1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
pit_set_gate(struct kvm_pit * pit,int channel,u32 val)54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57
58 switch (c->mode) {
59 default:
60 case 0:
61 case 4:
62 /* XXX: just disable/enable counting */
63 break;
64 case 1:
65 case 2:
66 case 3:
67 case 5:
68 /* Restart counting on rising edge. */
69 if (c->gate < val)
70 c->count_load_time = ktime_get();
71 break;
72 }
73
74 c->gate = val;
75 }
76
pit_get_gate(struct kvm_pit * pit,int channel)77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79 return pit->pit_state.channels[channel].gate;
80 }
81
__kpit_elapsed(struct kvm_pit * pit)82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84 s64 elapsed;
85 ktime_t remaining;
86 struct kvm_kpit_state *ps = &pit->pit_state;
87
88 if (!ps->period)
89 return 0;
90
91 /*
92 * The Counter does not stop when it reaches zero. In
93 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94 * the highest count, either FFFF hex for binary counting
95 * or 9999 for BCD counting, and continues counting.
96 * Modes 2 and 3 are periodic; the Counter reloads
97 * itself with the initial count and continues counting
98 * from there.
99 */
100 remaining = hrtimer_get_remaining(&ps->timer);
101 elapsed = ps->period - ktime_to_ns(remaining);
102
103 return elapsed;
104 }
105
kpit_elapsed(struct kvm_pit * pit,struct kvm_kpit_channel_state * c,int channel)106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107 int channel)
108 {
109 if (channel == 0)
110 return __kpit_elapsed(pit);
111
112 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114
pit_get_count(struct kvm_pit * pit,int channel)115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118 s64 d, t;
119 int counter;
120
121 t = kpit_elapsed(pit, c, channel);
122 d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123
124 switch (c->mode) {
125 case 0:
126 case 1:
127 case 4:
128 case 5:
129 counter = (c->count - d) & 0xffff;
130 break;
131 case 3:
132 /* XXX: may be incorrect for odd counts */
133 counter = c->count - (mod_64((2 * d), c->count));
134 break;
135 default:
136 counter = c->count - mod_64(d, c->count);
137 break;
138 }
139 return counter;
140 }
141
pit_get_out(struct kvm_pit * pit,int channel)142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145 s64 d, t;
146 int out;
147
148 t = kpit_elapsed(pit, c, channel);
149 d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151 switch (c->mode) {
152 default:
153 case 0:
154 out = (d >= c->count);
155 break;
156 case 1:
157 out = (d < c->count);
158 break;
159 case 2:
160 out = ((mod_64(d, c->count) == 0) && (d != 0));
161 break;
162 case 3:
163 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164 break;
165 case 4:
166 case 5:
167 out = (d == c->count);
168 break;
169 }
170
171 return out;
172 }
173
pit_latch_count(struct kvm_pit * pit,int channel)174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177
178 if (!c->count_latched) {
179 c->latched_count = pit_get_count(pit, channel);
180 c->count_latched = c->rw_mode;
181 }
182 }
183
pit_latch_status(struct kvm_pit * pit,int channel)184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187
188 if (!c->status_latched) {
189 /* TODO: Return NULL COUNT (bit 6). */
190 c->status = ((pit_get_out(pit, channel) << 7) |
191 (c->rw_mode << 4) |
192 (c->mode << 1) |
193 c->bcd);
194 c->status_latched = 1;
195 }
196 }
197
pit_state_to_pit(struct kvm_kpit_state * ps)198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200 return container_of(ps, struct kvm_pit, pit_state);
201 }
202
kvm_pit_ack_irq(struct kvm_irq_ack_notifier * kian)203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206 irq_ack_notifier);
207 struct kvm_pit *pit = pit_state_to_pit(ps);
208
209 atomic_set(&ps->irq_ack, 1);
210 /* irq_ack should be set before pending is read. Order accesses with
211 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212 */
213 smp_mb();
214 if (atomic_dec_if_positive(&ps->pending) > 0)
215 kthread_queue_work(pit->worker, &pit->expired);
216 }
217
__kvm_migrate_pit_timer(struct kvm_vcpu * vcpu)218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221 struct hrtimer *timer;
222
223 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
224 return;
225
226 timer = &pit->pit_state.timer;
227 mutex_lock(&pit->pit_state.lock);
228 if (hrtimer_cancel(timer))
229 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
230 mutex_unlock(&pit->pit_state.lock);
231 }
232
destroy_pit_timer(struct kvm_pit * pit)233 static void destroy_pit_timer(struct kvm_pit *pit)
234 {
235 hrtimer_cancel(&pit->pit_state.timer);
236 kthread_flush_work(&pit->expired);
237 }
238
pit_do_work(struct kthread_work * work)239 static void pit_do_work(struct kthread_work *work)
240 {
241 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
242 struct kvm *kvm = pit->kvm;
243 struct kvm_vcpu *vcpu;
244 int i;
245 struct kvm_kpit_state *ps = &pit->pit_state;
246
247 if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
248 return;
249
250 kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
251 kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
252
253 /*
254 * Provides NMI watchdog support via Virtual Wire mode.
