Expression *DefiningExpr = nullptr;
414
415 // Actual members of this class.
416 MemberSet Members;
417
418 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419 // MemoryUses have real instructions representing them, so we only need to
420 // track MemoryPhis here.
421 MemoryMemberSet MemoryMembers;
422
423 // Number of stores in this congruence class.
424 // This is used so we can detect store equivalence changes properly.
425 int StoreCount = 0;
426 };
427
428 } // end anonymous namespace
429
430 namespace llvm {
431
432 struct ExactEqualsExpression {
433 const Expression &E;
434
ExactEqualsExpressionllvm::ExactEqualsExpression435 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436
getComputedHashllvm::ExactEqualsExpression437 hash_code getComputedHash() const { return E.getComputedHash(); }
438
operator ==llvm::ExactEqualsExpression439 bool operator==(const Expression &Other) const {
440 return E.exactlyEquals(Other);
441 }
442 };
443
444 template <> struct DenseMapInfo<const Expression *> {
getEmptyKeyllvm::DenseMapInfo445 static const Expression *getEmptyKey() {
446 auto Val = static_cast<uintptr_t>(-1);
447 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448 return reinterpret_cast<const Expression *>(Val);
449 }
450
getTombstoneKeyllvm::DenseMapInfo451 static const Expression *getTombstoneKey() {
452 auto Val = static_cast<uintptr_t>(~1U);
453 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454 return reinterpret_cast<const Expression *>(Val);
455 }
456
getHashValuellvm::DenseMapInfo457 static unsigned getHashValue(const Expression *E) {
458 return E->getComputedHash();
459 }
460
getHashValuellvm::DenseMapInfo461 static unsigned getHashValue(const ExactEqualsExpression &E) {
462 return E.getComputedHash();
463 }
464
isEqualllvm::DenseMapInfo465 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467 return false;
468 return LHS == *RHS;
469 }
470
isEqualllvm::DenseMapInfo471 static bool isEqual(const Expression *LHS, const Expression *RHS) {
472 if (LHS == RHS)
473 return true;
474 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475 LHS == getEmptyKey() || RHS == getEmptyKey())
476 return false;
477 // Compare hashes before equality. This is *not* what the hashtable does,
478 // since it is computing it modulo the number of buckets, whereas we are
479 // using the full hash keyspace. Since the hashes are precomputed, this
480 // check is *much* faster than equality.
481 if (LHS->getComputedHash() != RHS->getComputedHash())
482 return false;
483 return *LHS == *RHS;
484 }
485 };
486
487 } // end namespace llvm
488
489 namespace {
490
491 class NewGVN {
492 Function &F;
493 DominatorTree *DT = nullptr;
494 const TargetLibraryInfo *TLI = nullptr;
495 AliasAnalysis *AA = nullptr;
496 MemorySSA *MSSA = nullptr;
497 MemorySSAWalker *MSSAWalker = nullptr;
498 const DataLayout &DL;
499 std::unique_ptr<PredicateInfo> PredInfo;
500
501 // These are the only two things the create* functions should have
502 // side-effects on due to allocating memory.
503 mutable BumpPtrAllocator ExpressionAllocator;
504 mutable ArrayRecycler<Value *> ArgRecycler;
505 mutable TarjanSCC SCCFinder;
506 const SimplifyQuery SQ;
507
508 // Number of function arguments, used by ranking
509 unsigned int NumFuncArgs = 0;
510
511 // RPOOrdering of basic blocks
512 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
513
514 // Congruence class info.
515
516 // This class is called INITIAL in the paper. It is the class everything
517 // startsout in, and represents any value. Being an optimistic analysis,
518 // anything in the TOP class has the value TOP, which is indeterminate and
519 // equivalent to everything.
520 CongruenceClass *TOPClass = nullptr;
521 std::vector<CongruenceClass *> CongruenceClasses;
522 unsigned NextCongruenceNum = 0;
523
524 // Value Mappings.
525 DenseMap<Value *, CongruenceClass *> ValueToClass;
526 DenseMap<Value *, const Expression *> ValueToExpression;
527
528 // Value PHI handling, used to make equivalence between phi(op, op) and
529 // op(phi, phi).
530 // These mappings just store various data that would normally be part of the
531 // IR.
532 SmallPtrSet<const Instruction *, 8> PHINodeUses;
533
534 DenseMap<const Value *, bool> OpSafeForPHIOfOps;
535
536 // Map a temporary instruction we created to a parent block.
537 DenseMap<const Value *, BasicBlock *> TempToBlock;
538
539 // Map between the already in-program instructions and the temporary phis we
540 // created that they are known equivalent to.
541 DenseMap<const Value *, PHINode *> RealToTemp;
542
543 // In order to know when we should re-process instructions that have
544 // phi-of-ops, we track the set of expressions that they needed as
545 // leaders. When we discover new leaders for those expressions, we process the
546 // associated phi-of-op instructions again in case they have changed. The
547 // other way they may change is if they had leaders, and those leaders
548 // disappear. However, at the point they have leaders, there are uses of the
549 // relevant operands in the created phi node, and so they will get reprocessed
550 // through the normal user marking we perform.
551 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
552 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
553 ExpressionToPhiOfOps;
554
555 // Map from temporary operation to MemoryAccess.
556 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
557
558 // Set of all temporary instructions we created.
559 // Note: This will include instructions that were just created during value
560 // numbering. The way to test if something is using them is to check
561 // RealToTemp.
562 DenseSet<Instruction *> AllTempInstructions;
563
564 // This is the set of instructions to revisit on a reachability change. At
565 // the end of the main iteration loop it will contain at least all the phi of
566 // ops instructions that will be changed to phis, as well as regular phis.
567 // During the iteration loop, it may contain other things, such as phi of ops
568 // instructions that used edge reachability to reach a result, and so need to
569 // be revisited when the edge changes, independent of whether the phi they
570 // depended on changes.
571 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
572
573 // Mapping from predicate info we used to the instructions we used it with.
574 // In order to correctly ensure propagation, we must keep track of what
575 // comparisons we used, so that when the values of the comparisons change, we
576 // propagate the information to the places we used the comparison.
577 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
578 PredicateToUsers;
579
580 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
581 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
582 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
583 MemoryToUsers;
584
585 // A table storing which memorydefs/phis represent a memory state provably
586 // equivalent to another memory state.
587 // We could use the congruence class machinery, but the MemoryAccess's are
588 // abstract memory states, so they can only ever be equivalent to each other,
589 // and not to constants, etc.
590 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
591
592 // We could, if we wanted, build MemoryPhiExpressions and
593 // MemoryVariableExpressions, etc, and value number them the same way we value
594 // number phi expressions. For the moment, this seems like overkill. They
595 // can only exist in one of three states: they can be TOP (equal to
596 // everything), Equivalent to something else, or unique. Because we do not
597 // create expressions for them, we need to simulate leader change not just
598 // when they change class, but when they change state. Note: We can do the
599 // same thing for phis, and avoid having phi expressions if we wanted, We
600 // should eventually unify in one direction or the other, so this is a little
601 // bit of an experiment in which turns out easier to maintain.
602 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
603 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
604
605 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
606 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
607
608 // Expression to class mapping.
609 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
610 ExpressionClassMap ExpressionToClass;
611
612 // We have a single expression that represents currently DeadExpressions.
613 // For dead expressions we can prove will stay dead, we mark them with
614 // DFS number zero. However, it's possible in the case of phi nodes
615 // for us to assume/prove all arguments are dead during fixpointing.
616 // We use DeadExpression for that case.
617 DeadExpression *SingletonDeadExpression = nullptr;
618
619 // Which values have changed as a result of leader changes.
620 SmallPtrSet<Value *, 8> LeaderChanges;
621
622 // Reachability info.
623 using BlockEdge = BasicBlockEdge;
624 DenseSet<BlockEdge> ReachableEdges;
625 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
626
627 // This is a bitvector because, on larger functions, we may have
628 // thousands of touched instructions at once (entire blocks,
629 // instructions with hundreds of uses, etc). Even with optimization
630 // for when we mark whole blocks as touched, when this was a
631 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
632 // the time in GVN just managing this list. The bitvector, on the
633 // other hand, efficiently supports test/set/clear of both
634 // individual and ranges, as well as "find next element" This
635 // enables us to use it as a worklist with essentially 0 cost.
636 BitVector TouchedInstructions;
637
638 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
639
640 #ifndef NDEBUG
641 // Debugging for how many times each block and instruction got processed.
642 DenseMap<const Value *, unsigned> ProcessedCount;
643 #endif
644
645 // DFS info.
646 // This contains a mapping from Instructions to DFS numbers.
647 // The numbering starts at 1. An instruction with DFS number zero
648 // means that the instruction is dead.
649 DenseMap<const Value *, unsigned> InstrDFS;
650
651 // This contains the mapping DFS numbers to instructions.
652 SmallVector<Value *, 32> DFSToInstr;
653
654 // Deletion info.
655 SmallPtrSet<Instruction *, 8> InstructionsToErase;
656
657 public:
NewGVN(Function & F,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * TLI,AliasAnalysis * AA,MemorySSA * MSSA,const DataLayout & DL)658 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
659 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
660 const DataLayout &DL)
661 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
662 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
663 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
664
665 bool runGVN();
666
667 private:
668 // Expression handling.
669 const Expression *createExpression(Instruction *) const;
670 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
671 Instruction *) const;
672
673 // Our canonical form for phi arguments is a pair of incoming value, incoming
674 // basic block.
675 using ValPair = std::pair<Value *, BasicBlock *>;
676
677 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
678 BasicBlock *, bool &HasBackEdge,
679 bool &OriginalOpsConstant) const;
680 const DeadExpression *createDeadExpression() const;
681 const VariableExpression *createVariableExpression(Value *) const;
682 const ConstantExpression *createConstantExpression(Constant *) const;
683 const Expression *createVariableOrConstant(Value *V) const;
684 const UnknownExpression *createUnknownExpression(Instruction *) const;
685 const StoreExpression *createStoreExpression(StoreInst *,
686 const MemoryAccess *) const;
687 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
688 const MemoryAccess *) const;
689 const CallExpression *createCallExpression(CallInst *,
690 const MemoryAccess *) const;
691 const AggregateValueExpression *
692 createAggregateValueExpression(Instruction *) const;
693 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
694
695 // Congruence class handling.
createCongruenceClass(Value * Leader,const Expression * E)696 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
697 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
698 CongruenceClasses.emplace_back(result);
699 return result;
700 }
701
createMemoryClass(MemoryAccess * MA)702 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
703 auto *CC = createCongruenceClass(nullptr, nullptr);
704 CC->setMemoryLeader(MA);
705 return CC;
706 }
707
ensureLeaderOfMemoryClass(MemoryAccess * MA)708 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
709 auto *CC = getMemoryClass(MA);
710 if (CC->getMemoryLeader() != MA)
711 CC = createMemoryClass(MA);
712 return CC;
713 }
714
createSingletonCongruenceClass(Value * Member)715 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
716 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
717 CClass->insert(Member);
718 ValueToClass[Member] = CClass;
719 return CClass;
720 }
721
722 void initializeCongruenceClasses(Function &F);
723 const Expression *makePossiblePHIOfOps(Instruction *,
724 SmallPtrSetImpl<Value *> &);
725 Value *findLeaderForInst(Instruction *ValueOp,
726 SmallPtrSetImpl<Value *> &Visited,
727 MemoryAccess *MemAccess, Instruction *OrigInst,
728 BasicBlock *PredBB);
729 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
730 SmallPtrSetImpl<const Value *> &Visited,
731 SmallVectorImpl<Instruction *> &Worklist);
732 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
733 SmallPtrSetImpl<const Value *> &);
734 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
735 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
736
737 // Value number an Instruction or MemoryPhi.
738 void valueNumberMemoryPhi(MemoryPhi *);
739 void valueNumberInstruction(Instruction *);
740
741 // Symbolic evaluation.
742 const Expression *checkSimplificationResults(Expression *, Instruction *,
743 Value *) const;
744 const Expression *performSymbolicEvaluation(Value *,
745 SmallPtrSetImpl<Value *> &) const;
746 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
747 Instruction *,
748 MemoryAccess *) const;
749 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
750 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
751 const Expression *performSymbolicCallEvaluation(Instruction *) const;
752 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
753 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
754 Instruction *I,
755 BasicBlock *PHIBlock) const;
756 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
757 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
758 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
759
760 // Congruence finding.
761 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
762 Value *lookupOperandLeader(Value *) const;
763 CongruenceClass *getClassForExpression(const Expression *E) const;
764 void performCongruenceFinding(Instruction *, const Expression *);
765 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
766 CongruenceClass *, CongruenceClass *);
767 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
768 CongruenceClass *, CongruenceClass *);
769 Value *getNextValueLeader(CongruenceClass *) const;
770 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
771 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
772 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
773 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
774 bool isMemoryAccessTOP(const MemoryAccess *) const;
775
776 // Ranking
777 unsigned int getRank(const Value *) const;
778 bool shouldSwapOperands(const Value *, const Value *) const;
779
780 // Reachability handling.
781 void updateReachableEdge(BasicBlock *, BasicBlock *);
782 void processOutgoingEdges(Instruction *, BasicBlock *);
783 Value *findConditionEquivalence(Value *) const;
784
785 // Elimination.
786 struct ValueDFS;
787 void convertClassToDFSOrdered(const CongruenceClass &,
788 SmallVectorImpl<ValueDFS> &,
789 DenseMap<const Value *, unsigned int> &,
790 SmallPtrSetImpl<Instruction *> &) const;
791 void convertClassToLoadsAndStores(const CongruenceClass &,
792 SmallVectorImpl<ValueDFS> &) const;
793
794 bool eliminateInstructions(Function &);
795 void replaceInstruction(Instruction *, Value *);
796 void markInstructionForDeletion(Instruction *);
797 void deleteInstructionsInBlock(BasicBlock *);
798 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
799 const BasicBlock *) const;
800
801 // New instruction creation.
handleNewInstruction(Instruction *)802 void handleNewInstruction(Instruction *) {}
803
804 // Various instruction touch utilities
805 template <typename Map, typename KeyType, typename Func>
806 void for_each_found(Map &, const KeyType &, Func);
807 template <typename Map, typename KeyType>
808 void touchAndErase(Map &, const KeyType &);
809 void markUsersTouched(Value *);
810 void markMemoryUsersTouched(const MemoryAccess *);
811 void markMemoryDefTouched(const MemoryAccess *);
812 void markPredicateUsersTouched(Instruction *);
813 void markValueLeaderChangeTouched(CongruenceClass *CC);
814 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
815 void markPhiOfOpsChanged(const Expression *E);
816 void addPredicateUsers(const PredicateBase *, Instruction *) const;
817 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
818 void addAdditionalUsers(Value *To, Value *User) const;
819
820 // Main loop of value numbering
821 void iterateTouchedInstructions();
822
823 // Utilities.
824 void cleanupTables();
825 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
826 void updateProcessedCount(const Value *V);
827 void verifyMemoryCongruency() const;
828 void verifyIterationSettled(Function &F);
829 void verifyStoreExpressions() const;
830 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
831 const MemoryAccess *, const MemoryAccess *) const;
832 BasicBlock *getBlockForValue(Value *V) const;
833 void deleteExpression(const Expression *E) const;
834 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
835 MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
836 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
837 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
838
InstrToDFSNum(const Value * V) const839 unsigned InstrToDFSNum(const Value *V) const {
840 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
841 return InstrDFS.lookup(V);
842 }
843
InstrToDFSNum(const MemoryAccess * MA) const844 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
845 return MemoryToDFSNum(MA);
846 }
847
InstrFromDFSNum(unsigned DFSNum)848 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
849
850 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
851 // This deliberately takes a value so it can be used with Use's, which will
852 // auto-convert to Value's but not to MemoryAccess's.
MemoryToDFSNum(const Value * MA) const853 unsigned MemoryToDFSNum(const Value *MA) const {
854 assert(isa<MemoryAccess>(MA) &&
855 "This should not be used with instructions");
856 return isa<MemoryUseOrDef>(MA)
857 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
858 : InstrDFS.lookup(MA);
859 }
860
861 bool isCycleFree(const Instruction *) const;
862 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
863
864 // Debug counter info. When verifying, we have to reset the value numbering
865 // debug counter to the same state it started in to get the same results.
866 int64_t StartingVNCounter = 0;
867 };
868
869 } // end anonymous namespace
870
871 template <typename T>
equalsLoadStoreHelper(const T & LHS,const Expression & RHS)872 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
873 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
874 return false;
875 return LHS.MemoryExpression::equals(RHS);
876 }
877
equals(const Expression & Other) const878 bool LoadExpression::equals(const Expression &Other) const {
879 return equalsLoadStoreHelper(*this, Other);
880 }
881
equals(const Expression & Other) const882 bool StoreExpression::equals(const Expression &Other) const {
883 if (!equalsLoadStoreHelper(*this, Other))
884 return false;
885 // Make sure that store vs store includes the value operand.
