1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * This file contains common routines for dealing with free of page tables
4 * Along with common page table handling code
5 *
6 * Derived from arch/powerpc/mm/tlb_64.c:
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 * Copyright (C) 1996 Paul Mackerras
12 *
13 * Derived from "arch/i386/mm/init.c"
14 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 *
16 * Dave Engebretsen <engebret@us.ibm.com>
17 * Rework for PPC64 port.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/percpu.h>
24 #include <linux/hardirq.h>
25 #include <linux/hugetlb.h>
26 #include <asm/tlbflush.h>
27 #include <asm/tlb.h>
28 #include <asm/hugetlb.h>
29
is_exec_fault(void)30 static inline int is_exec_fault(void)
31 {
32 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
33 }
34
35 /* We only try to do i/d cache coherency on stuff that looks like
36 * reasonably "normal" PTEs. We currently require a PTE to be present
37 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
38 * on userspace PTEs
39 */
pte_looks_normal(pte_t pte)40 static inline int pte_looks_normal(pte_t pte)
41 {
42
43 if (pte_present(pte) && !pte_special(pte)) {
44 if (pte_ci(pte))
45 return 0;
46 if (pte_user(pte))
47 return 1;
48 }
49 return 0;
50 }
51
maybe_pte_to_page(pte_t pte)52 static struct page *maybe_pte_to_page(pte_t pte)
53 {
54 unsigned long pfn = pte_pfn(pte);
55 struct page *page;
56
57 if (unlikely(!pfn_valid(pfn)))
58 return NULL;
59 page = pfn_to_page(pfn);
60 if (PageReserved(page))
61 return NULL;
62 return page;
63 }
64
65 #ifdef CONFIG_PPC_BOOK3S
66
67 /* Server-style MMU handles coherency when hashing if HW exec permission
68 * is supposed per page (currently 64-bit only). If not, then, we always
69 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
70 * support falls into the same category.
71 */
72
set_pte_filter_hash(pte_t pte)73 static pte_t set_pte_filter_hash(pte_t pte)
74 {
75 if (radix_enabled())
76 return pte;
77
78 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
79 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
80 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
81 struct page *pg = maybe_pte_to_page(pte);
82 if (!pg)
83 return pte;
84 if (!test_bit(PG_arch_1, &pg->flags)) {
85 flush_dcache_icache_page(pg);
86 set_bit(PG_arch_1, &pg->flags);
87 }
88 }
89 return pte;
90 }
91
92 #else /* CONFIG_PPC_BOOK3S */
93
set_pte_filter_hash(pte_t pte)94 static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
95
96 #endif /* CONFIG_PPC_BOOK3S */
97
98 /* Embedded type MMU with HW exec support. This is a bit more complicated
99 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
100 * instead we "filter out" the exec permission for non clean pages.
101 */
set_pte_filter(pte_t pte)102 static inline pte_t set_pte_filter(pte_t pte)
103 {
104 struct page *pg;
105
106 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
107 return set_pte_filter_hash(pte);
108
109 /* No exec permission in the first place, move on */
110 if (!pte_exec(pte) || !pte_looks_normal(pte))
111 return pte;
112
113 /* If you set _PAGE_EXEC on weird pages you're on your own */
114 pg = maybe_pte_to_page(pte);
115 if (unlikely(!pg))
116 return pte;
117
118 /* If the page clean, we move on */
119 if (test_bit(PG_arch_1, &pg->flags))
120 return pte;
121
122 /* If it's an exec fault, we flush the cache and make it clean */
123 if (is_exec_fault()) {
124 flush_dcache_icache_page(pg);
125 set_bit(PG_arch_1, &pg->flags);
126 return pte;
127 }
128
129 /* Else, we filter out _PAGE_EXEC */
130 return pte_exprotect(pte);
131 }
132
set_access_flags_filter(pte_t pte,struct vm_area_struct * vma,int dirty)133 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
134 int dirty)
135 {
136 struct page *pg;
137
138 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
139 return pte;
140
141 /* So here, we only care about exec faults, as we use them
142 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
143 * if necessary. Also if _PAGE_EXEC is already set, same deal,
144 * we just bail out
145 */
146 if (dirty || pte_exec(pte) || !is_exec_fault())
147 return pte;
148
149 #ifdef CONFIG_DEBUG_VM
150 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
151 * an error we would have bailed out earlier in do_page_fault()
152 * but let's make sure of it
153 */
154 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
155 return pte;
156 #endif /* CONFIG_DEBUG_VM */
157
158 /* If you set _PAGE_EXEC on weird pages you're on your own */
159 pg = maybe_pte_to_page(pte);
160 if (unlikely(!pg))
161 goto bail;
162
163 /* If the page is already clean, we move on */
164 if (test_bit(PG_arch_1, &pg->flags))
165 goto bail;
166
167 /* Clean the page and set PG_arch_1 */
168 flush_dcache_icache_page(pg);
169 set_bit(PG_arch_1, &pg->flags);
170
171 bail:
172 return pte_mkexec(pte);
173 }
174
175 /*
176 * set_pte stores a linux PTE into the linux page table.
