• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  *
5  * Author:
6  * David Safford <safford@us.ibm.com>
7  *
8  * See Documentation/security/keys/trusted-encrypted.rst
9  */
10 
11 #include <crypto/hash_info.h>
12 #include <linux/uaccess.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/parser.h>
17 #include <linux/string.h>
18 #include <linux/err.h>
19 #include <keys/user-type.h>
20 #include <keys/trusted-type.h>
21 #include <linux/key-type.h>
22 #include <linux/rcupdate.h>
23 #include <linux/crypto.h>
24 #include <crypto/hash.h>
25 #include <crypto/sha.h>
26 #include <linux/capability.h>
27 #include <linux/tpm.h>
28 #include <linux/tpm_command.h>
29 
30 #include <keys/trusted_tpm.h>
31 
32 static const char hmac_alg[] = "hmac(sha1)";
33 static const char hash_alg[] = "sha1";
34 static struct tpm_chip *chip;
35 static struct tpm_digest *digests;
36 
37 struct sdesc {
38 	struct shash_desc shash;
39 	char ctx[];
40 };
41 
42 static struct crypto_shash *hashalg;
43 static struct crypto_shash *hmacalg;
44 
init_sdesc(struct crypto_shash * alg)45 static struct sdesc *init_sdesc(struct crypto_shash *alg)
46 {
47 	struct sdesc *sdesc;
48 	int size;
49 
50 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51 	sdesc = kmalloc(size, GFP_KERNEL);
52 	if (!sdesc)
53 		return ERR_PTR(-ENOMEM);
54 	sdesc->shash.tfm = alg;
55 	return sdesc;
56 }
57 
TSS_sha1(const unsigned char * data,unsigned int datalen,unsigned char * digest)58 static int TSS_sha1(const unsigned char *data, unsigned int datalen,
59 		    unsigned char *digest)
60 {
61 	struct sdesc *sdesc;
62 	int ret;
63 
64 	sdesc = init_sdesc(hashalg);
65 	if (IS_ERR(sdesc)) {
66 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
67 		return PTR_ERR(sdesc);
68 	}
69 
70 	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
71 	kfree_sensitive(sdesc);
72 	return ret;
73 }
74 
TSS_rawhmac(unsigned char * digest,const unsigned char * key,unsigned int keylen,...)75 static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
76 		       unsigned int keylen, ...)
77 {
78 	struct sdesc *sdesc;
79 	va_list argp;
80 	unsigned int dlen;
81 	unsigned char *data;
82 	int ret;
83 
84 	sdesc = init_sdesc(hmacalg);
85 	if (IS_ERR(sdesc)) {
86 		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
87 		return PTR_ERR(sdesc);
88 	}
89 
90 	ret = crypto_shash_setkey(hmacalg, key, keylen);
91 	if (ret < 0)
92 		goto out;
93 	ret = crypto_shash_init(&sdesc->shash);
94 	if (ret < 0)
95 		goto out;
96 
97 	va_start(argp, keylen);
98 	for (;;) {
99 		dlen = va_arg(argp, unsigned int);
100 		if (dlen == 0)
101 			break;
102 		data = va_arg(argp, unsigned char *);
103 		if (data == NULL) {
104 			ret = -EINVAL;
105 			break;
106 		}
107 		ret = crypto_shash_update(&sdesc->shash, data, dlen);
108 		if (ret < 0)
109 			break;
110 	}
111 	va_end(argp);
112 	if (!ret)
113 		ret = crypto_shash_final(&sdesc->shash, digest);
114 out:
115 	kfree_sensitive(sdesc);
116 	return ret;
117 }
118 
119 /*
120  * calculate authorization info fields to send to TPM
121  */
TSS_authhmac(unsigned char * digest,const unsigned char * key,unsigned int keylen,unsigned char * h1,unsigned char * h2,unsigned int h3,...)122 int TSS_authhmac(unsigned char *digest, const unsigned char *key,
123 			unsigned int keylen, unsigned char *h1,
124 			unsigned char *h2, unsigned int h3, ...)
125 {
126 	unsigned char paramdigest[SHA1_DIGEST_SIZE];
127 	struct sdesc *sdesc;
128 	unsigned int dlen;
129 	unsigned char *data;
130 	unsigned char c;
131 	int ret;
132 	va_list argp;
133 
134 	if (!chip)
135 		return -ENODEV;
136 
137 	sdesc = init_sdesc(hashalg);
138 	if (IS_ERR(sdesc)) {
139 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
140 		return PTR_ERR(sdesc);
141 	}
142 
143 	c = !!h3;
144 	ret = crypto_shash_init(&sdesc->shash);
145 	if (ret < 0)
146 		goto out;
147 	va_start(argp, h3);
148 	for (;;) {
149 		dlen = va_arg(argp, unsigned int);
150 		if (dlen == 0)
151 			break;
152 		data = va_arg(argp, unsigned char *);
153 		if (!data) {
154 			ret = -EINVAL;
155 			break;
156 		}
157 		ret = crypto_shash_update(&sdesc->shash, data, dlen);
158 		if (ret < 0)
159 			break;
160 	}
161 	va_end(argp);
162 	if (!ret)
163 		ret = crypto_shash_final(&sdesc->shash, paramdigest);
164 	if (!ret)
165 		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
166 				  paramdigest, TPM_NONCE_SIZE, h1,
167 				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
168 out:
169 	kfree_sensitive(sdesc);
170 	return ret;
171 }
172 EXPORT_SYMBOL_GPL(TSS_authhmac);
173 
174 /*
175  * verify the AUTH1_COMMAND (Seal) result from TPM
176  */
TSS_checkhmac1(unsigned char * buffer,const uint32_t command,const unsigned char * ononce,const unsigned char * key,unsigned int keylen,...)177 int TSS_checkhmac1(unsigned char *buffer,
178 			  const uint32_t command,
179 			  const unsigned char *ononce,
180 			  const unsigned char *key,
181 			  unsigned int keylen, ...)