886 if (const auto *S = dyn_cast<StoreExpression>(&Other))
887 if (getStoredValue() != S->getStoredValue())
888 return false;
889 return true;
890 }
891
892 // Determine if the edge From->To is a backedge
isBackedge(BasicBlock * From,BasicBlock * To) const893 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
894 return From == To ||
895 RPOOrdering.lookup(DT->getNode(From)) >=
896 RPOOrdering.lookup(DT->getNode(To));
897 }
898
899 #ifndef NDEBUG
getBlockName(const BasicBlock * B)900 static std::string getBlockName(const BasicBlock *B) {
901 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
902 }
903 #endif
904
905 // Get a MemoryAccess for an instruction, fake or real.
getMemoryAccess(const Instruction * I) const906 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
907 auto *Result = MSSA->getMemoryAccess(I);
908 return Result ? Result : TempToMemory.lookup(I);
909 }
910
911 // Get a MemoryPhi for a basic block. These are all real.
getMemoryAccess(const BasicBlock * BB) const912 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
913 return MSSA->getMemoryAccess(BB);
914 }
915
916 // Get the basic block from an instruction/memory value.
getBlockForValue(Value * V) const917 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
918 if (auto *I = dyn_cast<Instruction>(V)) {
919 auto *Parent = I->getParent();
920 if (Parent)
921 return Parent;
922 Parent = TempToBlock.lookup(V);
923 assert(Parent && "Every fake instruction should have a block");
924 return Parent;
925 }
926
927 auto *MP = dyn_cast<MemoryPhi>(V);
928 assert(MP && "Should have been an instruction or a MemoryPhi");
929 return MP->getBlock();
930 }
931
932 // Delete a definitely dead expression, so it can be reused by the expression
933 // allocator. Some of these are not in creation functions, so we have to accept
934 // const versions.
deleteExpression(const Expression * E) const935 void NewGVN::deleteExpression(const Expression *E) const {
936 assert(isa<BasicExpression>(E));
937 auto *BE = cast<BasicExpression>(E);
938 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
939 ExpressionAllocator.Deallocate(E);
940 }
941
942 // If V is a predicateinfo copy, get the thing it is a copy of.
getCopyOf(const Value * V)943 static Value *getCopyOf(const Value *V) {
944 if (auto *II = dyn_cast<IntrinsicInst>(V))
945 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
946 return II->getOperand(0);
947 return nullptr;
948 }
949
950 // Return true if V is really PN, even accounting for predicateinfo copies.
isCopyOfPHI(const Value * V,const PHINode * PN)951 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
952 return V == PN || getCopyOf(V) == PN;
953 }
954
isCopyOfAPHI(const Value * V)955 static bool isCopyOfAPHI(const Value *V) {
956 auto *CO = getCopyOf(V);
957 return CO && isa<PHINode>(CO);
958 }
959
960 // Sort PHI Operands into a canonical order. What we use here is an RPO
961 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
962 // blocks.
sortPHIOps(MutableArrayRef<ValPair> Ops) const963 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
964 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
965 return BlockInstRange.lookup(P1.second).first <
966 BlockInstRange.lookup(P2.second).first;
967 });
968 }
969
970 // Return true if V is a value that will always be available (IE can
971 // be placed anywhere) in the function. We don't do globals here
972 // because they are often worse to put in place.
alwaysAvailable(Value * V)973 static bool alwaysAvailable(Value *V) {
974 return isa<Constant>(V) || isa<Argument>(V);
975 }
976
977 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
978 // the original instruction we are creating a PHIExpression for (but may not be
979 // a phi node). We require, as an invariant, that all the PHIOperands in the
980 // same block are sorted the same way. sortPHIOps will sort them into a
981 // canonical order.
createPHIExpression(ArrayRef<ValPair> PHIOperands,const Instruction * I,BasicBlock * PHIBlock,bool & HasBackedge,bool & OriginalOpsConstant) const982 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
983 const Instruction *I,
984 BasicBlock *PHIBlock,
985 bool &HasBackedge,
986 bool &OriginalOpsConstant) const {
987 unsigned NumOps = PHIOperands.size();
988 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
989
990 E->allocateOperands(ArgRecycler, ExpressionAllocator);
991 E->setType(PHIOperands.begin()->first->getType());
992 E->setOpcode(Instruction::PHI);
993
994 // Filter out unreachable phi operands.
995 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
996 auto *BB = P.second;
997 if (auto *PHIOp = dyn_cast<PHINode>(I))
998 if (isCopyOfPHI(P.first, PHIOp))
999 return false;
1000 if (!ReachableEdges.count({BB, PHIBlock}))
1001 return false;
1002 // Things in TOPClass are equivalent to everything.
1003 if (ValueToClass.lookup(P.first) == TOPClass)
1004 return false;
1005 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1006 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1007 return lookupOperandLeader(P.first) != I;
1008 });
1009 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1010 [&](const ValPair &P) -> Value * {
1011 return lookupOperandLeader(P.first);
1012 });
1013 return E;
1014 }
1015
1016 // Set basic expression info (Arguments, type, opcode) for Expression
1017 // E from Instruction I in block B.
setBasicExpressionInfo(Instruction * I,BasicExpression * E) const1018 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1019 bool AllConstant = true;
1020 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1021 E->setType(GEP->getSourceElementType());
1022 else
1023 E->setType(I->getType());
1024 E->setOpcode(I->getOpcode());
1025 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1026
1027 // Transform the operand array into an operand leader array, and keep track of
1028 // whether all members are constant.
1029 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1030 auto Operand = lookupOperandLeader(O);
1031 AllConstant = AllConstant && isa<Constant>(Operand);
1032 return Operand;
1033 });
1034
1035 return AllConstant;
1036 }
1037
createBinaryExpression(unsigned Opcode,Type * T,Value * Arg1,Value * Arg2,Instruction * I) const1038 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1039 Value *Arg1, Value *Arg2,
1040 Instruction *I) const {
1041 auto *E = new (ExpressionAllocator) BasicExpression(2);
1042
1043 E->setType(T);
1044 E->setOpcode(Opcode);
1045 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1046 if (Instruction::isCommutative(Opcode)) {
1047 // Ensure that commutative instructions that only differ by a permutation
1048 // of their operands get the same value number by sorting the operand value
1049 // numbers. Since all commutative instructions have two operands it is more
1050 // efficient to sort by hand rather than using, say, std::sort.
1051 if (shouldSwapOperands(Arg1, Arg2))
1052 std::swap(Arg1, Arg2);
1053 }
1054 E->op_push_back(lookupOperandLeader(Arg1));
1055 E->op_push_back(lookupOperandLeader(Arg2));
1056
1057 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1058 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1059 return SimplifiedE;
1060 return E;
1061 }
1062
1063 // Take a Value returned by simplification of Expression E/Instruction
1064 // I, and see if it resulted in a simpler expression. If so, return
1065 // that expression.
checkSimplificationResults(Expression * E,Instruction * I,Value * V) const1066 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1067 Instruction *I,
1068 Value *V) const {
1069 if (!V)
1070 return nullptr;
1071 if (auto *C = dyn_cast<Constant>(V)) {
1072 if (I)
1073 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1074 << " constant " << *C << "\n");
1075 NumGVNOpsSimplified++;
1076 assert(isa<BasicExpression>(E) &&
1077 "We should always have had a basic expression here");
1078 deleteExpression(E);
1079 return createConstantExpression(C);
1080 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1081 if (I)
1082 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1083 << " variable " << *V << "\n");
1084 deleteExpression(E);
1085 return createVariableExpression(V);
1086 }
1087
1088 CongruenceClass *CC = ValueToClass.lookup(V);
1089 if (CC) {
1090 if (CC->getLeader() && CC->getLeader() != I) {
1091 // If we simplified to something else, we need to communicate
1092 // that we're users of the value we simplified to.
1093 if (I != V) {
1094 // Don't add temporary instructions to the user lists.
1095 if (!AllTempInstructions.count(I))
1096 addAdditionalUsers(V, I);
1097 }
1098 return createVariableOrConstant(CC->getLeader());
1099 }
1100 if (CC->getDefiningExpr()) {
1101 // If we simplified to something else, we need to communicate
1102 // that we're users of the value we simplified to.
1103 if (I != V) {
1104 // Don't add temporary instructions to the user lists.
1105 if (!AllTempInstructions.count(I))
1106 addAdditionalUsers(V, I);
1107 }
1108
1109 if (I)
1110 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1111 << " expression " << *CC->getDefiningExpr() << "\n");
1112 NumGVNOpsSimplified++;
1113 deleteExpression(E);
1114 return CC->getDefiningExpr();
1115 }
1116 }
1117
1118 return nullptr;
1119 }
1120
1121 // Create a value expression from the instruction I, replacing operands with
1122 // their leaders.
1123
createExpression(Instruction * I) const1124 const Expression *NewGVN::createExpression(Instruction *I) const {
1125 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1126
1127 bool AllConstant = setBasicExpressionInfo(I, E);
1128
1129 if (I->isCommutative()) {
1130 // Ensure that commutative instructions that only differ by a permutation
1131 // of their operands get the same value number by sorting the operand value
1132 // numbers. Since all commutative instructions have two operands it is more
1133 // efficient to sort by hand rather than using, say, std::sort.
1134 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1135 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1136 E->swapOperands(0, 1);
1137 }
1138 // Perform simplification.
1139 if (auto *CI = dyn_cast<CmpInst>(I)) {
1140 // Sort the operand value numbers so x<y and y>x get the same value
1141 // number.
1142 CmpInst::Predicate Predicate = CI->getPredicate();
1143 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1144 E->swapOperands(0, 1);
1145 Predicate = CmpInst::getSwappedPredicate(Predicate);
1146 }
1147 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1148 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1149 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1150 "Wrong types on cmp instruction");
1151 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1152 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1153 Value *V =
1154 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1155 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1156 return SimplifiedE;
1157 } else if (isa<SelectInst>(I)) {
1158 if (isa<Constant>(E->getOperand(0)) ||
1159 E->getOperand(1) == E->getOperand(2)) {
1160 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1161 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1162 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1163 E->getOperand(2), SQ);
1164 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1165 return SimplifiedE;
1166 }
1167 } else if (I->isBinaryOp()) {
1168 Value *V =
1169 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1170 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1171 return SimplifiedE;
1172 } else if (auto *CI = dyn_cast<CastInst>(I)) {
1173 Value *V =
1174 SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1175 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1176 return SimplifiedE;
1177 } else if (isa<GetElementPtrInst>(I)) {
1178 Value *V = SimplifyGEPInst(
1179 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1180 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1181 return SimplifiedE;
1182 } else if (AllConstant) {
1183 // We don't bother trying to simplify unless all of the operands
1184 // were constant.
1185 // TODO: There are a lot of Simplify*'s we could call here, if we
1186 // wanted to. The original motivating case for this code was a
1187 // zext i1 false to i8, which we don't have an interface to
1188 // simplify (IE there is no SimplifyZExt).
1189
1190 SmallVector<Constant *, 8> C;
1191 for (Value *Arg : E->operands())
1192 C.emplace_back(cast<Constant>(Arg));
1193
1194 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1195 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1196 return SimplifiedE;
1197 }
1198 return E;
1199 }
1200
1201 const AggregateValueExpression *
createAggregateValueExpression(Instruction * I) const1202 NewGVN::createAggregateValueExpression(Instruction *I) const {
1203 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1204 auto *E = new (ExpressionAllocator)
1205 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1206 setBasicExpressionInfo(I, E);
1207 E->allocateIntOperands(ExpressionAllocator);
1208 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1209 return E;
1210 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1211 auto *E = new (ExpressionAllocator)
1212 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1213 setBasicExpressionInfo(EI, E);
1214 E->allocateIntOperands(ExpressionAllocator);
1215 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1216 return E;
1217 }
1218 llvm_unreachable("Unhandled type of aggregate value operation");
1219 }
1220
createDeadExpression() const1221 const DeadExpression *NewGVN::createDeadExpression() const {
1222 // DeadExpression has no arguments and all DeadExpression's are the same,
1223 // so we only need one of them.
1224 return SingletonDeadExpression;
1225 }
1226
createVariableExpression(Value * V) const1227 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1228 auto *E = new (ExpressionAllocator) VariableExpression(V);
1229 E->setOpcode(V->getValueID());
1230 return E;
1231 }
1232
createVariableOrConstant(Value * V) const1233 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1234 if (auto *C = dyn_cast<Constant>(V))
1235 return createConstantExpression(C);
1236 return createVariableExpression(V);
1237 }
1238
createConstantExpression(Constant * C) const1239 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1240 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1241 E->setOpcode(C->getValueID());
1242 return E;
1243 }
1244
createUnknownExpression(Instruction * I) const1245 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1246 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1247 E->setOpcode(I->getOpcode());
1248 return E;
1249 }
1250
1251 const CallExpression *
createCallExpression(CallInst * CI,const MemoryAccess * MA) const1252 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1253 // FIXME: Add operand bundles for calls.
1254 auto *E =
1255 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1256 setBasicExpressionInfo(CI, E);
1257 return E;
1258 }
1259
1260 // Return true if some equivalent of instruction Inst dominates instruction U.
someEquivalentDominates(const Instruction * Inst,const Instruction * U) const1261 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1262 const Instruction *U) const {
1263 auto *CC = ValueToClass.lookup(Inst);
1264 // This must be an instruction because we are only called from phi nodes
1265 // in the case that the value it needs to check against is an instruction.
1266
1267 // The most likely candidates for dominance are the leader and the next leader.
1268 // The leader or nextleader will dominate in all cases where there is an
1269 // equivalent that is higher up in the dom tree.
1270 // We can't *only* check them, however, because the
1271 // dominator tree could have an infinite number of non-dominating siblings
1272 // with instructions that are in the right congruence class.
1273 // A
1274 // B C D E F G
1275 // |
1276 // H
1277 // Instruction U could be in H, with equivalents in every other sibling.
1278 // Depending on the rpo order picked, the leader could be the equivalent in
1279 // any of these siblings.
1280 if (!CC)
1281 return false;
1282 if (alwaysAvailable(CC->getLeader()))
1283 return true;
1284 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1285 return true;
1286 if (CC->getNextLeader().first &&
1287 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1288 return true;
1289 return llvm::any_of(*CC, [&](const Value *Member) {
1290 return Member != CC->getLeader() &&
1291 DT->dominates(cast<Instruction>(Member), U);
1292 });
1293 }
1294
1295 // See if we have a congruence class and leader for this operand, and if so,
1296 // return it. Otherwise, return the operand itself.
lookupOperandLeader(Value * V) const1297 Value *NewGVN::lookupOperandLeader(Value *V) const {
1298 CongruenceClass *CC = ValueToClass.lookup(V);
1299 if (CC) {
1300 // Everything in TOP is represented by undef, as it can be any value.
1301 // We do have to make sure we get the type right though, so we can't set the
1302 // RepLeader to undef.
1303 if (CC == TOPClass)
1304 return UndefValue::get(V->getType());
1305 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1306 }
1307
1308 return V;
1309 }
1310
lookupMemoryLeader(const MemoryAccess * MA) const1311 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1312 auto *CC = getMemoryClass(MA);
1313 assert(CC->getMemoryLeader() &&
1314 "Every MemoryAccess should be mapped to a congruence class with a "
1315 "representative memory access");
1316 return CC->getMemoryLeader();
1317 }
1318
1319 // Return true if the MemoryAccess is really equivalent to everything. This is
1320 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1321 // state of all MemoryAccesses.
isMemoryAccessTOP(const MemoryAccess * MA) const1322 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1323 return getMemoryClass(MA) == TOPClass;
1324 }
1325
createLoadExpression(Type * LoadType,Value * PointerOp,LoadInst * LI,const MemoryAccess * MA) const1326 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1327 LoadInst *LI,
1328 const MemoryAccess *MA) const {
1329 auto *E =
1330 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1331 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1332 E->setType(LoadType);
1333
1334 // Give store and loads same opcode so they value number together.
1335 E->setOpcode(0);
1336 E->op_push_back(PointerOp);
1337 if (LI)
1338 E->setAlignment(MaybeAlign(LI->getAlignment()));
1339
1340 // TODO: Value number heap versions. We may be able to discover
1341 // things alias analysis can't on it's own (IE that a store and a
1342 // load have the same value, and thus, it isn't clobbering the load).
1343 return E;
1344 }
1345
1346 const StoreExpression *
createStoreExpression(StoreInst * SI,const MemoryAccess * MA) const1347 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1348 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1349 auto *E = new (ExpressionAllocator)
1350 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1351 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1352 E->setType(SI->getValueOperand()->getType());
1353
1354 // Give store and loads same opcode so they value number together.
1355 E->setOpcode(0);
1356 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1357
1358 // TODO: Value number heap versions. We may be able to discover
1359 // things alias analysis can't on it's own (IE that a store and a
1360 // load have the same value, and thus, it isn't clobbering the load).
1361 return E;
1362 }
1363
performSymbolicStoreEvaluation(Instruction * I) const1364 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1365 // Unlike loads, we never try to eliminate stores, so we do not check if they
1366 // are simple and avoid value numbering them.
1367 auto *SI = cast<StoreInst>(I);
1368 auto *StoreAccess = getMemoryAccess(SI);
1369 // Get the expression, if any, for the RHS of the MemoryDef.
1370 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1371 if (EnableStoreRefinement)
1372 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1373 // If we bypassed the use-def chains, make sure we add a use.
1374 StoreRHS = lookupMemoryLeader(StoreRHS);
1375 if (StoreRHS != StoreAccess->getDefiningAccess())
1376 addMemoryUsers(StoreRHS, StoreAccess);
1377 // If we are defined by ourselves, use the live on entry def.
1378 if (StoreRHS == StoreAccess)
1379 StoreRHS = MSSA->getLiveOnEntryDef();
1380
1381 if (SI->isSimple()) {
1382 // See if we are defined by a previous store expression, it already has a
1383 // value, and it's the same value as our current store. FIXME: Right now, we
1384 // only do this for simple stores, we should expand to cover memcpys, etc.
1385 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1386 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1387 // We really want to check whether the expression we matched was a store. No
1388 // easy way to do that. However, we can check that the class we found has a
1389 // store, which, assuming the value numbering state is not corrupt, is
1390 // sufficient, because we must also be equivalent to that store's expression
1391 // for it to be in the same class as the load.
