1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "AMDGPU.h"
27 #include "AMDGPUSubtarget.h"
28 #include "SIDefines.h"
29 #include "SIInstrInfo.h"
30 #include "SIMachineFunctionInfo.h"
31 #include "SIRegisterInfo.h"
32 #include "Utils/AMDGPUBaseInfo.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachinePostDominators.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/DebugCounter.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <cstring>
58 #include <memory>
59 #include <utility>
60 #include <vector>
61
62 using namespace llvm;
63
64 #define DEBUG_TYPE "si-insert-waitcnts"
65
66 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
67 "Force emit s_waitcnt expcnt(0) instrs");
68 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
69 "Force emit s_waitcnt lgkmcnt(0) instrs");
70 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
71 "Force emit s_waitcnt vmcnt(0) instrs");
72
73 static cl::opt<bool> ForceEmitZeroFlag(
74 "amdgpu-waitcnt-forcezero",
75 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
76 cl::init(false), cl::Hidden);
77
78 namespace {
79
80 template <typename EnumT>
81 class enum_iterator
82 : public iterator_facade_base<enum_iterator<EnumT>,
83 std::forward_iterator_tag, const EnumT> {
84 EnumT Value;
85 public:
86 enum_iterator() = default;
enum_iterator(EnumT Value)87 enum_iterator(EnumT Value) : Value(Value) {}
88
operator ++()89 enum_iterator &operator++() {
90 Value = static_cast<EnumT>(Value + 1);
91 return *this;
92 }
93
operator ==(const enum_iterator & RHS) const94 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
95
operator *() const96 EnumT operator*() const { return Value; }
97 };
98
99 // Class of object that encapsulates latest instruction counter score
100 // associated with the operand. Used for determining whether
101 // s_waitcnt instruction needs to be emited.
102
103 #define CNT_MASK(t) (1u << (t))
104
105 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
106
inst_counter_types()107 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
108 return make_range(enum_iterator<InstCounterType>(VM_CNT),
109 enum_iterator<InstCounterType>(NUM_INST_CNTS));
110 }
111
112 using RegInterval = std::pair<signed, signed>;
113
114 struct {
115 uint32_t VmcntMax;
116 uint32_t ExpcntMax;
117 uint32_t LgkmcntMax;
118 uint32_t VscntMax;
119 int32_t NumVGPRsMax;
120 int32_t NumSGPRsMax;
121 } HardwareLimits;
122
123 struct {
124 unsigned VGPR0;
125 unsigned VGPRL;
126 unsigned SGPR0;
127 unsigned SGPRL;
128 } RegisterEncoding;
129
130 enum WaitEventType {
131 VMEM_ACCESS, // vector-memory read & write
132 VMEM_READ_ACCESS, // vector-memory read
133 VMEM_WRITE_ACCESS,// vector-memory write
134 LDS_ACCESS, // lds read & write
135 GDS_ACCESS, // gds read & write
136 SQ_MESSAGE, // send message
137 SMEM_ACCESS, // scalar-memory read & write
138 EXP_GPR_LOCK, // export holding on its data src
139 GDS_GPR_LOCK, // GDS holding on its data and addr src
140 EXP_POS_ACCESS, // write to export position
141 EXP_PARAM_ACCESS, // write to export parameter
142 VMW_GPR_LOCK, // vector-memory write holding on its data src
143 NUM_WAIT_EVENTS,
144 };
145
146 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = {
147 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
148 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
149 (1 << SQ_MESSAGE),
150 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
151 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
152 (1 << VMEM_WRITE_ACCESS)
153 };
154
155 // The mapping is:
156 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs
157 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots
158 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
159 // We reserve a fixed number of VGPR slots in the scoring tables for
160 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
161 enum RegisterMapping {
162 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
163 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
164 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS.
165 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses.
166 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
167 };
168
addWait(AMDGPU::Waitcnt & Wait,InstCounterType T,unsigned Count)169 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
170 switch (T) {
171 case VM_CNT:
172 Wait.VmCnt = std::min(Wait.VmCnt, Count);
173 break;
174 case EXP_CNT:
175 Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
176 break;
177 case LGKM_CNT:
178 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
179 break;
180 case VS_CNT:
181 Wait.VsCnt = std::min(Wait.VsCnt, Count);
182 break;
183 default:
184 llvm_unreachable("bad InstCounterType");
185 }
186 }
187
188 // This objects maintains the current score brackets of each wait counter, and
189 // a per-register scoreboard for each wait counter.
190 //
191 // We also maintain the latest score for every event type that can change the
192 // waitcnt in order to know if there are multiple types of events within
193 // the brackets. When multiple types of event happen in the bracket,
194 // wait count may get decreased out of order, therefore we need to put in
195 // "s_waitcnt 0" before use.
196 class WaitcntBrackets {
197 public:
WaitcntBrackets(const GCNSubtarget * SubTarget)198 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
199 for (auto T : inst_counter_types())
200 memset(VgprScores[T], 0, sizeof(VgprScores[T]));
201 }
202
getWaitCountMax(InstCounterType T)203 static uint32_t getWaitCountMax(InstCounterType T) {
204 switch (T) {
205 case VM_CNT:
206 return HardwareLimits.VmcntMax;
207 case LGKM_CNT:
208 return HardwareLimits.LgkmcntMax;
209 case EXP_CNT:
210 return HardwareLimits.ExpcntMax;
211 case VS_CNT:
212 return HardwareLimits.VscntMax;
213 default:
214 break;
215 }
216 return 0;
217 }
218
getScoreLB(InstCounterType T) const219 uint32_t getScoreLB(InstCounterType T) const {
220 assert(T < NUM_INST_CNTS);
221 if (T >= NUM_INST_CNTS)
222 return 0;
223 return ScoreLBs[T];
224 }
225
getScoreUB(InstCounterType T) const226 uint32_t getScoreUB(InstCounterType T) const {
227 assert(T < NUM_INST_CNTS);
228 if (T >= NUM_INST_CNTS)
229 return 0;
230 return ScoreUBs[T];
231 }
232
233 // Mapping from event to counter.