255 * The route is: PIT -> LVT0 in NMI mode.
256 *
257 * Note: Our Virtual Wire implementation does not follow
258 * the MP specification. We propagate a PIT interrupt to all
259 * VCPUs and only when LVT0 is in NMI mode. The interrupt can
260 * also be simultaneously delivered through PIC and IOAPIC.
261 */
262 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
263 kvm_for_each_vcpu(i, vcpu, kvm)
264 kvm_apic_nmi_wd_deliver(vcpu);
265 }
266
pit_timer_fn(struct hrtimer * data)267 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
268 {
269 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
270 struct kvm_pit *pt = pit_state_to_pit(ps);
271
272 if (atomic_read(&ps->reinject))
273 atomic_inc(&ps->pending);
274
275 kthread_queue_work(pt->worker, &pt->expired);
276
277 if (ps->is_periodic) {
278 hrtimer_add_expires_ns(&ps->timer, ps->period);
279 return HRTIMER_RESTART;
280 } else
281 return HRTIMER_NORESTART;
282 }
283
kvm_pit_reset_reinject(struct kvm_pit * pit)284 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
285 {
286 atomic_set(&pit->pit_state.pending, 0);
287 atomic_set(&pit->pit_state.irq_ack, 1);
288 }
289
kvm_pit_set_reinject(struct kvm_pit * pit,bool reinject)290 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
291 {
292 struct kvm_kpit_state *ps = &pit->pit_state;
293 struct kvm *kvm = pit->kvm;
294
295 if (atomic_read(&ps->reinject) == reinject)
296 return;
297
298 /*
299 * AMD SVM AVIC accelerates EOI write and does not trap.
300 * This cause in-kernel PIT re-inject mode to fail
301 * since it checks ps->irq_ack before kvm_set_irq()
302 * and relies on the ack notifier to timely queue
303 * the pt->worker work iterm and reinject the missed tick.
304 * So, deactivate APICv when PIT is in reinject mode.
305 */
306 if (reinject) {
307 kvm_request_apicv_update(kvm, false,
308 APICV_INHIBIT_REASON_PIT_REINJ);
309 /* The initial state is preserved while ps->reinject == 0. */
310 kvm_pit_reset_reinject(pit);
311 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
312 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
313 } else {
314 kvm_request_apicv_update(kvm, true,
315 APICV_INHIBIT_REASON_PIT_REINJ);
316 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
317 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
318 }
319
320 atomic_set(&ps->reinject, reinject);
321 }
322
create_pit_timer(struct kvm_pit * pit,u32 val,int is_period)323 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
324 {
325 struct kvm_kpit_state *ps = &pit->pit_state;
326 struct kvm *kvm = pit->kvm;
327 s64 interval;
328
329 if (!ioapic_in_kernel(kvm) ||
330 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
331 return;
332
333 interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
334
335 pr_debug("create pit timer, interval is %llu nsec\n", interval);
336
337 /* TODO The new value only affected after the retriggered */
338 hrtimer_cancel(&ps->timer);
339 kthread_flush_work(&pit->expired);
340 ps->period = interval;
341 ps->is_periodic = is_period;
342
343 kvm_pit_reset_reinject(pit);
344
345 /*
346 * Do not allow the guest to program periodic timers with small
347 * interval, since the hrtimers are not throttled by the host
348 * scheduler.