1392 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1393 return LastStore;
1394 // Also check if our value operand is defined by a load of the same memory
1395 // location, and the memory state is the same as it was then (otherwise, it
1396 // could have been overwritten later. See test32 in
1397 // transforms/DeadStoreElimination/simple.ll).
1398 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1399 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1400 LastStore->getOperand(0)) &&
1401 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1402 StoreRHS))
1403 return LastStore;
1404 deleteExpression(LastStore);
1405 }
1406
1407 // If the store is not equivalent to anything, value number it as a store that
1408 // produces a unique memory state (instead of using it's MemoryUse, we use
1409 // it's MemoryDef).
1410 return createStoreExpression(SI, StoreAccess);
1411 }
1412
1413 // See if we can extract the value of a loaded pointer from a load, a store, or
1414 // a memory instruction.
1415 const Expression *
performSymbolicLoadCoercion(Type * LoadType,Value * LoadPtr,LoadInst * LI,Instruction * DepInst,MemoryAccess * DefiningAccess) const1416 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1417 LoadInst *LI, Instruction *DepInst,
1418 MemoryAccess *DefiningAccess) const {
1419 assert((!LI || LI->isSimple()) && "Not a simple load");
1420 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1421 // Can't forward from non-atomic to atomic without violating memory model.
1422 // Also don't need to coerce if they are the same type, we will just
1423 // propagate.
1424 if (LI->isAtomic() > DepSI->isAtomic() ||
1425 LoadType == DepSI->getValueOperand()->getType())
1426 return nullptr;
1427 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1428 if (Offset >= 0) {
1429 if (auto *C = dyn_cast<Constant>(
1430 lookupOperandLeader(DepSI->getValueOperand()))) {
1431 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1432 << " to constant " << *C << "\n");
1433 return createConstantExpression(
1434 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1435 }
1436 }
1437 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1438 // Can't forward from non-atomic to atomic without violating memory model.
1439 if (LI->isAtomic() > DepLI->isAtomic())
1440 return nullptr;
1441 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1442 if (Offset >= 0) {
1443 // We can coerce a constant load into a load.
1444 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1445 if (auto *PossibleConstant =
1446 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1447 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1448 << " to constant " << *PossibleConstant << "\n");
1449 return createConstantExpression(PossibleConstant);
1450 }
1451 }
1452 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1453 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1454 if (Offset >= 0) {
1455 if (auto *PossibleConstant =
1456 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1457 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1458 << " to constant " << *PossibleConstant << "\n");
1459 return createConstantExpression(PossibleConstant);
1460 }
1461 }
1462 }
1463
1464 // All of the below are only true if the loaded pointer is produced
1465 // by the dependent instruction.
1466 if (LoadPtr != lookupOperandLeader(DepInst) &&
1467 !AA->isMustAlias(LoadPtr, DepInst))
1468 return nullptr;
1469 // If this load really doesn't depend on anything, then we must be loading an
1470 // undef value. This can happen when loading for a fresh allocation with no
1471 // intervening stores, for example. Note that this is only true in the case
1472 // that the result of the allocation is pointer equal to the load ptr.
1473 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1474 return createConstantExpression(UndefValue::get(LoadType));
1475 }
1476 // If this load occurs either right after a lifetime begin,
1477 // then the loaded value is undefined.
1478 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1479 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1480 return createConstantExpression(UndefValue::get(LoadType));
1481 }
1482 // If this load follows a calloc (which zero initializes memory),
1483 // then the loaded value is zero
1484 else if (isCallocLikeFn(DepInst, TLI)) {
1485 return createConstantExpression(Constant::getNullValue(LoadType));
1486 }
1487
1488 return nullptr;
1489 }
1490
performSymbolicLoadEvaluation(Instruction * I) const1491 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1492 auto *LI = cast<LoadInst>(I);
1493
1494 // We can eliminate in favor of non-simple loads, but we won't be able to
1495 // eliminate the loads themselves.
1496 if (!LI->isSimple())
1497 return nullptr;
1498
1499 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1500 // Load of undef is undef.
1501 if (isa<UndefValue>(LoadAddressLeader))
1502 return createConstantExpression(UndefValue::get(LI->getType()));
1503 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1504 MemoryAccess *DefiningAccess =
1505 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1506
1507 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1508 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1509 Instruction *DefiningInst = MD->getMemoryInst();
1510 // If the defining instruction is not reachable, replace with undef.
1511 if (!ReachableBlocks.count(DefiningInst->getParent()))
1512 return createConstantExpression(UndefValue::get(LI->getType()));
1513 // This will handle stores and memory insts. We only do if it the
1514 // defining access has a different type, or it is a pointer produced by
1515 // certain memory operations that cause the memory to have a fixed value
1516 // (IE things like calloc).
1517 if (const auto *CoercionResult =
1518 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1519 DefiningInst, DefiningAccess))
1520 return CoercionResult;
1521 }
1522 }
1523
1524 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1525 DefiningAccess);
1526 // If our MemoryLeader is not our defining access, add a use to the
1527 // MemoryLeader, so that we get reprocessed when it changes.
1528 if (LE->getMemoryLeader() != DefiningAccess)
1529 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1530 return LE;
1531 }
1532
1533 const Expression *
performSymbolicPredicateInfoEvaluation(Instruction * I) const1534 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1535 auto *PI = PredInfo->getPredicateInfoFor(I);
1536 if (!PI)
1537 return nullptr;
1538
1539 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1540
1541 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1542 if (!PWC)
1543 return nullptr;
1544
1545 auto *CopyOf = I->getOperand(0);
1546 auto *Cond = PWC->Condition;
1547
1548 // If this a copy of the condition, it must be either true or false depending
1549 // on the predicate info type and edge.
1550 if (CopyOf == Cond) {
1551 // We should not need to add predicate users because the predicate info is
1552 // already a use of this operand.
1553 if (isa<PredicateAssume>(PI))
1554 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1555 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1556 if (PBranch->TrueEdge)
1557 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1558 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1559 }
1560 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1561 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1562 }
1563
1564 // Not a copy of the condition, so see what the predicates tell us about this
1565 // value. First, though, we check to make sure the value is actually a copy
1566 // of one of the condition operands. It's possible, in certain cases, for it
1567 // to be a copy of a predicateinfo copy. In particular, if two branch
1568 // operations use the same condition, and one branch dominates the other, we
1569 // will end up with a copy of a copy. This is currently a small deficiency in
1570 // predicateinfo. What will end up happening here is that we will value
1571 // number both copies the same anyway.
1572
1573 // Everything below relies on the condition being a comparison.
1574 auto *Cmp = dyn_cast<CmpInst>(Cond);
1575 if (!Cmp)
1576 return nullptr;
1577
1578 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1579 LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1580 return nullptr;
1581 }
1582 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1583 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1584 bool SwappedOps = false;
1585 // Sort the ops.
1586 if (shouldSwapOperands(FirstOp, SecondOp)) {
1587 std::swap(FirstOp, SecondOp);
1588 SwappedOps = true;
1589 }
1590 CmpInst::Predicate Predicate =
1591 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1592
1593 if (isa<PredicateAssume>(PI)) {
1594 // If we assume the operands are equal, then they are equal.
1595 if (Predicate == CmpInst::ICMP_EQ) {
1596 addPredicateUsers(PI, I);
1597 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1598 I);
1599 return createVariableOrConstant(FirstOp);
1600 }
1601 }
1602 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1603 // If we are *not* a copy of the comparison, we may equal to the other
1604 // operand when the predicate implies something about equality of
1605 // operations. In particular, if the comparison is true/false when the
1606 // operands are equal, and we are on the right edge, we know this operation
1607 // is equal to something.
1608 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1609 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1610 addPredicateUsers(PI, I);
1611 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1612 I);
1613 return createVariableOrConstant(FirstOp);
1614 }
1615 // Handle the special case of floating point.
1616 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1617 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1618 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1619 addPredicateUsers(PI, I);
1620 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1621 I);
1622 return createConstantExpression(cast<Constant>(FirstOp));
1623 }
1624 }
1625 return nullptr;
1626 }
1627
1628 // Evaluate read only and pure calls, and create an expression result.
performSymbolicCallEvaluation(Instruction * I) const1629 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1630 auto *CI = cast<CallInst>(I);
1631 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1632 // Intrinsics with the returned attribute are copies of arguments.
1633 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1634 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1635 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1636 return Result;
1637 return createVariableOrConstant(ReturnedValue);
1638 }
1639 }
1640 if (AA->doesNotAccessMemory(CI)) {
1641 return createCallExpression(CI, TOPClass->getMemoryLeader());
1642 } else if (AA->onlyReadsMemory(CI)) {
1643 if (auto *MA = MSSA->getMemoryAccess(CI)) {
1644 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1645 return createCallExpression(CI, DefiningAccess);
1646 } else // MSSA determined that CI does not access memory.
1647 return createCallExpression(CI, TOPClass->getMemoryLeader());
1648 }
1649 return nullptr;
1650 }
1651
1652 // Retrieve the memory class for a given MemoryAccess.
getMemoryClass(const MemoryAccess * MA) const1653 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1654 auto *Result = MemoryAccessToClass.lookup(MA);
1655 assert(Result && "Should have found memory class");
1656 return Result;
1657 }
1658
1659 // Update the MemoryAccess equivalence table to say that From is equal to To,
1660 // and return true if this is different from what already existed in the table.
setMemoryClass(const MemoryAccess * From,CongruenceClass * NewClass)1661 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1662 CongruenceClass *NewClass) {
1663 assert(NewClass &&
1664 "Every MemoryAccess should be getting mapped to a non-null class");
1665 LLVM_DEBUG(dbgs() << "Setting " << *From);
1666 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1667 LLVM_DEBUG(dbgs() << NewClass->getID()
1668 << " with current MemoryAccess leader ");
1669 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1670
1671 auto LookupResult = MemoryAccessToClass.find(From);
1672 bool Changed = false;
1673 // If it's already in the table, see if the value changed.
1674 if (LookupResult != MemoryAccessToClass.end()) {
1675 auto *OldClass = LookupResult->second;
1676 if (OldClass != NewClass) {
1677 // If this is a phi, we have to handle memory member updates.
1678 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1679 OldClass->memory_erase(MP);
1680 NewClass->memory_insert(MP);
1681 // This may have killed the class if it had no non-memory members
1682 if (OldClass->getMemoryLeader() == From) {
1683 if (OldClass->definesNoMemory()) {
1684 OldClass->setMemoryLeader(nullptr);
1685 } else {
1686 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1687 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1688 << OldClass->getID() << " to "
1689 << *OldClass->getMemoryLeader()
1690 << " due to removal of a memory member " << *From
1691 << "\n");
1692 markMemoryLeaderChangeTouched(OldClass);
1693 }
1694 }
1695 }
1696 // It wasn't equivalent before, and now it is.
1697 LookupResult->second = NewClass;
1698 Changed = true;
1699 }
1700 }
1701
1702 return Changed;
1703 }
1704
1705 // Determine if a instruction is cycle-free. That means the values in the
1706 // instruction don't depend on any expressions that can change value as a result
1707 // of the instruction. For example, a non-cycle free instruction would be v =
1708 // phi(0, v+1).
isCycleFree(const Instruction * I) const1709 bool NewGVN::isCycleFree(const Instruction *I) const {
1710 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1711 // and see what kind of SCC it ends up in. If it is a singleton, it is
1712 // cycle-free. If it is not in a singleton, it is only cycle free if the
1713 // other members are all phi nodes (as they do not compute anything, they are
1714 // copies).
1715 auto ICS = InstCycleState.lookup(I);
1716 if (ICS == ICS_Unknown) {
1717 SCCFinder.Start(I);
1718 auto &SCC = SCCFinder.getComponentFor(I);
1719 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1720 if (SCC.size() == 1)
1721 InstCycleState.insert({I, ICS_CycleFree});
1722 else {
1723 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1724 return isa<PHINode>(V) || isCopyOfAPHI(V);
1725 });
1726 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1727 for (auto *Member : SCC)
1728 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1729 InstCycleState.insert({MemberPhi, ICS});
1730 }
1731 }
1732 if (ICS == ICS_Cycle)
1733 return false;
1734 return true;
1735 }
1736
1737 // Evaluate PHI nodes symbolically and create an expression result.
1738 const Expression *
performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,Instruction * I,BasicBlock * PHIBlock) const1739 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1740 Instruction *I,
1741 BasicBlock *PHIBlock) const {
1742 // True if one of the incoming phi edges is a backedge.
1743 bool HasBackedge = false;
1744 // All constant tracks the state of whether all the *original* phi operands
1745 // This is really shorthand for "this phi cannot cycle due to forward
1746 // change in value of the phi is guaranteed not to later change the value of
1747 // the phi. IE it can't be v = phi(undef, v+1)
1748 bool OriginalOpsConstant = true;
1749 auto *E = cast<PHIExpression>(createPHIExpression(
1750 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1751 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1752 // See if all arguments are the same.
1753 // We track if any were undef because they need special handling.
1754 bool HasUndef = false;
1755 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1756 if (isa<UndefValue>(Arg)) {
1757 HasUndef = true;
1758 return false;
1759 }
1760 return true;
1761 });
1762 // If we are left with no operands, it's dead.
1763 if (Filtered.empty()) {
1764 // If it has undef at this point, it means there are no-non-undef arguments,
1765 // and thus, the value of the phi node must be undef.
1766 if (HasUndef) {
1767 LLVM_DEBUG(
1768 dbgs() << "PHI Node " << *I
1769 << " has no non-undef arguments, valuing it as undef\n");
1770 return createConstantExpression(UndefValue::get(I->getType()));
1771 }
1772
1773 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1774 deleteExpression(E);
1775 return createDeadExpression();
1776 }
1777 Value *AllSameValue = *(Filtered.begin());
1778 ++Filtered.begin();
1779 // Can't use std::equal here, sadly, because filter.begin moves.
1780 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1781 // In LLVM's non-standard representation of phi nodes, it's possible to have
1782 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1783 // on the original phi node), especially in weird CFG's where some arguments
1784 // are unreachable, or uninitialized along certain paths. This can cause
1785 // infinite loops during evaluation. We work around this by not trying to
1786 // really evaluate them independently, but instead using a variable
1787 // expression to say if one is equivalent to the other.
1788 // We also special case undef, so that if we have an undef, we can't use the
1789 // common value unless it dominates the phi block.
1790 if (HasUndef) {
1791 // If we have undef and at least one other value, this is really a
1792 // multivalued phi, and we need to know if it's cycle free in order to
1793 // evaluate whether we can ignore the undef. The other parts of this are
1794 // just shortcuts. If there is no backedge, or all operands are
1795 // constants, it also must be cycle free.
1796 if (HasBackedge && !OriginalOpsConstant &&
1797 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1798 return E;
1799
1800 // Only have to check for instructions
1801 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1802 if (!someEquivalentDominates(AllSameInst, I))
1803 return E;
1804 }
1805 // Can't simplify to something that comes later in the iteration.
1806 // Otherwise, when and if it changes congruence class, we will never catch
1807 // up. We will always be a class behind it.
1808 if (isa<Instruction>(AllSameValue) &&
1809 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1810 return E;
1811 NumGVNPhisAllSame++;
1812 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1813 << "\n");
1814 deleteExpression(E);
1815 return createVariableOrConstant(AllSameValue);
1816 }
1817 return E;
1818 }
1819
1820 const Expression *
performSymbolicAggrValueEvaluation(Instruction * I) const1821 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1822 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1823 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1824 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1825 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1826 // a semantically equivalent expression instead of an extract value
1827 // expression.
1828 return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1829 WO->getLHS(), WO->getRHS(), I);
1830 }
1831
1832 return createAggregateValueExpression(I);
1833 }
1834
performSymbolicCmpEvaluation(Instruction * I) const1835 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1836 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1837
1838 auto *CI = cast<CmpInst>(I);
1839 // See if our operands are equal to those of a previous predicate, and if so,
1840 // if it implies true or false.
1841 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1842 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1843 auto OurPredicate = CI->getPredicate();
1844 if (shouldSwapOperands(Op0, Op1)) {
1845 std::swap(Op0, Op1);
1846 OurPredicate = CI->getSwappedPredicate();
1847 }
1848
1849 // Avoid processing the same info twice.
1850 const PredicateBase *LastPredInfo = nullptr;
1851 // See if we know something about the comparison itself, like it is the target
1852 // of an assume.
1853 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1854 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1855 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1856
1857 if (Op0 == Op1) {
1858 // This condition does not depend on predicates, no need to add users
1859 if (CI->isTrueWhenEqual())
1860 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1861 else if (CI->isFalseWhenEqual())
1862 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1863 }
1864
1865 // NOTE: Because we are comparing both operands here and below, and using
1866 // previous comparisons, we rely on fact that predicateinfo knows to mark
1867 // comparisons that use renamed operands as users of the earlier comparisons.
1868 // It is *not* enough to just mark predicateinfo renamed operands as users of
1869 // the earlier comparisons, because the *other* operand may have changed in a
1870 // previous iteration.
1871 // Example:
1872 // icmp slt %a, %b
1873 // %b.0 = ssa.copy(%b)
1874 // false branch:
1875 // icmp slt %c, %b.0
1876
1877 // %c and %a may start out equal, and thus, the code below will say the second
1878 // %icmp is false. c may become equal to something else, and in that case the
1879 // %second icmp *must* be reexamined, but would not if only the renamed
1880 // %operands are considered users of the icmp.