eventCounter(WaitEventType E)234 InstCounterType eventCounter(WaitEventType E) {
235 if (WaitEventMaskForInst[VM_CNT] & (1 << E))
236 return VM_CNT;
237 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
238 return LGKM_CNT;
239 if (WaitEventMaskForInst[VS_CNT] & (1 << E))
240 return VS_CNT;
241 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
242 return EXP_CNT;
243 }
244
getRegScore(int GprNo,InstCounterType T)245 uint32_t getRegScore(int GprNo, InstCounterType T) {
246 if (GprNo < NUM_ALL_VGPRS) {
247 return VgprScores[T][GprNo];
248 }
249 assert(T == LGKM_CNT);
250 return SgprScores[GprNo - NUM_ALL_VGPRS];
251 }
252
clear()253 void clear() {
254 memset(ScoreLBs, 0, sizeof(ScoreLBs));
255 memset(ScoreUBs, 0, sizeof(ScoreUBs));
256 PendingEvents = 0;
257 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents));
258 for (auto T : inst_counter_types())
259 memset(VgprScores[T], 0, sizeof(VgprScores[T]));
260 memset(SgprScores, 0, sizeof(SgprScores));
261 }
262
263 bool merge(const WaitcntBrackets &Other);
264
265 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
266 const MachineRegisterInfo *MRI,
267 const SIRegisterInfo *TRI, unsigned OpNo,
268 bool Def) const;
269
getMaxVGPR() const270 int32_t getMaxVGPR() const { return VgprUB; }
getMaxSGPR() const271 int32_t getMaxSGPR() const { return SgprUB; }
272
273 bool counterOutOfOrder(InstCounterType T) const;
274 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
275 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
276 void determineWait(InstCounterType T, uint32_t ScoreToWait,
277 AMDGPU::Waitcnt &Wait) const;
278 void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
279 void applyWaitcnt(InstCounterType T, unsigned Count);
280 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
281 const MachineRegisterInfo *MRI, WaitEventType E,
282 MachineInstr &MI);
283
hasPending() const284 bool hasPending() const { return PendingEvents != 0; }
hasPendingEvent(WaitEventType E) const285 bool hasPendingEvent(WaitEventType E) const {
286 return PendingEvents & (1 << E);
287 }
288
hasPendingFlat() const289 bool hasPendingFlat() const {
290 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
291 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
292 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
293 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
294 }
295
setPendingFlat()296 void setPendingFlat() {
297 LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
298 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
299 }
300
301 void print(raw_ostream &);
dump()302 void dump() { print(dbgs()); }
303
304 private:
305 struct MergeInfo {
306 uint32_t OldLB;
307 uint32_t OtherLB;
308 uint32_t MyShift;
309 uint32_t OtherShift;
310 };
311 static bool mergeScore(const MergeInfo &M, uint32_t &Score,
312 uint32_t OtherScore);
313
setScoreLB(InstCounterType T,uint32_t Val)314 void setScoreLB(InstCounterType T, uint32_t Val) {
315 assert(T < NUM_INST_CNTS);
316 if (T >= NUM_INST_CNTS)
317 return;
318 ScoreLBs[T] = Val;
319 }
320
setScoreUB(InstCounterType T,uint32_t Val)321 void setScoreUB(InstCounterType T, uint32_t Val) {
322 assert(T < NUM_INST_CNTS);
323 if (T >= NUM_INST_CNTS)
324 return;
325 ScoreUBs[T] = Val;
326 if (T == EXP_CNT) {
327 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
328 if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
329 ScoreLBs[T] = UB;
330 }
331 }
332
setRegScore(int GprNo,InstCounterType T,uint32_t Val)333 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) {
334 if (GprNo < NUM_ALL_VGPRS) {
335 if (GprNo > VgprUB) {
336 VgprUB = GprNo;
337 }
338 VgprScores[T][GprNo] = Val;
339 } else {
340 assert(T == LGKM_CNT);
341 if (GprNo - NUM_ALL_VGPRS > SgprUB) {
342 SgprUB = GprNo - NUM_ALL_VGPRS;
343 }
344 SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
345 }
346 }
347
348 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
349 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
350 unsigned OpNo, uint32_t Val);
351
352 const GCNSubtarget *ST = nullptr;
353 uint32_t ScoreLBs[NUM_INST_CNTS] = {0};
354 uint32_t ScoreUBs[NUM_INST_CNTS] = {0};
355 uint32_t PendingEvents = 0;
356 bool MixedPendingEvents[NUM_INST_CNTS] = {false};
357 // Remember the last flat memory operation.
358 uint32_t LastFlat[NUM_INST_CNTS] = {0};
359 // wait_cnt scores for every vgpr.
360 // Keep track of the VgprUB and SgprUB to make merge at join efficient.
361 int32_t VgprUB = 0;
362 int32_t SgprUB = 0;
363 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
364 // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
365 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
366 };
367
368 class SIInsertWaitcnts : public MachineFunctionPass {
369 private:
370 const GCNSubtarget *ST = nullptr;
371 const SIInstrInfo *TII = nullptr;
372 const SIRegisterInfo *TRI = nullptr;
373 const MachineRegisterInfo *MRI = nullptr;
374 AMDGPU::IsaVersion IV;
375
376 DenseSet<MachineInstr *> TrackedWaitcntSet;
377 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
378 MachinePostDominatorTree *PDT;
379
380 struct BlockInfo {
381 MachineBasicBlock *MBB;
382 std::unique_ptr<WaitcntBrackets> Incoming;
383 bool Dirty = true;
384
BlockInfo__anon2fa86bda0111::SIInsertWaitcnts::BlockInfo385 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
386 };
387
388 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index
389 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap;
390
391 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
392 // because of amdgpu-waitcnt-forcezero flag
393 bool ForceEmitZeroWaitcnts;
394 bool ForceEmitWaitcnt[NUM_INST_CNTS];
395
396 public:
397 static char ID;
398
SIInsertWaitcnts()399 SIInsertWaitcnts() : MachineFunctionPass(ID) {
400 (void)ForceExpCounter;
401 (void)ForceLgkmCounter;
402 (void)ForceVMCounter;
403 }
404
405 bool runOnMachineFunction(MachineFunction &MF) override;
406
getPassName() const407 StringRef getPassName() const override {
408 return "SI insert wait instructions";
409 }
410
getAnalysisUsage(AnalysisUsage & AU) const411 void getAnalysisUsage(AnalysisUsage &AU) const override {
412 AU.setPreservesCFG();
413 AU.addRequired<MachinePostDominatorTree>();
414 MachineFunctionPass::getAnalysisUsage(AU);
415 }
416
isForceEmitWaitcnt() const417 bool isForceEmitWaitcnt() const {
418 for (auto T : inst_counter_types())
419 if (ForceEmitWaitcnt[T])
420 return true;
421 return false;
422 }
423
setForceEmitWaitcnt()424 void setForceEmitWaitcnt() {
425 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
426 // For debug builds, get the debug counter info and adjust if need be
427 #ifndef NDEBUG
428 if (DebugCounter::isCounterSet(ForceExpCounter) &&
429 DebugCounter::shouldExecute(ForceExpCounter)) {
430 ForceEmitWaitcnt[EXP_CNT] = true;
431 } else {
432 ForceEmitWaitcnt[EXP_CNT] = false;
433 }
434
435 if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
436 DebugCounter::shouldExecute(ForceLgkmCounter)) {
