1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2010 IBM Corporation
4 *
5 * Author:
6 * David Safford <safford@us.ibm.com>
7 *
8 * See Documentation/security/keys/trusted-encrypted.rst
9 */
10
11 #include <crypto/hash_info.h>
12 #include <linux/uaccess.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/parser.h>
17 #include <linux/string.h>
18 #include <linux/err.h>
19 #include <keys/user-type.h>
20 #include <keys/trusted-type.h>
21 #include <linux/key-type.h>
22 #include <linux/rcupdate.h>
23 #include <linux/crypto.h>
24 #include <crypto/hash.h>
25 #include <crypto/sha.h>
26 #include <linux/capability.h>
27 #include <linux/tpm.h>
28 #include <linux/tpm_command.h>
29
30 #include <keys/trusted_tpm.h>
31
32 static const char hmac_alg[] = "hmac(sha1)";
33 static const char hash_alg[] = "sha1";
34 static struct tpm_chip *chip;
35 static struct tpm_digest *digests;
36
37 struct sdesc {
38 struct shash_desc shash;
39 char ctx[];
40 };
41
42 static struct crypto_shash *hashalg;
43 static struct crypto_shash *hmacalg;
44
init_sdesc(struct crypto_shash * alg)45 static struct sdesc *init_sdesc(struct crypto_shash *alg)
46 {
47 struct sdesc *sdesc;
48 int size;
49
50 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51 sdesc = kmalloc(size, GFP_KERNEL);
52 if (!sdesc)
53 return ERR_PTR(-ENOMEM);
54 sdesc->shash.tfm = alg;
55 return sdesc;
56 }
57
TSS_sha1(const unsigned char * data,unsigned int datalen,unsigned char * digest)58 static int TSS_sha1(const unsigned char *data, unsigned int datalen,
59 unsigned char *digest)
60 {
61 struct sdesc *sdesc;
62 int ret;
63
64 sdesc = init_sdesc(hashalg);
65 if (IS_ERR(sdesc)) {
66 pr_info("trusted_key: can't alloc %s\n", hash_alg);
67 return PTR_ERR(sdesc);
68 }
69
70 ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
71 kfree_sensitive(sdesc);
72 return ret;
73 }
74
TSS_rawhmac(unsigned char * digest,const unsigned char * key,unsigned int keylen,...)75 static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
76 unsigned int keylen, ...)
77 {
78 struct sdesc *sdesc;
79 va_list argp;
80 unsigned int dlen;
81 unsigned char *data;
82 int ret;
83
84 sdesc = init_sdesc(hmacalg);
85 if (IS_ERR(sdesc)) {
86 pr_info("trusted_key: can't alloc %s\n", hmac_alg);
87 return PTR_ERR(sdesc);
88 }
89
90 ret = crypto_shash_setkey(hmacalg, key, keylen);
91 if (ret < 0)
92 goto out;
93 ret = crypto_shash_init(&sdesc->shash);
94 if (ret < 0)
95 goto out;
96
97 va_start(argp, keylen);
98 for (;;) {
99 dlen = va_arg(argp, unsigned int);
100 if (dlen == 0)
101 break;
102 data = va_arg(argp, unsigned char *);
103 if (data == NULL) {
104 ret = -EINVAL;
105 break;
106 }
107 ret = crypto_shash_update(&sdesc->shash, data, dlen);
108 if (ret < 0)
109 break;
110 }
111 va_end(argp);
112 if (!ret)
113 ret = crypto_shash_final(&sdesc->shash, digest);
114 out:
115 kfree_sensitive(sdesc);
116 return ret;
117 }
118
119 /*
120 * calculate authorization info fields to send to TPM
121 */
TSS_authhmac(unsigned char * digest,const unsigned char * key,unsigned int keylen,unsigned char * h1,unsigned char * h2,unsigned int h3,...)122 int TSS_authhmac(unsigned char *digest, const unsigned char *key,
123 unsigned int keylen, unsigned char *h1,
124 unsigned char *h2, unsigned int h3, ...)
125 {
126 unsigned char paramdigest[SHA1_DIGEST_SIZE];
127 struct sdesc *sdesc;
128 unsigned int dlen;
129 unsigned char *data;
130 unsigned char c;
131 int ret;
132 va_list argp;
133
134 if (!chip)
135 return -ENODEV;
136
137 sdesc = init_sdesc(hashalg);
138 if (IS_ERR(sdesc)) {
139 pr_info("trusted_key: can't alloc %s\n", hash_alg);
140 return PTR_ERR(sdesc);
141 }
142
143 c = !!h3;
144 ret = crypto_shash_init(&sdesc->shash);
145 if (ret < 0)
146 goto out;
147 va_start(argp, h3);
148 for (;;) {
149 dlen = va_arg(argp, unsigned int);
150 if (dlen == 0)
151 break;
152 data = va_arg(argp, unsigned char *);
153 if (!data) {
154 ret = -EINVAL;
155 break;
156 }
157 ret = crypto_shash_update(&sdesc->shash, data, dlen);
158 if (ret < 0)
159 break;
160 }
161 va_end(argp);
162 if (!ret)
163 ret = crypto_shash_final(&sdesc->shash, paramdigest);
164 if (!ret)
165 ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
166 paramdigest, TPM_NONCE_SIZE, h1,
167 TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
168 out:
169 kfree_sensitive(sdesc);
170 return ret;
171 }
172 EXPORT_SYMBOL_GPL(TSS_authhmac);
173
174 /*
175 * verify the AUTH1_COMMAND (Seal) result from TPM
176 */
TSS_checkhmac1(unsigned char * buffer,const uint32_t command,const unsigned char * ononce,const unsigned char * key,unsigned int keylen,...)177 int TSS_checkhmac1(unsigned char *buffer,
178 const uint32_t command,
179 const unsigned char *ononce,
180 const unsigned char *key,
181 unsigned int keylen, ...)
