1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * include/asm-xtensa/pgtable.h
4 *
5 * Copyright (C) 2001 - 2013 Tensilica Inc.
6 */
7
8 #ifndef _XTENSA_PGTABLE_H
9 #define _XTENSA_PGTABLE_H
10
11 #include <asm/page.h>
12 #include <asm/kmem_layout.h>
13 #include <asm-generic/pgtable-nopmd.h>
14
15 /*
16 * We only use two ring levels, user and kernel space.
17 */
18
19 #ifdef CONFIG_MMU
20 #define USER_RING 1 /* user ring level */
21 #else
22 #define USER_RING 0
23 #endif
24 #define KERNEL_RING 0 /* kernel ring level */
25
26 /*
27 * The Xtensa architecture port of Linux has a two-level page table system,
28 * i.e. the logical three-level Linux page table layout is folded.
29 * Each task has the following memory page tables:
30 *
31 * PGD table (page directory), ie. 3rd-level page table:
32 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
33 * (Architectures that don't have the PMD folded point to the PMD tables)
34 *
35 * The pointer to the PGD table for a given task can be retrieved from
36 * the task structure (struct task_struct*) t, e.g. current():
37 * (t->mm ? t->mm : t->active_mm)->pgd
38 *
39 * PMD tables (page middle-directory), ie. 2nd-level page tables:
40 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
41 *
42 * PTE tables (page table entry), ie. 1st-level page tables:
43 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
44 * invalid_pte_table for absent mappings.
45 *
46 * The individual pages are 4 kB big with special pages for the empty_zero_page.
47 */
48
49 #define PGDIR_SHIFT 22
50 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
51 #define PGDIR_MASK (~(PGDIR_SIZE-1))
52
53 /*
54 * Entries per page directory level: we use two-level, so
55 * we don't really have any PMD directory physically.
56 */
57 #define PTRS_PER_PTE 1024
58 #define PTRS_PER_PTE_SHIFT 10
59 #define PTRS_PER_PGD 1024
60 #define PGD_ORDER 0
61 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
62 #define FIRST_USER_ADDRESS 0UL
63 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
64
65 #ifdef CONFIG_MMU
66 /*
67 * Virtual memory area. We keep a distance to other memory regions to be
68 * on the safe side. We also use this area for cache aliasing.
69 */
70 #define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
71 #define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
72 #define TLBTEMP_BASE_1 (VMALLOC_START + 0x08000000)
73 #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
74 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
75 #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
76 #else
77 #define TLBTEMP_SIZE ICACHE_WAY_SIZE
78 #endif
79
80 #else
81
82 #define VMALLOC_START __XTENSA_UL_CONST(0)
83 #define VMALLOC_END __XTENSA_UL_CONST(0xffffffff)
84
85 #endif
86
87 /*
88 * For the Xtensa architecture, the PTE layout is as follows:
89 *
90 * 31------12 11 10-9 8-6 5-4 3-2 1-0
91 * +-----------------------------------------+
92 * | | Software | HARDWARE |
93 * | PPN | ADW | RI |Attribute|
94 * +-----------------------------------------+
95 * pte_none | MBZ | 01 | 11 | 00 |
96 * +-----------------------------------------+
97 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
98 * +- - - - - - - - - - - - - - - - - - - - -+
99 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
100 * +-----------------------------------------+
101 * swap | index | type | 01 | 11 | 00 |
102 * +-----------------------------------------+
103 *
104 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
105 * +-----------------------------------------+
106 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
107 * +-----------------------------------------+
108 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
109 * +-----------------------------------------+
110 *
111 * Legend:
112 * PPN Physical Page Number
113 * ADW software: accessed (young) / dirty / writable
114 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
115 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
116 * (11 is invalid and used to mark pages that are not present)
117 * w page is writable (hw)
118 * x page is executable (hw)
119 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
120 * (note that the index is always non-zero)
121 * type swap type (5 bits -> 32 types)
122 *
123 * Notes:
124 * - (PROT_NONE) is a special case of 'present' but causes an exception for
125 * any access (read, write, and execute).
126 * - 'multihit-exception' has the highest priority of all MMU exceptions,
127 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
128 * - on older hardware, the exectuable flag was not supported and
129 * used as a 'valid' flag, so it needs to be always set.