437 ForceEmitWaitcnt[LGKM_CNT] = true;
438 } else {
439 ForceEmitWaitcnt[LGKM_CNT] = false;
440 }
441
442 if (DebugCounter::isCounterSet(ForceVMCounter) &&
443 DebugCounter::shouldExecute(ForceVMCounter)) {
444 ForceEmitWaitcnt[VM_CNT] = true;
445 } else {
446 ForceEmitWaitcnt[VM_CNT] = false;
447 }
448 #endif // NDEBUG
449 }
450
451 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
452 bool generateWaitcntInstBefore(MachineInstr &MI,
453 WaitcntBrackets &ScoreBrackets,
454 MachineInstr *OldWaitcntInstr);
455 void updateEventWaitcntAfter(MachineInstr &Inst,
456 WaitcntBrackets *ScoreBrackets);
457 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
458 WaitcntBrackets &ScoreBrackets);
459 };
460
461 } // end anonymous namespace
462
getRegInterval(const MachineInstr * MI,const SIInstrInfo * TII,const MachineRegisterInfo * MRI,const SIRegisterInfo * TRI,unsigned OpNo,bool Def) const463 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
464 const SIInstrInfo *TII,
465 const MachineRegisterInfo *MRI,
466 const SIRegisterInfo *TRI,
467 unsigned OpNo, bool Def) const {
468 const MachineOperand &Op = MI->getOperand(OpNo);
469 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
470 (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg()))
471 return {-1, -1};
472
473 // A use via a PW operand does not need a waitcnt.
474 // A partial write is not a WAW.
475 assert(!Op.getSubReg() || !Op.isUndef());
476
477 RegInterval Result;
478 const MachineRegisterInfo &MRIA = *MRI;
479
480 unsigned Reg = TRI->getEncodingValue(Op.getReg());
481
482 if (TRI->isVGPR(MRIA, Op.getReg())) {
483 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
484 Result.first = Reg - RegisterEncoding.VGPR0;
485 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
486 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
487 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
488 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
489 assert(Result.first >= NUM_ALL_VGPRS &&
490 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
491 }
492 // TODO: Handle TTMP
493 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
494 else
495 return {-1, -1};
496
497 const MachineInstr &MIA = *MI;
498 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
499 unsigned Size = TRI->getRegSizeInBits(*RC);
500 Result.second = Result.first + (Size / 32);
501
502 return Result;
503 }
504
setExpScore(const MachineInstr * MI,const SIInstrInfo * TII,const SIRegisterInfo * TRI,const MachineRegisterInfo * MRI,unsigned OpNo,uint32_t Val)505 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
506 const SIInstrInfo *TII,
507 const SIRegisterInfo *TRI,
508 const MachineRegisterInfo *MRI, unsigned OpNo,
509 uint32_t Val) {
510 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
511 LLVM_DEBUG({
512 const MachineOperand &Opnd = MI->getOperand(OpNo);
513 assert(TRI->isVGPR(*MRI, Opnd.getReg()));
514 });
515 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
516 setRegScore(RegNo, EXP_CNT, Val);
517 }
518 }
519
updateByEvent(const SIInstrInfo * TII,const SIRegisterInfo * TRI,const MachineRegisterInfo * MRI,WaitEventType E,MachineInstr & Inst)520 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
521 const SIRegisterInfo *TRI,
522 const MachineRegisterInfo *MRI,
523 WaitEventType E, MachineInstr &Inst) {
524 const MachineRegisterInfo &MRIA = *MRI;
525 InstCounterType T = eventCounter(E);
526 uint32_t CurrScore = getScoreUB(T) + 1;
527 if (CurrScore == 0)
528 report_fatal_error("InsertWaitcnt score wraparound");
529 // PendingEvents and ScoreUB need to be update regardless if this event
530 // changes the score of a register or not.
531 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
532 if (!hasPendingEvent(E)) {
533 if (PendingEvents & WaitEventMaskForInst[T])
534 MixedPendingEvents[T] = true;
535 PendingEvents |= 1 << E;
536 }
537 setScoreUB(T, CurrScore);
538
539 if (T == EXP_CNT) {
540 // Put score on the source vgprs. If this is a store, just use those
541 // specific register(s).
542 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
543 int AddrOpIdx =
544 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
545 // All GDS operations must protect their address register (same as
546 // export.)
547 if (AddrOpIdx != -1) {
548 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
549 }
550
551 if (Inst.mayStore()) {
552 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
553 AMDGPU::OpName::data0) != -1) {
554 setExpScore(
555 &Inst, TII, TRI, MRI,
556 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
557 CurrScore);
558 }
559 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
560 AMDGPU::OpName::data1) != -1) {
561 setExpScore(&Inst, TII, TRI, MRI,
562 AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
563 AMDGPU::OpName::data1),
564 CurrScore);
565 }
566 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
567 Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
568 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
569 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
570 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
571 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
572 Inst.getOpcode() != AMDGPU::DS_APPEND &&
573 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
574 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
575 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
576 const MachineOperand &Op = Inst.getOperand(I);
577 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
578 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
579 }
580 }
581 }
582 } else if (TII->isFLAT(Inst)) {
583 if (Inst.mayStore()) {
584 setExpScore(
585 &Inst, TII, TRI, MRI,
586 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
587 CurrScore);
588 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
589 setExpScore(
590 &Inst, TII, TRI, MRI,
591 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
592 CurrScore);
593 }
594 } else if (TII->isMIMG(Inst)) {
595 if (Inst.mayStore()) {
596 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
597 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
598 setExpScore(
599 &Inst, TII, TRI, MRI,
600 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
601 CurrScore);
602 }
603 } else if (TII->isMTBUF(Inst)) {
604 if (Inst.mayStore()) {
605 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
606 }
607 } else if (TII->isMUBUF(Inst)) {
608 if (Inst.mayStore()) {
609 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
610 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
611 setExpScore(
612 &Inst, TII, TRI, MRI,
613 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
614 CurrScore);
615 }
616 } else {
617 if (TII->isEXP(Inst)) {
618 // For export the destination registers are really temps that
619 // can be used as the actual source after export patching, so
620 // we need to treat them like sources and set the EXP_CNT
621 // score.