182 {
183 uint32_t bufsize;
184 uint16_t tag;
185 uint32_t ordinal;
186 uint32_t result;
187 unsigned char *enonce;
188 unsigned char *continueflag;
189 unsigned char *authdata;
190 unsigned char testhmac[SHA1_DIGEST_SIZE];
191 unsigned char paramdigest[SHA1_DIGEST_SIZE];
192 struct sdesc *sdesc;
193 unsigned int dlen;
194 unsigned int dpos;
195 va_list argp;
196 int ret;
197
198 if (!chip)
199 return -ENODEV;
200
201 bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
202 tag = LOAD16(buffer, 0);
203 ordinal = command;
204 result = LOAD32N(buffer, TPM_RETURN_OFFSET);
205 if (tag == TPM_TAG_RSP_COMMAND)
206 return 0;
207 if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
208 return -EINVAL;
209 authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
210 continueflag = authdata - 1;
211 enonce = continueflag - TPM_NONCE_SIZE;
212
213 sdesc = init_sdesc(hashalg);
214 if (IS_ERR(sdesc)) {
215 pr_info("trusted_key: can't alloc %s\n", hash_alg);
216 return PTR_ERR(sdesc);
217 }
218 ret = crypto_shash_init(&sdesc->shash);
219 if (ret < 0)
220 goto out;
221 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
222 sizeof result);
223 if (ret < 0)
224 goto out;
225 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
226 sizeof ordinal);
227 if (ret < 0)
228 goto out;
229 va_start(argp, keylen);
230 for (;;) {
231 dlen = va_arg(argp, unsigned int);
232 if (dlen == 0)
233 break;
234 dpos = va_arg(argp, unsigned int);
235 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
236 if (ret < 0)
237 break;
238 }
239 va_end(argp);
240 if (!ret)
241 ret = crypto_shash_final(&sdesc->shash, paramdigest);
242 if (ret < 0)
243 goto out;
244
245 ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
246 TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
247 1, continueflag, 0, 0);
248 if (ret < 0)
249 goto out;
250
251 if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
252 ret = -EINVAL;
253 out:
254 kfree_sensitive(sdesc);
255 return ret;
256 }
257 EXPORT_SYMBOL_GPL(TSS_checkhmac1);
258
259 /*
260 * verify the AUTH2_COMMAND (unseal) result from TPM
261 */
TSS_checkhmac2(unsigned char * buffer,const uint32_t command,const unsigned char * ononce,const unsigned char * key1,unsigned int keylen1,const unsigned char * key2,unsigned int keylen2,...)262 static int TSS_checkhmac2(unsigned char *buffer,
263 const uint32_t command,
264 const unsigned char *ononce,
265 const unsigned char *key1,
266 unsigned int keylen1,
267 const unsigned char *key2,
268 unsigned int keylen2, ...)
269 {
270 uint32_t bufsize;
271 uint16_t tag;
272 uint32_t ordinal;
273 uint32_t result;
274 unsigned char *enonce1;
275 unsigned char *continueflag1;
276 unsigned char *authdata1;
277 unsigned char *enonce2;
278 unsigned char *continueflag2;
279 unsigned char *authdata2;
280 unsigned char testhmac1[SHA1_DIGEST_SIZE];
281 unsigned char testhmac2[SHA1_DIGEST_SIZE];
282 unsigned char paramdigest[SHA1_DIGEST_SIZE];
283 struct sdesc *sdesc;
284 unsigned int dlen;
285 unsigned int dpos;
286 va_list argp;
287 int ret;
288
289 bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
290 tag = LOAD16(buffer, 0);
291 ordinal = command;
292 result = LOAD32N(buffer, TPM_RETURN_OFFSET);
293
294 if (tag == TPM_TAG_RSP_COMMAND)
295 return 0;
296 if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
297 return -EINVAL;
298 authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
299 + SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
300 authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
301 continueflag1 = authdata1 - 1;
302 continueflag2 = authdata2 - 1;
303 enonce1 = continueflag1 - TPM_NONCE_SIZE;
304 enonce2 = continueflag2 - TPM_NONCE_SIZE;
305
306 sdesc = init_sdesc(hashalg);
307 if (IS_ERR(sdesc)) {
308 pr_info("trusted_key: can't alloc %s\n", hash_alg);
309 return PTR_ERR(sdesc);
310 }
311 ret = crypto_shash_init(&sdesc->shash);
312 if (ret < 0)
313 goto out;
314 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
315 sizeof result);
316 if (ret < 0)
317 goto out;
318 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
319 sizeof ordinal);
320 if (ret < 0)
321 goto out;
322
323 va_start(argp, keylen2);
324 for (;;) {
325 dlen = va_arg(argp, unsigned int);
326 if (dlen == 0)
327 break;
328 dpos = va_arg(argp, unsigned int);
329 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
330 if (ret < 0)
331 break;
332 }
333 va_end(argp);
334 if (!ret)
335 ret = crypto_shash_final(&sdesc->shash, paramdigest);
336 if (ret < 0)
337 goto out;
338
339 ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
340 paramdigest, TPM_NONCE_SIZE, enonce1,
341 TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
342 if (ret < 0)
343 goto out;
344 if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
345 ret = -EINVAL;
346 goto out;
347 }
348 ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
349 paramdigest, TPM_NONCE_SIZE, enonce2,
350 TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
351 if (ret < 0)
352 goto out;
353 if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
354 ret = -EINVAL;
355 out:
356 kfree_sensitive(sdesc);
357 return ret;
358 }
359
360 /*
361 * For key specific tpm requests, we will generate and send our
362 * own TPM command packets using the drivers send function.