182 {
183 	uint32_t bufsize;
184 	uint16_t tag;
185 	uint32_t ordinal;
186 	uint32_t result;
187 	unsigned char *enonce;
188 	unsigned char *continueflag;
189 	unsigned char *authdata;
190 	unsigned char testhmac[SHA1_DIGEST_SIZE];
191 	unsigned char paramdigest[SHA1_DIGEST_SIZE];
192 	struct sdesc *sdesc;
193 	unsigned int dlen;
194 	unsigned int dpos;
195 	va_list argp;
196 	int ret;
197 
198 	if (!chip)
199 		return -ENODEV;
200 
201 	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
202 	tag = LOAD16(buffer, 0);
203 	ordinal = command;
204 	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
205 	if (tag == TPM_TAG_RSP_COMMAND)
206 		return 0;
207 	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
208 		return -EINVAL;
209 	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
210 	continueflag = authdata - 1;
211 	enonce = continueflag - TPM_NONCE_SIZE;
212 
213 	sdesc = init_sdesc(hashalg);
214 	if (IS_ERR(sdesc)) {
215 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
216 		return PTR_ERR(sdesc);
217 	}
218 	ret = crypto_shash_init(&sdesc->shash);
219 	if (ret < 0)
220 		goto out;
221 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
222 				  sizeof result);
223 	if (ret < 0)
224 		goto out;
225 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
226 				  sizeof ordinal);
227 	if (ret < 0)
228 		goto out;
229 	va_start(argp, keylen);
230 	for (;;) {
231 		dlen = va_arg(argp, unsigned int);
232 		if (dlen == 0)
233 			break;
234 		dpos = va_arg(argp, unsigned int);
235 		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
236 		if (ret < 0)
237 			break;
238 	}
239 	va_end(argp);
240 	if (!ret)
241 		ret = crypto_shash_final(&sdesc->shash, paramdigest);
242 	if (ret < 0)
243 		goto out;
244 
245 	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
246 			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
247 			  1, continueflag, 0, 0);
248 	if (ret < 0)
249 		goto out;
250 
251 	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
252 		ret = -EINVAL;
253 out:
254 	kfree_sensitive(sdesc);
255 	return ret;
256 }
257 EXPORT_SYMBOL_GPL(TSS_checkhmac1);
258 
259 /*
260  * verify the AUTH2_COMMAND (unseal) result from TPM
261  */
TSS_checkhmac2(unsigned char * buffer,const uint32_t command,const unsigned char * ononce,const unsigned char * key1,unsigned int keylen1,const unsigned char * key2,unsigned int keylen2,...)262 static int TSS_checkhmac2(unsigned char *buffer,
263 			  const uint32_t command,
264 			  const unsigned char *ononce,
265 			  const unsigned char *key1,
266 			  unsigned int keylen1,
267 			  const unsigned char *key2,
268 			  unsigned int keylen2, ...)
269 {
270 	uint32_t bufsize;
271 	uint16_t tag;
272 	uint32_t ordinal;
273 	uint32_t result;
274 	unsigned char *enonce1;
275 	unsigned char *continueflag1;
276 	unsigned char *authdata1;
277 	unsigned char *enonce2;
278 	unsigned char *continueflag2;
279 	unsigned char *authdata2;
280 	unsigned char testhmac1[SHA1_DIGEST_SIZE];
281 	unsigned char testhmac2[SHA1_DIGEST_SIZE];
282 	unsigned char paramdigest[SHA1_DIGEST_SIZE];
283 	struct sdesc *sdesc;
284 	unsigned int dlen;
285 	unsigned int dpos;
286 	va_list argp;
287 	int ret;
288 
289 	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
290 	tag = LOAD16(buffer, 0);
291 	ordinal = command;
292 	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
293 
294 	if (tag == TPM_TAG_RSP_COMMAND)
295 		return 0;
296 	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
297 		return -EINVAL;
298 	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
299 			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
300 	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
301 	continueflag1 = authdata1 - 1;
302 	continueflag2 = authdata2 - 1;
303 	enonce1 = continueflag1 - TPM_NONCE_SIZE;
304 	enonce2 = continueflag2 - TPM_NONCE_SIZE;
305 
306 	sdesc = init_sdesc(hashalg);
307 	if (IS_ERR(sdesc)) {
308 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
309 		return PTR_ERR(sdesc);
310 	}
311 	ret = crypto_shash_init(&sdesc->shash);
312 	if (ret < 0)
313 		goto out;
314 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
315 				  sizeof result);
316 	if (ret < 0)
317 		goto out;
318 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
319 				  sizeof ordinal);
320 	if (ret < 0)
321 		goto out;
322 
323 	va_start(argp, keylen2);
324 	for (;;) {
325 		dlen = va_arg(argp, unsigned int);
326 		if (dlen == 0)
327 			break;
328 		dpos = va_arg(argp, unsigned int);
329 		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
330 		if (ret < 0)
331 			break;
332 	}
333 	va_end(argp);
334 	if (!ret)
335 		ret = crypto_shash_final(&sdesc->shash, paramdigest);
336 	if (ret < 0)
337 		goto out;
338 
339 	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
340 			  paramdigest, TPM_NONCE_SIZE, enonce1,
341 			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
342 	if (ret < 0)
343 		goto out;
344 	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
345 		ret = -EINVAL;
346 		goto out;
347 	}
348 	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
349 			  paramdigest, TPM_NONCE_SIZE, enonce2,
350 			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
351 	if (ret < 0)
352 		goto out;
353 	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
354 		ret = -EINVAL;
355 out:
356 	kfree_sensitive(sdesc);
357 	return ret;
358 }
359 
360 /*
361  * For key specific tpm requests, we will generate and send our
362  * own TPM command packets using the drivers send function.