622 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
623 MachineOperand &DefMO = Inst.getOperand(I);
624 if (DefMO.isReg() && DefMO.isDef() &&
625 TRI->isVGPR(MRIA, DefMO.getReg())) {
626 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
627 CurrScore);
628 }
629 }
630 }
631 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
632 MachineOperand &MO = Inst.getOperand(I);
633 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
634 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
635 }
636 }
637 }
638 #if 0 // TODO: check if this is handled by MUBUF code above.
639 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
640 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
641 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
642 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
643 unsigned OpNo;//TODO: find the OpNo for this operand;
644 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
645 for (signed RegNo = Interval.first; RegNo < Interval.second;
646 ++RegNo) {
647 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
648 }
649 #endif
650 } else {
651 // Match the score to the destination registers.
652 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
653 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
654 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
655 continue;
656 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
657 setRegScore(RegNo, T, CurrScore);
658 }
659 }
660 if (TII->isDS(Inst) && Inst.mayStore()) {
661 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
662 }
663 }
664 }
665
print(raw_ostream & OS)666 void WaitcntBrackets::print(raw_ostream &OS) {
667 OS << '\n';
668 for (auto T : inst_counter_types()) {
669 uint32_t LB = getScoreLB(T);
670 uint32_t UB = getScoreUB(T);
671
672 switch (T) {
673 case VM_CNT:
674 OS << " VM_CNT(" << UB - LB << "): ";
675 break;
676 case LGKM_CNT:
677 OS << " LGKM_CNT(" << UB - LB << "): ";
678 break;
679 case EXP_CNT:
680 OS << " EXP_CNT(" << UB - LB << "): ";
681 break;
682 case VS_CNT:
683 OS << " VS_CNT(" << UB - LB << "): ";
684 break;
685 default:
686 OS << " UNKNOWN(" << UB - LB << "): ";
687 break;
688 }
689
690 if (LB < UB) {
691 // Print vgpr scores.
692 for (int J = 0; J <= getMaxVGPR(); J++) {
693 uint32_t RegScore = getRegScore(J, T);
694 if (RegScore <= LB)
695 continue;
696 uint32_t RelScore = RegScore - LB - 1;
697 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
698 OS << RelScore << ":v" << J << " ";
699 } else {
700 OS << RelScore << ":ds ";
701 }
702 }
703 // Also need to print sgpr scores for lgkm_cnt.
704 if (T == LGKM_CNT) {
705 for (int J = 0; J <= getMaxSGPR(); J++) {
706 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
707 if (RegScore <= LB)
708 continue;
709 uint32_t RelScore = RegScore - LB - 1;
710 OS << RelScore << ":s" << J << " ";
711 }
712 }
713 }
714 OS << '\n';
715 }
716 OS << '\n';
717 }
718
719 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
720 /// whether a waitcnt instruction is needed at all.
simplifyWaitcnt(AMDGPU::Waitcnt & Wait) const721 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
722 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
723 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
724 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
725 simplifyWaitcnt(VS_CNT, Wait.VsCnt);
726 }
727
simplifyWaitcnt(InstCounterType T,unsigned & Count) const728 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
729 unsigned &Count) const {
730 const uint32_t LB = getScoreLB(T);
731 const uint32_t UB = getScoreUB(T);
732 if (Count < UB && UB - Count > LB)
733 return true;
734
735 Count = ~0u;
736 return false;
737 }
738
determineWait(InstCounterType T,uint32_t ScoreToWait,AMDGPU::Waitcnt & Wait) const739 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait,
740 AMDGPU::Waitcnt &Wait) const {
741 // If the score of src_operand falls within the bracket, we need an
742 // s_waitcnt instruction.
743 const uint32_t LB = getScoreLB(T);
744 const uint32_t UB = getScoreUB(T);
745 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
746 if ((T == VM_CNT || T == LGKM_CNT) &&
747 hasPendingFlat() &&
748 !ST->hasFlatLgkmVMemCountInOrder()) {
749 // If there is a pending FLAT operation, and this is a VMem or LGKM
750 // waitcnt and the target can report early completion, then we need
751 // to force a waitcnt 0.
752 addWait(Wait, T, 0);
753 } else if (counterOutOfOrder(T)) {
754 // Counter can get decremented out-of-order when there
755 // are multiple types event in the bracket. Also emit an s_wait counter
756 // with a conservative value of 0 for the counter.
757 addWait(Wait, T, 0);
758 } else {
759 // If a counter has been maxed out avoid overflow by waiting for
760 // MAX(CounterType) - 1 instead.
761 uint32_t NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
762 addWait(Wait, T, NeededWait);
763 }
764 }
765 }
766
applyWaitcnt(const AMDGPU::Waitcnt & Wait)767 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
768 applyWaitcnt(VM_CNT, Wait.VmCnt);
769 applyWaitcnt(EXP_CNT, Wait.ExpCnt);
770 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
771 applyWaitcnt(VS_CNT, Wait.VsCnt);
772 }
773
applyWaitcnt(InstCounterType T,unsigned Count)774 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
775 const uint32_t UB = getScoreUB(T);
776 if (Count >= UB)
777 return;
778 if (Count != 0) {
779 if (counterOutOfOrder(T))
780 return;
781 setScoreLB(T, std::max(getScoreLB(T), UB - Count));
782 } else {
783 setScoreLB(T, UB);
784 MixedPendingEvents[T] = false;
785 PendingEvents &= ~WaitEventMaskForInst[T];
786 }
787 }
788
789 // Where there are multiple types of event in the bracket of a counter,
790 // the decrement may go out of order.
counterOutOfOrder(InstCounterType T) const791 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
792 // Scalar memory read always can go out of order.
793 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
794 return true;
795 return MixedPendingEvents[T];
796 }
797
798 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
799 false)
800 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
801 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
802 false)
803
804 char SIInsertWaitcnts::ID = 0;
805
806 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
807
createSIInsertWaitcntsPass()808 FunctionPass *llvm::createSIInsertWaitcntsPass() {
809 return new SIInsertWaitcnts();
810 }
811
readsVCCZ(const MachineInstr & MI)812 static bool readsVCCZ(const MachineInstr &MI) {
813 unsigned Opc = MI.getOpcode();
814 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
815 !MI.getOperand(1).isUndef();
816 }
817
818 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
callWaitsOnFunctionEntry(const MachineInstr & MI)819 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
820 // Currently all conventions wait, but this may not always be the case.