130 * - we need to keep track of certain flags in software (dirty and young)
131 * to do this, we use write exceptions and have a separate software w-flag.
132 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
133 */
134
135 #define _PAGE_ATTRIB_MASK 0xf
136
137 #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
138 #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
139
140 #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
141 #define _PAGE_CA_WB (1<<2) /* write-back */
142 #define _PAGE_CA_WT (2<<2) /* write-through */
143 #define _PAGE_CA_MASK (3<<2)
144 #define _PAGE_CA_INVALID (3<<2)
145
146 /* We use invalid attribute values to distinguish special pte entries */
147 #if XCHAL_HW_VERSION_MAJOR < 2000
148 #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
149 #define _PAGE_NONE 0x04
150 #else
151 #define _PAGE_HW_VALID 0x00
152 #define _PAGE_NONE 0x0f
153 #endif
154
155 #define _PAGE_USER (1<<4) /* user access (ring=1) */
156
157 /* Software */
158 #define _PAGE_WRITABLE_BIT 6
159 #define _PAGE_WRITABLE (1<<6) /* software: page writable */
160 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
161 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
162
163 #ifdef CONFIG_MMU
164
165 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
166 #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
167
168 #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
169 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
170 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
171 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
172 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
173 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
174 #define PAGE_SHARED_EXEC \
175 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
176 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
177 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT)
178 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
179
180 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
181 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
182 #else
183 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
184 #endif
185
186 #else /* no mmu */
187
188 # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
189 # define PAGE_NONE __pgprot(0)
190 # define PAGE_SHARED __pgprot(0)
191 # define PAGE_COPY __pgprot(0)
192 # define PAGE_READONLY __pgprot(0)
193 # define PAGE_KERNEL __pgprot(0)
194
195 #endif
196
197 /*
198 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
199 * the MMU can't do page protection for execute, and considers that the same as
200 * read. Also, write permissions may imply read permissions.
201 * What follows is the closest we can get by reasonable means..
202 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
203 */
204 #define __P000 PAGE_NONE /* private --- */
205 #define __P001 PAGE_READONLY /* private --r */
206 #define __P010 PAGE_COPY /* private -w- */
207 #define __P011 PAGE_COPY /* private -wr */
208 #define __P100 PAGE_READONLY_EXEC /* private x-- */
209 #define __P101 PAGE_READONLY_EXEC /* private x-r */
210 #define __P110 PAGE_COPY_EXEC /* private xw- */
211 #define __P111 PAGE_COPY_EXEC /* private xwr */
212
213 #define __S000 PAGE_NONE /* shared --- */
214 #define __S001 PAGE_READONLY /* shared --r */
215 #define __S010 PAGE_SHARED /* shared -w- */
216 #define __S011 PAGE_SHARED /* shared -wr */
217 #define __S100 PAGE_READONLY_EXEC /* shared x-- */
218 #define __S101 PAGE_READONLY_EXEC /* shared x-r */
219 #define __S110 PAGE_SHARED_EXEC /* shared xw- */
220 #define __S111 PAGE_SHARED_EXEC /* shared xwr */
221
222 #ifndef __ASSEMBLY__
223
224 #define pte_ERROR(e) \
225 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
226 #define pgd_ERROR(e) \
227 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
228
229 extern unsigned long empty_zero_page[1024];
230
231 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
232
233 #ifdef CONFIG_MMU
234 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
235 extern void paging_init(void);
236 #else
237 # define swapper_pg_dir NULL
paging_init(void)238 static inline void paging_init(void) { }
239 #endif
240
241 /*
242 * The pmd contains the kernel virtual address of the pte page.
243 */
244 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
245 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
246
247 /*
248 * pte status.