363  */
trusted_tpm_send(unsigned char * cmd,size_t buflen)364 int trusted_tpm_send(unsigned char *cmd, size_t buflen)
365 {
366 	int rc;
367 
368 	if (!chip)
369 		return -ENODEV;
370 
371 	dump_tpm_buf(cmd);
372 	rc = tpm_send(chip, cmd, buflen);
373 	dump_tpm_buf(cmd);
374 	if (rc > 0)
375 		/* Can't return positive return codes values to keyctl */
376 		rc = -EPERM;
377 	return rc;
378 }
379 EXPORT_SYMBOL_GPL(trusted_tpm_send);
380 
381 /*
382  * Lock a trusted key, by extending a selected PCR.
383  *
384  * Prevents a trusted key that is sealed to PCRs from being accessed.
385  * This uses the tpm driver's extend function.
386  */
pcrlock(const int pcrnum)387 static int pcrlock(const int pcrnum)
388 {
389 	if (!capable(CAP_SYS_ADMIN))
390 		return -EPERM;
391 
392 	return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0;
393 }
394 
395 /*
396  * Create an object specific authorisation protocol (OSAP) session
397  */
osap(struct tpm_buf * tb,struct osapsess * s,const unsigned char * key,uint16_t type,uint32_t handle)398 static int osap(struct tpm_buf *tb, struct osapsess *s,
399 		const unsigned char *key, uint16_t type, uint32_t handle)
400 {
401 	unsigned char enonce[TPM_NONCE_SIZE];
402 	unsigned char ononce[TPM_NONCE_SIZE];
403 	int ret;
404 
405 	ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE);
406 	if (ret < 0)
407 		return ret;
408 
409 	if (ret != TPM_NONCE_SIZE)
410 		return -EIO;
411 
412 	tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OSAP);
413 	tpm_buf_append_u16(tb, type);
414 	tpm_buf_append_u32(tb, handle);
415 	tpm_buf_append(tb, ononce, TPM_NONCE_SIZE);
416 
417 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
418 	if (ret < 0)
419 		return ret;
420 
421 	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
422 	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
423 	       TPM_NONCE_SIZE);
424 	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
425 				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
426 	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
427 			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
428 }
429 
430 /*
431  * Create an object independent authorisation protocol (oiap) session
432  */
oiap(struct tpm_buf * tb,uint32_t * handle,unsigned char * nonce)433 int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
434 {
435 	int ret;
436 
437 	if (!chip)
438 		return -ENODEV;
439 
440 	tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP);
441 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
442 	if (ret < 0)
443 		return ret;
444 
445 	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
446 	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
447 	       TPM_NONCE_SIZE);
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(oiap);
451 
452 struct tpm_digests {
453 	unsigned char encauth[SHA1_DIGEST_SIZE];
454 	unsigned char pubauth[SHA1_DIGEST_SIZE];
455 	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
456 	unsigned char xorhash[SHA1_DIGEST_SIZE];
457 	unsigned char nonceodd[TPM_NONCE_SIZE];
458 };
459 
460 /*
461  * Have the TPM seal(encrypt) the trusted key, possibly based on
462  * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
463  */
tpm_seal(struct tpm_buf * tb,uint16_t keytype,uint32_t keyhandle,const unsigned char * keyauth,const unsigned char * data,uint32_t datalen,unsigned char * blob,uint32_t * bloblen,const unsigned char * blobauth,const unsigned char * pcrinfo,uint32_t pcrinfosize)464 static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
465 		    uint32_t keyhandle, const unsigned char *keyauth,
466 		    const unsigned char *data, uint32_t datalen,
467 		    unsigned char *blob, uint32_t *bloblen,
468 		    const unsigned char *blobauth,
469 		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
470 {
471 	struct osapsess sess;
472 	struct tpm_digests *td;
473 	unsigned char cont;
474 	uint32_t ordinal;
475 	uint32_t pcrsize;
476 	uint32_t datsize;
477 	int sealinfosize;
478 	int encdatasize;
479 	int storedsize;
480 	int ret;
481 	int i;
482 
483 	/* alloc some work space for all the hashes */
484 	td = kmalloc(sizeof *td, GFP_KERNEL);
485 	if (!td)
486 		return -ENOMEM;
487 
488 	/* get session for sealing key */
489 	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
490 	if (ret < 0)
491 		goto out;
492 	dump_sess(&sess);
493 
494 	/* calculate encrypted authorization value */
495 	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
496 	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
497 	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
498 	if (ret < 0)
499 		goto out;
500 
501 	ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE);
502 	if (ret < 0)
503 		goto out;
504 
505 	if (ret != TPM_NONCE_SIZE) {
506 		ret = -EIO;
507 		goto out;
508 	}
509 
510 	ordinal = htonl(TPM_ORD_SEAL);