821 //
822 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
823 // senses to omit the wait and do it in the caller.
824 return true;
825 }
826
827 /// \returns true if the callee is expected to wait for any outstanding waits
828 /// before returning.
callWaitsOnFunctionReturn(const MachineInstr & MI)829 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
830 return true;
831 }
832
833 /// Generate s_waitcnt instruction to be placed before cur_Inst.
834 /// Instructions of a given type are returned in order,
835 /// but instructions of different types can complete out of order.
836 /// We rely on this in-order completion
837 /// and simply assign a score to the memory access instructions.
838 /// We keep track of the active "score bracket" to determine
839 /// if an access of a memory read requires an s_waitcnt
840 /// and if so what the value of each counter is.
841 /// The "score bracket" is bound by the lower bound and upper bound
842 /// scores (*_score_LB and *_score_ub respectively).
generateWaitcntInstBefore(MachineInstr & MI,WaitcntBrackets & ScoreBrackets,MachineInstr * OldWaitcntInstr)843 bool SIInsertWaitcnts::generateWaitcntInstBefore(
844 MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
845 MachineInstr *OldWaitcntInstr) {
846 setForceEmitWaitcnt();
847 bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
848
849 if (MI.isDebugInstr())
850 return false;
851
852 AMDGPU::Waitcnt Wait;
853
854 // See if this instruction has a forced S_WAITCNT VM.
855 // TODO: Handle other cases of NeedsWaitcntVmBefore()
856 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
857 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
858 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
859 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
860 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
861 Wait.VmCnt = 0;
862 }
863
864 // All waits must be resolved at call return.
865 // NOTE: this could be improved with knowledge of all call sites or
866 // with knowledge of the called routines.
867 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
868 MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
869 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
870 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
871 }
872 // Resolve vm waits before gs-done.
873 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
874 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
875 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
876 AMDGPU::SendMsg::ID_GS_DONE)) {
877 Wait.VmCnt = 0;
878 }
879 #if 0 // TODO: the following blocks of logic when we have fence.
880 else if (MI.getOpcode() == SC_FENCE) {
881 const unsigned int group_size =
882 context->shader_info->GetMaxThreadGroupSize();
883 // group_size == 0 means thread group size is unknown at compile time
884 const bool group_is_multi_wave =
885 (group_size == 0 || group_size > target_info->GetWaveFrontSize());
886 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
887
888 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
889 SCRegType src_type = Inst->GetSrcType(i);
890 switch (src_type) {
891 case SCMEM_LDS:
892 if (group_is_multi_wave ||
893 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
894 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
895 ScoreBrackets->getScoreUB(LGKM_CNT));
896 // LDS may have to wait for VM_CNT after buffer load to LDS
897 if (target_info->HasBufferLoadToLDS()) {
898 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
899 ScoreBrackets->getScoreUB(VM_CNT));
900 }
901 }
902 break;
903
904 case SCMEM_GDS:
905 if (group_is_multi_wave || fence_is_global) {
906 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
907 ScoreBrackets->getScoreUB(EXP_CNT));
908 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
909 ScoreBrackets->getScoreUB(LGKM_CNT));
910 }
911 break;
912
913 case SCMEM_UAV:
914 case SCMEM_TFBUF:
915 case SCMEM_RING:
916 case SCMEM_SCATTER:
917 if (group_is_multi_wave || fence_is_global) {
918 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
919 ScoreBrackets->getScoreUB(EXP_CNT));
920 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
921 ScoreBrackets->getScoreUB(VM_CNT));
922 }
923 break;
924
925 case SCMEM_SCRATCH:
926 default:
927 break;
928 }
929 }
930 }
931 #endif
932
933 // Export & GDS instructions do not read the EXEC mask until after the export
934 // is granted (which can occur well after the instruction is issued).
935 // The shader program must flush all EXP operations on the export-count
936 // before overwriting the EXEC mask.
937 else {
938 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
939 // Export and GDS are tracked individually, either may trigger a waitcnt
940 // for EXEC.
941 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
942 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
943 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
944 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
945 Wait.ExpCnt = 0;
946 }
947 }
948
949 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
950 // The function is going to insert a wait on everything in its prolog.
951 // This still needs to be careful if the call target is a load (e.g. a GOT
952 // load). We also need to check WAW depenancy with saved PC.
953 Wait = AMDGPU::Waitcnt();
954
955 int CallAddrOpIdx =
956 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
957 RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval(
958 &MI, TII, MRI, TRI, CallAddrOpIdx, false);
959
960 for (signed RegNo = CallAddrOpInterval.first;
961 RegNo < CallAddrOpInterval.second; ++RegNo)
962 ScoreBrackets.determineWait(
963 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
964
965 int RtnAddrOpIdx =
966 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
967 if (RtnAddrOpIdx != -1) {
968 RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval(
969 &MI, TII, MRI, TRI, RtnAddrOpIdx, false);
970
971 for (signed RegNo = RtnAddrOpInterval.first;
972 RegNo < RtnAddrOpInterval.second; ++RegNo)
973 ScoreBrackets.determineWait(
974 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
975 }
976
977 } else {
978 // FIXME: Should not be relying on memoperands.
979 // Look at the source operands of every instruction to see if
980 // any of them results from a previous memory operation that affects
981 // its current usage. If so, an s_waitcnt instruction needs to be
982 // emitted.
983 // If the source operand was defined by a load, add the s_waitcnt
984 // instruction.
985 for (const MachineMemOperand *Memop : MI.memoperands()) {
986 unsigned AS = Memop->getAddrSpace();
987 if (AS != AMDGPUAS::LOCAL_ADDRESS)
988 continue;
989 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
990 // VM_CNT is only relevant to vgpr or LDS.
991 ScoreBrackets.determineWait(
992 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
993 }
994
995 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
996 const MachineOperand &Op = MI.getOperand(I);
997 const MachineRegisterInfo &MRIA = *MRI;
998 RegInterval Interval =
999 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false);
1000 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1001 if (TRI->isVGPR(MRIA, Op.getReg())) {
1002 // VM_CNT is only relevant to vgpr or LDS.
1003 ScoreBrackets.determineWait(
1004 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1005 }
1006 ScoreBrackets.determineWait(
1007 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1008 }
1009 }
1010 // End of for loop that looks at all source operands to decide vm_wait_cnt
1011 // and lgk_wait_cnt.