349 */
350 if (ps->is_periodic) {
351 s64 min_period = min_timer_period_us * 1000LL;
352
353 if (ps->period < min_period) {
354 pr_info_ratelimited(
355 "kvm: requested %lld ns "
356 "i8254 timer period limited to %lld ns\n",
357 ps->period, min_period);
358 ps->period = min_period;
359 }
360 }
361
362 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
363 HRTIMER_MODE_ABS);
364 }
365
pit_load_count(struct kvm_pit * pit,int channel,u32 val)366 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
367 {
368 struct kvm_kpit_state *ps = &pit->pit_state;
369
370 pr_debug("load_count val is %u, channel is %d\n", val, channel);
371
372 /*
373 * The largest possible initial count is 0; this is equivalent
374 * to 216 for binary counting and 104 for BCD counting.
375 */
376 if (val == 0)
377 val = 0x10000;
378
379 ps->channels[channel].count = val;
380
381 if (channel != 0) {
382 ps->channels[channel].count_load_time = ktime_get();
383 return;
384 }
385
386 /* Two types of timer
387 * mode 1 is one shot, mode 2 is period, otherwise del timer */
388 switch (ps->channels[0].mode) {
389 case 0:
390 case 1:
391 /* FIXME: enhance mode 4 precision */
392 case 4:
393 create_pit_timer(pit, val, 0);
394 break;
395 case 2:
396 case 3:
397 create_pit_timer(pit, val, 1);
398 break;
399 default:
400 destroy_pit_timer(pit);
401 }
402 }
403
kvm_pit_load_count(struct kvm_pit * pit,int channel,u32 val,int hpet_legacy_start)404 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
405 int hpet_legacy_start)
406 {
407 u8 saved_mode;
408
409 WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
410
411 if (hpet_legacy_start) {
412 /* save existing mode for later reenablement */
413 WARN_ON(channel != 0);
414 saved_mode = pit->pit_state.channels[0].mode;
415 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
416 pit_load_count(pit, channel, val);
417 pit->pit_state.channels[0].mode = saved_mode;
418 } else {
419 pit_load_count(pit, channel, val);
420 }
421 }
422
dev_to_pit(struct kvm_io_device * dev)423 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
424 {
425 return container_of(dev, struct kvm_pit, dev);
426 }
427
speaker_to_pit(struct kvm_io_device * dev)428 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
429 {
430 return container_of(dev, struct kvm_pit, speaker_dev);
431 }
432
pit_in_range(gpa_t addr)433 static inline int pit_in_range(gpa_t addr)
434 {
435 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
436 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
437 }
438
pit_ioport_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,const void * data)439 static int pit_ioport_write(struct kvm_vcpu *vcpu,
440 struct kvm_io_device *this,
441 gpa_t addr, int len, const void *data)
442 {
443 struct kvm_pit *pit = dev_to_pit(this);
444 struct kvm_kpit_state *pit_state = &pit->pit_state;
445 int channel, access;
446 struct kvm_kpit_channel_state *s;
447 u32 val = *(u32 *) data;
448 if (!pit_in_range(addr))
449 return -EOPNOTSUPP;
450
451 val &= 0xff;
452 addr &= KVM_PIT_CHANNEL_MASK;
453
454 mutex_lock(&pit_state->lock);
455
456 if (val != 0)
457 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
458 (unsigned int)addr, len, val);
459
460 if (addr == 3) {
461 channel = val >> 6;
462 if (channel == 3) {
463 /* Read-Back Command. */
464 for (channel = 0; channel < 3; channel++) {
465 if (val & (2 << channel)) {
466 if (!(val & 0x20))
467 pit_latch_count(pit, channel);
468 if (!(val & 0x10))
469 pit_latch_status(pit, channel);
470 }
471 }
472 } else {
473 /* Select Counter <channel>. */
474 s = &pit_state->channels[channel];
475 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
476 if (access == 0) {
477 pit_latch_count(pit, channel);