363 */
trusted_tpm_send(unsigned char * cmd,size_t buflen)364 int trusted_tpm_send(unsigned char *cmd, size_t buflen)
365 {
366 int rc;
367
368 if (!chip)
369 return -ENODEV;
370
371 dump_tpm_buf(cmd);
372 rc = tpm_send(chip, cmd, buflen);
373 dump_tpm_buf(cmd);
374 if (rc > 0)
375 /* Can't return positive return codes values to keyctl */
376 rc = -EPERM;
377 return rc;
378 }
379 EXPORT_SYMBOL_GPL(trusted_tpm_send);
380
381 /*
382 * Lock a trusted key, by extending a selected PCR.
383 *
384 * Prevents a trusted key that is sealed to PCRs from being accessed.
385 * This uses the tpm driver's extend function.
386 */
pcrlock(const int pcrnum)387 static int pcrlock(const int pcrnum)
388 {
389 if (!capable(CAP_SYS_ADMIN))
390 return -EPERM;
391
392 return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0;
393 }
394
395 /*
396 * Create an object specific authorisation protocol (OSAP) session
397 */
osap(struct tpm_buf * tb,struct osapsess * s,const unsigned char * key,uint16_t type,uint32_t handle)398 static int osap(struct tpm_buf *tb, struct osapsess *s,
399 const unsigned char *key, uint16_t type, uint32_t handle)
400 {
401 unsigned char enonce[TPM_NONCE_SIZE];
402 unsigned char ononce[TPM_NONCE_SIZE];
403 int ret;
404
405 ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE);
406 if (ret < 0)
407 return ret;
408
409 if (ret != TPM_NONCE_SIZE)
410 return -EIO;
411
412 tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OSAP);
413 tpm_buf_append_u16(tb, type);
414 tpm_buf_append_u32(tb, handle);
415 tpm_buf_append(tb, ononce, TPM_NONCE_SIZE);
416
417 ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
418 if (ret < 0)
419 return ret;
420
421 s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
422 memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
423 TPM_NONCE_SIZE);
424 memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
425 TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
426 return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
427 enonce, TPM_NONCE_SIZE, ononce, 0, 0);
428 }
429
430 /*
431 * Create an object independent authorisation protocol (oiap) session
432 */
oiap(struct tpm_buf * tb,uint32_t * handle,unsigned char * nonce)433 int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
434 {
435 int ret;
436
437 if (!chip)
438 return -ENODEV;
439
440 tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP);
441 ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
442 if (ret < 0)
443 return ret;
444
445 *handle = LOAD32(tb->data, TPM_DATA_OFFSET);
446 memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
447 TPM_NONCE_SIZE);
448 return 0;
449 }
450 EXPORT_SYMBOL_GPL(oiap);
451
452 struct tpm_digests {
453 unsigned char encauth[SHA1_DIGEST_SIZE];
454 unsigned char pubauth[SHA1_DIGEST_SIZE];
455 unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
456 unsigned char xorhash[SHA1_DIGEST_SIZE];
457 unsigned char nonceodd[TPM_NONCE_SIZE];
458 };
459
460 /*
461 * Have the TPM seal(encrypt) the trusted key, possibly based on
462 * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
463 */
tpm_seal(struct tpm_buf * tb,uint16_t keytype,uint32_t keyhandle,const unsigned char * keyauth,const unsigned char * data,uint32_t datalen,unsigned char * blob,uint32_t * bloblen,const unsigned char * blobauth,const unsigned char * pcrinfo,uint32_t pcrinfosize)464 static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
465 uint32_t keyhandle, const unsigned char *keyauth,
466 const unsigned char *data, uint32_t datalen,
467 unsigned char *blob, uint32_t *bloblen,
468 const unsigned char *blobauth,
469 const unsigned char *pcrinfo, uint32_t pcrinfosize)
470 {
471 struct osapsess sess;
472 struct tpm_digests *td;
473 unsigned char cont;
474 uint32_t ordinal;
475 uint32_t pcrsize;
476 uint32_t datsize;
477 int sealinfosize;
478 int encdatasize;
479 int storedsize;
480 int ret;
481 int i;
482
483 /* alloc some work space for all the hashes */
484 td = kmalloc(sizeof *td, GFP_KERNEL);
485 if (!td)
486 return -ENOMEM;
487
488 /* get session for sealing key */
489 ret = osap(tb, &sess, keyauth, keytype, keyhandle);
490 if (ret < 0)
491 goto out;
492 dump_sess(&sess);
493
494 /* calculate encrypted authorization value */
495 memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
496 memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
497 ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
498 if (ret < 0)
499 goto out;
500
501 ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE);
502 if (ret < 0)
503 goto out;
504
505 if (ret != TPM_NONCE_SIZE) {