1881
1882 // *Currently* we only check one level of comparisons back, and only mark one
1883 // level back as touched when changes happen. If you modify this code to look
1884 // back farther through comparisons, you *must* mark the appropriate
1885 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1886 // we know something just from the operands themselves
1887
1888 // See if our operands have predicate info, so that we may be able to derive
1889 // something from a previous comparison.
1890 for (const auto &Op : CI->operands()) {
1891 auto *PI = PredInfo->getPredicateInfoFor(Op);
1892 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1893 if (PI == LastPredInfo)
1894 continue;
1895 LastPredInfo = PI;
1896 // In phi of ops cases, we may have predicate info that we are evaluating
1897 // in a different context.
1898 if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1899 continue;
1900 // TODO: Along the false edge, we may know more things too, like
1901 // icmp of
1902 // same operands is false.
1903 // TODO: We only handle actual comparison conditions below, not
1904 // and/or.
1905 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1906 if (!BranchCond)
1907 continue;
1908 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1909 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1910 auto BranchPredicate = BranchCond->getPredicate();
1911 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1912 std::swap(BranchOp0, BranchOp1);
1913 BranchPredicate = BranchCond->getSwappedPredicate();
1914 }
1915 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1916 if (PBranch->TrueEdge) {
1917 // If we know the previous predicate is true and we are in the true
1918 // edge then we may be implied true or false.
1919 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1920 OurPredicate)) {
1921 addPredicateUsers(PI, I);
1922 return createConstantExpression(
1923 ConstantInt::getTrue(CI->getType()));
1924 }
1925
1926 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1927 OurPredicate)) {
1928 addPredicateUsers(PI, I);
1929 return createConstantExpression(
1930 ConstantInt::getFalse(CI->getType()));
1931 }
1932 } else {
1933 // Just handle the ne and eq cases, where if we have the same
1934 // operands, we may know something.
1935 if (BranchPredicate == OurPredicate) {
1936 addPredicateUsers(PI, I);
1937 // Same predicate, same ops,we know it was false, so this is false.
1938 return createConstantExpression(
1939 ConstantInt::getFalse(CI->getType()));
1940 } else if (BranchPredicate ==
1941 CmpInst::getInversePredicate(OurPredicate)) {
1942 addPredicateUsers(PI, I);
1943 // Inverse predicate, we know the other was false, so this is true.
1944 return createConstantExpression(
1945 ConstantInt::getTrue(CI->getType()));
1946 }
1947 }
1948 }
1949 }
1950 }
1951 // Create expression will take care of simplifyCmpInst
1952 return createExpression(I);
1953 }
1954
1955 // Substitute and symbolize the value before value numbering.
1956 const Expression *
performSymbolicEvaluation(Value * V,SmallPtrSetImpl<Value * > & Visited) const1957 NewGVN::performSymbolicEvaluation(Value *V,
1958 SmallPtrSetImpl<Value *> &Visited) const {
1959 const Expression *E = nullptr;
1960 if (auto *C = dyn_cast<Constant>(V))
1961 E = createConstantExpression(C);
1962 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1963 E = createVariableExpression(V);
1964 } else {
1965 // TODO: memory intrinsics.
1966 // TODO: Some day, we should do the forward propagation and reassociation
1967 // parts of the algorithm.
1968 auto *I = cast<Instruction>(V);
1969 switch (I->getOpcode()) {
1970 case Instruction::ExtractValue:
1971 case Instruction::InsertValue:
1972 E = performSymbolicAggrValueEvaluation(I);
1973 break;
1974 case Instruction::PHI: {
1975 SmallVector<ValPair, 3> Ops;
1976 auto *PN = cast<PHINode>(I);
1977 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1978 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1979 // Sort to ensure the invariant createPHIExpression requires is met.
1980 sortPHIOps(Ops);
1981 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1982 } break;
1983 case Instruction::Call:
1984 E = performSymbolicCallEvaluation(I);
1985 break;
1986 case Instruction::Store:
1987 E = performSymbolicStoreEvaluation(I);
1988 break;
1989 case Instruction::Load:
1990 E = performSymbolicLoadEvaluation(I);
1991 break;
1992 case Instruction::BitCast:
1993 case Instruction::AddrSpaceCast:
1994 E = createExpression(I);
1995 break;
1996 case Instruction::ICmp:
1997 case Instruction::FCmp:
1998 E = performSymbolicCmpEvaluation(I);
1999 break;
2000 case Instruction::FNeg:
2001 case Instruction::Add:
2002 case Instruction::FAdd:
2003 case Instruction::Sub:
2004 case Instruction::FSub:
2005 case Instruction::Mul:
2006 case Instruction::FMul:
2007 case Instruction::UDiv:
2008 case Instruction::SDiv:
2009 case Instruction::FDiv:
2010 case Instruction::URem:
2011 case Instruction::SRem:
2012 case Instruction::FRem:
2013 case Instruction::Shl:
2014 case Instruction::LShr:
2015 case Instruction::AShr:
2016 case Instruction::And:
2017 case Instruction::Or:
2018 case Instruction::Xor:
2019 case Instruction::Trunc:
2020 case Instruction::ZExt:
2021 case Instruction::SExt:
2022 case Instruction::FPToUI:
2023 case Instruction::FPToSI:
2024 case Instruction::UIToFP:
2025 case Instruction::SIToFP:
2026 case Instruction::FPTrunc:
2027 case Instruction::FPExt:
2028 case Instruction::PtrToInt:
2029 case Instruction::IntToPtr:
2030 case Instruction::Select:
2031 case Instruction::ExtractElement:
2032 case Instruction::InsertElement:
2033 case Instruction::ShuffleVector:
2034 case Instruction::GetElementPtr:
2035 E = createExpression(I);
2036 break;
2037 default:
2038 return nullptr;
2039 }
2040 }
2041 return E;
2042 }
2043
2044 // Look up a container in a map, and then call a function for each thing in the
2045 // found container.
2046 template <typename Map, typename KeyType, typename Func>
for_each_found(Map & M,const KeyType & Key,Func F)2047 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2048 const auto Result = M.find_as(Key);
2049 if (Result != M.end())
2050 for (typename Map::mapped_type::value_type Mapped : Result->second)
2051 F(Mapped);
2052 }
2053
2054 // Look up a container of values/instructions in a map, and touch all the
2055 // instructions in the container. Then erase value from the map.
2056 template <typename Map, typename KeyType>
touchAndErase(Map & M,const KeyType & Key)2057 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2058 const auto Result = M.find_as(Key);
2059 if (Result != M.end()) {
2060 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2061 TouchedInstructions.set(InstrToDFSNum(Mapped));
2062 M.erase(Result);
2063 }
2064 }
2065
addAdditionalUsers(Value * To,Value * User) const2066 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2067 assert(User && To != User);
2068 if (isa<Instruction>(To))
2069 AdditionalUsers[To].insert(User);
2070 }
2071
markUsersTouched(Value * V)2072 void NewGVN::markUsersTouched(Value *V) {
2073 // Now mark the users as touched.
2074 for (auto *User : V->users()) {
2075 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2076 TouchedInstructions.set(InstrToDFSNum(User));
2077 }
2078 touchAndErase(AdditionalUsers, V);
2079 }
2080
addMemoryUsers(const MemoryAccess * To,MemoryAccess * U) const2081 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2082 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2083 MemoryToUsers[To].insert(U);
2084 }
2085
markMemoryDefTouched(const MemoryAccess * MA)2086 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2087 TouchedInstructions.set(MemoryToDFSNum(MA));
2088 }
2089
markMemoryUsersTouched(const MemoryAccess * MA)2090 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2091 if (isa<MemoryUse>(MA))
2092 return;
2093 for (auto U : MA->users())
2094 TouchedInstructions.set(MemoryToDFSNum(U));
2095 touchAndErase(MemoryToUsers, MA);
2096 }
2097
2098 // Add I to the set of users of a given predicate.
addPredicateUsers(const PredicateBase * PB,Instruction * I) const2099 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2100 // Don't add temporary instructions to the user lists.
2101 if (AllTempInstructions.count(I))
2102 return;
2103
2104 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2105 PredicateToUsers[PBranch->Condition].insert(I);
2106 else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2107 PredicateToUsers[PAssume->Condition].insert(I);
2108 }
2109
2110 // Touch all the predicates that depend on this instruction.
markPredicateUsersTouched(Instruction * I)2111 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2112 touchAndErase(PredicateToUsers, I);
2113 }
2114
2115 // Mark users affected by a memory leader change.
markMemoryLeaderChangeTouched(CongruenceClass * CC)2116 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2117 for (auto M : CC->memory())
2118 markMemoryDefTouched(M);
2119 }
2120
2121 // Touch the instructions that need to be updated after a congruence class has a
2122 // leader change, and mark changed values.
markValueLeaderChangeTouched(CongruenceClass * CC)2123 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2124 for (auto M : *CC) {
2125 if (auto *I = dyn_cast<Instruction>(M))
2126 TouchedInstructions.set(InstrToDFSNum(I));
2127 LeaderChanges.insert(M);
2128 }
2129 }
2130
2131 // Give a range of things that have instruction DFS numbers, this will return
2132 // the member of the range with the smallest dfs number.
2133 template <class T, class Range>
getMinDFSOfRange(const Range & R) const2134 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2135 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2136 for (const auto X : R) {
2137 auto DFSNum = InstrToDFSNum(X);
2138 if (DFSNum < MinDFS.second)
2139 MinDFS = {X, DFSNum};
2140 }
2141 return MinDFS.first;
2142 }
2143
2144 // This function returns the MemoryAccess that should be the next leader of
2145 // congruence class CC, under the assumption that the current leader is going to
2146 // disappear.
getNextMemoryLeader(CongruenceClass * CC) const2147 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2148 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2149 // do for regular leaders.
2150 // Make sure there will be a leader to find.
2151 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2152 if (CC->getStoreCount() > 0) {
2153 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2154 return getMemoryAccess(NL);
2155 // Find the store with the minimum DFS number.
2156 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2157 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2158 return getMemoryAccess(cast<StoreInst>(V));
2159 }
2160 assert(CC->getStoreCount() == 0);
2161
2162 // Given our assertion, hitting this part must mean
2163 // !OldClass->memory_empty()
2164 if (CC->memory_size() == 1)
2165 return *CC->memory_begin();
2166 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2167 }
2168
2169 // This function returns the next value leader of a congruence class, under the
2170 // assumption that the current leader is going away. This should end up being
2171 // the next most dominating member.
getNextValueLeader(CongruenceClass * CC) const2172 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2173 // We don't need to sort members if there is only 1, and we don't care about
2174 // sorting the TOP class because everything either gets out of it or is
2175 // unreachable.
2176
2177 if (CC->size() == 1 || CC == TOPClass) {
2178 return *(CC->begin());
2179 } else if (CC->getNextLeader().first) {
2180 ++NumGVNAvoidedSortedLeaderChanges;
2181 return CC->getNextLeader().first;
2182 } else {
2183 ++NumGVNSortedLeaderChanges;
2184 // NOTE: If this ends up to slow, we can maintain a dual structure for
2185 // member testing/insertion, or keep things mostly sorted, and sort only
2186 // here, or use SparseBitVector or ....
2187 return getMinDFSOfRange<Value>(*CC);
2188 }
2189 }
2190
2191 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2192 // the memory members, etc for the move.
2193 //
2194 // The invariants of this function are:
2195 //
2196 // - I must be moving to NewClass from OldClass
2197 // - The StoreCount of OldClass and NewClass is expected to have been updated
2198 // for I already if it is a store.
2199 // - The OldClass memory leader has not been updated yet if I was the leader.
moveMemoryToNewCongruenceClass(Instruction * I,MemoryAccess * InstMA,CongruenceClass * OldClass,CongruenceClass * NewClass)2200 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2201 MemoryAccess *InstMA,
2202 CongruenceClass *OldClass,
2203 CongruenceClass *NewClass) {
2204 // If the leader is I, and we had a representative MemoryAccess, it should
2205 // be the MemoryAccess of OldClass.
2206 assert((!InstMA || !OldClass->getMemoryLeader() ||
2207 OldClass->getLeader() != I ||
2208 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2209 MemoryAccessToClass.lookup(InstMA)) &&
2210 "Representative MemoryAccess mismatch");
2211 // First, see what happens to the new class
2212 if (!NewClass->getMemoryLeader()) {
2213 // Should be a new class, or a store becoming a leader of a new class.
2214 assert(NewClass->size() == 1 ||
2215 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2216 NewClass->setMemoryLeader(InstMA);
2217 // Mark it touched if we didn't just create a singleton
2218 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2219 << NewClass->getID()
2220 << " due to new memory instruction becoming leader\n");
2221 markMemoryLeaderChangeTouched(NewClass);
2222 }
2223 setMemoryClass(InstMA, NewClass);
2224 // Now, fixup the old class if necessary
2225 if (OldClass->getMemoryLeader() == InstMA) {
2226 if (!OldClass->definesNoMemory()) {
2227 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2228 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2229 << OldClass->getID() << " to "
2230 << *OldClass->getMemoryLeader()
2231 << " due to removal of old leader " << *InstMA << "\n");
2232 markMemoryLeaderChangeTouched(OldClass);
2233 } else
2234 OldClass->setMemoryLeader(nullptr);
2235 }
2236 }
2237
2238 // Move a value, currently in OldClass, to be part of NewClass
2239 // Update OldClass and NewClass for the move (including changing leaders, etc).
moveValueToNewCongruenceClass(Instruction * I,const Expression * E,CongruenceClass * OldClass,CongruenceClass * NewClass)2240 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2241 CongruenceClass *OldClass,
2242 CongruenceClass *NewClass) {
2243 if (I == OldClass->getNextLeader().first)
2244 OldClass->resetNextLeader();
2245
2246 OldClass->erase(I);
2247 NewClass->insert(I);
2248
2249 if (NewClass->getLeader() != I)
2250 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2251 // Handle our special casing of stores.
2252 if (auto *SI = dyn_cast<StoreInst>(I)) {
2253 OldClass->decStoreCount();
2254 // Okay, so when do we want to make a store a leader of a class?
2255 // If we have a store defined by an earlier load, we want the earlier load
2256 // to lead the class.
2257 // If we have a store defined by something else, we want the store to lead
2258 // the class so everything else gets the "something else" as a value.
2259 // If we have a store as the single member of the class, we want the store
2260 // as the leader
2261 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2262 // If it's a store expression we are using, it means we are not equivalent
2263 // to something earlier.
2264 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2265 NewClass->setStoredValue(SE->getStoredValue());
2266 markValueLeaderChangeTouched(NewClass);
2267 // Shift the new class leader to be the store
2268 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2269 << NewClass->getID() << " from "
2270 << *NewClass->getLeader() << " to " << *SI
2271 << " because store joined class\n");
2272 // If we changed the leader, we have to mark it changed because we don't
2273 // know what it will do to symbolic evaluation.
2274 NewClass->setLeader(SI);
2275 }
2276 // We rely on the code below handling the MemoryAccess change.
2277 }
2278 NewClass->incStoreCount();
2279 }
2280 // True if there is no memory instructions left in a class that had memory
2281 // instructions before.
2282
2283 // If it's not a memory use, set the MemoryAccess equivalence
2284 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2285 if (InstMA)
2286 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2287 ValueToClass[I] = NewClass;
2288 // See if we destroyed the class or need to swap leaders.
2289 if (OldClass->empty() && OldClass != TOPClass) {
2290 if (OldClass->getDefiningExpr()) {
2291 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2292 << " from table\n");
2293 // We erase it as an exact expression to make sure we don't just erase an
2294 // equivalent one.
2295 auto Iter = ExpressionToClass.find_as(
2296 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2297 if (Iter != ExpressionToClass.end())
2298 ExpressionToClass.erase(Iter);
2299 #ifdef EXPENSIVE_CHECKS
2300 assert(
2301 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2302 "We erased the expression we just inserted, which should not happen");
2303 #endif
2304 }
2305 } else if (OldClass->getLeader() == I) {
2306 // When the leader changes, the value numbering of
2307 // everything may change due to symbolization changes, so we need to
2308 // reprocess.
2309 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2310 << OldClass->getID() << "\n");
2311 ++NumGVNLeaderChanges;
2312 // Destroy the stored value if there are no more stores to represent it.
2313 // Note that this is basically clean up for the expression removal that
2314 // happens below. If we remove stores from a class, we may leave it as a
2315 // class of equivalent memory phis.
2316 if (OldClass->getStoreCount() == 0) {
2317 if (OldClass->getStoredValue())
2318 OldClass->setStoredValue(nullptr);
2319 }
2320 OldClass->setLeader(getNextValueLeader(OldClass));
2321 OldClass->resetNextLeader();
2322 markValueLeaderChangeTouched(OldClass);
2323 }
2324 }
2325
2326 // For a given expression, mark the phi of ops instructions that could have
2327 // changed as a result.
markPhiOfOpsChanged(const Expression * E)2328 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2329 touchAndErase(ExpressionToPhiOfOps, E);
2330 }
2331
2332 // Perform congruence finding on a given value numbering expression.
performCongruenceFinding(Instruction * I,const Expression * E)2333 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2334 // This is guaranteed to return something, since it will at least find
2335 // TOP.
2336
2337 CongruenceClass *IClass = ValueToClass.lookup(I);
2338 assert(IClass && "Should have found a IClass");
2339 // Dead classes should have been eliminated from the mapping.
2340 assert(!IClass->isDead() && "Found a dead class");
2341
2342 CongruenceClass *EClass = nullptr;
2343 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2344 EClass = ValueToClass.lookup(VE->getVariableValue());
2345 } else if (isa<DeadExpression>(E)) {
2346 EClass = TOPClass;
2347 }
2348 if (!EClass) {
2349 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2350
2351 // If it's not in the value table, create a new congruence class.