1012
1013 // Two cases are handled for destination operands:
1014 // 1) If the destination operand was defined by a load, add the s_waitcnt
1015 // instruction to guarantee the right WAW order.
1016 // 2) If a destination operand that was used by a recent export/store ins,
1017 // add s_waitcnt on exp_cnt to guarantee the WAR order.
1018 if (MI.mayStore()) {
1019 // FIXME: Should not be relying on memoperands.
1020 for (const MachineMemOperand *Memop : MI.memoperands()) {
1021 const Value *Ptr = Memop->getValue();
1022 if (SLoadAddresses.count(Ptr)) {
1023 addWait(Wait, LGKM_CNT, 0);
1024 if (PDT->dominates(MI.getParent(),
1025 SLoadAddresses.find(Ptr)->second))
1026 SLoadAddresses.erase(Ptr);
1027 }
1028 unsigned AS = Memop->getAddrSpace();
1029 if (AS != AMDGPUAS::LOCAL_ADDRESS)
1030 continue;
1031 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1032 ScoreBrackets.determineWait(
1033 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1034 ScoreBrackets.determineWait(
1035 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1036 }
1037 }
1038 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1039 MachineOperand &Def = MI.getOperand(I);
1040 const MachineRegisterInfo &MRIA = *MRI;
1041 RegInterval Interval =
1042 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true);
1043 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1044 if (TRI->isVGPR(MRIA, Def.getReg())) {
1045 ScoreBrackets.determineWait(
1046 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1047 ScoreBrackets.determineWait(
1048 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1049 }
1050 ScoreBrackets.determineWait(
1051 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1052 }
1053 } // End of for loop that looks at all dest operands.
1054 }
1055 }
1056
1057 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1058 // occurs before the instruction. Doing it here prevents any additional
1059 // S_WAITCNTs from being emitted if the instruction was marked as
1060 // requiring a WAITCNT beforehand.
1061 if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1062 !ST->hasAutoWaitcntBeforeBarrier()) {
1063 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
1064 }
1065
1066 // TODO: Remove this work-around, enable the assert for Bug 457939
1067 // after fixing the scheduler. Also, the Shader Compiler code is
1068 // independent of target.
1069 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1070 if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1071 ScoreBrackets.getScoreUB(LGKM_CNT) &&
1072 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1073 Wait.LgkmCnt = 0;
1074 }
1075 }
1076
1077 // Early-out if no wait is indicated.
1078 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1079 bool Modified = false;
1080 if (OldWaitcntInstr) {
1081 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1082 &*II != &MI; II = NextI, ++NextI) {
1083 if (II->isDebugInstr())
1084 continue;
1085
1086 if (TrackedWaitcntSet.count(&*II)) {
1087 TrackedWaitcntSet.erase(&*II);
1088 II->eraseFromParent();
1089 Modified = true;
1090 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1091 int64_t Imm = II->getOperand(0).getImm();
1092 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1093 } else {
1094 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1095 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1096 ScoreBrackets.applyWaitcnt(
1097 AMDGPU::Waitcnt(~0u, ~0u, ~0u, II->getOperand(1).getImm()));
1098 }
1099 }
1100 }
1101 return Modified;
1102 }
1103
1104 if (ForceEmitZeroWaitcnts)
1105 Wait = AMDGPU::Waitcnt::allZero(IV);
1106
1107 if (ForceEmitWaitcnt[VM_CNT])
1108 Wait.VmCnt = 0;
1109 if (ForceEmitWaitcnt[EXP_CNT])
1110 Wait.ExpCnt = 0;
1111 if (ForceEmitWaitcnt[LGKM_CNT])
1112 Wait.LgkmCnt = 0;
1113 if (ForceEmitWaitcnt[VS_CNT])
1114 Wait.VsCnt = 0;
1115
1116 ScoreBrackets.applyWaitcnt(Wait);
1117
1118 AMDGPU::Waitcnt OldWait;
1119 bool Modified = false;
1120
1121 if (OldWaitcntInstr) {
1122 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1123 &*II != &MI; II = NextI, NextI++) {
1124 if (II->isDebugInstr())
1125 continue;
1126
1127 if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1128 unsigned IEnc = II->getOperand(0).getImm();
1129 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1130 OldWait = OldWait.combined(IWait);
1131 if (!TrackedWaitcntSet.count(&*II))
1132 Wait = Wait.combined(IWait);
1133 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1134 if (IEnc != NewEnc) {
1135 II->getOperand(0).setImm(NewEnc);
1136 Modified = true;
1137 }
1138 Wait.VmCnt = ~0u;
1139 Wait.LgkmCnt = ~0u;
1140 Wait.ExpCnt = ~0u;
1141 } else {
1142 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1143 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1144
1145 unsigned ICnt = II->getOperand(1).getImm();
1146 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1147 if (!TrackedWaitcntSet.count(&*II))
1148 Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1149 if (Wait.VsCnt != ICnt) {
1150 II->getOperand(1).setImm(Wait.VsCnt);
1151 Modified = true;
1152 }
1153 Wait.VsCnt = ~0u;
1154 }
1155
1156 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1157 << "Old Instr: " << MI << '\n'
1158 << "New Instr: " << *II << '\n');
1159
1160 if (!Wait.hasWait())
1161 return Modified;
1162 }
1163 }
1164
1165 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1166 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1167 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1168 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1169 .addImm(Enc);
1170 TrackedWaitcntSet.insert(SWaitInst);
1171 Modified = true;
1172
1173 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1174 << "Old Instr: " << MI << '\n'
1175 << "New Instr: " << *SWaitInst << '\n');
1176 }
1177
1178 if (Wait.VsCnt != ~0u) {
1179 assert(ST->hasVscnt());
1180
1181 auto SWaitInst =
1182 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1183 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1184 .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1185 .addImm(Wait.VsCnt);
1186 TrackedWaitcntSet.insert(SWaitInst);
1187 Modified = true;
1188
1189 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1190 << "Old Instr: " << MI << '\n'
1191 << "New Instr: " << *SWaitInst << '\n');
1192 }
1193
1194 return Modified;
1195 }
1196
1197 // This is a flat memory operation. Check to see if it has memory
1198 // tokens for both LDS and Memory, and if so mark it as a flat.
mayAccessLDSThroughFlat(const MachineInstr & MI) const1199 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1200 if (MI.memoperands_empty())
1201 return true;
1202
1203 for (const MachineMemOperand *Memop : MI.memoperands()) {
1204 unsigned AS = Memop->getAddrSpace();
1205 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1206 return true;
1207 }
1208
1209 return false;
1210 }
1211
updateEventWaitcntAfter(MachineInstr & Inst,WaitcntBrackets * ScoreBrackets)1212 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1213 WaitcntBrackets *ScoreBrackets) {
1214 // Now look at the instruction opcode. If it is a memory access
1215 // instruction, update the upper-bound of the appropriate counter's
1216 // bracket and the destination operand scores.