249 */
250 # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
251 #if XCHAL_HW_VERSION_MAJOR < 2000
252 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
253 #else
254 # define pte_present(pte) \
255 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
256 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
257 #endif
258 #define pte_clear(mm,addr,ptep) \
259 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
260
261 #define pmd_none(pmd) (!pmd_val(pmd))
262 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
263 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
264 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
265
pte_write(pte_t pte)266 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
pte_dirty(pte_t pte)267 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)268 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
269
pte_wrprotect(pte_t pte)270 static inline pte_t pte_wrprotect(pte_t pte)
271 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
pte_mkclean(pte_t pte)272 static inline pte_t pte_mkclean(pte_t pte)
273 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
pte_mkold(pte_t pte)274 static inline pte_t pte_mkold(pte_t pte)
275 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkdirty(pte_t pte)276 static inline pte_t pte_mkdirty(pte_t pte)
277 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)278 static inline pte_t pte_mkyoung(pte_t pte)
279 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)280 static inline pte_t pte_mkwrite(pte_t pte)
281 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
282
283 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
284
285 /*
286 * Conversion functions: convert a page and protection to a page entry,
287 * and a page entry and page directory to the page they refer to.
288 */
289
290 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
291 #define pte_same(a,b) (pte_val(a) == pte_val(b))
292 #define pte_page(x) pfn_to_page(pte_pfn(x))
293 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
294 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
295
pte_modify(pte_t pte,pgprot_t newprot)296 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
297 {
298 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
299 }
300
301 /*
302 * Certain architectures need to do special things when pte's
303 * within a page table are directly modified. Thus, the following
304 * hook is made available.
305 */
update_pte(pte_t * ptep,pte_t pteval)306 static inline void update_pte(pte_t *ptep, pte_t pteval)
307 {
308 *ptep = pteval;
309 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
310 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
311 #endif
312
313 }
314
315 struct mm_struct;
316
317 static inline void
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)318 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
319 {
320 update_pte(ptep, pteval);
321 }
322
set_pte(pte_t * ptep,pte_t pteval)323 static inline void set_pte(pte_t *ptep, pte_t pteval)
324 {
325 update_pte(ptep, pteval);
326 }
327
328 static inline void
set_pmd(pmd_t * pmdp,pmd_t pmdval)329 set_pmd(pmd_t *pmdp, pmd_t pmdval)
330 {
331 *pmdp = pmdval;
332 }
333
334 struct vm_area_struct;
335
336 static inline int
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)337 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
338 pte_t *ptep)
339 {
340 pte_t pte = *ptep;
341 if (!pte_young(pte))
342 return 0;
343 update_pte(ptep, pte_mkold(pte));
344 return 1;
345 }
346
347 static inline pte_t
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)348 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
349 {
350 pte_t pte = *ptep;
351 pte_clear(mm, addr, ptep);
352 return pte;
353 }
354
355 static inline void
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)356 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
357 {
358 pte_t pte = *ptep;
359 update_pte(ptep, pte_wrprotect(pte));
360 }
361
362 /*
363 * Encode and decode a swap and file entry.
364 */
365 #define SWP_TYPE_BITS 5
366 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
367
368 #define __swp_type(entry) (((entry).val >> 6) & 0x1f)
369 #define __swp_offset(entry) ((entry).val >> 11)
370 #define __swp_entry(type,offs) \
371 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
372 _PAGE_CA_INVALID | _PAGE_USER})
373 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
374 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
375
376 #endif /* !defined (__ASSEMBLY__) */
377
378
379 #ifdef __ASSEMBLY__
380
381 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
382 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
383 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
384 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
385 *
386 * Note: We require an additional temporary register which can be the same as
387 * the register that holds the address.
388 *
389 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
390 *
391 */
392 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
393 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
394
395 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
396 _PGD_INDEX(tmp, adr); \
397 addx4 mm, tmp, mm
398
399 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
400 srli pmd, pmd, PAGE_SHIFT; \
401 slli pmd, pmd, PAGE_SHIFT; \
402 addx4 pmd, tmp, pmd
403
404 #else
405
406 #define kern_addr_valid(addr) (1)
407
408 extern void update_mmu_cache(struct vm_area_struct * vma,
409 unsigned long address, pte_t *ptep);
410
411 typedef pte_t *pte_addr_t;
412
413 #endif /* !defined (__ASSEMBLY__) */
414
415 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
416 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
417 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
418 #define __HAVE_ARCH_PTEP_MKDIRTY
419 #define __HAVE_ARCH_PTE_SAME
420 /* We provide our own get_unmapped_area to cope with
421 * SHM area cache aliasing for userland.
422 */
423 #define HAVE_ARCH_UNMAPPED_AREA
424
425 #endif /* _XTENSA_PGTABLE_H */
426