• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12 
13 /*
14  * Common bits between hash and Radix page table
15  */
16 #define _PAGE_BIT_SWAP_TYPE	0
17 
18 #define _PAGE_EXEC		0x00001 /* execute permission */
19 #define _PAGE_WRITE		0x00002 /* write access allowed */
20 #define _PAGE_READ		0x00004	/* read access allowed */
21 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
22 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
24 #define _PAGE_SAO		0x00010 /* Strong access order */
25 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
26 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
27 #define _PAGE_DIRTY		0x00080 /* C: page changed */
28 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
29 /*
30  * Software bits
31  */
32 #define _RPAGE_SW0		0x2000000000000000UL
33 #define _RPAGE_SW1		0x00800
34 #define _RPAGE_SW2		0x00400
35 #define _RPAGE_SW3		0x00200
36 #define _RPAGE_RSV1		0x00040UL
37 
38 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
39 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
40 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
41 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
42 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
43 
44 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
45 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
46 /*
47  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
48  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
49  * differentiate between two use a SW field when invalidating.
50  *
51  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
52  *
53  * This is used only when _PAGE_PRESENT is cleared.
54  */
55 #define _PAGE_INVALID		_RPAGE_SW0
56 
57 /*
58  * Top and bottom bits of RPN which can be used by hash
59  * translation mode, because we expect them to be zero
60  * otherwise.
61  */
62 #define _RPAGE_RPN0		0x01000
63 #define _RPAGE_RPN1		0x02000
64 #define _RPAGE_RPN43		0x0080000000000000UL
65 #define _RPAGE_RPN42		0x0040000000000000UL
66 #define _RPAGE_RPN41		0x0020000000000000UL
67 
68 /* Max physical address bit as per radix table */
69 #define _RPAGE_PA_MAX		56
70 
71 /*
72  * Max physical address bit we will use for now.
73  *
74  * This is mostly a hardware limitation and for now Power9 has
75  * a 51 bit limit.
76  *
77  * This is different from the number of physical bit required to address
78  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
79  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
80  * number of sections we can support (SECTIONS_SHIFT).
81  *
82  * This is different from Radix page table limitation above and
83  * should always be less than that. The limit is done such that
84  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
85  * for hash linux page table specific bits.
86  *
87  * In order to be compatible with future hardware generations we keep
88  * some offsets and limit this for now to 53
89  */
90 #define _PAGE_PA_MAX		53
91 
92 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
93 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
94 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
95 
96 /*
97  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
98  * Instead of fixing all of them, add an alternate define which
99  * maps CI pte mapping.
100  */
101 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
102 /*
103  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
104  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
105  * and every thing below PAGE_SHIFT;
106  */
107 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
108 /*
109  * set of bits not changed in pmd_modify. Even though we have hash specific bits
110  * in here, on radix we expect them to be zero.
111  */
112 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
113 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
114 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
115 /*
116  * user access blocked by key
117  */
118 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
119 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
120 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
121 				 _PAGE_RW | _PAGE_EXEC)
122 /*
123  * _PAGE_CHG_MASK masks of bits that are to be preserved across
124  * pgprot changes
125  */
126 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
128 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129 
130 /*
131  * We define 2 sets of base prot bits, one for basic pages (ie,
132  * cacheable kernel and user pages) and one for non cacheable
133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
134  * the processor might need it for DMA coherency.
135  */
136 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE	(_PAGE_BASE_NC)
138 
139 /* Permission masks used to generate the __P and __S table,
140  *
141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142  *
143  * Write permissions imply read permissions for now (we could make write-only
144  * pages on BookE but we don't bother for now). Execute permission control is
145  * possible on platforms that define _PAGE_EXEC
146  */
147 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 				 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 				 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164 
165 /*
166  * Protection used for kernel text. We want the debuggers to be able to
167  * set breakpoints anywhere, so don't write protect the kernel text
168  * on platforms where such control is possible.
169  */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
175 #endif
176 
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
179 #define PAGE_AGP		(PAGE_KERNEL_NC)
180 
181 #ifndef __ASSEMBLY__
182 /*
183  * page table defines
184  */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE  __pte_index_size
191 #define PMD_INDEX_SIZE  __pmd_index_size
192 #define PUD_INDEX_SIZE  __pud_index_size
193 #define PGD_INDEX_SIZE  __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX  0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198  * Because of use of pte fragments and THP, size of page table
199  * are not always derived out of index size above.