1217 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1218 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1219 if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1220 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1221 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1222 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1223 } else {
1224 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1225 }
1226 } else if (TII->isFLAT(Inst)) {
1227 assert(Inst.mayLoadOrStore());
1228
1229 if (TII->usesVM_CNT(Inst)) {
1230 if (!ST->hasVscnt())
1231 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1232 else if (Inst.mayLoad() &&
1233 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1234 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1235 else
1236 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1237 }
1238
1239 if (TII->usesLGKM_CNT(Inst)) {
1240 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1241
1242 // This is a flat memory operation, so note it - it will require
1243 // that both the VM and LGKM be flushed to zero if it is pending when
1244 // a VM or LGKM dependency occurs.
1245 if (mayAccessLDSThroughFlat(Inst))
1246 ScoreBrackets->setPendingFlat();
1247 }
1248 } else if (SIInstrInfo::isVMEM(Inst) &&
1249 // TODO: get a better carve out.
1250 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1251 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1252 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1253 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1254 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1255 if (!ST->hasVscnt())
1256 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1257 else if ((Inst.mayLoad() &&
1258 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1259 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1260 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1261 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1262 else if (Inst.mayStore())
1263 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1264
1265 if (ST->vmemWriteNeedsExpWaitcnt() &&
1266 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1267 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1268 }
1269 } else if (TII->isSMRD(Inst)) {
1270 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1271 } else if (Inst.isCall()) {
1272 if (callWaitsOnFunctionReturn(Inst)) {
1273 // Act as a wait on everything
1274 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV));
1275 } else {
1276 // May need to way wait for anything.
1277 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1278 }
1279 } else {
1280 switch (Inst.getOpcode()) {
1281 case AMDGPU::S_SENDMSG:
1282 case AMDGPU::S_SENDMSGHALT:
1283 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1284 break;
1285 case AMDGPU::EXP:
1286 case AMDGPU::EXP_DONE: {
1287 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1288 if (Imm >= 32 && Imm <= 63)
1289 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1290 else if (Imm >= 12 && Imm <= 15)
1291 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1292 else
1293 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1294 break;
1295 }
1296 case AMDGPU::S_MEMTIME:
1297 case AMDGPU::S_MEMREALTIME:
1298 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1299 break;
1300 default:
1301 break;
1302 }
1303 }
1304 }
1305
mergeScore(const MergeInfo & M,uint32_t & Score,uint32_t OtherScore)1306 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score,
1307 uint32_t OtherScore) {
1308 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1309 uint32_t OtherShifted =
1310 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1311 Score = std::max(MyShifted, OtherShifted);
1312 return OtherShifted > MyShifted;
1313 }
1314
1315 /// Merge the pending events and associater score brackets of \p Other into
1316 /// this brackets status.
1317 ///
1318 /// Returns whether the merge resulted in a change that requires tighter waits
1319 /// (i.e. the merged brackets strictly dominate the original brackets).
merge(const WaitcntBrackets & Other)1320 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1321 bool StrictDom = false;
1322
1323 for (auto T : inst_counter_types()) {
1324 // Merge event flags for this counter
1325 const bool OldOutOfOrder = counterOutOfOrder(T);
1326 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T];
1327 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1328 if (OtherEvents & ~OldEvents)
1329 StrictDom = true;
1330 if (Other.MixedPendingEvents[T] ||
1331 (OldEvents && OtherEvents && OldEvents != OtherEvents))
1332 MixedPendingEvents[T] = true;
1333 PendingEvents |= OtherEvents;
1334
1335 // Merge scores for this counter
1336 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T];
1337 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1338 MergeInfo M;
1339 M.OldLB = ScoreLBs[T];
1340 M.OtherLB = Other.ScoreLBs[T];
1341 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0;
1342 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift;
1343
1344 const uint32_t NewUB = ScoreUBs[T] + M.MyShift;
1345 if (NewUB < ScoreUBs[T])
1346 report_fatal_error("waitcnt score overflow");
1347 ScoreUBs[T] = NewUB;
1348 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift);
1349
1350 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1351
1352 bool RegStrictDom = false;
1353 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E;
1354 J++) {
1355 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1356 }
1357
1358 if (T == LGKM_CNT) {
1359 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1;
1360 J != E; J++) {
1361 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1362 }
1363 }
1364
1365 if (RegStrictDom && !OldOutOfOrder)
1366 StrictDom = true;
1367 }
1368
1369 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR());
1370 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR());
1371
1372 return StrictDom;
1373 }
1374
1375 // Generate s_waitcnt instructions where needed.
insertWaitcntInBlock(MachineFunction & MF,MachineBasicBlock & Block,WaitcntBrackets & ScoreBrackets)1376 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1377 MachineBasicBlock &Block,
1378 WaitcntBrackets &ScoreBrackets) {
1379 bool Modified = false;
1380
1381 LLVM_DEBUG({
1382 dbgs() << "*** Block" << Block.getNumber() << " ***";
1383 ScoreBrackets.dump();
1384 });
1385
1386 // Walk over the instructions.
1387 MachineInstr *OldWaitcntInstr = nullptr;
1388
1389 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1390 E = Block.instr_end();
1391 Iter != E;) {
1392 MachineInstr &Inst = *Iter;
1393
1394 // Track pre-existing waitcnts from earlier iterations.
1395 if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1396 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1397 Inst.getOperand(0).isReg() &&
1398 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1399 if (!OldWaitcntInstr)
1400 OldWaitcntInstr = &Inst;
1401 ++Iter;
1402 continue;
1403 }
1404
1405 bool VCCZBugWorkAround = false;
1406 if (readsVCCZ(Inst)) {
1407 if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1408 ScoreBrackets.getScoreUB(LGKM_CNT) &&
1409 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1410 if (ST->hasReadVCCZBug())
1411 VCCZBugWorkAround = true;
1412 }
1413 }
1414
1415 if (TII->isSMRD(Inst)) {
1416 for (const MachineMemOperand *Memop : Inst.memoperands()) {
1417 const Value *Ptr = Memop->getValue();
1418 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
1419 }
1420 }
1421
1422 // Generate an s_waitcnt instruction to be placed before
1423 // cur_Inst, if needed.