478 } else {
479 s->rw_mode = access;
480 s->read_state = access;
481 s->write_state = access;
482 s->mode = (val >> 1) & 7;
483 if (s->mode > 5)
484 s->mode -= 4;
485 s->bcd = val & 1;
486 }
487 }
488 } else {
489 /* Write Count. */
490 s = &pit_state->channels[addr];
491 switch (s->write_state) {
492 default:
493 case RW_STATE_LSB:
494 pit_load_count(pit, addr, val);
495 break;
496 case RW_STATE_MSB:
497 pit_load_count(pit, addr, val << 8);
498 break;
499 case RW_STATE_WORD0:
500 s->write_latch = val;
501 s->write_state = RW_STATE_WORD1;
502 break;
503 case RW_STATE_WORD1:
504 pit_load_count(pit, addr, s->write_latch | (val << 8));
505 s->write_state = RW_STATE_WORD0;
506 break;
507 }
508 }
509
510 mutex_unlock(&pit_state->lock);
511 return 0;
512 }
513
pit_ioport_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,void * data)514 static int pit_ioport_read(struct kvm_vcpu *vcpu,
515 struct kvm_io_device *this,
516 gpa_t addr, int len, void *data)
517 {
518 struct kvm_pit *pit = dev_to_pit(this);
519 struct kvm_kpit_state *pit_state = &pit->pit_state;
520 int ret, count;
521 struct kvm_kpit_channel_state *s;
522 if (!pit_in_range(addr))
523 return -EOPNOTSUPP;
524
525 addr &= KVM_PIT_CHANNEL_MASK;
526 if (addr == 3)
527 return 0;
528
529 s = &pit_state->channels[addr];
530
531 mutex_lock(&pit_state->lock);
532
533 if (s->status_latched) {
534 s->status_latched = 0;
535 ret = s->status;
536 } else if (s->count_latched) {
537 switch (s->count_latched) {
538 default:
539 case RW_STATE_LSB:
540 ret = s->latched_count & 0xff;
541 s->count_latched = 0;
542 break;
543 case RW_STATE_MSB:
544 ret = s->latched_count >> 8;
545 s->count_latched = 0;
546 break;
547 case RW_STATE_WORD0:
548 ret = s->latched_count & 0xff;
549 s->count_latched = RW_STATE_MSB;
550 break;
551 }
552 } else {
553 switch (s->read_state) {
554 default:
555 case RW_STATE_LSB:
556 count = pit_get_count(pit, addr);
557 ret = count & 0xff;
558 break;
559 case RW_STATE_MSB:
560 count = pit_get_count(pit, addr);
561 ret = (count >> 8) & 0xff;
562 break;
563 case RW_STATE_WORD0:
564 count = pit_get_count(pit, addr);
565 ret = count & 0xff;
566 s->read_state = RW_STATE_WORD1;
567 break;
568 case RW_STATE_WORD1:
569 count = pit_get_count(pit, addr);
570 ret = (count >> 8) & 0xff;
571 s->read_state = RW_STATE_WORD0;
572 break;
573 }
574 }
575
576 if (len > sizeof(ret))
577 len = sizeof(ret);
578 memcpy(data, (char *)&ret, len);
579
580 mutex_unlock(&pit_state->lock);
581 return 0;
582 }
583
speaker_ioport_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,const void * data)584 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
585 struct kvm_io_device *this,
586 gpa_t addr, int len, const void *data)
587 {
588 struct kvm_pit *pit = speaker_to_pit(this);
589 struct kvm_kpit_state *pit_state = &pit->pit_state;
590 u32 val = *(u32 *) data;
591 if (addr != KVM_SPEAKER_BASE_ADDRESS)
592 return -EOPNOTSUPP;
593
594 mutex_lock(&pit_state->lock);
595 pit_state->speaker_data_on = (val >> 1) & 1;
596 pit_set_gate(pit, 2, val & 1);
597 mutex_unlock(&pit_state->lock);
598 return 0;
599 }
600
speaker_ioport_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,void * data)601 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
602 struct kvm_io_device *this,
603 gpa_t addr, int len, void *data)
604 {
605 struct kvm_pit *pit = speaker_to_pit(this);
606 struct kvm_kpit_state *pit_state = &pit->pit_state;
607 unsigned int refresh_clock;
608 int ret;
609 if (addr != KVM_SPEAKER_BASE_ADDRESS)
610 return -EOPNOTSUPP;
611
612 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
613 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
614
615 mutex_lock(&pit_state->lock);