200  */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE	__pte_table_size
206 #define PMD_TABLE_SIZE	__pmd_table_size
207 #define PUD_TABLE_SIZE	__pud_table_size
208 #define PGD_TABLE_SIZE	__pgd_table_size
209 
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS	__pmd_val_bits
214 #define PUD_VAL_BITS	__pud_val_bits
215 #define PGD_VAL_BITS	__pgd_val_bits
216 
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222 
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228 
229 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
233 
234 /* PMD_SHIFT determines what a second-level page table entry can map */
235 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
236 #define PMD_SIZE	(1UL << PMD_SHIFT)
237 #define PMD_MASK	(~(PMD_SIZE-1))
238 
239 /* PUD_SHIFT determines what a third-level page table entry can map */
240 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
241 #define PUD_SIZE	(1UL << PUD_SHIFT)
242 #define PUD_MASK	(~(PUD_SIZE-1))
243 
244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
246 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
247 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
248 
249 /* Bits to mask out from a PMD to get to the PTE page */
250 #define PMD_MASKED_BITS		0xc0000000000000ffUL
251 /* Bits to mask out from a PUD to get to the PMD page */
252 #define PUD_MASKED_BITS		0xc0000000000000ffUL
253 /* Bits to mask out from a PGD to get to the PUD page */
254 #define P4D_MASKED_BITS		0xc0000000000000ffUL
255 
256 /*
257  * Used as an indicator for rcu callback functions
258  */
259 enum pgtable_index {
260 	PTE_INDEX = 0,
261 	PMD_INDEX,
262 	PUD_INDEX,
263 	PGD_INDEX,
264 	/*
265 	 * Below are used with 4k page size and hugetlb
266 	 */
267 	HTLB_16M_INDEX,
268 	HTLB_16G_INDEX,
269 };
270 
271 extern unsigned long __vmalloc_start;
272 extern unsigned long __vmalloc_end;
273 #define VMALLOC_START	__vmalloc_start
274 #define VMALLOC_END	__vmalloc_end
275 
ioremap_max_order(void)276 static inline unsigned int ioremap_max_order(void)
277 {
278 	if (radix_enabled())
279 		return PUD_SHIFT;
280 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281 }
282 #define IOREMAP_MAX_ORDER ioremap_max_order()
283 
284 extern unsigned long __kernel_virt_start;
285 extern unsigned long __kernel_io_start;
286 extern unsigned long __kernel_io_end;
287 #define KERN_VIRT_START __kernel_virt_start
288 #define KERN_IO_START  __kernel_io_start
289 #define KERN_IO_END __kernel_io_end
290 
291 extern struct page *vmemmap;
292 extern unsigned long pci_io_base;
293 #endif /* __ASSEMBLY__ */
294 
295 #include <asm/book3s/64/hash.h>
296 #include <asm/book3s/64/radix.h>
297 
298 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
299 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
300 #else
301 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
302 #endif
303 
304 
305 #ifdef CONFIG_PPC_64K_PAGES
306 #include <asm/book3s/64/pgtable-64k.h>
307 #else
308 #include <asm/book3s/64/pgtable-4k.h>
309 #endif
310 
311 #include <asm/barrier.h>
312 /*
313  * IO space itself carved into the PIO region (ISA and PHB IO space) and
314  * the ioremap space
315  *
316  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
317  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
318  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
319  */
320 #define FULL_IO_SIZE	0x80000000ul
321 #define  ISA_IO_BASE	(KERN_IO_START)
322 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
323 #define  PHB_IO_BASE	(ISA_IO_END)
324 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
325 #define IOREMAP_BASE	(PHB_IO_END)
326 #define IOREMAP_START	(ioremap_bot)
327 #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
328 #define FIXADDR_SIZE	SZ_32M
329 
330 /* Advertise special mapping type for AGP */
331 #define HAVE_PAGE_AGP
332 
333 #ifndef __ASSEMBLY__
334 
335 /*
336  * This is the default implementation of various PTE accessors, it's
337  * used in all cases except Book3S with 64K pages where we have a
338  * concept of sub-pages
339  */
340 #ifndef __real_pte
341 
342 #define __real_pte(e, p, o)		((real_pte_t){(e)})
343 #define __rpte_to_pte(r)	((r).pte)
344 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
345 
346 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
347 	do {							         \
348 		index = 0;					         \
349 		shift = mmu_psize_defs[psize].shift;		         \
350 
351 #define pte_iterate_hashed_end() } while(0)
352 
353 /*
354  * We expect this to be called only for user addresses or kernel virtual
355  * addresses other than the linear mapping.
356  */
357 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
358 
359 #endif /* __real_pte */
360 
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)361 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
362 				       pte_t *ptep, unsigned long clr,
363 				       unsigned long set, int huge)
364 {
365 	if (radix_enabled())
366 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
367 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
368 }
369 /*
370  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
371  * We currently remove entries from the hashtable regardless of whether
372  * the entry was young or dirty.