2352 if (lookupResult.second) {
2353 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2354 auto place = lookupResult.first;
2355 place->second = NewClass;
2356
2357 // Constants and variables should always be made the leader.
2358 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2359 NewClass->setLeader(CE->getConstantValue());
2360 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2361 StoreInst *SI = SE->getStoreInst();
2362 NewClass->setLeader(SI);
2363 NewClass->setStoredValue(SE->getStoredValue());
2364 // The RepMemoryAccess field will be filled in properly by the
2365 // moveValueToNewCongruenceClass call.
2366 } else {
2367 NewClass->setLeader(I);
2368 }
2369 assert(!isa<VariableExpression>(E) &&
2370 "VariableExpression should have been handled already");
2371
2372 EClass = NewClass;
2373 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2374 << " using expression " << *E << " at "
2375 << NewClass->getID() << " and leader "
2376 << *(NewClass->getLeader()));
2377 if (NewClass->getStoredValue())
2378 LLVM_DEBUG(dbgs() << " and stored value "
2379 << *(NewClass->getStoredValue()));
2380 LLVM_DEBUG(dbgs() << "\n");
2381 } else {
2382 EClass = lookupResult.first->second;
2383 if (isa<ConstantExpression>(E))
2384 assert((isa<Constant>(EClass->getLeader()) ||
2385 (EClass->getStoredValue() &&
2386 isa<Constant>(EClass->getStoredValue()))) &&
2387 "Any class with a constant expression should have a "
2388 "constant leader");
2389
2390 assert(EClass && "Somehow don't have an eclass");
2391
2392 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2393 }
2394 }
2395 bool ClassChanged = IClass != EClass;
2396 bool LeaderChanged = LeaderChanges.erase(I);
2397 if (ClassChanged || LeaderChanged) {
2398 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2399 << *E << "\n");
2400 if (ClassChanged) {
2401 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2402 markPhiOfOpsChanged(E);
2403 }
2404
2405 markUsersTouched(I);
2406 if (MemoryAccess *MA = getMemoryAccess(I))
2407 markMemoryUsersTouched(MA);
2408 if (auto *CI = dyn_cast<CmpInst>(I))
2409 markPredicateUsersTouched(CI);
2410 }
2411 // If we changed the class of the store, we want to ensure nothing finds the
2412 // old store expression. In particular, loads do not compare against stored
2413 // value, so they will find old store expressions (and associated class
2414 // mappings) if we leave them in the table.
2415 if (ClassChanged && isa<StoreInst>(I)) {
2416 auto *OldE = ValueToExpression.lookup(I);
2417 // It could just be that the old class died. We don't want to erase it if we
2418 // just moved classes.
2419 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2420 // Erase this as an exact expression to ensure we don't erase expressions
2421 // equivalent to it.
2422 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2423 if (Iter != ExpressionToClass.end())
2424 ExpressionToClass.erase(Iter);
2425 }
2426 }
2427 ValueToExpression[I] = E;
2428 }
2429
2430 // Process the fact that Edge (from, to) is reachable, including marking
2431 // any newly reachable blocks and instructions for processing.
updateReachableEdge(BasicBlock * From,BasicBlock * To)2432 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2433 // Check if the Edge was reachable before.
2434 if (ReachableEdges.insert({From, To}).second) {
2435 // If this block wasn't reachable before, all instructions are touched.
2436 if (ReachableBlocks.insert(To).second) {
2437 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2438 << " marked reachable\n");
2439 const auto &InstRange = BlockInstRange.lookup(To);
2440 TouchedInstructions.set(InstRange.first, InstRange.second);
2441 } else {
2442 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2443 << " was reachable, but new edge {"
2444 << getBlockName(From) << "," << getBlockName(To)
2445 << "} to it found\n");
2446
2447 // We've made an edge reachable to an existing block, which may
2448 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2449 // they are the only thing that depend on new edges. Anything using their
2450 // values will get propagated to if necessary.
2451 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2452 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2453
2454 // FIXME: We should just add a union op on a Bitvector and
2455 // SparseBitVector. We can do it word by word faster than we are doing it
2456 // here.
2457 for (auto InstNum : RevisitOnReachabilityChange[To])
2458 TouchedInstructions.set(InstNum);
2459 }
2460 }
2461 }
2462
2463 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2464 // see if we know some constant value for it already.
findConditionEquivalence(Value * Cond) const2465 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2466 auto Result = lookupOperandLeader(Cond);
2467 return isa<Constant>(Result) ? Result : nullptr;
2468 }
2469
2470 // Process the outgoing edges of a block for reachability.
processOutgoingEdges(Instruction * TI,BasicBlock * B)2471 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2472 // Evaluate reachability of terminator instruction.
2473 Value *Cond;
2474 BasicBlock *TrueSucc, *FalseSucc;
2475 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2476 Value *CondEvaluated = findConditionEquivalence(Cond);
2477 if (!CondEvaluated) {
2478 if (auto *I = dyn_cast<Instruction>(Cond)) {
2479 const Expression *E = createExpression(I);
2480 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2481 CondEvaluated = CE->getConstantValue();
2482 }
2483 } else if (isa<ConstantInt>(Cond)) {
2484 CondEvaluated = Cond;
2485 }
2486 }
2487 ConstantInt *CI;
2488 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2489 if (CI->isOne()) {
2490 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2491 << " evaluated to true\n");
2492 updateReachableEdge(B, TrueSucc);
2493 } else if (CI->isZero()) {
2494 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2495 << " evaluated to false\n");
2496 updateReachableEdge(B, FalseSucc);
2497 }
2498 } else {
2499 updateReachableEdge(B, TrueSucc);
2500 updateReachableEdge(B, FalseSucc);
2501 }
2502 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2503 // For switches, propagate the case values into the case
2504 // destinations.
2505
2506 Value *SwitchCond = SI->getCondition();
2507 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2508 // See if we were able to turn this switch statement into a constant.
2509 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2510 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2511 // We should be able to get case value for this.
2512 auto Case = *SI->findCaseValue(CondVal);
2513 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2514 // We proved the value is outside of the range of the case.
2515 // We can't do anything other than mark the default dest as reachable,
2516 // and go home.
2517 updateReachableEdge(B, SI->getDefaultDest());
2518 return;
2519 }
2520 // Now get where it goes and mark it reachable.
2521 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2522 updateReachableEdge(B, TargetBlock);
2523 } else {
2524 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2525 BasicBlock *TargetBlock = SI->getSuccessor(i);
2526 updateReachableEdge(B, TargetBlock);
2527 }
2528 }
2529 } else {
2530 // Otherwise this is either unconditional, or a type we have no
2531 // idea about. Just mark successors as reachable.
2532 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2533 BasicBlock *TargetBlock = TI->getSuccessor(i);
2534 updateReachableEdge(B, TargetBlock);
2535 }
2536
2537 // This also may be a memory defining terminator, in which case, set it
2538 // equivalent only to itself.
2539 //
2540 auto *MA = getMemoryAccess(TI);
2541 if (MA && !isa<MemoryUse>(MA)) {
2542 auto *CC = ensureLeaderOfMemoryClass(MA);
2543 if (setMemoryClass(MA, CC))
2544 markMemoryUsersTouched(MA);
2545 }
2546 }
2547 }
2548
2549 // Remove the PHI of Ops PHI for I
removePhiOfOps(Instruction * I,PHINode * PHITemp)2550 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2551 InstrDFS.erase(PHITemp);
2552 // It's still a temp instruction. We keep it in the array so it gets erased.
2553 // However, it's no longer used by I, or in the block
2554 TempToBlock.erase(PHITemp);
2555 RealToTemp.erase(I);
2556 // We don't remove the users from the phi node uses. This wastes a little
2557 // time, but such is life. We could use two sets to track which were there
2558 // are the start of NewGVN, and which were added, but right nowt he cost of
2559 // tracking is more than the cost of checking for more phi of ops.
2560 }
2561
2562 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
addPhiOfOps(PHINode * Op,BasicBlock * BB,Instruction * ExistingValue)2563 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2564 Instruction *ExistingValue) {
2565 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2566 AllTempInstructions.insert(Op);
2567 TempToBlock[Op] = BB;
2568 RealToTemp[ExistingValue] = Op;
2569 // Add all users to phi node use, as they are now uses of the phi of ops phis
2570 // and may themselves be phi of ops.
2571 for (auto *U : ExistingValue->users())
2572 if (auto *UI = dyn_cast<Instruction>(U))
2573 PHINodeUses.insert(UI);
2574 }
2575
okayForPHIOfOps(const Instruction * I)2576 static bool okayForPHIOfOps(const Instruction *I) {
2577 if (!EnablePhiOfOps)
2578 return false;
2579 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2580 isa<LoadInst>(I);
2581 }
2582
OpIsSafeForPHIOfOpsHelper(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited,SmallVectorImpl<Instruction * > & Worklist)2583 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2584 Value *V, const BasicBlock *PHIBlock,
2585 SmallPtrSetImpl<const Value *> &Visited,
2586 SmallVectorImpl<Instruction *> &Worklist) {
2587
2588 if (!isa<Instruction>(V))
2589 return true;
2590 auto OISIt = OpSafeForPHIOfOps.find(V);
2591 if (OISIt != OpSafeForPHIOfOps.end())
2592 return OISIt->second;
2593
2594 // Keep walking until we either dominate the phi block, or hit a phi, or run
2595 // out of things to check.
2596 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2597 OpSafeForPHIOfOps.insert({V, true});
2598 return true;
2599 }
2600 // PHI in the same block.
2601 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2602 OpSafeForPHIOfOps.insert({V, false});
2603 return false;
2604 }
2605
2606 auto *OrigI = cast<Instruction>(V);
2607 for (auto *Op : OrigI->operand_values()) {
2608 if (!isa<Instruction>(Op))
2609 continue;
2610 // Stop now if we find an unsafe operand.
2611 auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2612 if (OISIt != OpSafeForPHIOfOps.end()) {
2613 if (!OISIt->second) {
2614 OpSafeForPHIOfOps.insert({V, false});
2615 return false;
2616 }
2617 continue;
2618 }
2619 if (!Visited.insert(Op).second)
2620 continue;
2621 Worklist.push_back(cast<Instruction>(Op));
2622 }
2623 return true;
2624 }
2625
2626 // Return true if this operand will be safe to use for phi of ops.
2627 //
2628 // The reason some operands are unsafe is that we are not trying to recursively
2629 // translate everything back through phi nodes. We actually expect some lookups
2630 // of expressions to fail. In particular, a lookup where the expression cannot
2631 // exist in the predecessor. This is true even if the expression, as shown, can
2632 // be determined to be constant.
OpIsSafeForPHIOfOps(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited)2633 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2634 SmallPtrSetImpl<const Value *> &Visited) {
2635 SmallVector<Instruction *, 4> Worklist;
2636 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2637 return false;
2638 while (!Worklist.empty()) {
2639 auto *I = Worklist.pop_back_val();
2640 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2641 return false;
2642 }
2643 OpSafeForPHIOfOps.insert({V, true});
2644 return true;
2645 }
2646
2647 // Try to find a leader for instruction TransInst, which is a phi translated
2648 // version of something in our original program. Visited is used to ensure we
2649 // don't infinite loop during translations of cycles. OrigInst is the
2650 // instruction in the original program, and PredBB is the predecessor we
2651 // translated it through.
findLeaderForInst(Instruction * TransInst,SmallPtrSetImpl<Value * > & Visited,MemoryAccess * MemAccess,Instruction * OrigInst,BasicBlock * PredBB)2652 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2653 SmallPtrSetImpl<Value *> &Visited,
2654 MemoryAccess *MemAccess, Instruction *OrigInst,
2655 BasicBlock *PredBB) {
2656 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2657 // Make sure it's marked as a temporary instruction.
2658 AllTempInstructions.insert(TransInst);
2659 // and make sure anything that tries to add it's DFS number is
2660 // redirected to the instruction we are making a phi of ops
2661 // for.
2662 TempToBlock.insert({TransInst, PredBB});
2663 InstrDFS.insert({TransInst, IDFSNum});
2664
2665 const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2666 InstrDFS.erase(TransInst);
2667 AllTempInstructions.erase(TransInst);
2668 TempToBlock.erase(TransInst);
2669 if (MemAccess)
2670 TempToMemory.erase(TransInst);
2671 if (!E)
2672 return nullptr;
2673 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2674 if (!FoundVal) {
2675 ExpressionToPhiOfOps[E].insert(OrigInst);
2676 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2677 << " in block " << getBlockName(PredBB) << "\n");
2678 return nullptr;
2679 }
2680 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2681 FoundVal = SI->getValueOperand();
2682 return FoundVal;
2683 }
2684
2685 // When we see an instruction that is an op of phis, generate the equivalent phi
2686 // of ops form.
2687 const Expression *
makePossiblePHIOfOps(Instruction * I,SmallPtrSetImpl<Value * > & Visited)2688 NewGVN::makePossiblePHIOfOps(Instruction *I,
2689 SmallPtrSetImpl<Value *> &Visited) {
2690 if (!okayForPHIOfOps(I))
2691 return nullptr;
2692
2693 if (!Visited.insert(I).second)
2694 return nullptr;
2695 // For now, we require the instruction be cycle free because we don't
2696 // *always* create a phi of ops for instructions that could be done as phi
2697 // of ops, we only do it if we think it is useful. If we did do it all the
2698 // time, we could remove the cycle free check.
2699 if (!isCycleFree(I))
2700 return nullptr;
2701
2702 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2703 // TODO: We don't do phi translation on memory accesses because it's
2704 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2705 // which we don't have a good way of doing ATM.
2706 auto *MemAccess = getMemoryAccess(I);
2707 // If the memory operation is defined by a memory operation this block that
2708 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2709 // can't help, as it would still be killed by that memory operation.
2710 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2711 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2712 return nullptr;
2713
2714 // Convert op of phis to phi of ops
2715 SmallPtrSet<const Value *, 10> VisitedOps;
2716 SmallVector<Value *, 4> Ops(I->operand_values());
2717 BasicBlock *SamePHIBlock = nullptr;
2718 PHINode *OpPHI = nullptr;
2719 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2720 return nullptr;
2721 for (auto *Op : Ops) {
2722 if (!isa<PHINode>(Op)) {
2723 auto *ValuePHI = RealToTemp.lookup(Op);
2724 if (!ValuePHI)
2725 continue;
2726 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2727 Op = ValuePHI;
2728 }
2729 OpPHI = cast<PHINode>(Op);
2730 if (!SamePHIBlock) {
2731 SamePHIBlock = getBlockForValue(OpPHI);
2732 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2733 LLVM_DEBUG(
2734 dbgs()
2735 << "PHIs for operands are not all in the same block, aborting\n");
2736 return nullptr;
2737 }
2738 // No point in doing this for one-operand phis.
2739 if (OpPHI->getNumOperands() == 1) {
2740 OpPHI = nullptr;
2741 continue;
2742 }
2743 }
2744
2745 if (!OpPHI)
2746 return nullptr;
2747
2748 SmallVector<ValPair, 4> PHIOps;
2749 SmallPtrSet<Value *, 4> Deps;
2750 auto *PHIBlock = getBlockForValue(OpPHI);
2751 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2752 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2753 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2754 Value *FoundVal = nullptr;
2755 SmallPtrSet<Value *, 4> CurrentDeps;
2756 // We could just skip unreachable edges entirely but it's tricky to do
2757 // with rewriting existing phi nodes.
2758 if (ReachableEdges.count({PredBB, PHIBlock})) {
2759 // Clone the instruction, create an expression from it that is
2760 // translated back into the predecessor, and see if we have a leader.
2761 Instruction *ValueOp = I->clone();
2762 if (MemAccess)
2763 TempToMemory.insert({ValueOp, MemAccess});
2764 bool SafeForPHIOfOps = true;
2765 VisitedOps.clear();
2766 for (auto &Op : ValueOp->operands()) {
2767 auto *OrigOp = &*Op;
2768 // When these operand changes, it could change whether there is a
2769 // leader for us or not, so we have to add additional users.
2770 if (isa<PHINode>(Op)) {
2771 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2772 if (Op != OrigOp && Op != I)
2773 CurrentDeps.insert(Op);
2774 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2775 if (getBlockForValue(ValuePHI) == PHIBlock)
2776 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2777 }
2778 // If we phi-translated the op, it must be safe.
2779 SafeForPHIOfOps =
2780 SafeForPHIOfOps &&
2781 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2782 }
2783 // FIXME: For those things that are not safe we could generate
2784 // expressions all the way down, and see if this comes out to a
2785 // constant. For anything where that is true, and unsafe, we should
2786 // have made a phi-of-ops (or value numbered it equivalent to something)
2787 // for the pieces already.
2788 FoundVal = !SafeForPHIOfOps ? nullptr
2789 : findLeaderForInst(ValueOp, Visited,
2790 MemAccess, I, PredBB);
2791 ValueOp->deleteValue();
2792 if (!FoundVal) {
2793 // We failed to find a leader for the current ValueOp, but this might
2794 // change in case of the translated operands change.