511 	datsize = htonl(datalen);
512 	pcrsize = htonl(pcrinfosize);
513 	cont = 0;
514 
515 	/* encrypt data authorization key */
516 	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
517 		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
518 
519 	/* calculate authorization HMAC value */
520 	if (pcrinfosize == 0) {
521 		/* no pcr info specified */
522 		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
523 				   sess.enonce, td->nonceodd, cont,
524 				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
525 				   td->encauth, sizeof(uint32_t), &pcrsize,
526 				   sizeof(uint32_t), &datsize, datalen, data, 0,
527 				   0);
528 	} else {
529 		/* pcr info specified */
530 		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
531 				   sess.enonce, td->nonceodd, cont,
532 				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
533 				   td->encauth, sizeof(uint32_t), &pcrsize,
534 				   pcrinfosize, pcrinfo, sizeof(uint32_t),
535 				   &datsize, datalen, data, 0, 0);
536 	}
537 	if (ret < 0)
538 		goto out;
539 
540 	/* build and send the TPM request packet */
541 	tpm_buf_reset(tb, TPM_TAG_RQU_AUTH1_COMMAND, TPM_ORD_SEAL);
542 	tpm_buf_append_u32(tb, keyhandle);
543 	tpm_buf_append(tb, td->encauth, SHA1_DIGEST_SIZE);
544 	tpm_buf_append_u32(tb, pcrinfosize);
545 	tpm_buf_append(tb, pcrinfo, pcrinfosize);
546 	tpm_buf_append_u32(tb, datalen);
547 	tpm_buf_append(tb, data, datalen);
548 	tpm_buf_append_u32(tb, sess.handle);
549 	tpm_buf_append(tb, td->nonceodd, TPM_NONCE_SIZE);
550 	tpm_buf_append_u8(tb, cont);
551 	tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE);
552 
553 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
554 	if (ret < 0)
555 		goto out;
556 
557 	/* calculate the size of the returned Blob */
558 	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
559 	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
560 			     sizeof(uint32_t) + sealinfosize);
561 	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
562 	    sizeof(uint32_t) + encdatasize;
563 
564 	/* check the HMAC in the response */
565 	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
566 			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
567 			     0);
568 
569 	/* copy the returned blob to caller */
570 	if (!ret) {
571 		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
572 		*bloblen = storedsize;
573 	}
574 out:
575 	kfree_sensitive(td);
576 	return ret;
577 }
578 
579 /*
580  * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
581  */
tpm_unseal(struct tpm_buf * tb,uint32_t keyhandle,const unsigned char * keyauth,const unsigned char * blob,int bloblen,const unsigned char * blobauth,unsigned char * data,unsigned int * datalen)582 static int tpm_unseal(struct tpm_buf *tb,
583 		      uint32_t keyhandle, const unsigned char *keyauth,
584 		      const unsigned char *blob, int bloblen,
585 		      const unsigned char *blobauth,
586 		      unsigned char *data, unsigned int *datalen)
587 {
588 	unsigned char nonceodd[TPM_NONCE_SIZE];
589 	unsigned char enonce1[TPM_NONCE_SIZE];
590 	unsigned char enonce2[TPM_NONCE_SIZE];
591 	unsigned char authdata1[SHA1_DIGEST_SIZE];
592 	unsigned char authdata2[SHA1_DIGEST_SIZE];
593 	uint32_t authhandle1 = 0;
594 	uint32_t authhandle2 = 0;
595 	unsigned char cont = 0;
596 	uint32_t ordinal;
597 	int ret;
598 
599 	/* sessions for unsealing key and data */
600 	ret = oiap(tb, &authhandle1, enonce1);
601 	if (ret < 0) {
602 		pr_info("trusted_key: oiap failed (%d)\n", ret);
603 		return ret;
604 	}
605 	ret = oiap(tb, &authhandle2, enonce2);
606 	if (ret < 0) {
607 		pr_info("trusted_key: oiap failed (%d)\n", ret);
608 		return ret;
609 	}
610 
611 	ordinal = htonl(TPM_ORD_UNSEAL);
612 	ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE);
613 	if (ret < 0)
614 		return ret;
615 
616 	if (ret != TPM_NONCE_SIZE) {
617 		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
618 		return -EIO;
619 	}
620 	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
621 			   enonce1, nonceodd, cont, sizeof(uint32_t),
622 			   &ordinal, bloblen, blob, 0, 0);
623 	if (ret < 0)
624 		return ret;
625 	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
626 			   enonce2, nonceodd, cont, sizeof(uint32_t),
627 			   &ordinal, bloblen, blob, 0, 0);
628 	if (ret < 0)
629 		return ret;
630 
631 	/* build and send TPM request packet */
632 	tpm_buf_reset(tb, TPM_TAG_RQU_AUTH2_COMMAND, TPM_ORD_UNSEAL);
633 	tpm_buf_append_u32(tb, keyhandle);
634 	tpm_buf_append(tb, blob, bloblen);
635 	tpm_buf_append_u32(tb, authhandle1);
636 	tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
637 	tpm_buf_append_u8(tb, cont);
638 	tpm_buf_append(tb, authdata1, SHA1_DIGEST_SIZE);
639 	tpm_buf_append_u32(tb, authhandle2);
640 	tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
641 	tpm_buf_append_u8(tb, cont);