373  *
374  * We should be more intelligent about this but for the moment we override
375  * these functions and force a tlb flush unconditionally
376  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
377  * function for both hash and radix.
378  */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)379 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
380 					      unsigned long addr, pte_t *ptep)
381 {
382 	unsigned long old;
383 
384 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
385 		return 0;
386 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
387 	return (old & _PAGE_ACCESSED) != 0;
388 }
389 
390 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
391 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
392 ({								\
393 	int __r;						\
394 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
395 	__r;							\
396 })
397 
__pte_write(pte_t pte)398 static inline int __pte_write(pte_t pte)
399 {
400 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
401 }
402 
403 #ifdef CONFIG_NUMA_BALANCING
404 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)405 static inline bool pte_savedwrite(pte_t pte)
406 {
407 	/*
408 	 * Saved write ptes are prot none ptes that doesn't have
409 	 * privileged bit sit. We mark prot none as one which has
410 	 * present and pviliged bit set and RWX cleared. To mark
411 	 * protnone which used to have _PAGE_WRITE set we clear
412 	 * the privileged bit.
413 	 */
414 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
415 }
416 #else
417 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)418 static inline bool pte_savedwrite(pte_t pte)
419 {
420 	return false;
421 }
422 #endif
423 
pte_write(pte_t pte)424 static inline int pte_write(pte_t pte)
425 {
426 	return __pte_write(pte) || pte_savedwrite(pte);
427 }
428 
pte_read(pte_t pte)429 static inline int pte_read(pte_t pte)
430 {
431 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
432 }
433 
434 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)435 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
436 				      pte_t *ptep)
437 {
438 	if (__pte_write(*ptep))
439 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
440 	else if (unlikely(pte_savedwrite(*ptep)))
441 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
442 }
443 
444 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)445 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
446 					   unsigned long addr, pte_t *ptep)
447 {
448 	/*
449 	 * We should not find protnone for hugetlb, but this complete the
450 	 * interface.
451 	 */
452 	if (__pte_write(*ptep))
453 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
454 	else if (unlikely(pte_savedwrite(*ptep)))
455 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
456 }
457 
458 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)459 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
460 				       unsigned long addr, pte_t *ptep)
461 {
462 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
463 	return __pte(old);
464 }
465 
466 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)467 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
468 					    unsigned long addr,
469 					    pte_t *ptep, int full)
470 {
471 	if (full && radix_enabled()) {
472 		/*
473 		 * We know that this is a full mm pte clear and
474 		 * hence can be sure there is no parallel set_pte.
475 		 */
476 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
477 	}
478 	return ptep_get_and_clear(mm, addr, ptep);
479 }
480 
481 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)482 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
483 			     pte_t * ptep)
484 {
485 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
486 }
487 
pte_dirty(pte_t pte)488 static inline int pte_dirty(pte_t pte)
489 {
490 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
491 }
492 
pte_young(pte_t pte)493 static inline int pte_young(pte_t pte)
494 {
495 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
496 }
497 
pte_special(pte_t pte)498 static inline int pte_special(pte_t pte)
499 {
500 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
501 }
502 
pte_exec(pte_t pte)503 static inline bool pte_exec(pte_t pte)
504 {
505 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
506 }
507 
508 
509 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)510 static inline bool pte_soft_dirty(pte_t pte)
511 {
512 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
513 }
514 
pte_mksoft_dirty(pte_t pte)515 static inline pte_t pte_mksoft_dirty(pte_t pte)
516 {
517 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
518 }
519 
pte_clear_soft_dirty(pte_t pte)520 static inline pte_t pte_clear_soft_dirty(pte_t pte)
521 {
522 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
523 }
524 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
525 
526 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)527 static inline int pte_protnone(pte_t pte)
528 {
529 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
530 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
531 }
532 
533 #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)534 static inline pte_t pte_mk_savedwrite(pte_t pte)
535 {
536 	/*
537 	 * Used by Autonuma subsystem to preserve the write bit
538 	 * while marking the pte PROT_NONE. Only allow this
539 	 * on PROT_NONE pte
540 	 */
541 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
542 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
543 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
544 }
545 
546 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)547 static inline pte_t pte_clear_savedwrite(pte_t pte)
548 {
549 	/*
550 	 * Used by KSM subsystem to make a protnone pte readonly.