2795 if (SafeForPHIOfOps)
2796 for (auto Dep : CurrentDeps)
2797 addAdditionalUsers(Dep, I);
2798
2799 return nullptr;
2800 }
2801 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2802 } else {
2803 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2804 << getBlockName(PredBB)
2805 << " because the block is unreachable\n");
2806 FoundVal = UndefValue::get(I->getType());
2807 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2808 }
2809
2810 PHIOps.push_back({FoundVal, PredBB});
2811 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2812 << getBlockName(PredBB) << "\n");
2813 }
2814 for (auto Dep : Deps)
2815 addAdditionalUsers(Dep, I);
2816 sortPHIOps(PHIOps);
2817 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2818 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2819 LLVM_DEBUG(
2820 dbgs()
2821 << "Not creating real PHI of ops because it simplified to existing "
2822 "value or constant\n");
2823 return E;
2824 }
2825 auto *ValuePHI = RealToTemp.lookup(I);
2826 bool NewPHI = false;
2827 if (!ValuePHI) {
2828 ValuePHI =
2829 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2830 addPhiOfOps(ValuePHI, PHIBlock, I);
2831 NewPHI = true;
2832 NumGVNPHIOfOpsCreated++;
2833 }
2834 if (NewPHI) {
2835 for (auto PHIOp : PHIOps)
2836 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2837 } else {
2838 TempToBlock[ValuePHI] = PHIBlock;
2839 unsigned int i = 0;
2840 for (auto PHIOp : PHIOps) {
2841 ValuePHI->setIncomingValue(i, PHIOp.first);
2842 ValuePHI->setIncomingBlock(i, PHIOp.second);
2843 ++i;
2844 }
2845 }
2846 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2847 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2848 << "\n");
2849
2850 return E;
2851 }
2852
2853 // The algorithm initially places the values of the routine in the TOP
2854 // congruence class. The leader of TOP is the undetermined value `undef`.
2855 // When the algorithm has finished, values still in TOP are unreachable.
initializeCongruenceClasses(Function & F)2856 void NewGVN::initializeCongruenceClasses(Function &F) {
2857 NextCongruenceNum = 0;
2858
2859 // Note that even though we use the live on entry def as a representative
2860 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2861 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2862 // should be checking whether the MemoryAccess is top if we want to know if it
2863 // is equivalent to everything. Otherwise, what this really signifies is that
2864 // the access "it reaches all the way back to the beginning of the function"
2865
2866 // Initialize all other instructions to be in TOP class.
2867 TOPClass = createCongruenceClass(nullptr, nullptr);
2868 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2869 // The live on entry def gets put into it's own class
2870 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2871 createMemoryClass(MSSA->getLiveOnEntryDef());
2872
2873 for (auto DTN : nodes(DT)) {
2874 BasicBlock *BB = DTN->getBlock();
2875 // All MemoryAccesses are equivalent to live on entry to start. They must
2876 // be initialized to something so that initial changes are noticed. For
2877 // the maximal answer, we initialize them all to be the same as
2878 // liveOnEntry.
2879 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2880 if (MemoryBlockDefs)
2881 for (const auto &Def : *MemoryBlockDefs) {
2882 MemoryAccessToClass[&Def] = TOPClass;
2883 auto *MD = dyn_cast<MemoryDef>(&Def);
2884 // Insert the memory phis into the member list.
2885 if (!MD) {
2886 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2887 TOPClass->memory_insert(MP);
2888 MemoryPhiState.insert({MP, MPS_TOP});
2889 }
2890
2891 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2892 TOPClass->incStoreCount();
2893 }
2894
2895 // FIXME: This is trying to discover which instructions are uses of phi
2896 // nodes. We should move this into one of the myriad of places that walk
2897 // all the operands already.
2898 for (auto &I : *BB) {
2899 if (isa<PHINode>(&I))
2900 for (auto *U : I.users())
2901 if (auto *UInst = dyn_cast<Instruction>(U))
2902 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2903 PHINodeUses.insert(UInst);
2904 // Don't insert void terminators into the class. We don't value number
2905 // them, and they just end up sitting in TOP.
2906 if (I.isTerminator() && I.getType()->isVoidTy())
2907 continue;
2908 TOPClass->insert(&I);
2909 ValueToClass[&I] = TOPClass;
2910 }
2911 }
2912
2913 // Initialize arguments to be in their own unique congruence classes
2914 for (auto &FA : F.args())
2915 createSingletonCongruenceClass(&FA);
2916 }
2917
cleanupTables()2918 void NewGVN::cleanupTables() {
2919 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2920 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2921 << " has " << CongruenceClasses[i]->size()
2922 << " members\n");
2923 // Make sure we delete the congruence class (probably worth switching to
2924 // a unique_ptr at some point.
2925 delete CongruenceClasses[i];
2926 CongruenceClasses[i] = nullptr;
2927 }
2928
2929 // Destroy the value expressions
2930 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2931 AllTempInstructions.end());
2932 AllTempInstructions.clear();
2933
2934 // We have to drop all references for everything first, so there are no uses
2935 // left as we delete them.
2936 for (auto *I : TempInst) {
2937 I->dropAllReferences();
2938 }
2939
2940 while (!TempInst.empty()) {
2941 auto *I = TempInst.back();
2942 TempInst.pop_back();
2943 I->deleteValue();
2944 }
2945
2946 ValueToClass.clear();
2947 ArgRecycler.clear(ExpressionAllocator);
2948 ExpressionAllocator.Reset();
2949 CongruenceClasses.clear();
2950 ExpressionToClass.clear();
2951 ValueToExpression.clear();
2952 RealToTemp.clear();
2953 AdditionalUsers.clear();
2954 ExpressionToPhiOfOps.clear();
2955 TempToBlock.clear();
2956 TempToMemory.clear();
2957 PHINodeUses.clear();
2958 OpSafeForPHIOfOps.clear();
2959 ReachableBlocks.clear();
2960 ReachableEdges.clear();
2961 #ifndef NDEBUG
2962 ProcessedCount.clear();
2963 #endif
2964 InstrDFS.clear();
2965 InstructionsToErase.clear();
2966 DFSToInstr.clear();
2967 BlockInstRange.clear();
2968 TouchedInstructions.clear();
2969 MemoryAccessToClass.clear();
2970 PredicateToUsers.clear();
2971 MemoryToUsers.clear();
2972 RevisitOnReachabilityChange.clear();
2973 }
2974
2975 // Assign local DFS number mapping to instructions, and leave space for Value
2976 // PHI's.
assignDFSNumbers(BasicBlock * B,unsigned Start)2977 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2978 unsigned Start) {
2979 unsigned End = Start;
2980 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2981 InstrDFS[MemPhi] = End++;
2982 DFSToInstr.emplace_back(MemPhi);
2983 }
2984
2985 // Then the real block goes next.
2986 for (auto &I : *B) {
2987 // There's no need to call isInstructionTriviallyDead more than once on
2988 // an instruction. Therefore, once we know that an instruction is dead
2989 // we change its DFS number so that it doesn't get value numbered.
2990 if (isInstructionTriviallyDead(&I, TLI)) {
2991 InstrDFS[&I] = 0;
2992 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2993 markInstructionForDeletion(&I);
2994 continue;
2995 }
2996 if (isa<PHINode>(&I))
2997 RevisitOnReachabilityChange[B].set(End);
2998 InstrDFS[&I] = End++;
2999 DFSToInstr.emplace_back(&I);
3000 }
3001
3002 // All of the range functions taken half-open ranges (open on the end side).
3003 // So we do not subtract one from count, because at this point it is one
3004 // greater than the last instruction.
3005 return std::make_pair(Start, End);
3006 }
3007
updateProcessedCount(const Value * V)3008 void NewGVN::updateProcessedCount(const Value *V) {
3009 #ifndef NDEBUG
3010 if (ProcessedCount.count(V) == 0) {
3011 ProcessedCount.insert({V, 1});
3012 } else {
3013 ++ProcessedCount[V];
3014 assert(ProcessedCount[V] < 100 &&
3015 "Seem to have processed the same Value a lot");
3016 }
3017 #endif
3018 }
3019
3020 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
valueNumberMemoryPhi(MemoryPhi * MP)3021 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3022 // If all the arguments are the same, the MemoryPhi has the same value as the
3023 // argument. Filter out unreachable blocks and self phis from our operands.
3024 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3025 // self-phi checking.
3026 const BasicBlock *PHIBlock = MP->getBlock();
3027 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3028 return cast<MemoryAccess>(U) != MP &&
3029 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3030 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3031 });
3032 // If all that is left is nothing, our memoryphi is undef. We keep it as
3033 // InitialClass. Note: The only case this should happen is if we have at
3034 // least one self-argument.
3035 if (Filtered.begin() == Filtered.end()) {
3036 if (setMemoryClass(MP, TOPClass))
3037 markMemoryUsersTouched(MP);
3038 return;
3039 }
3040
3041 // Transform the remaining operands into operand leaders.
3042 // FIXME: mapped_iterator should have a range version.
3043 auto LookupFunc = [&](const Use &U) {
3044 return lookupMemoryLeader(cast<MemoryAccess>(U));
3045 };
3046 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3047 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3048
3049 // and now check if all the elements are equal.
3050 // Sadly, we can't use std::equals since these are random access iterators.
3051 const auto *AllSameValue = *MappedBegin;
3052 ++MappedBegin;
3053 bool AllEqual = std::all_of(
3054 MappedBegin, MappedEnd,
3055 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3056
3057 if (AllEqual)
3058 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3059 << "\n");
3060 else
3061 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3062 // If it's equal to something, it's in that class. Otherwise, it has to be in
3063 // a class where it is the leader (other things may be equivalent to it, but
3064 // it needs to start off in its own class, which means it must have been the
3065 // leader, and it can't have stopped being the leader because it was never
3066 // removed).
3067 CongruenceClass *CC =
3068 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3069 auto OldState = MemoryPhiState.lookup(MP);
3070 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3071 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3072 MemoryPhiState[MP] = NewState;
3073 if (setMemoryClass(MP, CC) || OldState != NewState)
3074 markMemoryUsersTouched(MP);
3075 }
3076
3077 // Value number a single instruction, symbolically evaluating, performing
3078 // congruence finding, and updating mappings.
valueNumberInstruction(Instruction * I)3079 void NewGVN::valueNumberInstruction(Instruction *I) {
3080 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3081 if (!I->isTerminator()) {
3082 const Expression *Symbolized = nullptr;
3083 SmallPtrSet<Value *, 2> Visited;
3084 if (DebugCounter::shouldExecute(VNCounter)) {
3085 Symbolized = performSymbolicEvaluation(I, Visited);
3086 // Make a phi of ops if necessary
3087 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3088 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3089 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3090 // If we created a phi of ops, use it.
3091 // If we couldn't create one, make sure we don't leave one lying around
3092 if (PHIE) {
3093 Symbolized = PHIE;
3094 } else if (auto *Op = RealToTemp.lookup(I)) {
3095 removePhiOfOps(I, Op);
3096 }
3097 }
3098 } else {
3099 // Mark the instruction as unused so we don't value number it again.
3100 InstrDFS[I] = 0;
3101 }
3102 // If we couldn't come up with a symbolic expression, use the unknown
3103 // expression
3104 if (Symbolized == nullptr)
3105 Symbolized = createUnknownExpression(I);
3106 performCongruenceFinding(I, Symbolized);
3107 } else {
3108 // Handle terminators that return values. All of them produce values we
3109 // don't currently understand. We don't place non-value producing
3110 // terminators in a class.
3111 if (!I->getType()->isVoidTy()) {
3112 auto *Symbolized = createUnknownExpression(I);
3113 performCongruenceFinding(I, Symbolized);
3114 }
3115 processOutgoingEdges(I, I->getParent());
3116 }
3117 }
3118
3119 // Check if there is a path, using single or equal argument phi nodes, from
3120 // First to Second.
singleReachablePHIPath(SmallPtrSet<const MemoryAccess *,8> & Visited,const MemoryAccess * First,const MemoryAccess * Second) const3121 bool NewGVN::singleReachablePHIPath(
3122 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3123 const MemoryAccess *Second) const {
3124 if (First == Second)
3125 return true;
3126 if (MSSA->isLiveOnEntryDef(First))
3127 return false;
3128
3129 // This is not perfect, but as we're just verifying here, we can live with
3130 // the loss of precision. The real solution would be that of doing strongly
3131 // connected component finding in this routine, and it's probably not worth
3132 // the complexity for the time being. So, we just keep a set of visited
3133 // MemoryAccess and return true when we hit a cycle.
3134 if (Visited.count(First))
3135 return true;
3136 Visited.insert(First);
3137
3138 const auto *EndDef = First;
3139 for (auto *ChainDef : optimized_def_chain(First)) {
3140 if (ChainDef == Second)
3141 return true;
3142 if (MSSA->isLiveOnEntryDef(ChainDef))
3143 return false;
3144 EndDef = ChainDef;
3145 }
3146 auto *MP = cast<MemoryPhi>(EndDef);
3147 auto ReachableOperandPred = [&](const Use &U) {
3148 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3149 };
3150 auto FilteredPhiArgs =
3151 make_filter_range(MP->operands(), ReachableOperandPred);
3152 SmallVector<const Value *, 32> OperandList;
3153 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3154 bool Okay = is_splat(OperandList);
3155 if (Okay)
3156 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3157 Second);
3158 return false;
3159 }
3160
3161 // Verify the that the memory equivalence table makes sense relative to the
3162 // congruence classes. Note that this checking is not perfect, and is currently
3163 // subject to very rare false negatives. It is only useful for
3164 // testing/debugging.
verifyMemoryCongruency() const3165 void NewGVN::verifyMemoryCongruency() const {
3166 #ifndef NDEBUG
3167 // Verify that the memory table equivalence and memory member set match
3168 for (const auto *CC : CongruenceClasses) {
3169 if (CC == TOPClass || CC->isDead())
3170 continue;
3171 if (CC->getStoreCount() != 0) {
3172 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3173 "Any class with a store as a leader should have a "
3174 "representative stored value");
3175 assert(CC->getMemoryLeader() &&
3176 "Any congruence class with a store should have a "
3177 "representative access");
3178 }
3179
3180 if (CC->getMemoryLeader())
3181 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3182 "Representative MemoryAccess does not appear to be reverse "
3183 "mapped properly");
3184 for (auto M : CC->memory())
3185 assert(MemoryAccessToClass.lookup(M) == CC &&
3186 "Memory member does not appear to be reverse mapped properly");
3187 }
3188
3189 // Anything equivalent in the MemoryAccess table should be in the same
3190 // congruence class.
3191
3192 // Filter out the unreachable and trivially dead entries, because they may
3193 // never have been updated if the instructions were not processed.
3194 auto ReachableAccessPred =
3195 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3196 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3197 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3198 MemoryToDFSNum(Pair.first) == 0)
3199 return false;
3200 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3201 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3202
3203 // We could have phi nodes which operands are all trivially dead,
3204 // so we don't process them.
3205 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3206 for (auto &U : MemPHI->incoming_values()) {
3207 if (auto *I = dyn_cast<Instruction>(&*U)) {
3208 if (!isInstructionTriviallyDead(I))
3209 return true;
3210 }
3211 }
3212 return false;
3213 }
3214
3215 return true;
3216 };
3217
3218 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3219 for (auto KV : Filtered) {
3220 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3221 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3222 if (FirstMUD && SecondMUD) {
3223 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3224 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3225 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3226 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3227 "The instructions for these memory operations should have "
3228 "been in the same congruence class or reachable through"
3229 "a single argument phi");
3230 }
3231 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3232 // We can only sanely verify that MemoryDefs in the operand list all have
3233 // the same class.
3234 auto ReachableOperandPred = [&](const Use &U) {
3235 return ReachableEdges.count(
3236 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3237 isa<MemoryDef>(U);
3238
3239 };
3240 // All arguments should in the same class, ignoring unreachable arguments
3241 auto FilteredPhiArgs =
3242 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3243 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3244 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3245 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3246 const MemoryDef *MD = cast<MemoryDef>(U);
3247 return ValueToClass.lookup(MD->getMemoryInst());
3248 });
3249 assert(is_splat(PhiOpClasses) &&
3250 "All MemoryPhi arguments should be in the same class");
3251 }
3252 }
3253 #endif
3254 }
3255
3256 // Verify that the sparse propagation we did actually found the maximal fixpoint
3257 // We do this by storing the value to class mapping, touching all instructions,
3258 // and redoing the iteration to see if anything changed.
verifyIterationSettled(Function & F)3259 void NewGVN::verifyIterationSettled(Function &F) {
3260 #ifndef NDEBUG
3261 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3262 if (DebugCounter::isCounterSet(VNCounter))
3263 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3264
3265 // Note that we have to store the actual classes, as we may change existing
3266 // classes during iteration. This is because our memory iteration propagation
3267 // is not perfect, and so may waste a little work. But it should generate
3268 // exactly the same congruence classes we have now, with different IDs.
3269 std::map<const Value *, CongruenceClass> BeforeIteration;
3270
3271 for (auto &KV : ValueToClass) {
3272 if (auto *I = dyn_cast<Instruction>(KV.first))
3273 // Skip unused/dead instructions.
3274 if (InstrToDFSNum(I) == 0)
3275 continue;
3276 BeforeIteration.insert({KV.first, *KV.second});
3277 }
3278
3279 TouchedInstructions.set();
3280 TouchedInstructions.reset(0);
3281 iterateTouchedInstructions();
3282 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3283 EqualClasses;
3284 for (const auto &KV : ValueToClass) {
3285 if (auto *I = dyn_cast<Instruction>(KV.first))
3286 // Skip unused/dead instructions.
3287 if (InstrToDFSNum(I) == 0)
3288 continue;
3289 // We could sink these uses, but i think this adds a bit of clarity here as
3290 // to what we are comparing.
3291 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3292 auto *AfterCC = KV.second;
3293 // Note that the classes can't change at this point, so we memoize the set
3294 // that are equal.
3295 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3296 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3297 "Value number changed after main loop completed!");
3298 EqualClasses.insert({BeforeCC, AfterCC});
3299 }
3300 }
3301 #endif
3302 }
3303
3304 // Verify that for each store expression in the expression to class mapping,
3305 // only the latest appears, and multiple ones do not appear.