506 ret = -EIO;
507 goto out;
508 }
509
510 ordinal = htonl(TPM_ORD_SEAL);
511 datsize = htonl(datalen);
512 pcrsize = htonl(pcrinfosize);
513 cont = 0;
514
515 /* encrypt data authorization key */
516 for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
517 td->encauth[i] = td->xorhash[i] ^ blobauth[i];
518
519 /* calculate authorization HMAC value */
520 if (pcrinfosize == 0) {
521 /* no pcr info specified */
522 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
523 sess.enonce, td->nonceodd, cont,
524 sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
525 td->encauth, sizeof(uint32_t), &pcrsize,
526 sizeof(uint32_t), &datsize, datalen, data, 0,
527 0);
528 } else {
529 /* pcr info specified */
530 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
531 sess.enonce, td->nonceodd, cont,
532 sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
533 td->encauth, sizeof(uint32_t), &pcrsize,
534 pcrinfosize, pcrinfo, sizeof(uint32_t),
535 &datsize, datalen, data, 0, 0);
536 }
537 if (ret < 0)
538 goto out;
539
540 /* build and send the TPM request packet */
541 tpm_buf_reset(tb, TPM_TAG_RQU_AUTH1_COMMAND, TPM_ORD_SEAL);
542 tpm_buf_append_u32(tb, keyhandle);
543 tpm_buf_append(tb, td->encauth, SHA1_DIGEST_SIZE);
544 tpm_buf_append_u32(tb, pcrinfosize);
545 tpm_buf_append(tb, pcrinfo, pcrinfosize);
546 tpm_buf_append_u32(tb, datalen);
547 tpm_buf_append(tb, data, datalen);
548 tpm_buf_append_u32(tb, sess.handle);
549 tpm_buf_append(tb, td->nonceodd, TPM_NONCE_SIZE);
550 tpm_buf_append_u8(tb, cont);
551 tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE);
552
553 ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
554 if (ret < 0)
555 goto out;
556
557 /* calculate the size of the returned Blob */
558 sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
559 encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
560 sizeof(uint32_t) + sealinfosize);
561 storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
562 sizeof(uint32_t) + encdatasize;
563
564 /* check the HMAC in the response */
565 ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
566 SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
567 0);
568
569 /* copy the returned blob to caller */
570 if (!ret) {
571 memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
572 *bloblen = storedsize;
573 }
574 out:
575 kfree_sensitive(td);
576 return ret;
577 }
578
579 /*
580 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
581 */
tpm_unseal(struct tpm_buf * tb,uint32_t keyhandle,const unsigned char * keyauth,const unsigned char * blob,int bloblen,const unsigned char * blobauth,unsigned char * data,unsigned int * datalen)582 static int tpm_unseal(struct tpm_buf *tb,
583 uint32_t keyhandle, const unsigned char *keyauth,
584 const unsigned char *blob, int bloblen,
585 const unsigned char *blobauth,
586 unsigned char *data, unsigned int *datalen)
587 {
588 unsigned char nonceodd[TPM_NONCE_SIZE];
589 unsigned char enonce1[TPM_NONCE_SIZE];
590 unsigned char enonce2[TPM_NONCE_SIZE];
591 unsigned char authdata1[SHA1_DIGEST_SIZE];
592 unsigned char authdata2[SHA1_DIGEST_SIZE];
593 uint32_t authhandle1 = 0;
594 uint32_t authhandle2 = 0;
595 unsigned char cont = 0;
596 uint32_t ordinal;
597 int ret;
598
599 /* sessions for unsealing key and data */
600 ret = oiap(tb, &authhandle1, enonce1);
601 if (ret < 0) {
602 pr_info("trusted_key: oiap failed (%d)\n", ret);
603 return ret;
604 }
605 ret = oiap(tb, &authhandle2, enonce2);
606 if (ret < 0) {
607 pr_info("trusted_key: oiap failed (%d)\n", ret);
608 return ret;
609 }
610
611 ordinal = htonl(TPM_ORD_UNSEAL);
612 ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE);
613 if (ret < 0)
614 return ret;
615
616 if (ret != TPM_NONCE_SIZE) {
617 pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
618 return -EIO;
619 }
620 ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
621 enonce1, nonceodd, cont, sizeof(uint32_t),
622 &ordinal, bloblen, blob, 0, 0);
623 if (ret < 0)
624 return ret;
625 ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
626 enonce2, nonceodd, cont, sizeof(uint32_t),
627 &ordinal, bloblen, blob, 0, 0);
628 if (ret < 0)
629 return ret;
630
631 /* build and send TPM request packet */
632 tpm_buf_reset(tb, TPM_TAG_RQU_AUTH2_COMMAND, TPM_ORD_UNSEAL);
633 tpm_buf_append_u32(tb, keyhandle);
634 tpm_buf_append(tb, blob, bloblen);
635 tpm_buf_append_u32(tb, authhandle1);
636 tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
637 tpm_buf_append_u8(tb, cont);
638 tpm_buf_append(tb, authdata1, SHA1_DIGEST_SIZE);