551 	 */
552 	VM_BUG_ON(!pte_protnone(pte));
553 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
554 }
555 #else
556 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)557 static inline pte_t pte_clear_savedwrite(pte_t pte)
558 {
559 	VM_WARN_ON(1);
560 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
561 }
562 #endif /* CONFIG_NUMA_BALANCING */
563 
pte_hw_valid(pte_t pte)564 static inline bool pte_hw_valid(pte_t pte)
565 {
566 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
567 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
568 }
569 
pte_present(pte_t pte)570 static inline int pte_present(pte_t pte)
571 {
572 	/*
573 	 * A pte is considerent present if _PAGE_PRESENT is set.
574 	 * We also need to consider the pte present which is marked
575 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
576 	 * if we find _PAGE_PRESENT cleared.
577 	 */
578 
579 	if (pte_hw_valid(pte))
580 		return true;
581 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
582 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
583 }
584 
585 #ifdef CONFIG_PPC_MEM_KEYS
586 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
587 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)588 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
589 {
590 	return true;
591 }
592 #endif /* CONFIG_PPC_MEM_KEYS */
593 
pte_user(pte_t pte)594 static inline bool pte_user(pte_t pte)
595 {
596 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
597 }
598 
599 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)600 static inline bool pte_access_permitted(pte_t pte, bool write)
601 {
602 	/*
603 	 * _PAGE_READ is needed for any access and will be
604 	 * cleared for PROT_NONE
605 	 */
606 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
607 		return false;
608 
609 	if (write && !pte_write(pte))
610 		return false;
611 
612 	return arch_pte_access_permitted(pte_val(pte), write, 0);
613 }
614 
615 /*
616  * Conversion functions: convert a page and protection to a page entry,
617  * and a page entry and page directory to the page they refer to.
618  *
619  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
620  * long for now.
621  */
pfn_pte(unsigned long pfn,pgprot_t pgprot)622 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
623 {
624 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
625 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
626 
627 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
628 }
629 
pte_pfn(pte_t pte)630 static inline unsigned long pte_pfn(pte_t pte)
631 {
632 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
633 }
634 
635 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)636 static inline pte_t pte_wrprotect(pte_t pte)
637 {
638 	if (unlikely(pte_savedwrite(pte)))
639 		return pte_clear_savedwrite(pte);
640 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
641 }
642 
pte_exprotect(pte_t pte)643 static inline pte_t pte_exprotect(pte_t pte)
644 {
645 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
646 }
647 
pte_mkclean(pte_t pte)648 static inline pte_t pte_mkclean(pte_t pte)
649 {
650 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
651 }
652 
pte_mkold(pte_t pte)653 static inline pte_t pte_mkold(pte_t pte)
654 {
655 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
656 }
657 
pte_mkexec(pte_t pte)658 static inline pte_t pte_mkexec(pte_t pte)
659 {
660 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
661 }
662 
pte_mkwrite(pte_t pte)663 static inline pte_t pte_mkwrite(pte_t pte)
664 {
665 	/*
666 	 * write implies read, hence set both
667 	 */
668 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
669 }
670 
pte_mkdirty(pte_t pte)671 static inline pte_t pte_mkdirty(pte_t pte)
672 {
673 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
674 }
675 
pte_mkyoung(pte_t pte)676 static inline pte_t pte_mkyoung(pte_t pte)
677 {
678 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
679 }
680 
pte_mkspecial(pte_t pte)681 static inline pte_t pte_mkspecial(pte_t pte)
682 {
683 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
684 }
685 
pte_mkhuge(pte_t pte)686 static inline pte_t pte_mkhuge(pte_t pte)
687 {
688 	return pte;
689 }
690 
pte_mkdevmap(pte_t pte)691 static inline pte_t pte_mkdevmap(pte_t pte)
692 {
693 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
694 }
695 
pte_mkprivileged(pte_t pte)696 static inline pte_t pte_mkprivileged(pte_t pte)
697 {
698 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
699 }
700 
pte_mkuser(pte_t pte)701 static inline pte_t pte_mkuser(pte_t pte)
702 {
703 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
704 }
705 
706 /*
707  * This is potentially called with a pmd as the argument, in which case it's not
708  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
709  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
710  * use in page directory entries (ie. non-ptes).