642 	tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE);
643 
644 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
645 	if (ret < 0) {
646 		pr_info("trusted_key: authhmac failed (%d)\n", ret);
647 		return ret;
648 	}
649 
650 	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
651 	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
652 			     keyauth, SHA1_DIGEST_SIZE,
653 			     blobauth, SHA1_DIGEST_SIZE,
654 			     sizeof(uint32_t), TPM_DATA_OFFSET,
655 			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
656 			     0);
657 	if (ret < 0) {
658 		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
659 		return ret;
660 	}
661 	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
662 	return 0;
663 }
664 
665 /*
666  * Have the TPM seal(encrypt) the symmetric key
667  */
key_seal(struct trusted_key_payload * p,struct trusted_key_options * o)668 static int key_seal(struct trusted_key_payload *p,
669 		    struct trusted_key_options *o)
670 {
671 	struct tpm_buf tb;
672 	int ret;
673 
674 	ret = tpm_buf_init(&tb, 0, 0);
675 	if (ret)
676 		return ret;
677 
678 	/* include migratable flag at end of sealed key */
679 	p->key[p->key_len] = p->migratable;
680 
681 	ret = tpm_seal(&tb, o->keytype, o->keyhandle, o->keyauth,
682 		       p->key, p->key_len + 1, p->blob, &p->blob_len,
683 		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
684 	if (ret < 0)
685 		pr_info("trusted_key: srkseal failed (%d)\n", ret);
686 
687 	tpm_buf_destroy(&tb);
688 	return ret;
689 }
690 
691 /*
692  * Have the TPM unseal(decrypt) the symmetric key
693  */
key_unseal(struct trusted_key_payload * p,struct trusted_key_options * o)694 static int key_unseal(struct trusted_key_payload *p,
695 		      struct trusted_key_options *o)
696 {
697 	struct tpm_buf tb;
698 	int ret;
699 
700 	ret = tpm_buf_init(&tb, 0, 0);
701 	if (ret)
702 		return ret;
703 
704 	ret = tpm_unseal(&tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
705 			 o->blobauth, p->key, &p->key_len);
706 	if (ret < 0)
707 		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
708 	else
709 		/* pull migratable flag out of sealed key */
710 		p->migratable = p->key[--p->key_len];
711 
712 	tpm_buf_destroy(&tb);
713 	return ret;
714 }
715 
716 enum {
717 	Opt_err,
718 	Opt_new, Opt_load, Opt_update,
719 	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
720 	Opt_pcrinfo, Opt_pcrlock, Opt_migratable,
721 	Opt_hash,
722 	Opt_policydigest,
723 	Opt_policyhandle,
724 };
725 
726 static const match_table_t key_tokens = {
727 	{Opt_new, "new"},
728 	{Opt_load, "load"},
729 	{Opt_update, "update"},
730 	{Opt_keyhandle, "keyhandle=%s"},
731 	{Opt_keyauth, "keyauth=%s"},
732 	{Opt_blobauth, "blobauth=%s"},
733 	{Opt_pcrinfo, "pcrinfo=%s"},
734 	{Opt_pcrlock, "pcrlock=%s"},
735 	{Opt_migratable, "migratable=%s"},
736 	{Opt_hash, "hash=%s"},
737 	{Opt_policydigest, "policydigest=%s"},
738 	{Opt_policyhandle, "policyhandle=%s"},
739 	{Opt_err, NULL}
740 };
741 
742 /* can have zero or more token= options */
getoptions(char * c,struct trusted_key_payload * pay,struct trusted_key_options * opt)743 static int getoptions(char *c, struct trusted_key_payload *pay,
744 		      struct trusted_key_options *opt)
745 {
746 	substring_t args[MAX_OPT_ARGS];
747 	char *p = c;
748 	int token;
749 	int res;
750 	unsigned long handle;
751 	unsigned long lock;
752 	unsigned long token_mask = 0;
753 	unsigned int digest_len;
754 	int i;
755 	int tpm2;
756 
757 	tpm2 = tpm_is_tpm2(chip);
758 	if (tpm2 < 0)
759 		return tpm2;
760 
761 	opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1;
762 
763 	while ((p = strsep(&c, " \t"))) {
764 		if (*p == '\0' || *p == ' ' || *p == '\t')
765 			continue;
766 		token = match_token(p, key_tokens, args);
767 		if (test_and_set_bit(token, &token_mask))
768 			return -EINVAL;
769 
770 		switch (token) {
771 		case Opt_pcrinfo:
772 			opt->pcrinfo_len = strlen(args[0].from) / 2;
773 			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
774 				return -EINVAL;
775 			res = hex2bin(opt->pcrinfo, args[0].from,
776 				      opt->pcrinfo_len);
777 			if (res < 0)
778 				return -EINVAL;
779 			break;
780 		case Opt_keyhandle:
781 			res = kstrtoul(args[0].from, 16, &handle);
782 			if (res < 0)
783 				return -EINVAL;
784 			opt->keytype = SEAL_keytype;
785 			opt->keyhandle = handle;
786 			break;
787 		case Opt_keyauth:
788 			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
789 				return -EINVAL;
790 			res = hex2bin(opt->keyauth, args[0].from,
791 				      SHA1_DIGEST_SIZE);
792 			if (res < 0)
793 				return -EINVAL;
794 			break;
795 		case Opt_blobauth:
796 			/*
797 			 * TPM 1.2 authorizations are sha1 hashes passed in as
798 			 * hex strings.  TPM 2.0 authorizations are simple
799 			 * passwords (although it can take a hash as well)
800 			 */