1424 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1425 OldWaitcntInstr = nullptr;
1426
1427 updateEventWaitcntAfter(Inst, &ScoreBrackets);
1428
1429 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1430 // If this instruction generates a S_SETVSKIP because it is an
1431 // indexed resource, and we are on Tahiti, then it will also force
1432 // an S_WAITCNT vmcnt(0)
1433 if (RequireCheckResourceType(Inst, context)) {
1434 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1435 ScoreBrackets->setScoreLB(VM_CNT,
1436 ScoreBrackets->getScoreUB(VM_CNT));
1437 }
1438 #endif
1439
1440 LLVM_DEBUG({
1441 Inst.print(dbgs());
1442 ScoreBrackets.dump();
1443 });
1444
1445 // TODO: Remove this work-around after fixing the scheduler and enable the
1446 // assert above.
1447 if (VCCZBugWorkAround) {
1448 // Restore the vccz bit. Any time a value is written to vcc, the vcc
1449 // bit is updated, so we can restore the bit by reading the value of
1450 // vcc and then writing it back to the register.
1451 BuildMI(Block, Inst, Inst.getDebugLoc(),
1452 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1453 TRI->getVCC())
1454 .addReg(TRI->getVCC());
1455 Modified = true;
1456 }
1457
1458 ++Iter;
1459 }
1460
1461 return Modified;
1462 }
1463
runOnMachineFunction(MachineFunction & MF)1464 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1465 ST = &MF.getSubtarget<GCNSubtarget>();
1466 TII = ST->getInstrInfo();
1467 TRI = &TII->getRegisterInfo();
1468 MRI = &MF.getRegInfo();
1469 IV = AMDGPU::getIsaVersion(ST->getCPU());
1470 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1471 PDT = &getAnalysis<MachinePostDominatorTree>();
1472
1473 ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1474 for (auto T : inst_counter_types())
1475 ForceEmitWaitcnt[T] = false;
1476
1477 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1478 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1479 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1480 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1481
1482 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1483 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1484 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1485 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1486
1487 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1488 RegisterEncoding.VGPRL =
1489 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1490 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1491 RegisterEncoding.SGPRL =
1492 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1493
1494 TrackedWaitcntSet.clear();
1495 RpotIdxMap.clear();
1496 BlockInfos.clear();
1497
1498 // Keep iterating over the blocks in reverse post order, inserting and
1499 // updating s_waitcnt where needed, until a fix point is reached.
1500 for (MachineBasicBlock *MBB :
1501 ReversePostOrderTraversal<MachineFunction *>(&MF)) {
1502 RpotIdxMap[MBB] = BlockInfos.size();
1503 BlockInfos.emplace_back(MBB);
1504 }
1505
1506 std::unique_ptr<WaitcntBrackets> Brackets;
1507 bool Modified = false;
1508 bool Repeat;
1509 do {
1510 Repeat = false;
1511
1512 for (BlockInfo &BI : BlockInfos) {
1513 if (!BI.Dirty)
1514 continue;
1515
1516 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI);
1517
1518 if (BI.Incoming) {
1519 if (!Brackets)
1520 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1521 else
1522 *Brackets = *BI.Incoming;
1523 } else {
1524 if (!Brackets)
1525 Brackets = std::make_unique<WaitcntBrackets>(ST);
1526 else
1527 Brackets->clear();
1528 }
1529
1530 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1531 BI.Dirty = false;
1532
1533 if (Brackets->hasPending()) {
1534 BlockInfo *MoveBracketsToSucc = nullptr;
1535 for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1536 unsigned SuccIdx = RpotIdxMap[Succ];
1537 BlockInfo &SuccBI = BlockInfos[SuccIdx];
1538 if (!SuccBI.Incoming) {
1539 SuccBI.Dirty = true;
1540 if (SuccIdx <= Idx)
1541 Repeat = true;
1542 if (!MoveBracketsToSucc) {
1543 MoveBracketsToSucc = &SuccBI;
1544 } else {
1545 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1546 }
1547 } else if (SuccBI.Incoming->merge(*Brackets)) {
1548 SuccBI.Dirty = true;
1549 if (SuccIdx <= Idx)
1550 Repeat = true;
1551 }
1552 }
1553 if (MoveBracketsToSucc)
1554 MoveBracketsToSucc->Incoming = std::move(Brackets);
1555 }
1556 }
1557 } while (Repeat);
1558
1559 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1560
1561 bool HaveScalarStores = false;
1562
1563 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1564 ++BI) {
1565 MachineBasicBlock &MBB = *BI;
1566
1567 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1568 ++I) {
1569 if (!HaveScalarStores && TII->isScalarStore(*I))
1570 HaveScalarStores = true;
1571
1572 if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1573 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1574 EndPgmBlocks.push_back(&MBB);
1575 }
1576 }
1577
1578 if (HaveScalarStores) {
1579 // If scalar writes are used, the cache must be flushed or else the next
1580 // wave to reuse the same scratch memory can be clobbered.
1581 //
1582 // Insert s_dcache_wb at wave termination points if there were any scalar
1583 // stores, and only if the cache hasn't already been flushed. This could be
1584 // improved by looking across blocks for flushes in postdominating blocks
1585 // from the stores but an explicitly requested flush is probably very rare.
1586 for (MachineBasicBlock *MBB : EndPgmBlocks) {
1587 bool SeenDCacheWB = false;
1588
1589 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1590 ++I) {
1591 if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1592 SeenDCacheWB = true;
1593 else if (TII->isScalarStore(*I))
1594 SeenDCacheWB = false;
1595
1596 // FIXME: It would be better to insert this before a waitcnt if any.
1597 if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1598 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1599 !SeenDCacheWB) {
1600 Modified = true;
1601 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1602 }
1603 }
1604 }
1605 }
1606
1607 if (!MFI->isEntryFunction()) {
1608 // Wait for any outstanding memory operations that the input registers may
1609 // depend on. We can't track them and it's better to the wait after the
1610 // costly call sequence.
1611
1612 // TODO: Could insert earlier and schedule more liberally with operations
1613 // that only use caller preserved registers.
1614 MachineBasicBlock &EntryBB = MF.front();
1615 if (ST->hasVscnt())
1616 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(),
1617 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1618 .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1619 .addImm(0);
1620 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1621 .addImm(0);
1622
1623 Modified = true;
1624 }
1625
1626 return Modified;
1627 }
1628