711  */
pte_devmap(pte_t pte)712 static inline int pte_devmap(pte_t pte)
713 {
714 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
715 
716 	return (pte_raw(pte) & mask) == mask;
717 }
718 
pte_modify(pte_t pte,pgprot_t newprot)719 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
720 {
721 	/* FIXME!! check whether this need to be a conditional */
722 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
723 			 cpu_to_be64(pgprot_val(newprot)));
724 }
725 
726 /* Encode and de-code a swap entry */
727 #define MAX_SWAPFILES_CHECK() do { \
728 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
729 	/*							\
730 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
731 	 * We filter HPTEFLAGS on set_pte.			\
732 	 */							\
733 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
734 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
735 	} while (0)
736 
737 #define SWP_TYPE_BITS 5
738 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
739 				& ((1UL << SWP_TYPE_BITS) - 1))
740 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
741 #define __swp_entry(type, offset)	((swp_entry_t) { \
742 				((type) << _PAGE_BIT_SWAP_TYPE) \
743 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
744 /*
745  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
746  * swap type and offset we get from swap and convert that to pte to find a
747  * matching pte in linux page table.
748  * Clear bits not found in swap entries here.
749  */
750 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
751 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
752 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
753 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
754 
755 #ifdef CONFIG_MEM_SOFT_DIRTY
756 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
757 #else
758 #define _PAGE_SWP_SOFT_DIRTY	0UL
759 #endif /* CONFIG_MEM_SOFT_DIRTY */
760 
761 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)762 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
763 {
764 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
765 }
766 
pte_swp_soft_dirty(pte_t pte)767 static inline bool pte_swp_soft_dirty(pte_t pte)
768 {
769 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
770 }
771 
pte_swp_clear_soft_dirty(pte_t pte)772 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
773 {
774 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
775 }
776 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
777 
check_pte_access(unsigned long access,unsigned long ptev)778 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
779 {
780 	/*
781 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
782 	 */
783 	if (access & ~ptev)
784 		return false;
785 	/*
786 	 * This check for access to privilege space
787 	 */
788 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
789 		return false;
790 
791 	return true;
792 }
793 /*
794  * Generic functions with hash/radix callbacks
795  */
796 
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)797 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
798 					   pte_t *ptep, pte_t entry,
799 					   unsigned long address,
800 					   int psize)
801 {
802 	if (radix_enabled())
803 		return radix__ptep_set_access_flags(vma, ptep, entry,
804 						    address, psize);
805 	return hash__ptep_set_access_flags(ptep, entry);
806 }
807 
808 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)809 static inline int pte_same(pte_t pte_a, pte_t pte_b)
810 {
811 	if (radix_enabled())
812 		return radix__pte_same(pte_a, pte_b);
813 	return hash__pte_same(pte_a, pte_b);
814 }
815 
pte_none(pte_t pte)816 static inline int pte_none(pte_t pte)
817 {
818 	if (radix_enabled())
819 		return radix__pte_none(pte);
820 	return hash__pte_none(pte);
821 }
822 
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)823 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
824 				pte_t *ptep, pte_t pte, int percpu)
825 {
826 
827 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
828 	/*
829 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
830 	 * in all the callers.
831 	 */
832 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
833 
834 	if (radix_enabled())
835 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
836 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
837 }
838 
839 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
840 
841 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)842 static inline pgprot_t pgprot_noncached(pgprot_t prot)
843 {
844 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
845 			_PAGE_NON_IDEMPOTENT);
846 }
847 
848 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)849 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
850 {
851 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
852 			_PAGE_TOLERANT);
853 }
854 
855 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)856 static inline pgprot_t pgprot_cached(pgprot_t prot)
857 {
858 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
859 }
860 
861 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)862 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
863 {
864 	return pgprot_noncached_wc(prot);
865 }
866 /*
867  * check a pte mapping have cache inhibited property
868  */
pte_ci(pte_t pte)869 static inline bool pte_ci(pte_t pte)
870 {
871 	__be64 pte_v = pte_raw(pte);
872 
873 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
874 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
875 		return true;
876 	return false;
877 }
878 
pmd_clear(pmd_t * pmdp)879 static inline void pmd_clear(pmd_t *pmdp)
880 {
881 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
882 		/*
883 		 * Don't use this if we can possibly have a hash page table
884 		 * entry mapping this.
885 		 */
886 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
887 	}
888 	*pmdp = __pmd(0);
889 }
890 
pmd_none(pmd_t pmd)891 static inline int pmd_none(pmd_t pmd)
892 {
893 	return !pmd_raw(pmd);
894 }
895 
pmd_present(pmd_t pmd)896 static inline int pmd_present(pmd_t pmd)
897 {
898 	/*
899 	 * A pmd is considerent present if _PAGE_PRESENT is set.
900 	 * We also need to consider the pmd present which is marked
901 	 * invalid during a split. Hence we look for _PAGE_INVALID
902 	 * if we find _PAGE_PRESENT cleared.