177 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)178 void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
179 pte_t pte)
180 {
181 /*
182 * Make sure hardware valid bit is not set. We don't do
183 * tlb flush for this update.
184 */
185 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
186
187 /* Note: mm->context.id might not yet have been assigned as
188 * this context might not have been activated yet when this
189 * is called.
190 */
191 pte = set_pte_filter(pte);
192
193 /* Perform the setting of the PTE */
194 __set_pte_at(mm, addr, ptep, pte, 0);
195 }
196
unmap_kernel_page(unsigned long va)197 void unmap_kernel_page(unsigned long va)
198 {
199 pmd_t *pmdp = pmd_off_k(va);
200 pte_t *ptep = pte_offset_kernel(pmdp, va);
201
202 pte_clear(&init_mm, va, ptep);
203 flush_tlb_kernel_range(va, va + PAGE_SIZE);
204 }
205
206 /*
207 * This is called when relaxing access to a PTE. It's also called in the page
208 * fault path when we don't hit any of the major fault cases, ie, a minor
209 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
210 * handled those two for us, we additionally deal with missing execute
211 * permission here on some processors
212 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)213 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
214 pte_t *ptep, pte_t entry, int dirty)
215 {
216 int changed;
217 entry = set_access_flags_filter(entry, vma, dirty);
218 changed = !pte_same(*(ptep), entry);
219 if (changed) {
220 assert_pte_locked(vma->vm_mm, address);
221 __ptep_set_access_flags(vma, ptep, entry,
222 address, mmu_virtual_psize);
223 }
224 return changed;
225 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
huge_ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,int dirty)228 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
229 unsigned long addr, pte_t *ptep,
230 pte_t pte, int dirty)
231 {
232 #ifdef HUGETLB_NEED_PRELOAD
233 /*
234 * The "return 1" forces a call of update_mmu_cache, which will write a
235 * TLB entry. Without this, platforms that don't do a write of the TLB
236 * entry in the TLB miss handler asm will fault ad infinitum.
237 */
238 ptep_set_access_flags(vma, addr, ptep, pte, dirty);
239 return 1;
240 #else
241 int changed, psize;
242
243 pte = set_access_flags_filter(pte, vma, dirty);
244 changed = !pte_same(*(ptep), pte);
245 if (changed) {
246
247 #ifdef CONFIG_PPC_BOOK3S_64
248 struct hstate *h = hstate_vma(vma);
249
250 psize = hstate_get_psize(h);
251 #ifdef CONFIG_DEBUG_VM
252 assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
253 #endif
254
255 #else
256 /*
257 * Not used on non book3s64 platforms.
258 * 8xx compares it with mmu_virtual_psize to
259 * know if it is a huge page or not.
260 */
261 psize = MMU_PAGE_COUNT;
262 #endif
263 __ptep_set_access_flags(vma, ptep, pte, addr, psize);
264 }
265 return changed;
266 #endif
267 }
268
269 #if defined(CONFIG_PPC_8xx)
set_huge_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)270 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
271 {
272 pmd_t *pmd = pmd_off(mm, addr);
273 pte_basic_t val;
274 pte_basic_t *entry = &ptep->pte;
275 int num, i;
276
277 /*
278 * Make sure hardware valid bit is not set. We don't do
279 * tlb flush for this update.
280 */
281 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
282
283 pte = set_pte_filter(pte);
284
285 val = pte_val(pte);
286
287 num = number_of_cells_per_pte(pmd, val, 1);
288
289 for (i = 0; i < num; i++, entry++, val += SZ_4K)
290 *entry = val;
291 }
292 #endif
293 #endif /* CONFIG_HUGETLB_PAGE */
294
295 #ifdef CONFIG_DEBUG_VM
assert_pte_locked(struct mm_struct * mm,unsigned long addr)296 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
297 {
298 pgd_t *pgd;
299 p4d_t *p4d;
300 pud_t *pud;
301 pmd_t *pmd;
302
303 if (mm == &init_mm)
304 return;
305 pgd = mm->pgd + pgd_index(addr);
306 BUG_ON(pgd_none(*pgd));
307 p4d = p4d_offset(pgd, addr);
308 BUG_ON(p4d_none(*p4d));
309 pud = pud_offset(p4d, addr);
310 BUG_ON(pud_none(*pud));
311 pmd = pmd_offset(pud, addr);
312 /*
313 * khugepaged to collapse normal pages to hugepage, first set
314 * pmd to none to force page fault/gup to take mmap_lock. After
315 * pmd is set to none, we do a pte_clear which does this assertion
316 * so if we find pmd none, return.