3306 // Because loads do not use the stored value when doing equality with stores,
3307 // if we don't erase the old store expressions from the table, a load can find
3308 // a no-longer valid StoreExpression.
verifyStoreExpressions() const3309 void NewGVN::verifyStoreExpressions() const {
3310 #ifndef NDEBUG
3311 // This is the only use of this, and it's not worth defining a complicated
3312 // densemapinfo hash/equality function for it.
3313 std::set<
3314 std::pair<const Value *,
3315 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3316 StoreExpressionSet;
3317 for (const auto &KV : ExpressionToClass) {
3318 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3319 // Make sure a version that will conflict with loads is not already there
3320 auto Res = StoreExpressionSet.insert(
3321 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3322 SE->getStoredValue())});
3323 bool Okay = Res.second;
3324 // It's okay to have the same expression already in there if it is
3325 // identical in nature.
3326 // This can happen when the leader of the stored value changes over time.
3327 if (!Okay)
3328 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3329 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3330 lookupOperandLeader(SE->getStoredValue()));
3331 assert(Okay && "Stored expression conflict exists in expression table");
3332 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3333 assert(ValueExpr && ValueExpr->equals(*SE) &&
3334 "StoreExpression in ExpressionToClass is not latest "
3335 "StoreExpression for value");
3336 }
3337 }
3338 #endif
3339 }
3340
3341 // This is the main value numbering loop, it iterates over the initial touched
3342 // instruction set, propagating value numbers, marking things touched, etc,
3343 // until the set of touched instructions is completely empty.
iterateTouchedInstructions()3344 void NewGVN::iterateTouchedInstructions() {
3345 unsigned int Iterations = 0;
3346 // Figure out where touchedinstructions starts
3347 int FirstInstr = TouchedInstructions.find_first();
3348 // Nothing set, nothing to iterate, just return.
3349 if (FirstInstr == -1)
3350 return;
3351 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3352 while (TouchedInstructions.any()) {
3353 ++Iterations;
3354 // Walk through all the instructions in all the blocks in RPO.
3355 // TODO: As we hit a new block, we should push and pop equalities into a
3356 // table lookupOperandLeader can use, to catch things PredicateInfo
3357 // might miss, like edge-only equivalences.
3358 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3359
3360 // This instruction was found to be dead. We don't bother looking
3361 // at it again.
3362 if (InstrNum == 0) {
3363 TouchedInstructions.reset(InstrNum);
3364 continue;
3365 }
3366
3367 Value *V = InstrFromDFSNum(InstrNum);
3368 const BasicBlock *CurrBlock = getBlockForValue(V);
3369
3370 // If we hit a new block, do reachability processing.
3371 if (CurrBlock != LastBlock) {
3372 LastBlock = CurrBlock;
3373 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3374 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3375
3376 // If it's not reachable, erase any touched instructions and move on.
3377 if (!BlockReachable) {
3378 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3379 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3380 << getBlockName(CurrBlock)
3381 << " because it is unreachable\n");
3382 continue;
3383 }
3384 updateProcessedCount(CurrBlock);
3385 }
3386 // Reset after processing (because we may mark ourselves as touched when
3387 // we propagate equalities).
3388 TouchedInstructions.reset(InstrNum);
3389
3390 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3391 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3392 valueNumberMemoryPhi(MP);
3393 } else if (auto *I = dyn_cast<Instruction>(V)) {
3394 valueNumberInstruction(I);
3395 } else {
3396 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3397 }
3398 updateProcessedCount(V);
3399 }
3400 }
3401 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3402 }
3403
3404 // This is the main transformation entry point.
runGVN()3405 bool NewGVN::runGVN() {
3406 if (DebugCounter::isCounterSet(VNCounter))
3407 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3408 bool Changed = false;
3409 NumFuncArgs = F.arg_size();
3410 MSSAWalker = MSSA->getWalker();
3411 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3412
3413 // Count number of instructions for sizing of hash tables, and come
3414 // up with a global dfs numbering for instructions.
3415 unsigned ICount = 1;
3416 // Add an empty instruction to account for the fact that we start at 1
3417 DFSToInstr.emplace_back(nullptr);
3418 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3419 // same as dominator tree order, particularly with regard whether backedges
3420 // get visited first or second, given a block with multiple successors.
3421 // If we visit in the wrong order, we will end up performing N times as many
3422 // iterations.
3423 // The dominator tree does guarantee that, for a given dom tree node, it's
3424 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3425 // the siblings.
3426 ReversePostOrderTraversal<Function *> RPOT(&F);
3427 unsigned Counter = 0;
3428 for (auto &B : RPOT) {
3429 auto *Node = DT->getNode(B);
3430 assert(Node && "RPO and Dominator tree should have same reachability");
3431 RPOOrdering[Node] = ++Counter;
3432 }
3433 // Sort dominator tree children arrays into RPO.
3434 for (auto &B : RPOT) {
3435 auto *Node = DT->getNode(B);
3436 if (Node->getChildren().size() > 1)
3437 llvm::sort(Node->begin(), Node->end(),
3438 [&](const DomTreeNode *A, const DomTreeNode *B) {
3439 return RPOOrdering[A] < RPOOrdering[B];
3440 });
3441 }
3442
3443 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3444 for (auto DTN : depth_first(DT->getRootNode())) {
3445 BasicBlock *B = DTN->getBlock();
3446 const auto &BlockRange = assignDFSNumbers(B, ICount);
3447 BlockInstRange.insert({B, BlockRange});
3448 ICount += BlockRange.second - BlockRange.first;
3449 }
3450 initializeCongruenceClasses(F);
3451
3452 TouchedInstructions.resize(ICount);
3453 // Ensure we don't end up resizing the expressionToClass map, as
3454 // that can be quite expensive. At most, we have one expression per
3455 // instruction.
3456 ExpressionToClass.reserve(ICount);
3457
3458 // Initialize the touched instructions to include the entry block.
3459 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3460 TouchedInstructions.set(InstRange.first, InstRange.second);
3461 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3462 << " marked reachable\n");
3463 ReachableBlocks.insert(&F.getEntryBlock());
3464
3465 iterateTouchedInstructions();
3466 verifyMemoryCongruency();
3467 verifyIterationSettled(F);
3468 verifyStoreExpressions();
3469
3470 Changed |= eliminateInstructions(F);
3471
3472 // Delete all instructions marked for deletion.
3473 for (Instruction *ToErase : InstructionsToErase) {
3474 if (!ToErase->use_empty())
3475 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3476
3477 assert(ToErase->getParent() &&
3478 "BB containing ToErase deleted unexpectedly!");
3479 ToErase->eraseFromParent();
3480 }
3481 Changed |= !InstructionsToErase.empty();
3482
3483 // Delete all unreachable blocks.
3484 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3485 return !ReachableBlocks.count(&BB);
3486 };
3487
3488 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3489 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3490 << " is unreachable\n");
3491 deleteInstructionsInBlock(&BB);
3492 Changed = true;
3493 }
3494
3495 cleanupTables();
3496 return Changed;
3497 }
3498
3499 struct NewGVN::ValueDFS {
3500 int DFSIn = 0;
3501 int DFSOut = 0;
3502 int LocalNum = 0;
3503
3504 // Only one of Def and U will be set.
3505 // The bool in the Def tells us whether the Def is the stored value of a
3506 // store.
3507 PointerIntPair<Value *, 1, bool> Def;
3508 Use *U = nullptr;
3509
operator <NewGVN::ValueDFS3510 bool operator<(const ValueDFS &Other) const {
3511 // It's not enough that any given field be less than - we have sets
3512 // of fields that need to be evaluated together to give a proper ordering.
3513 // For example, if you have;
3514 // DFS (1, 3)
3515 // Val 0
3516 // DFS (1, 2)
3517 // Val 50
3518 // We want the second to be less than the first, but if we just go field
3519 // by field, we will get to Val 0 < Val 50 and say the first is less than
3520 // the second. We only want it to be less than if the DFS orders are equal.
3521 //
3522 // Each LLVM instruction only produces one value, and thus the lowest-level
3523 // differentiator that really matters for the stack (and what we use as as a
3524 // replacement) is the local dfs number.
3525 // Everything else in the structure is instruction level, and only affects
3526 // the order in which we will replace operands of a given instruction.
3527 //
3528 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3529 // the order of replacement of uses does not matter.
3530 // IE given,
3531 // a = 5
3532 // b = a + a
3533 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3534 // localnum.
3535 // The .val will be the same as well.
3536 // The .u's will be different.
3537 // You will replace both, and it does not matter what order you replace them
3538 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3539 // operand 2).
3540 // Similarly for the case of same dfsin, dfsout, localnum, but different
3541 // .val's
3542 // a = 5
3543 // b = 6
3544 // c = a + b
3545 // in c, we will a valuedfs for a, and one for b,with everything the same
3546 // but .val and .u.
3547 // It does not matter what order we replace these operands in.
3548 // You will always end up with the same IR, and this is guaranteed.
3549 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3550 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3551 Other.U);
3552 }
3553 };
3554
3555 // This function converts the set of members for a congruence class from values,
3556 // to sets of defs and uses with associated DFS info. The total number of
3557 // reachable uses for each value is stored in UseCount, and instructions that
3558 // seem
3559 // dead (have no non-dead uses) are stored in ProbablyDead.
convertClassToDFSOrdered(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & DFSOrderedSet,DenseMap<const Value *,unsigned int> & UseCounts,SmallPtrSetImpl<Instruction * > & ProbablyDead) const3560 void NewGVN::convertClassToDFSOrdered(
3561 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3562 DenseMap<const Value *, unsigned int> &UseCounts,
3563 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3564 for (auto D : Dense) {
3565 // First add the value.
3566 BasicBlock *BB = getBlockForValue(D);
3567 // Constants are handled prior to ever calling this function, so
3568 // we should only be left with instructions as members.
3569 assert(BB && "Should have figured out a basic block for value");
3570 ValueDFS VDDef;
3571 DomTreeNode *DomNode = DT->getNode(BB);
3572 VDDef.DFSIn = DomNode->getDFSNumIn();
3573 VDDef.DFSOut = DomNode->getDFSNumOut();
3574 // If it's a store, use the leader of the value operand, if it's always
3575 // available, or the value operand. TODO: We could do dominance checks to
3576 // find a dominating leader, but not worth it ATM.
3577 if (auto *SI = dyn_cast<StoreInst>(D)) {
3578 auto Leader = lookupOperandLeader(SI->getValueOperand());
3579 if (alwaysAvailable(Leader)) {
3580 VDDef.Def.setPointer(Leader);
3581 } else {
3582 VDDef.Def.setPointer(SI->getValueOperand());
3583 VDDef.Def.setInt(true);
3584 }
3585 } else {
3586 VDDef.Def.setPointer(D);
3587 }
3588 assert(isa<Instruction>(D) &&
3589 "The dense set member should always be an instruction");
3590 Instruction *Def = cast<Instruction>(D);
3591 VDDef.LocalNum = InstrToDFSNum(D);
3592 DFSOrderedSet.push_back(VDDef);
3593 // If there is a phi node equivalent, add it
3594 if (auto *PN = RealToTemp.lookup(Def)) {
3595 auto *PHIE =
3596 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3597 if (PHIE) {
3598 VDDef.Def.setInt(false);
3599 VDDef.Def.setPointer(PN);
3600 VDDef.LocalNum = 0;
3601 DFSOrderedSet.push_back(VDDef);
3602 }
3603 }
3604
3605 unsigned int UseCount = 0;
3606 // Now add the uses.
3607 for (auto &U : Def->uses()) {
3608 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3609 // Don't try to replace into dead uses
3610 if (InstructionsToErase.count(I))
3611 continue;
3612 ValueDFS VDUse;
3613 // Put the phi node uses in the incoming block.
3614 BasicBlock *IBlock;
3615 if (auto *P = dyn_cast<PHINode>(I)) {
3616 IBlock = P->getIncomingBlock(U);
3617 // Make phi node users appear last in the incoming block
3618 // they are from.
3619 VDUse.LocalNum = InstrDFS.size() + 1;
3620 } else {
3621 IBlock = getBlockForValue(I);
3622 VDUse.LocalNum = InstrToDFSNum(I);
3623 }
3624
3625 // Skip uses in unreachable blocks, as we're going
3626 // to delete them.
3627 if (ReachableBlocks.count(IBlock) == 0)
3628 continue;
3629
3630 DomTreeNode *DomNode = DT->getNode(IBlock);
3631 VDUse.DFSIn = DomNode->getDFSNumIn();
3632 VDUse.DFSOut = DomNode->getDFSNumOut();
3633 VDUse.U = &U;
3634 ++UseCount;
3635 DFSOrderedSet.emplace_back(VDUse);
3636 }
3637 }
3638
3639 // If there are no uses, it's probably dead (but it may have side-effects,
3640 // so not definitely dead. Otherwise, store the number of uses so we can
3641 // track if it becomes dead later).
3642 if (UseCount == 0)
3643 ProbablyDead.insert(Def);
3644 else
3645 UseCounts[Def] = UseCount;
3646 }
3647 }
3648
3649 // This function converts the set of members for a congruence class from values,
3650 // to the set of defs for loads and stores, with associated DFS info.
convertClassToLoadsAndStores(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & LoadsAndStores) const3651 void NewGVN::convertClassToLoadsAndStores(
3652 const CongruenceClass &Dense,
3653 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3654 for (auto D : Dense) {
3655 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3656 continue;
3657
3658 BasicBlock *BB = getBlockForValue(D);
3659 ValueDFS VD;
3660 DomTreeNode *DomNode = DT->getNode(BB);
3661 VD.DFSIn = DomNode->getDFSNumIn();
3662 VD.DFSOut = DomNode->getDFSNumOut();
3663 VD.Def.setPointer(D);
3664
3665 // If it's an instruction, use the real local dfs number.
3666 if (auto *I = dyn_cast<Instruction>(D))
3667 VD.LocalNum = InstrToDFSNum(I);
3668 else
3669 llvm_unreachable("Should have been an instruction");
3670
3671 LoadsAndStores.emplace_back(VD);
3672 }
3673 }
3674
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)3675 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3676 patchReplacementInstruction(I, Repl);
3677 I->replaceAllUsesWith(Repl);
3678 }
3679
deleteInstructionsInBlock(BasicBlock * BB)3680 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3681 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3682 ++NumGVNBlocksDeleted;
3683
3684 // Delete the instructions backwards, as it has a reduced likelihood of having
3685 // to update as many def-use and use-def chains. Start after the terminator.
3686 auto StartPoint = BB->rbegin();
3687 ++StartPoint;
3688 // Note that we explicitly recalculate BB->rend() on each iteration,
3689 // as it may change when we remove the first instruction.
3690 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3691 Instruction &Inst = *I++;
3692 if (!Inst.use_empty())
3693 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3694 if (isa<LandingPadInst>(Inst))
3695 continue;
3696
3697 Inst.eraseFromParent();
3698 ++NumGVNInstrDeleted;
3699 }
3700 // Now insert something that simplifycfg will turn into an unreachable.
3701 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3702 new StoreInst(UndefValue::get(Int8Ty),
3703 Constant::getNullValue(Int8Ty->getPointerTo()),
3704 BB->getTerminator());
3705 }
3706
markInstructionForDeletion(Instruction * I)3707 void NewGVN::markInstructionForDeletion(Instruction *I) {
3708 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3709 InstructionsToErase.insert(I);
3710 }
3711
replaceInstruction(Instruction * I,Value * V)3712 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3713 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3714 patchAndReplaceAllUsesWith(I, V);
3715 // We save the actual erasing to avoid invalidating memory
3716 // dependencies until we are done with everything.
3717 markInstructionForDeletion(I);
3718 }
3719
3720 namespace {
3721
3722 // This is a stack that contains both the value and dfs info of where
3723 // that value is valid.
3724 class ValueDFSStack {
3725 public:
back() const3726 Value *back() const { return ValueStack.back(); }
dfs_back() const3727 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3728
push_back(Value * V,int DFSIn,int DFSOut)3729 void push_back(Value *V, int DFSIn, int DFSOut) {
3730 ValueStack.emplace_back(V);
3731 DFSStack.emplace_back(DFSIn, DFSOut);
3732 }
3733
empty() const3734 bool empty() const { return DFSStack.empty(); }
3735
isInScope(int DFSIn,int DFSOut) const3736 bool isInScope(int DFSIn, int DFSOut) const {
3737 if (empty())
3738 return false;
3739 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3740 }
3741
popUntilDFSScope(int DFSIn,int DFSOut)3742 void popUntilDFSScope(int DFSIn, int DFSOut) {
3743
3744 // These two should always be in sync at this point.
3745 assert(ValueStack.size() == DFSStack.size() &&
3746 "Mismatch between ValueStack and DFSStack");
3747 while (
3748 !DFSStack.empty() &&
3749 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3750 DFSStack.pop_back();
3751 ValueStack.pop_back();
3752 }
3753 }
3754
3755 private:
3756 SmallVector<Value *, 8> ValueStack;
3757 SmallVector<std::pair<int, int>, 8> DFSStack;
3758 };
3759
3760 } // end anonymous namespace
3761
3762 // Given an expression, get the congruence class for it.
getClassForExpression(const Expression * E) const3763 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3764 if (auto *VE = dyn_cast<VariableExpression>(E))
3765 return ValueToClass.lookup(VE->getVariableValue());
3766 else if (isa<DeadExpression>(E))
3767 return TOPClass;
3768 return ExpressionToClass.lookup(E);
3769 }
3770
3771 // Given a value and a basic block we are trying to see if it is available in,
3772 // see if the value has a leader available in that block.
findPHIOfOpsLeader(const Expression * E,const Instruction * OrigInst,const BasicBlock * BB) const3773 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3774 const Instruction *OrigInst,
3775 const BasicBlock *BB) const {
3776 // It would already be constant if we could make it constant
3777 if (auto *CE = dyn_cast<ConstantExpression>(E))
3778 return CE->getConstantValue();
3779 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3780 auto *V = VE->getVariableValue();
3781 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3782 return VE->getVariableValue();
3783 }
3784
3785 auto *CC = getClassForExpression(E);
3786 if (!CC)
3787 return nullptr;
3788 if (alwaysAvailable(CC->getLeader()))
3789 return CC->getLeader();
3790
3791 for (auto Member : *CC) {
3792 auto *MemberInst = dyn_cast<Instruction>(Member);
3793 if (MemberInst == OrigInst)
3794 continue;
3795 // Anything that isn't an instruction is always available.