801 			opt->blobauth_len = strlen(args[0].from);
802 
803 			if (opt->blobauth_len == 2 * TPM_DIGEST_SIZE) {
804 				res = hex2bin(opt->blobauth, args[0].from,
805 					      TPM_DIGEST_SIZE);
806 				if (res < 0)
807 					return -EINVAL;
808 
809 				opt->blobauth_len = TPM_DIGEST_SIZE;
810 				break;
811 			}
812 
813 			if (tpm2 && opt->blobauth_len <= sizeof(opt->blobauth)) {
814 				memcpy(opt->blobauth, args[0].from,
815 				       opt->blobauth_len);
816 				break;
817 			}
818 
819 			return -EINVAL;
820 
821 			break;
822 
823 		case Opt_migratable:
824 			if (*args[0].from == '0')
825 				pay->migratable = 0;
826 			else if (*args[0].from != '1')
827 				return -EINVAL;
828 			break;
829 		case Opt_pcrlock:
830 			res = kstrtoul(args[0].from, 10, &lock);
831 			if (res < 0)
832 				return -EINVAL;
833 			opt->pcrlock = lock;
834 			break;
835 		case Opt_hash:
836 			if (test_bit(Opt_policydigest, &token_mask))
837 				return -EINVAL;
838 			for (i = 0; i < HASH_ALGO__LAST; i++) {
839 				if (!strcmp(args[0].from, hash_algo_name[i])) {
840 					opt->hash = i;
841 					break;
842 				}
843 			}
844 			if (i == HASH_ALGO__LAST)
845 				return -EINVAL;
846 			if  (!tpm2 && i != HASH_ALGO_SHA1) {
847 				pr_info("trusted_key: TPM 1.x only supports SHA-1.\n");
848 				return -EINVAL;
849 			}
850 			break;
851 		case Opt_policydigest:
852 			digest_len = hash_digest_size[opt->hash];
853 			if (!tpm2 || strlen(args[0].from) != (2 * digest_len))
854 				return -EINVAL;
855 			res = hex2bin(opt->policydigest, args[0].from,
856 				      digest_len);
857 			if (res < 0)
858 				return -EINVAL;
859 			opt->policydigest_len = digest_len;
860 			break;
861 		case Opt_policyhandle:
862 			if (!tpm2)
863 				return -EINVAL;
864 			res = kstrtoul(args[0].from, 16, &handle);
865 			if (res < 0)
866 				return -EINVAL;
867 			opt->policyhandle = handle;
868 			break;
869 		default:
870 			return -EINVAL;
871 		}
872 	}
873 	return 0;
874 }
875 
876 /*
877  * datablob_parse - parse the keyctl data and fill in the
878  * 		    payload and options structures
879  *
880  * On success returns 0, otherwise -EINVAL.
881  */
datablob_parse(char * datablob,struct trusted_key_payload * p,struct trusted_key_options * o)882 static int datablob_parse(char *datablob, struct trusted_key_payload *p,
883 			  struct trusted_key_options *o)
884 {
885 	substring_t args[MAX_OPT_ARGS];
886 	long keylen;
887 	int ret = -EINVAL;
888 	int key_cmd;
889 	char *c;
890 
891 	/* main command */
892 	c = strsep(&datablob, " \t");
893 	if (!c)
894 		return -EINVAL;
895 	key_cmd = match_token(c, key_tokens, args);
896 	switch (key_cmd) {
897 	case Opt_new:
898 		/* first argument is key size */
899 		c = strsep(&datablob, " \t");
900 		if (!c)
901 			return -EINVAL;
902 		ret = kstrtol(c, 10, &keylen);
903 		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
904 			return -EINVAL;
905 		p->key_len = keylen;
906 		ret = getoptions(datablob, p, o);
907 		if (ret < 0)
908 			return ret;
909 		ret = Opt_new;
910 		break;
911 	case Opt_load:
912 		/* first argument is sealed blob */
913 		c = strsep(&datablob, " \t");
914 		if (!c)
915 			return -EINVAL;
916 		p->blob_len = strlen(c) / 2;
917 		if (p->blob_len > MAX_BLOB_SIZE)
918 			return -EINVAL;
919 		ret = hex2bin(p->blob, c, p->blob_len);
920 		if (ret < 0)
921 			return -EINVAL;
922 		ret = getoptions(datablob, p, o);
923 		if (ret < 0)
924 			return ret;
925 		ret = Opt_load;
926 		break;
927 	case Opt_update:
928 		/* all arguments are options */
929 		ret = getoptions(datablob, p, o);
930 		if (ret < 0)
931 			return ret;
932 		ret = Opt_update;
933 		break;
934 	case Opt_err:
935 		return -EINVAL;
936 		break;
937 	}
938 	return ret;
939 }
940 
trusted_options_alloc(void)941 static struct trusted_key_options *trusted_options_alloc(void)
942 {
943 	struct trusted_key_options *options;
944 	int tpm2;
945 
946 	tpm2 = tpm_is_tpm2(chip);
947 	if (tpm2 < 0)
948 		return NULL;
949 
950 	options = kzalloc(sizeof *options, GFP_KERNEL);
951 	if (options) {
952 		/* set any non-zero defaults */
953 		options->keytype = SRK_keytype;
954 
955 		if (!tpm2)
956 			options->keyhandle = SRKHANDLE;
957 	}
958 	return options;
959 }
960 
trusted_payload_alloc(struct key * key)961 static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
962 {
963 	struct trusted_key_payload *p = NULL;
964 	int ret;
965 
966 	ret = key_payload_reserve(key, sizeof *p);
967 	if (ret < 0)
968 		return p;
969 	p = kzalloc(sizeof *p, GFP_KERNEL);
970 	if (p)
971 		p->migratable = 1; /* migratable by default */
972 	return p;
973 }
974 
975 /*
976  * trusted_instantiate - create a new trusted key
977  *
978  * Unseal an existing trusted blob or, for a new key, get a
979  * random key, then seal and create a trusted key-type key,
980  * adding it to the specified keyring.