903 	 */
904 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
905 		return true;
906 
907 	return false;
908 }
909 
pmd_is_serializing(pmd_t pmd)910 static inline int pmd_is_serializing(pmd_t pmd)
911 {
912 	/*
913 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
914 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
915 	 *
916 	 * This condition may also occur when flushing a pmd while flushing
917 	 * it (see ptep_modify_prot_start), so callers must ensure this
918 	 * case is fine as well.
919 	 */
920 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
921 						cpu_to_be64(_PAGE_INVALID))
922 		return true;
923 
924 	return false;
925 }
926 
pmd_bad(pmd_t pmd)927 static inline int pmd_bad(pmd_t pmd)
928 {
929 	if (radix_enabled())
930 		return radix__pmd_bad(pmd);
931 	return hash__pmd_bad(pmd);
932 }
933 
pud_clear(pud_t * pudp)934 static inline void pud_clear(pud_t *pudp)
935 {
936 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
937 		/*
938 		 * Don't use this if we can possibly have a hash page table
939 		 * entry mapping this.
940 		 */
941 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
942 	}
943 	*pudp = __pud(0);
944 }
945 
pud_none(pud_t pud)946 static inline int pud_none(pud_t pud)
947 {
948 	return !pud_raw(pud);
949 }
950 
pud_present(pud_t pud)951 static inline int pud_present(pud_t pud)
952 {
953 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
954 }
955 
956 extern struct page *pud_page(pud_t pud);
957 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)958 static inline pte_t pud_pte(pud_t pud)
959 {
960 	return __pte_raw(pud_raw(pud));
961 }
962 
pte_pud(pte_t pte)963 static inline pud_t pte_pud(pte_t pte)
964 {
965 	return __pud_raw(pte_raw(pte));
966 }
967 #define pud_write(pud)		pte_write(pud_pte(pud))
968 
pud_bad(pud_t pud)969 static inline int pud_bad(pud_t pud)
970 {
971 	if (radix_enabled())
972 		return radix__pud_bad(pud);
973 	return hash__pud_bad(pud);
974 }
975 
976 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)977 static inline bool pud_access_permitted(pud_t pud, bool write)
978 {
979 	return pte_access_permitted(pud_pte(pud), write);
980 }
981 
982 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
p4d_raw(p4d_t x)983 static inline __be64 p4d_raw(p4d_t x)
984 {
985 	return pgd_raw(x.pgd);
986 }
987 
988 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
989 
p4d_clear(p4d_t * p4dp)990 static inline void p4d_clear(p4d_t *p4dp)
991 {
992 	*p4dp = __p4d(0);
993 }
994 
p4d_none(p4d_t p4d)995 static inline int p4d_none(p4d_t p4d)
996 {
997 	return !p4d_raw(p4d);
998 }
999 
p4d_present(p4d_t p4d)1000 static inline int p4d_present(p4d_t p4d)
1001 {
1002 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1003 }
1004 
p4d_pte(p4d_t p4d)1005 static inline pte_t p4d_pte(p4d_t p4d)
1006 {
1007 	return __pte_raw(p4d_raw(p4d));
1008 }
1009 
pte_p4d(pte_t pte)1010 static inline p4d_t pte_p4d(pte_t pte)
1011 {
1012 	return __p4d_raw(pte_raw(pte));
1013 }
1014 
p4d_bad(p4d_t p4d)1015 static inline int p4d_bad(p4d_t p4d)
1016 {
1017 	if (radix_enabled())
1018 		return radix__p4d_bad(p4d);
1019 	return hash__p4d_bad(p4d);
1020 }
1021 
1022 #define p4d_access_permitted p4d_access_permitted
p4d_access_permitted(p4d_t p4d,bool write)1023 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1024 {
1025 	return pte_access_permitted(p4d_pte(p4d), write);
1026 }
1027 
1028 extern struct page *p4d_page(p4d_t p4d);
1029 
1030 /* Pointers in the page table tree are physical addresses */
1031 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1032 
1033 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
1034 #define p4d_page_vaddr(p4d)	__va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1035 
1036 #define pte_ERROR(e) \
1037 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1038 #define pmd_ERROR(e) \
1039 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1040 #define pud_ERROR(e) \
1041 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1042 #define pgd_ERROR(e) \
1043 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1044 
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)1045 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1046 {
1047 	if (radix_enabled()) {
1048 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1049 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1050 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1051 #endif
1052 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1053 	}
1054 	return hash__map_kernel_page(ea, pa, prot);
1055 }
1056 
1057 void unmap_kernel_page(unsigned long va);
1058 
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1059 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1060 						   unsigned long page_size,
1061 						   unsigned long phys)
1062 {
1063 	if (radix_enabled())
1064 		return radix__vmemmap_create_mapping(start, page_size, phys);
1065 	return hash__vmemmap_create_mapping(start, page_size, phys);
1066 }
1067 
1068 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1069 static inline void vmemmap_remove_mapping(unsigned long start,
1070 					  unsigned long page_size)
1071 {
1072 	if (radix_enabled())
1073 		return radix__vmemmap_remove_mapping(start, page_size);
1074 	return hash__vmemmap_remove_mapping(start, page_size);
1075 }
1076 #endif