639 tpm_buf_append_u32(tb, authhandle2);
640 tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
641 tpm_buf_append_u8(tb, cont);
642 tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE);
643
644 ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
645 if (ret < 0) {
646 pr_info("trusted_key: authhmac failed (%d)\n", ret);
647 return ret;
648 }
649
650 *datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
651 ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
652 keyauth, SHA1_DIGEST_SIZE,
653 blobauth, SHA1_DIGEST_SIZE,
654 sizeof(uint32_t), TPM_DATA_OFFSET,
655 *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
656 0);
657 if (ret < 0) {
658 pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
659 return ret;
660 }
661 memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
662 return 0;
663 }
664
665 /*
666 * Have the TPM seal(encrypt) the symmetric key
667 */
key_seal(struct trusted_key_payload * p,struct trusted_key_options * o)668 static int key_seal(struct trusted_key_payload *p,
669 struct trusted_key_options *o)
670 {
671 struct tpm_buf tb;
672 int ret;
673
674 ret = tpm_buf_init(&tb, 0, 0);
675 if (ret)
676 return ret;
677
678 /* include migratable flag at end of sealed key */
679 p->key[p->key_len] = p->migratable;
680
681 ret = tpm_seal(&tb, o->keytype, o->keyhandle, o->keyauth,
682 p->key, p->key_len + 1, p->blob, &p->blob_len,
683 o->blobauth, o->pcrinfo, o->pcrinfo_len);
684 if (ret < 0)
685 pr_info("trusted_key: srkseal failed (%d)\n", ret);
686
687 tpm_buf_destroy(&tb);
688 return ret;
689 }
690
691 /*
692 * Have the TPM unseal(decrypt) the symmetric key
693 */
key_unseal(struct trusted_key_payload * p,struct trusted_key_options * o)694 static int key_unseal(struct trusted_key_payload *p,
695 struct trusted_key_options *o)
696 {
697 struct tpm_buf tb;
698 int ret;
699
700 ret = tpm_buf_init(&tb, 0, 0);
701 if (ret)
702 return ret;
703
704 ret = tpm_unseal(&tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
705 o->blobauth, p->key, &p->key_len);
706 if (ret < 0)
707 pr_info("trusted_key: srkunseal failed (%d)\n", ret);
708 else
709 /* pull migratable flag out of sealed key */
710 p->migratable = p->key[--p->key_len];
711
712 tpm_buf_destroy(&tb);
713 return ret;
714 }
715
716 enum {
717 Opt_err,
718 Opt_new, Opt_load, Opt_update,
719 Opt_keyhandle, Opt_keyauth, Opt_blobauth,
720 Opt_pcrinfo, Opt_pcrlock, Opt_migratable,
721 Opt_hash,
722 Opt_policydigest,
723 Opt_policyhandle,
724 };
725
726 static const match_table_t key_tokens = {
727 {Opt_new, "new"},
728 {Opt_load, "load"},
729 {Opt_update, "update"},
730 {Opt_keyhandle, "keyhandle=%s"},
731 {Opt_keyauth, "keyauth=%s"},
732 {Opt_blobauth, "blobauth=%s"},
733 {Opt_pcrinfo, "pcrinfo=%s"},
734 {Opt_pcrlock, "pcrlock=%s"},
735 {Opt_migratable, "migratable=%s"},
736 {Opt_hash, "hash=%s"},
737 {Opt_policydigest, "policydigest=%s"},
738 {Opt_policyhandle, "policyhandle=%s"},
739 {Opt_err, NULL}
740 };
741
742 /* can have zero or more token= options */
getoptions(char * c,struct trusted_key_payload * pay,struct trusted_key_options * opt)743 static int getoptions(char *c, struct trusted_key_payload *pay,
744 struct trusted_key_options *opt)
745 {
746 substring_t args[MAX_OPT_ARGS];
747 char *p = c;
748 int token;
749 int res;
750 unsigned long handle;
751 unsigned long lock;
752 unsigned long token_mask = 0;
753 unsigned int digest_len;
754 int i;
755 int tpm2;
756
757 tpm2 = tpm_is_tpm2(chip);
758 if (tpm2 < 0)
759 return tpm2;
760
761 opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1;
762
763 while ((p = strsep(&c, " \t"))) {
764 if (*p == '\0' || *p == ' ' || *p == '\t')
765 continue;
766 token = match_token(p, key_tokens, args);
767 if (test_and_set_bit(token, &token_mask))
768 return -EINVAL;
769
770 switch (token) {
771 case Opt_pcrinfo:
772 opt->pcrinfo_len = strlen(args[0].from) / 2;
773 if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
774 return -EINVAL;
775 res = hex2bin(opt->pcrinfo, args[0].from,
776 opt->pcrinfo_len);
777 if (res < 0)
778 return -EINVAL;
779 break;
780 case Opt_keyhandle:
781 res = kstrtoul(args[0].from, 16, &handle);
782 if (res < 0)
783 return -EINVAL;
784 opt->keytype = SEAL_keytype;
785 opt->keyhandle = handle;
786 break;
787 case Opt_keyauth:
788 if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
789 return -EINVAL;
790 res = hex2bin(opt->keyauth, args[0].from,
791 SHA1_DIGEST_SIZE);
792 if (res < 0)
793 return -EINVAL;
794 break;
795 case Opt_blobauth:
796 /*
797 * TPM 1.2 authorizations are sha1 hashes passed in as