317 */
318 if (pmd_none(*pmd))
319 return;
320 BUG_ON(!pmd_present(*pmd));
321 assert_spin_locked(pte_lockptr(mm, pmd));
322 }
323 #endif /* CONFIG_DEBUG_VM */
324
vmalloc_to_phys(void * va)325 unsigned long vmalloc_to_phys(void *va)
326 {
327 unsigned long pfn = vmalloc_to_pfn(va);
328
329 BUG_ON(!pfn);
330 return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
331 }
332 EXPORT_SYMBOL_GPL(vmalloc_to_phys);
333
334 /*
335 * We have 4 cases for pgds and pmds:
336 * (1) invalid (all zeroes)
337 * (2) pointer to next table, as normal; bottom 6 bits == 0
338 * (3) leaf pte for huge page _PAGE_PTE set
339 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
340 *
341 * So long as we atomically load page table pointers we are safe against teardown,
342 * we can follow the address down to the the page and take a ref on it.
343 * This function need to be called with interrupts disabled. We use this variant
344 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
345 */
__find_linux_pte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * hpage_shift)346 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
347 bool *is_thp, unsigned *hpage_shift)
348 {
349 pgd_t *pgdp;
350 p4d_t p4d, *p4dp;
351 pud_t pud, *pudp;
352 pmd_t pmd, *pmdp;
353 pte_t *ret_pte;
354 hugepd_t *hpdp = NULL;
355 unsigned pdshift;
356
357 if (hpage_shift)
358 *hpage_shift = 0;
359
360 if (is_thp)
361 *is_thp = false;
362
363 /*
364 * Always operate on the local stack value. This make sure the
365 * value don't get updated by a parallel THP split/collapse,
366 * page fault or a page unmap. The return pte_t * is still not
367 * stable. So should be checked there for above conditions.
368 * Top level is an exception because it is folded into p4d.
369 */
370 pgdp = pgdir + pgd_index(ea);
371 p4dp = p4d_offset(pgdp, ea);
372 p4d = READ_ONCE(*p4dp);
373 pdshift = P4D_SHIFT;
374
375 if (p4d_none(p4d))
376 return NULL;
377
378 if (p4d_is_leaf(p4d)) {
379 ret_pte = (pte_t *)p4dp;
380 goto out;
381 }
382
383 if (is_hugepd(__hugepd(p4d_val(p4d)))) {
384 hpdp = (hugepd_t *)&p4d;
385 goto out_huge;
386 }
387
388 /*
389 * Even if we end up with an unmap, the pgtable will not
390 * be freed, because we do an rcu free and here we are
391 * irq disabled
392 */
393 pdshift = PUD_SHIFT;
394 pudp = pud_offset(&p4d, ea);
395 pud = READ_ONCE(*pudp);
396
397 if (pud_none(pud))
398 return NULL;
399
400 if (pud_is_leaf(pud)) {
401 ret_pte = (pte_t *)pudp;
402 goto out;
403 }
404
405 if (is_hugepd(__hugepd(pud_val(pud)))) {
406 hpdp = (hugepd_t *)&pud;
407 goto out_huge;
408 }
409
410 pdshift = PMD_SHIFT;
411 pmdp = pmd_offset(&pud, ea);
412 pmd = READ_ONCE(*pmdp);
413
414 /*
415 * A hugepage collapse is captured by this condition, see
416 * pmdp_collapse_flush.
417 */
418 if (pmd_none(pmd))
419 return NULL;
420
421 #ifdef CONFIG_PPC_BOOK3S_64
422 /*
423 * A hugepage split is captured by this condition, see
424 * pmdp_invalidate.
425 *
426 * Huge page modification can be caught here too.
427 */
428 if (pmd_is_serializing(pmd))
429 return NULL;
430 #endif
431
432 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
433 if (is_thp)
434 *is_thp = true;
435 ret_pte = (pte_t *)pmdp;
436 goto out;
437 }
438
439 if (pmd_is_leaf(pmd)) {
440 ret_pte = (pte_t *)pmdp;
441 goto out;
442 }
443
444 if (is_hugepd(__hugepd(pmd_val(pmd)))) {
445 hpdp = (hugepd_t *)&pmd;
446 goto out_huge;
447 }
448
449 return pte_offset_kernel(&pmd, ea);
450
451 out_huge:
452 if (!hpdp)
453 return NULL;
454
455 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
456 pdshift = hugepd_shift(*hpdp);
457 out:
458 if (hpage_shift)
459 *hpage_shift = pdshift;
460 return ret_pte;
461 }
462 EXPORT_SYMBOL_GPL(__find_linux_pte);
463