1077 
pmd_pte(pmd_t pmd)1078 static inline pte_t pmd_pte(pmd_t pmd)
1079 {
1080 	return __pte_raw(pmd_raw(pmd));
1081 }
1082 
pte_pmd(pte_t pte)1083 static inline pmd_t pte_pmd(pte_t pte)
1084 {
1085 	return __pmd_raw(pte_raw(pte));
1086 }
1087 
pmdp_ptep(pmd_t * pmd)1088 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1089 {
1090 	return (pte_t *)pmd;
1091 }
1092 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1093 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1094 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1095 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1096 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1097 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1098 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1099 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1100 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1101 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1102 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1103 
1104 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1105 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1106 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1107 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1108 
1109 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1110 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1111 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1112 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1113 #endif
1114 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1115 
1116 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1117 static inline int pmd_protnone(pmd_t pmd)
1118 {
1119 	return pte_protnone(pmd_pte(pmd));
1120 }
1121 #endif /* CONFIG_NUMA_BALANCING */
1122 
1123 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1124 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1125 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1126 
1127 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1128 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1129 {
1130 	/*
1131 	 * pmdp_invalidate sets this combination (which is not caught by
1132 	 * !pte_present() check in pte_access_permitted), to prevent
1133 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1134 	 * synchronisation.
1135 	 *
1136 	 * This also catches the case where the PTE's hardware PRESENT bit is
1137 	 * cleared while TLB is flushed, which is suboptimal but should not
1138 	 * be frequent.
1139 	 */
1140 	if (pmd_is_serializing(pmd))
1141 		return false;
1142 
1143 	return pte_access_permitted(pmd_pte(pmd), write);
1144 }
1145 
1146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1147 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1148 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1149 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1150 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1151 		       pmd_t *pmdp, pmd_t pmd);
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1152 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1153 					unsigned long addr, pmd_t *pmd)
1154 {
1155 }
1156 
1157 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1158 static inline int has_transparent_hugepage(void)
1159 {
1160 	if (radix_enabled())
1161 		return radix__has_transparent_hugepage();
1162 	return hash__has_transparent_hugepage();
1163 }
1164 #define has_transparent_hugepage has_transparent_hugepage
1165 
1166 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1167 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1168 		    unsigned long clr, unsigned long set)
1169 {
1170 	if (radix_enabled())
1171 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1172 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1173 }
1174 
1175 /*
1176  * returns true for pmd migration entries, THP, devmap, hugetlb
1177  * But compile time dependent on THP config
1178  */
pmd_large(pmd_t pmd)1179 static inline int pmd_large(pmd_t pmd)
1180 {
1181 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1182 }
1183 
1184 /*
1185  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1186  * the below will work for radix too
1187  */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1188 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1189 					      unsigned long addr, pmd_t *pmdp)
1190 {
1191 	unsigned long old;
1192 
1193 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1194 		return 0;
1195 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1196 	return ((old & _PAGE_ACCESSED) != 0);
1197 }
1198 
1199 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1200 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1201 				      pmd_t *pmdp)
1202 {
1203 	if (__pmd_write((*pmdp)))
1204 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1205 	else if (unlikely(pmd_savedwrite(*pmdp)))
1206 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1207 }
1208 
1209 /*
1210  * Only returns true for a THP. False for pmd migration entry.
1211  * We also need to return true when we come across a pte that
1212  * in between a thp split. While splitting THP, we mark the pmd
1213  * invalid (pmdp_invalidate()) before we set it with pte page
1214  * address. A pmd_trans_huge() check against a pmd entry during that time
1215  * should return true.