616 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
617 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
618 if (len > sizeof(ret))
619 len = sizeof(ret);
620 memcpy(data, (char *)&ret, len);
621 mutex_unlock(&pit_state->lock);
622 return 0;
623 }
624
kvm_pit_reset(struct kvm_pit * pit)625 static void kvm_pit_reset(struct kvm_pit *pit)
626 {
627 int i;
628 struct kvm_kpit_channel_state *c;
629
630 pit->pit_state.flags = 0;
631 for (i = 0; i < 3; i++) {
632 c = &pit->pit_state.channels[i];
633 c->mode = 0xff;
634 c->gate = (i != 2);
635 pit_load_count(pit, i, 0);
636 }
637
638 kvm_pit_reset_reinject(pit);
639 }
640
pit_mask_notifer(struct kvm_irq_mask_notifier * kimn,bool mask)641 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
642 {
643 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
644
645 if (!mask)
646 kvm_pit_reset_reinject(pit);
647 }
648
649 static const struct kvm_io_device_ops pit_dev_ops = {
650 .read = pit_ioport_read,
651 .write = pit_ioport_write,
652 };
653
654 static const struct kvm_io_device_ops speaker_dev_ops = {
655 .read = speaker_ioport_read,
656 .write = speaker_ioport_write,
657 };
658
kvm_create_pit(struct kvm * kvm,u32 flags)659 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
660 {
661 struct kvm_pit *pit;
662 struct kvm_kpit_state *pit_state;
663 struct pid *pid;
664 pid_t pid_nr;
665 int ret;
666
667 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
668 if (!pit)
669 return NULL;
670
671 pit->irq_source_id = kvm_request_irq_source_id(kvm);
672 if (pit->irq_source_id < 0)
673 goto fail_request;
674
675 mutex_init(&pit->pit_state.lock);
676
677 pid = get_pid(task_tgid(current));
678 pid_nr = pid_vnr(pid);
679 put_pid(pid);
680
681 pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
682 if (IS_ERR(pit->worker))
683 goto fail_kthread;
684
685 kthread_init_work(&pit->expired, pit_do_work);
686
687 pit->kvm = kvm;
688
689 pit_state = &pit->pit_state;
690 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
691 pit_state->timer.function = pit_timer_fn;
692
693 pit_state->irq_ack_notifier.gsi = 0;
694 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
695 pit->mask_notifier.func = pit_mask_notifer;
696
697 kvm_pit_reset(pit);
698
699 kvm_pit_set_reinject(pit, true);
700
701 mutex_lock(&kvm->slots_lock);
702 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
703 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
704 KVM_PIT_MEM_LENGTH, &pit->dev);
705 if (ret < 0)
706 goto fail_register_pit;
707
708 if (flags & KVM_PIT_SPEAKER_DUMMY) {
709 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
710 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
711 KVM_SPEAKER_BASE_ADDRESS, 4,
712 &pit->speaker_dev);
713 if (ret < 0)
714 goto fail_register_speaker;
715 }
716 mutex_unlock(&kvm->slots_lock);
717
718 return pit;
719
720 fail_register_speaker:
721 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
722 fail_register_pit:
723 mutex_unlock(&kvm->slots_lock);
724 kvm_pit_set_reinject(pit, false);
725 kthread_destroy_worker(pit->worker);
726 fail_kthread:
727 kvm_free_irq_source_id(kvm, pit->irq_source_id);
728 fail_request:
729 kfree(pit);
730 return NULL;
731 }
732
kvm_free_pit(struct kvm * kvm)733 void kvm_free_pit(struct kvm *kvm)
734 {
735 struct kvm_pit *pit = kvm->arch.vpit;
736
737 if (pit) {
738 mutex_lock(&kvm->slots_lock);
739 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
740 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
741 mutex_unlock(&kvm->slots_lock);
742 kvm_pit_set_reinject(pit, false);
743 hrtimer_cancel(&pit->pit_state.timer);
744 kthread_destroy_worker(pit->worker);
745 kvm_free_irq_source_id(kvm, pit->irq_source_id);
746 kfree(pit);
747 }
748 }
749