798 * hex strings. TPM 2.0 authorizations are simple
799 * passwords (although it can take a hash as well)
800 */
801 opt->blobauth_len = strlen(args[0].from);
802
803 if (opt->blobauth_len == 2 * TPM_DIGEST_SIZE) {
804 res = hex2bin(opt->blobauth, args[0].from,
805 TPM_DIGEST_SIZE);
806 if (res < 0)
807 return -EINVAL;
808
809 opt->blobauth_len = TPM_DIGEST_SIZE;
810 break;
811 }
812
813 if (tpm2 && opt->blobauth_len <= sizeof(opt->blobauth)) {
814 memcpy(opt->blobauth, args[0].from,
815 opt->blobauth_len);
816 break;
817 }
818
819 return -EINVAL;
820
821 break;
822
823 case Opt_migratable:
824 if (*args[0].from == '0')
825 pay->migratable = 0;
826 else if (*args[0].from != '1')
827 return -EINVAL;
828 break;
829 case Opt_pcrlock:
830 res = kstrtoul(args[0].from, 10, &lock);
831 if (res < 0)
832 return -EINVAL;
833 opt->pcrlock = lock;
834 break;
835 case Opt_hash:
836 if (test_bit(Opt_policydigest, &token_mask))
837 return -EINVAL;
838 for (i = 0; i < HASH_ALGO__LAST; i++) {
839 if (!strcmp(args[0].from, hash_algo_name[i])) {
840 opt->hash = i;
841 break;
842 }
843 }
844 if (i == HASH_ALGO__LAST)
845 return -EINVAL;
846 if (!tpm2 && i != HASH_ALGO_SHA1) {
847 pr_info("trusted_key: TPM 1.x only supports SHA-1.\n");
848 return -EINVAL;
849 }
850 break;
851 case Opt_policydigest:
852 digest_len = hash_digest_size[opt->hash];
853 if (!tpm2 || strlen(args[0].from) != (2 * digest_len))
854 return -EINVAL;
855 res = hex2bin(opt->policydigest, args[0].from,
856 digest_len);
857 if (res < 0)
858 return -EINVAL;
859 opt->policydigest_len = digest_len;
860 break;
861 case Opt_policyhandle:
862 if (!tpm2)
863 return -EINVAL;
864 res = kstrtoul(args[0].from, 16, &handle);
865 if (res < 0)
866 return -EINVAL;
867 opt->policyhandle = handle;
868 break;
869 default:
870 return -EINVAL;
871 }
872 }
873 return 0;
874 }
875
876 /*
877 * datablob_parse - parse the keyctl data and fill in the
878 * payload and options structures
879 *
880 * On success returns 0, otherwise -EINVAL.
881 */
datablob_parse(char * datablob,struct trusted_key_payload * p,struct trusted_key_options * o)882 static int datablob_parse(char *datablob, struct trusted_key_payload *p,
883 struct trusted_key_options *o)
884 {
885 substring_t args[MAX_OPT_ARGS];
886 long keylen;
887 int ret = -EINVAL;
888 int key_cmd;
889 char *c;
890
891 /* main command */
892 c = strsep(&datablob, " \t");
893 if (!c)
894 return -EINVAL;
895 key_cmd = match_token(c, key_tokens, args);
896 switch (key_cmd) {
897 case Opt_new:
898 /* first argument is key size */
899 c = strsep(&datablob, " \t");
900 if (!c)
901 return -EINVAL;
902 ret = kstrtol(c, 10, &keylen);
903 if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
904 return -EINVAL;
905 p->key_len = keylen;
906 ret = getoptions(datablob, p, o);
907 if (ret < 0)
908 return ret;
909 ret = Opt_new;
910 break;
911 case Opt_load:
912 /* first argument is sealed blob */
913 c = strsep(&datablob, " \t");
914 if (!c)
915 return -EINVAL;
916 p->blob_len = strlen(c) / 2;
917 if (p->blob_len > MAX_BLOB_SIZE)
918 return -EINVAL;
919 ret = hex2bin(p->blob, c, p->blob_len);
920 if (ret < 0)
921 return -EINVAL;
922 ret = getoptions(datablob, p, o);
923 if (ret < 0)
924 return ret;
925 ret = Opt_load;
926 break;
927 case Opt_update:
928 /* all arguments are options */
929 ret = getoptions(datablob, p, o);
930 if (ret < 0)
931 return ret;
932 ret = Opt_update;
933 break;
934 case Opt_err:
935 return -EINVAL;
936 break;
937 }
938 return ret;
939 }
940
trusted_options_alloc(void)941 static struct trusted_key_options *trusted_options_alloc(void)
942 {
943 struct trusted_key_options *options;
944 int tpm2;
945
946 tpm2 = tpm_is_tpm2(chip);
947 if (tpm2 < 0)
948 return NULL;
949
950 options = kzalloc(sizeof *options, GFP_KERNEL);
951 if (options) {
952 /* set any non-zero defaults */
953 options->keytype = SRK_keytype;
954
955 if (!tpm2)
956 options->keyhandle = SRKHANDLE;
957 }
958 return options;
959 }
960
trusted_payload_alloc(struct key * key)961 static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
962 {
963 struct trusted_key_payload *p = NULL;
964 int ret;
965
966 ret = key_payload_reserve(key, sizeof *p);
967 if (ret < 0)
968 return p;
969 p = kzalloc(sizeof *p, GFP_KERNEL);
970 if (p)
971 p->migratable = 1; /* migratable by default */
972 return p;
973 }
974
975 /*
976 * trusted_instantiate - create a new trusted key
977 *
978 * Unseal an existing trusted blob or, for a new key, get a
979 * random key, then seal and create a trusted key-type key,
980 * adding it to the specified keyring.