3796 if (!MemberInst)
3797 return Member;
3798 if (DT->dominates(getBlockForValue(MemberInst), BB))
3799 return Member;
3800 }
3801 return nullptr;
3802 }
3803
eliminateInstructions(Function & F)3804 bool NewGVN::eliminateInstructions(Function &F) {
3805 // This is a non-standard eliminator. The normal way to eliminate is
3806 // to walk the dominator tree in order, keeping track of available
3807 // values, and eliminating them. However, this is mildly
3808 // pointless. It requires doing lookups on every instruction,
3809 // regardless of whether we will ever eliminate it. For
3810 // instructions part of most singleton congruence classes, we know we
3811 // will never eliminate them.
3812
3813 // Instead, this eliminator looks at the congruence classes directly, sorts
3814 // them into a DFS ordering of the dominator tree, and then we just
3815 // perform elimination straight on the sets by walking the congruence
3816 // class member uses in order, and eliminate the ones dominated by the
3817 // last member. This is worst case O(E log E) where E = number of
3818 // instructions in a single congruence class. In theory, this is all
3819 // instructions. In practice, it is much faster, as most instructions are
3820 // either in singleton congruence classes or can't possibly be eliminated
3821 // anyway (if there are no overlapping DFS ranges in class).
3822 // When we find something not dominated, it becomes the new leader
3823 // for elimination purposes.
3824 // TODO: If we wanted to be faster, We could remove any members with no
3825 // overlapping ranges while sorting, as we will never eliminate anything
3826 // with those members, as they don't dominate anything else in our set.
3827
3828 bool AnythingReplaced = false;
3829
3830 // Since we are going to walk the domtree anyway, and we can't guarantee the
3831 // DFS numbers are updated, we compute some ourselves.
3832 DT->updateDFSNumbers();
3833
3834 // Go through all of our phi nodes, and kill the arguments associated with
3835 // unreachable edges.
3836 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3837 for (auto &Operand : PHI->incoming_values())
3838 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3839 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3840 << " for block "
3841 << getBlockName(PHI->getIncomingBlock(Operand))
3842 << " with undef due to it being unreachable\n");
3843 Operand.set(UndefValue::get(PHI->getType()));
3844 }
3845 };
3846 // Replace unreachable phi arguments.
3847 // At this point, RevisitOnReachabilityChange only contains:
3848 //
3849 // 1. PHIs
3850 // 2. Temporaries that will convert to PHIs
3851 // 3. Operations that are affected by an unreachable edge but do not fit into
3852 // 1 or 2 (rare).
3853 // So it is a slight overshoot of what we want. We could make it exact by
3854 // using two SparseBitVectors per block.
3855 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3856 for (auto &KV : ReachableEdges)
3857 ReachablePredCount[KV.getEnd()]++;
3858 for (auto &BBPair : RevisitOnReachabilityChange) {
3859 for (auto InstNum : BBPair.second) {
3860 auto *Inst = InstrFromDFSNum(InstNum);
3861 auto *PHI = dyn_cast<PHINode>(Inst);
3862 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3863 if (!PHI)
3864 continue;
3865 auto *BB = BBPair.first;
3866 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3867 ReplaceUnreachablePHIArgs(PHI, BB);
3868 }
3869 }
3870
3871 // Map to store the use counts
3872 DenseMap<const Value *, unsigned int> UseCounts;
3873 for (auto *CC : reverse(CongruenceClasses)) {
3874 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3875 << "\n");
3876 // Track the equivalent store info so we can decide whether to try
3877 // dead store elimination.
3878 SmallVector<ValueDFS, 8> PossibleDeadStores;
3879 SmallPtrSet<Instruction *, 8> ProbablyDead;
3880 if (CC->isDead() || CC->empty())
3881 continue;
3882 // Everything still in the TOP class is unreachable or dead.
3883 if (CC == TOPClass) {
3884 for (auto M : *CC) {
3885 auto *VTE = ValueToExpression.lookup(M);
3886 if (VTE && isa<DeadExpression>(VTE))
3887 markInstructionForDeletion(cast<Instruction>(M));
3888 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3889 InstructionsToErase.count(cast<Instruction>(M))) &&
3890 "Everything in TOP should be unreachable or dead at this "
3891 "point");
3892 }
3893 continue;
3894 }
3895
3896 assert(CC->getLeader() && "We should have had a leader");
3897 // If this is a leader that is always available, and it's a
3898 // constant or has no equivalences, just replace everything with
3899 // it. We then update the congruence class with whatever members
3900 // are left.
3901 Value *Leader =
3902 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3903 if (alwaysAvailable(Leader)) {
3904 CongruenceClass::MemberSet MembersLeft;
3905 for (auto M : *CC) {
3906 Value *Member = M;
3907 // Void things have no uses we can replace.
3908 if (Member == Leader || !isa<Instruction>(Member) ||
3909 Member->getType()->isVoidTy()) {
3910 MembersLeft.insert(Member);
3911 continue;
3912 }
3913 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3914 << *Member << "\n");
3915 auto *I = cast<Instruction>(Member);
3916 assert(Leader != I && "About to accidentally remove our leader");
3917 replaceInstruction(I, Leader);
3918 AnythingReplaced = true;
3919 }
3920 CC->swap(MembersLeft);
3921 } else {
3922 // If this is a singleton, we can skip it.
3923 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3924 // This is a stack because equality replacement/etc may place
3925 // constants in the middle of the member list, and we want to use
3926 // those constant values in preference to the current leader, over
3927 // the scope of those constants.
3928 ValueDFSStack EliminationStack;
3929
3930 // Convert the members to DFS ordered sets and then merge them.
3931 SmallVector<ValueDFS, 8> DFSOrderedSet;
3932 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3933
3934 // Sort the whole thing.
3935 llvm::sort(DFSOrderedSet);
3936 for (auto &VD : DFSOrderedSet) {
3937 int MemberDFSIn = VD.DFSIn;
3938 int MemberDFSOut = VD.DFSOut;
3939 Value *Def = VD.Def.getPointer();
3940 bool FromStore = VD.Def.getInt();
3941 Use *U = VD.U;
3942 // We ignore void things because we can't get a value from them.
3943 if (Def && Def->getType()->isVoidTy())
3944 continue;
3945 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3946 if (DefInst && AllTempInstructions.count(DefInst)) {
3947 auto *PN = cast<PHINode>(DefInst);
3948
3949 // If this is a value phi and that's the expression we used, insert
3950 // it into the program
3951 // remove from temp instruction list.
3952 AllTempInstructions.erase(PN);
3953 auto *DefBlock = getBlockForValue(Def);
3954 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3955 << " into block "
3956 << getBlockName(getBlockForValue(Def)) << "\n");
3957 PN->insertBefore(&DefBlock->front());
3958 Def = PN;
3959 NumGVNPHIOfOpsEliminations++;
3960 }
3961
3962 if (EliminationStack.empty()) {
3963 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3964 } else {
3965 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3966 << EliminationStack.dfs_back().first << ","
3967 << EliminationStack.dfs_back().second << ")\n");
3968 }
3969
3970 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3971 << MemberDFSOut << ")\n");
3972 // First, we see if we are out of scope or empty. If so,
3973 // and there equivalences, we try to replace the top of
3974 // stack with equivalences (if it's on the stack, it must
3975 // not have been eliminated yet).
3976 // Then we synchronize to our current scope, by
3977 // popping until we are back within a DFS scope that
3978 // dominates the current member.
3979 // Then, what happens depends on a few factors
3980 // If the stack is now empty, we need to push
3981 // If we have a constant or a local equivalence we want to
3982 // start using, we also push.
3983 // Otherwise, we walk along, processing members who are
3984 // dominated by this scope, and eliminate them.
3985 bool ShouldPush = Def && EliminationStack.empty();
3986 bool OutOfScope =
3987 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3988
3989 if (OutOfScope || ShouldPush) {
3990 // Sync to our current scope.
3991 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3992 bool ShouldPush = Def && EliminationStack.empty();
3993 if (ShouldPush) {
3994 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3995 }
3996 }
3997
3998 // Skip the Def's, we only want to eliminate on their uses. But mark
3999 // dominated defs as dead.
4000 if (Def) {
4001 // For anything in this case, what and how we value number
4002 // guarantees that any side-effets that would have occurred (ie
4003 // throwing, etc) can be proven to either still occur (because it's
4004 // dominated by something that has the same side-effects), or never
4005 // occur. Otherwise, we would not have been able to prove it value
4006 // equivalent to something else. For these things, we can just mark
4007 // it all dead. Note that this is different from the "ProbablyDead"
4008 // set, which may not be dominated by anything, and thus, are only
4009 // easy to prove dead if they are also side-effect free. Note that
4010 // because stores are put in terms of the stored value, we skip
4011 // stored values here. If the stored value is really dead, it will
4012 // still be marked for deletion when we process it in its own class.
4013 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4014 isa<Instruction>(Def) && !FromStore)
4015 markInstructionForDeletion(cast<Instruction>(Def));
4016 continue;
4017 }
4018 // At this point, we know it is a Use we are trying to possibly
4019 // replace.
4020
4021 assert(isa<Instruction>(U->get()) &&
4022 "Current def should have been an instruction");
4023 assert(isa<Instruction>(U->getUser()) &&
4024 "Current user should have been an instruction");
4025
4026 // If the thing we are replacing into is already marked to be dead,
4027 // this use is dead. Note that this is true regardless of whether
4028 // we have anything dominating the use or not. We do this here
4029 // because we are already walking all the uses anyway.
4030 Instruction *InstUse = cast<Instruction>(U->getUser());
4031 if (InstructionsToErase.count(InstUse)) {
4032 auto &UseCount = UseCounts[U->get()];
4033 if (--UseCount == 0) {
4034 ProbablyDead.insert(cast<Instruction>(U->get()));
4035 }
4036 }
4037
4038 // If we get to this point, and the stack is empty we must have a use
4039 // with nothing we can use to eliminate this use, so just skip it.
4040 if (EliminationStack.empty())
4041 continue;
4042
4043 Value *DominatingLeader = EliminationStack.back();
4044
4045 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4046 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4047 if (isSSACopy)
4048 DominatingLeader = II->getOperand(0);
4049
4050 // Don't replace our existing users with ourselves.
4051 if (U->get() == DominatingLeader)
4052 continue;
4053 LLVM_DEBUG(dbgs()
4054 << "Found replacement " << *DominatingLeader << " for "
4055 << *U->get() << " in " << *(U->getUser()) << "\n");
4056
4057 // If we replaced something in an instruction, handle the patching of
4058 // metadata. Skip this if we are replacing predicateinfo with its
4059 // original operand, as we already know we can just drop it.
4060 auto *ReplacedInst = cast<Instruction>(U->get());
4061 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4062 if (!PI || DominatingLeader != PI->OriginalOp)
4063 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4064 U->set(DominatingLeader);
4065 // This is now a use of the dominating leader, which means if the
4066 // dominating leader was dead, it's now live!
4067 auto &LeaderUseCount = UseCounts[DominatingLeader];
4068 // It's about to be alive again.
4069 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4070 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4071 // For copy instructions, we use their operand as a leader,
4072 // which means we remove a user of the copy and it may become dead.
4073 if (isSSACopy) {
4074 unsigned &IIUseCount = UseCounts[II];
4075 if (--IIUseCount == 0)
4076 ProbablyDead.insert(II);
4077 }
4078 ++LeaderUseCount;
4079 AnythingReplaced = true;
4080 }
4081 }
4082 }
4083
4084 // At this point, anything still in the ProbablyDead set is actually dead if
4085 // would be trivially dead.
4086 for (auto *I : ProbablyDead)
4087 if (wouldInstructionBeTriviallyDead(I))
4088 markInstructionForDeletion(I);
4089
4090 // Cleanup the congruence class.
4091 CongruenceClass::MemberSet MembersLeft;
4092 for (auto *Member : *CC)
4093 if (!isa<Instruction>(Member) ||
4094 !InstructionsToErase.count(cast<Instruction>(Member)))
4095 MembersLeft.insert(Member);
4096 CC->swap(MembersLeft);
4097
4098 // If we have possible dead stores to look at, try to eliminate them.
4099 if (CC->getStoreCount() > 0) {
4100 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4101 llvm::sort(PossibleDeadStores);
4102 ValueDFSStack EliminationStack;
4103 for (auto &VD : PossibleDeadStores) {
4104 int MemberDFSIn = VD.DFSIn;
4105 int MemberDFSOut = VD.DFSOut;
4106 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4107 if (EliminationStack.empty() ||
4108 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4109 // Sync to our current scope.
4110 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4111 if (EliminationStack.empty()) {
4112 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4113 continue;
4114 }
4115 }
4116 // We already did load elimination, so nothing to do here.
4117 if (isa<LoadInst>(Member))
4118 continue;
4119 assert(!EliminationStack.empty());
4120 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4121 (void)Leader;
4122 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4123 // Member is dominater by Leader, and thus dead
4124 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4125 << " that is dominated by " << *Leader << "\n");
4126 markInstructionForDeletion(Member);
4127 CC->erase(Member);
4128 ++NumGVNDeadStores;
4129 }
4130 }
4131 }
4132 return AnythingReplaced;
4133 }
4134
4135 // This function provides global ranking of operations so that we can place them
4136 // in a canonical order. Note that rank alone is not necessarily enough for a
4137 // complete ordering, as constants all have the same rank. However, generally,
4138 // we will simplify an operation with all constants so that it doesn't matter
4139 // what order they appear in.
getRank(const Value * V) const4140 unsigned int NewGVN::getRank(const Value *V) const {
4141 // Prefer constants to undef to anything else
4142 // Undef is a constant, have to check it first.
4143 // Prefer smaller constants to constantexprs
4144 if (isa<ConstantExpr>(V))
4145 return 2;
4146 if (isa<UndefValue>(V))
4147 return 1;
4148 if (isa<Constant>(V))
4149 return 0;
4150 else if (auto *A = dyn_cast<Argument>(V))
4151 return 3 + A->getArgNo();
4152
4153 // Need to shift the instruction DFS by number of arguments + 3 to account for
4154 // the constant and argument ranking above.
4155 unsigned Result = InstrToDFSNum(V);
4156 if (Result > 0)
4157 return 4 + NumFuncArgs + Result;
4158 // Unreachable or something else, just return a really large number.
4159 return ~0;
4160 }
4161
4162 // This is a function that says whether two commutative operations should
4163 // have their order swapped when canonicalizing.
shouldSwapOperands(const Value * A,const Value * B) const4164 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4165 // Because we only care about a total ordering, and don't rewrite expressions
4166 // in this order, we order by rank, which will give a strict weak ordering to
4167 // everything but constants, and then we order by pointer address.
4168 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4169 }
4170
4171 namespace {
4172
4173 class NewGVNLegacyPass : public FunctionPass {
4174 public:
4175 // Pass identification, replacement for typeid.
4176 static char ID;
4177
NewGVNLegacyPass()4178 NewGVNLegacyPass() : FunctionPass(ID) {
4179 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4180 }
4181
4182 bool runOnFunction(Function &F) override;
4183
4184 private:
getAnalysisUsage(AnalysisUsage & AU) const4185 void getAnalysisUsage(AnalysisUsage &AU) const override {
4186 AU.addRequired<AssumptionCacheTracker>();
4187 AU.addRequired<DominatorTreeWrapperPass>();
4188 AU.addRequired<TargetLibraryInfoWrapperPass>();
4189 AU.addRequired<MemorySSAWrapperPass>();
4190 AU.addRequired<AAResultsWrapperPass>();
4191 AU.addPreserved<DominatorTreeWrapperPass>();
4192 AU.addPreserved<GlobalsAAWrapperPass>();
4193 }
4194 };
4195
4196 } // end anonymous namespace
4197
runOnFunction(Function & F)4198 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4199 if (skipFunction(F))
4200 return false;
4201 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4202 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4203 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4204 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4205 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4206 F.getParent()->getDataLayout())
4207 .runGVN();
4208 }
4209
4210 char NewGVNLegacyPass::ID = 0;
4211
4212 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4213 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4214 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4215 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4216 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4217 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4218 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4219 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4220 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4221 false)
4222
4223 // createGVNPass - The public interface to this file.
4224 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4225
run(Function & F,AnalysisManager<Function> & AM)4226 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4227 // Apparently the order in which we get these results matter for
4228 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4229 // the same order here, just in case.
4230 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4231 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4232 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4233 auto &AA = AM.getResult<AAManager>(F);
4234 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4235 bool Changed =
4236 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4237 .runGVN();
4238 if (!Changed)
4239 return PreservedAnalyses::all();
4240 PreservedAnalyses PA;
4241 PA.preserve<DominatorTreeAnalysis>();
4242 PA.preserve<GlobalsAA>();
4243 return PA;
4244 }
4245