981  *
982  * On success, return 0. Otherwise return errno.
983  */
trusted_instantiate(struct key * key,struct key_preparsed_payload * prep)984 static int trusted_instantiate(struct key *key,
985 			       struct key_preparsed_payload *prep)
986 {
987 	struct trusted_key_payload *payload = NULL;
988 	struct trusted_key_options *options = NULL;
989 	size_t datalen = prep->datalen;
990 	char *datablob;
991 	int ret = 0;
992 	int key_cmd;
993 	size_t key_len;
994 	int tpm2;
995 
996 	tpm2 = tpm_is_tpm2(chip);
997 	if (tpm2 < 0)
998 		return tpm2;
999 
1000 	if (datalen <= 0 || datalen > 32767 || !prep->data)
1001 		return -EINVAL;
1002 
1003 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1004 	if (!datablob)
1005 		return -ENOMEM;
1006 	memcpy(datablob, prep->data, datalen);
1007 	datablob[datalen] = '\0';
1008 
1009 	options = trusted_options_alloc();
1010 	if (!options) {
1011 		ret = -ENOMEM;
1012 		goto out;
1013 	}
1014 	payload = trusted_payload_alloc(key);
1015 	if (!payload) {
1016 		ret = -ENOMEM;
1017 		goto out;
1018 	}
1019 
1020 	key_cmd = datablob_parse(datablob, payload, options);
1021 	if (key_cmd < 0) {
1022 		ret = key_cmd;
1023 		goto out;
1024 	}
1025 
1026 	if (!options->keyhandle) {
1027 		ret = -EINVAL;
1028 		goto out;
1029 	}
1030 
1031 	dump_payload(payload);
1032 	dump_options(options);
1033 
1034 	switch (key_cmd) {
1035 	case Opt_load:
1036 		if (tpm2)
1037 			ret = tpm2_unseal_trusted(chip, payload, options);
1038 		else
1039 			ret = key_unseal(payload, options);
1040 		dump_payload(payload);
1041 		dump_options(options);
1042 		if (ret < 0)
1043 			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
1044 		break;
1045 	case Opt_new:
1046 		key_len = payload->key_len;
1047 		ret = tpm_get_random(chip, payload->key, key_len);
1048 		if (ret < 0)
1049 			goto out;
1050 
1051 		if (ret != key_len) {
1052 			pr_info("trusted_key: key_create failed (%d)\n", ret);
1053 			ret = -EIO;
1054 			goto out;
1055 		}
1056 		if (tpm2)
1057 			ret = tpm2_seal_trusted(chip, payload, options);
1058 		else
1059 			ret = key_seal(payload, options);
1060 		if (ret < 0)
1061 			pr_info("trusted_key: key_seal failed (%d)\n", ret);
1062 		break;
1063 	default:
1064 		ret = -EINVAL;
1065 		goto out;
1066 	}
1067 	if (!ret && options->pcrlock)
1068 		ret = pcrlock(options->pcrlock);
1069 out:
1070 	kfree_sensitive(datablob);
1071 	kfree_sensitive(options);
1072 	if (!ret)
1073 		rcu_assign_keypointer(key, payload);
1074 	else
1075 		kfree_sensitive(payload);
1076 	return ret;
1077 }
1078 
trusted_rcu_free(struct rcu_head * rcu)1079 static void trusted_rcu_free(struct rcu_head *rcu)
1080 {
1081 	struct trusted_key_payload *p;
1082 
1083 	p = container_of(rcu, struct trusted_key_payload, rcu);
1084 	kfree_sensitive(p);
1085 }
1086 
1087 /*
1088  * trusted_update - reseal an existing key with new PCR values
1089  */
trusted_update(struct key * key,struct key_preparsed_payload * prep)1090 static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1091 {
1092 	struct trusted_key_payload *p;
1093 	struct trusted_key_payload *new_p;
1094 	struct trusted_key_options *new_o;
1095 	size_t datalen = prep->datalen;
1096 	char *datablob;
1097 	int ret = 0;
1098 
1099 	if (key_is_negative(key))
1100 		return -ENOKEY;
1101 	p = key->payload.data[0];
1102 	if (!p->migratable)
1103 		return -EPERM;
1104 	if (datalen <= 0 || datalen > 32767 || !prep->data)
1105 		return -EINVAL;
1106 
1107 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1108 	if (!datablob)
1109 		return -ENOMEM;
1110 	new_o = trusted_options_alloc();
1111 	if (!new_o) {
1112 		ret = -ENOMEM;
1113 		goto out;
1114 	}
1115 	new_p = trusted_payload_alloc(key);
1116 	if (!new_p) {
1117 		ret = -ENOMEM;
1118 		goto out;
1119 	}
1120 
1121 	memcpy(datablob, prep->data, datalen);
1122 	datablob[datalen] = '\0';
1123 	ret = datablob_parse(datablob, new_p, new_o);
1124 	if (ret != Opt_update) {
1125 		ret = -EINVAL;
1126 		kfree_sensitive(new_p);
1127 		goto out;
1128 	}
1129 
1130 	if (!new_o->keyhandle) {
1131 		ret = -EINVAL;
1132 		kfree_sensitive(new_p);
1133 		goto out;
1134 	}
1135 
1136 	/* copy old key values, and reseal with new pcrs */
1137 	new_p->migratable = p->migratable;
1138 	new_p->key_len = p->key_len;
1139 	memcpy(new_p->key, p->key, p->key_len);
1140 	dump_payload(p);
1141 	dump_payload(new_p);
1142 
1143 	ret = key_seal(new_p, new_o);
1144 	if (ret < 0) {
1145 		pr_info("trusted_key: key_seal failed (%d)\n", ret);
1146 		kfree_sensitive(new_p);
1147 		goto out;
1148 	}
1149 	if (new_o->pcrlock) {
1150 		ret = pcrlock(new_o->pcrlock);
1151 		if (ret < 0) {
1152 			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1153 			kfree_sensitive(new_p);
1154 			goto out;
1155 		}
1156 	}
1157 	rcu_assign_keypointer(key, new_p);
1158 	call_rcu(&p->rcu, trusted_rcu_free);
1159 out:
1160 	kfree_sensitive(datablob);
1161 	kfree_sensitive(new_o);
1162 	return ret;
1163 }
1164 
1165 /*
1166  * trusted_read - copy the sealed blob data to userspace in hex.