981 *
982 * On success, return 0. Otherwise return errno.
983 */
trusted_instantiate(struct key * key,struct key_preparsed_payload * prep)984 static int trusted_instantiate(struct key *key,
985 struct key_preparsed_payload *prep)
986 {
987 struct trusted_key_payload *payload = NULL;
988 struct trusted_key_options *options = NULL;
989 size_t datalen = prep->datalen;
990 char *datablob;
991 int ret = 0;
992 int key_cmd;
993 size_t key_len;
994 int tpm2;
995
996 tpm2 = tpm_is_tpm2(chip);
997 if (tpm2 < 0)
998 return tpm2;
999
1000 if (datalen <= 0 || datalen > 32767 || !prep->data)
1001 return -EINVAL;
1002
1003 datablob = kmalloc(datalen + 1, GFP_KERNEL);
1004 if (!datablob)
1005 return -ENOMEM;
1006 memcpy(datablob, prep->data, datalen);
1007 datablob[datalen] = '\0';
1008
1009 options = trusted_options_alloc();
1010 if (!options) {
1011 ret = -ENOMEM;
1012 goto out;
1013 }
1014 payload = trusted_payload_alloc(key);
1015 if (!payload) {
1016 ret = -ENOMEM;
1017 goto out;
1018 }
1019
1020 key_cmd = datablob_parse(datablob, payload, options);
1021 if (key_cmd < 0) {
1022 ret = key_cmd;
1023 goto out;
1024 }
1025
1026 if (!options->keyhandle) {
1027 ret = -EINVAL;
1028 goto out;
1029 }
1030
1031 dump_payload(payload);
1032 dump_options(options);
1033
1034 switch (key_cmd) {
1035 case Opt_load:
1036 if (tpm2)
1037 ret = tpm2_unseal_trusted(chip, payload, options);
1038 else
1039 ret = key_unseal(payload, options);
1040 dump_payload(payload);
1041 dump_options(options);
1042 if (ret < 0)
1043 pr_info("trusted_key: key_unseal failed (%d)\n", ret);
1044 break;
1045 case Opt_new:
1046 key_len = payload->key_len;
1047 ret = tpm_get_random(chip, payload->key, key_len);
1048 if (ret < 0)
1049 goto out;
1050
1051 if (ret != key_len) {
1052 pr_info("trusted_key: key_create failed (%d)\n", ret);
1053 ret = -EIO;
1054 goto out;
1055 }
1056 if (tpm2)
1057 ret = tpm2_seal_trusted(chip, payload, options);
1058 else
1059 ret = key_seal(payload, options);
1060 if (ret < 0)
1061 pr_info("trusted_key: key_seal failed (%d)\n", ret);
1062 break;
1063 default:
1064 ret = -EINVAL;
1065 goto out;
1066 }
1067 if (!ret && options->pcrlock)
1068 ret = pcrlock(options->pcrlock);
1069 out:
1070 kfree_sensitive(datablob);
1071 kfree_sensitive(options);
1072 if (!ret)
1073 rcu_assign_keypointer(key, payload);
1074 else
1075 kfree_sensitive(payload);
1076 return ret;
1077 }
1078
trusted_rcu_free(struct rcu_head * rcu)1079 static void trusted_rcu_free(struct rcu_head *rcu)
1080 {
1081 struct trusted_key_payload *p;
1082
1083 p = container_of(rcu, struct trusted_key_payload, rcu);
1084 kfree_sensitive(p);
1085 }
1086
1087 /*
1088 * trusted_update - reseal an existing key with new PCR values
1089 */
trusted_update(struct key * key,struct key_preparsed_payload * prep)1090 static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1091 {
1092 struct trusted_key_payload *p;
1093 struct trusted_key_payload *new_p;
1094 struct trusted_key_options *new_o;
1095 size_t datalen = prep->datalen;
1096 char *datablob;
1097 int ret = 0;
1098
1099 if (key_is_negative(key))
1100 return -ENOKEY;
1101 p = key->payload.data[0];
1102 if (!p->migratable)
1103 return -EPERM;
1104 if (datalen <= 0 || datalen > 32767 || !prep->data)
1105 return -EINVAL;
1106
1107 datablob = kmalloc(datalen + 1, GFP_KERNEL);
1108 if (!datablob)
1109 return -ENOMEM;
1110 new_o = trusted_options_alloc();
1111 if (!new_o) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 new_p = trusted_payload_alloc(key);
1116 if (!new_p) {
1117 ret = -ENOMEM;
1118 goto out;
1119 }
1120
1121 memcpy(datablob, prep->data, datalen);
1122 datablob[datalen] = '\0';
1123 ret = datablob_parse(datablob, new_p, new_o);
1124 if (ret != Opt_update) {
1125 ret = -EINVAL;
1126 kfree_sensitive(new_p);
1127 goto out;
1128 }
1129
1130 if (!new_o->keyhandle) {
1131 ret = -EINVAL;
1132 kfree_sensitive(new_p);
1133 goto out;
1134 }
1135
1136 /* copy old key values, and reseal with new pcrs */
1137 new_p->migratable = p->migratable;
1138 new_p->key_len = p->key_len;
1139 memcpy(new_p->key, p->key, p->key_len);
1140 dump_payload(p);
1141 dump_payload(new_p);
1142
1143 ret = key_seal(new_p, new_o);
1144 if (ret < 0) {
1145 pr_info("trusted_key: key_seal failed (%d)\n", ret);
1146 kfree_sensitive(new_p);
1147 goto out;
1148 }
1149 if (new_o->pcrlock) {
1150 ret = pcrlock(new_o->pcrlock);
1151 if (ret < 0) {
1152 pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1153 kfree_sensitive(new_p);
1154 goto out;
1155 }
1156 }
1157 rcu_assign_keypointer(key, new_p);
1158 call_rcu(&p->rcu, trusted_rcu_free);
1159 out:
1160 kfree_sensitive(datablob);
1161 kfree_sensitive(new_o);
1162 return ret;
1163 }
1164
1165 /*
1166 * trusted_read - copy the sealed blob data to userspace in hex.