1216  * We should not call this on a hugetlb entry. We should check for HugeTLB
1217  * entry using vma->vm_flags
1218  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1219  */
pmd_trans_huge(pmd_t pmd)1220 static inline int pmd_trans_huge(pmd_t pmd)
1221 {
1222 	if (!pmd_present(pmd))
1223 		return false;
1224 
1225 	if (radix_enabled())
1226 		return radix__pmd_trans_huge(pmd);
1227 	return hash__pmd_trans_huge(pmd);
1228 }
1229 
1230 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1231 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1232 {
1233 	if (radix_enabled())
1234 		return radix__pmd_same(pmd_a, pmd_b);
1235 	return hash__pmd_same(pmd_a, pmd_b);
1236 }
1237 
pmd_mkhuge(pmd_t pmd)1238 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1239 {
1240 	if (radix_enabled())
1241 		return radix__pmd_mkhuge(pmd);
1242 	return hash__pmd_mkhuge(pmd);
1243 }
1244 
1245 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1246 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1247 				 unsigned long address, pmd_t *pmdp,
1248 				 pmd_t entry, int dirty);
1249 
1250 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1251 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1252 				     unsigned long address, pmd_t *pmdp);
1253 
1254 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1255 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1256 					    unsigned long addr, pmd_t *pmdp)
1257 {
1258 	if (radix_enabled())
1259 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1260 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1261 }
1262 
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1263 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1264 					unsigned long address, pmd_t *pmdp)
1265 {
1266 	if (radix_enabled())
1267 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1268 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1269 }
1270 #define pmdp_collapse_flush pmdp_collapse_flush
1271 
1272 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1273 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1274 				   unsigned long addr,
1275 				   pmd_t *pmdp, int full);
1276 
1277 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1278 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1279 					      pmd_t *pmdp, pgtable_t pgtable)
1280 {
1281 	if (radix_enabled())
1282 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1283 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1284 }
1285 
1286 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1287 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1288 						    pmd_t *pmdp)
1289 {
1290 	if (radix_enabled())
1291 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1292 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1293 }
1294 
1295 #define __HAVE_ARCH_PMDP_INVALIDATE
1296 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1297 			     pmd_t *pmdp);
1298 
1299 #define pmd_move_must_withdraw pmd_move_must_withdraw
1300 struct spinlock;
1301 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1302 				  struct spinlock *old_pmd_ptl,
1303 				  struct vm_area_struct *vma);
1304 /*
1305  * Hash translation mode use the deposited table to store hash pte
1306  * slot information.
1307  */
1308 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1309 static inline bool arch_needs_pgtable_deposit(void)
1310 {
1311 	if (radix_enabled())
1312 		return false;
1313 	return true;
1314 }
1315 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1316 
1317 
pmd_mkdevmap(pmd_t pmd)1318 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1319 {
1320 	if (radix_enabled())
1321 		return radix__pmd_mkdevmap(pmd);
1322 	return hash__pmd_mkdevmap(pmd);
1323 }
1324 
pmd_devmap(pmd_t pmd)1325 static inline int pmd_devmap(pmd_t pmd)
1326 {
1327 	return pte_devmap(pmd_pte(pmd));
1328 }
1329 
pud_devmap(pud_t pud)1330 static inline int pud_devmap(pud_t pud)
1331 {
1332 	return 0;
1333 }
1334 
pgd_devmap(pgd_t pgd)1335 static inline int pgd_devmap(pgd_t pgd)
1336 {
1337 	return 0;
1338 }
1339 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1340 
pud_pfn(pud_t pud)1341 static inline int pud_pfn(pud_t pud)
1342 {
1343 	/*
1344 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1345 	 * check so this should never be used. If it grows another user we
1346 	 * want to know about it.
1347 	 */
1348 	BUILD_BUG();
1349 	return 0;
1350 }
1351 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1352 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1353 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1354 			     pte_t *, pte_t, pte_t);
1355 
1356 /*
1357  * Returns true for a R -> RW upgrade of pte
1358  */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1359 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1360 {
1361 	if (!(old_val & _PAGE_READ))
1362 		return false;
1363 
1364 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1365 		return true;
1366 
1367 	return false;
1368 }
1369 
1370 /*
1371  * Like pmd_huge() and pmd_large(), but works regardless of config options
1372  */
1373 #define pmd_is_leaf pmd_is_leaf
1374 #define pmd_leaf pmd_is_leaf
pmd_is_leaf(pmd_t pmd)1375 static inline bool pmd_is_leaf(pmd_t pmd)
1376 {
1377 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1378 }
1379 
1380 #define pud_is_leaf pud_is_leaf
1381 #define pud_leaf pud_is_leaf
pud_is_leaf(pud_t pud)1382 static inline bool pud_is_leaf(pud_t pud)
1383 {
1384 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1385 }
1386 
1387 #define p4d_is_leaf p4d_is_leaf
1388 #define p4d_leaf p4d_is_leaf
p4d_is_leaf(p4d_t p4d)1389 static inline bool p4d_is_leaf(p4d_t p4d)
1390 {
1391 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1392 }
1393 
1394 #endif /* __ASSEMBLY__ */
1395 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1396