1167  * On success, return to userspace the trusted key datablob size.
1168  */
trusted_read(const struct key * key,char * buffer,size_t buflen)1169 static long trusted_read(const struct key *key, char *buffer,
1170 			 size_t buflen)
1171 {
1172 	const struct trusted_key_payload *p;
1173 	char *bufp;
1174 	int i;
1175 
1176 	p = dereference_key_locked(key);
1177 	if (!p)
1178 		return -EINVAL;
1179 
1180 	if (buffer && buflen >= 2 * p->blob_len) {
1181 		bufp = buffer;
1182 		for (i = 0; i < p->blob_len; i++)
1183 			bufp = hex_byte_pack(bufp, p->blob[i]);
1184 	}
1185 	return 2 * p->blob_len;
1186 }
1187 
1188 /*
1189  * trusted_destroy - clear and free the key's payload
1190  */
trusted_destroy(struct key * key)1191 static void trusted_destroy(struct key *key)
1192 {
1193 	kfree_sensitive(key->payload.data[0]);
1194 }
1195 
1196 struct key_type key_type_trusted = {
1197 	.name = "trusted",
1198 	.instantiate = trusted_instantiate,
1199 	.update = trusted_update,
1200 	.destroy = trusted_destroy,
1201 	.describe = user_describe,
1202 	.read = trusted_read,
1203 };
1204 
1205 EXPORT_SYMBOL_GPL(key_type_trusted);
1206 
trusted_shash_release(void)1207 static void trusted_shash_release(void)
1208 {
1209 	if (hashalg)
1210 		crypto_free_shash(hashalg);
1211 	if (hmacalg)
1212 		crypto_free_shash(hmacalg);
1213 }
1214 
trusted_shash_alloc(void)1215 static int __init trusted_shash_alloc(void)
1216 {
1217 	int ret;
1218 
1219 	hmacalg = crypto_alloc_shash(hmac_alg, 0, 0);
1220 	if (IS_ERR(hmacalg)) {
1221 		pr_info("trusted_key: could not allocate crypto %s\n",
1222 			hmac_alg);
1223 		return PTR_ERR(hmacalg);
1224 	}
1225 
1226 	hashalg = crypto_alloc_shash(hash_alg, 0, 0);
1227 	if (IS_ERR(hashalg)) {
1228 		pr_info("trusted_key: could not allocate crypto %s\n",
1229 			hash_alg);
1230 		ret = PTR_ERR(hashalg);
1231 		goto hashalg_fail;
1232 	}
1233 
1234 	return 0;
1235 
1236 hashalg_fail:
1237 	crypto_free_shash(hmacalg);
1238 	return ret;
1239 }
1240 
init_digests(void)1241 static int __init init_digests(void)
1242 {
1243 	int i;
1244 
1245 	digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests),
1246 			  GFP_KERNEL);
1247 	if (!digests)
1248 		return -ENOMEM;
1249 
1250 	for (i = 0; i < chip->nr_allocated_banks; i++)
1251 		digests[i].alg_id = chip->allocated_banks[i].alg_id;
1252 
1253 	return 0;
1254 }
1255 
init_trusted(void)1256 static int __init init_trusted(void)
1257 {
1258 	int ret;
1259 
1260 	/* encrypted_keys.ko depends on successful load of this module even if
1261 	 * TPM is not used.
1262 	 */
1263 	chip = tpm_default_chip();
1264 	if (!chip)
1265 		return 0;
1266 
1267 	ret = init_digests();
1268 	if (ret < 0)
1269 		goto err_put;
1270 	ret = trusted_shash_alloc();
1271 	if (ret < 0)
1272 		goto err_free;
1273 	ret = register_key_type(&key_type_trusted);
1274 	if (ret < 0)
1275 		goto err_release;
1276 	return 0;
1277 err_release:
1278 	trusted_shash_release();
1279 err_free:
1280 	kfree(digests);
1281 err_put:
1282 	put_device(&chip->dev);
1283 	return ret;
1284 }
1285 
cleanup_trusted(void)1286 static void __exit cleanup_trusted(void)
1287 {
1288 	if (chip) {
1289 		put_device(&chip->dev);
1290 		kfree(digests);
1291 		trusted_shash_release();
1292 		unregister_key_type(&key_type_trusted);
1293 	}
1294 }
1295 
1296 late_initcall(init_trusted);
1297 module_exit(cleanup_trusted);
1298 
1299 MODULE_LICENSE("GPL");
1300