1167 * On success, return to userspace the trusted key datablob size.
1168 */
trusted_read(const struct key * key,char * buffer,size_t buflen)1169 static long trusted_read(const struct key *key, char *buffer,
1170 size_t buflen)
1171 {
1172 const struct trusted_key_payload *p;
1173 char *bufp;
1174 int i;
1175
1176 p = dereference_key_locked(key);
1177 if (!p)
1178 return -EINVAL;
1179
1180 if (buffer && buflen >= 2 * p->blob_len) {
1181 bufp = buffer;
1182 for (i = 0; i < p->blob_len; i++)
1183 bufp = hex_byte_pack(bufp, p->blob[i]);
1184 }
1185 return 2 * p->blob_len;
1186 }
1187
1188 /*
1189 * trusted_destroy - clear and free the key's payload
1190 */
trusted_destroy(struct key * key)1191 static void trusted_destroy(struct key *key)
1192 {
1193 kfree_sensitive(key->payload.data[0]);
1194 }
1195
1196 struct key_type key_type_trusted = {
1197 .name = "trusted",
1198 .instantiate = trusted_instantiate,
1199 .update = trusted_update,
1200 .destroy = trusted_destroy,
1201 .describe = user_describe,
1202 .read = trusted_read,
1203 };
1204
1205 EXPORT_SYMBOL_GPL(key_type_trusted);
1206
trusted_shash_release(void)1207 static void trusted_shash_release(void)
1208 {
1209 if (hashalg)
1210 crypto_free_shash(hashalg);
1211 if (hmacalg)
1212 crypto_free_shash(hmacalg);
1213 }
1214
trusted_shash_alloc(void)1215 static int __init trusted_shash_alloc(void)
1216 {
1217 int ret;
1218
1219 hmacalg = crypto_alloc_shash(hmac_alg, 0, 0);
1220 if (IS_ERR(hmacalg)) {
1221 pr_info("trusted_key: could not allocate crypto %s\n",
1222 hmac_alg);
1223 return PTR_ERR(hmacalg);
1224 }
1225
1226 hashalg = crypto_alloc_shash(hash_alg, 0, 0);
1227 if (IS_ERR(hashalg)) {
1228 pr_info("trusted_key: could not allocate crypto %s\n",
1229 hash_alg);
1230 ret = PTR_ERR(hashalg);
1231 goto hashalg_fail;
1232 }
1233
1234 return 0;
1235
1236 hashalg_fail:
1237 crypto_free_shash(hmacalg);
1238 return ret;
1239 }
1240
init_digests(void)1241 static int __init init_digests(void)
1242 {
1243 int i;
1244
1245 digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests),
1246 GFP_KERNEL);
1247 if (!digests)
1248 return -ENOMEM;
1249
1250 for (i = 0; i < chip->nr_allocated_banks; i++)
1251 digests[i].alg_id = chip->allocated_banks[i].alg_id;
1252
1253 return 0;
1254 }
1255
init_trusted(void)1256 static int __init init_trusted(void)
1257 {
1258 int ret;
1259
1260 /* encrypted_keys.ko depends on successful load of this module even if
1261 * TPM is not used.
1262 */
1263 chip = tpm_default_chip();
1264 if (!chip)
1265 return 0;
1266
1267 ret = init_digests();
1268 if (ret < 0)
1269 goto err_put;
1270 ret = trusted_shash_alloc();
1271 if (ret < 0)
1272 goto err_free;
1273 ret = register_key_type(&key_type_trusted);
1274 if (ret < 0)
1275 goto err_release;
1276 return 0;
1277 err_release:
1278 trusted_shash_release();
1279 err_free:
1280 kfree(digests);
1281 err_put:
1282 put_device(&chip->dev);
1283 return ret;
1284 }
1285
cleanup_trusted(void)1286 static void __exit cleanup_trusted(void)
1287 {
1288 if (chip) {
1289 put_device(&chip->dev);
1290 kfree(digests);
1291 trusted_shash_release();
1292 unregister_key_type(&key_type_trusted);
1293 }
1294 }
1295
1296 late_initcall(init_trusted);
1297 module_exit(cleanup_trusted);
1298
1299 MODULE_LICENSE("GPL");
1300