• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/srcu.h>
8 #include <linux/lockdep.h>
9 
10 struct blk_mq_tags;
11 struct blk_flush_queue;
12 
13 /**
14  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
15  * block device
16  */
17 struct blk_mq_hw_ctx {
18 	struct {
19 		/** @lock: Protects the dispatch list. */
20 		spinlock_t		lock;
21 		/**
22 		 * @dispatch: Used for requests that are ready to be
23 		 * dispatched to the hardware but for some reason (e.g. lack of
24 		 * resources) could not be sent to the hardware. As soon as the
25 		 * driver can send new requests, requests at this list will
26 		 * be sent first for a fairer dispatch.
27 		 */
28 		struct list_head	dispatch;
29 		 /**
30 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
31 		  * queue (active, scheduled to restart, stopped).
32 		  */
33 		unsigned long		state;
34 	} ____cacheline_aligned_in_smp;
35 
36 	/**
37 	 * @run_work: Used for scheduling a hardware queue run at a later time.
38 	 */
39 	struct delayed_work	run_work;
40 	/** @cpumask: Map of available CPUs where this hctx can run. */
41 	cpumask_var_t		cpumask;
42 	/**
43 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
44 	 * selection from @cpumask.
45 	 */
46 	int			next_cpu;
47 	/**
48 	 * @next_cpu_batch: Counter of how many works left in the batch before
49 	 * changing to the next CPU.
50 	 */
51 	int			next_cpu_batch;
52 
53 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
54 	unsigned long		flags;
55 
56 	/**
57 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
58 	 * queue. It's up to the IO scheduler how to use this pointer.
59 	 */
60 	void			*sched_data;
61 	/**
62 	 * @queue: Pointer to the request queue that owns this hardware context.
63 	 */
64 	struct request_queue	*queue;
65 	/** @fq: Queue of requests that need to perform a flush operation. */
66 	struct blk_flush_queue	*fq;
67 
68 	/**
69 	 * @driver_data: Pointer to data owned by the block driver that created
70 	 * this hctx
71 	 */
72 	void			*driver_data;
73 
74 	/**
75 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
76 	 * pending request in that software queue.
77 	 */
78 	struct sbitmap		ctx_map;
79 
80 	/**
81 	 * @dispatch_from: Software queue to be used when no scheduler was
82 	 * selected.
83 	 */
84 	struct blk_mq_ctx	*dispatch_from;
85 	/**
86 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
87 	 * decide if the hw_queue is busy using Exponential Weighted Moving
88 	 * Average algorithm.
89 	 */
90 	unsigned int		dispatch_busy;
91 
92 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
93 	unsigned short		type;
94 	/** @nr_ctx: Number of software queues. */
95 	unsigned short		nr_ctx;
96 	/** @ctxs: Array of software queues. */
97 	struct blk_mq_ctx	**ctxs;
98 
99 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
100 	spinlock_t		dispatch_wait_lock;
101 	/**
102 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
103 	 * available at the moment, to wait for another try in the future.
104 	 */
105 	wait_queue_entry_t	dispatch_wait;
106 
107 	/**
108 	 * @wait_index: Index of next available dispatch_wait queue to insert
109 	 * requests.
110 	 */
111 	atomic_t		wait_index;
112 
113 	/**
114 	 * @tags: Tags owned by the block driver. A tag at this set is only
115 	 * assigned when a request is dispatched from a hardware queue.
116 	 */
117 	struct blk_mq_tags	*tags;
118 	/**
119 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
120 	 * scheduler associated with a request queue, a tag is assigned when
121 	 * that request is allocated. Else, this member is not used.
122 	 */
123 	struct blk_mq_tags	*sched_tags;
124 
125 	/** @queued: Number of queued requests. */
126 	unsigned long		queued;
127 	/** @run: Number of dispatched requests. */
128 	unsigned long		run;
129 #define BLK_MQ_MAX_DISPATCH_ORDER	7
130 	/** @dispatched: Number of dispatch requests by queue. */
131 	unsigned long		dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
132 
133 	/** @numa_node: NUMA node the storage adapter has been connected to. */
134 	unsigned int		numa_node;
135 	/** @queue_num: Index of this hardware queue. */
136 	unsigned int		queue_num;
137 
138 	/**
139 	 * @nr_active: Number of active requests. Only used when a tag set is
140 	 * shared across request queues.
141 	 */
142 	atomic_t		nr_active;
143 	/**
144 	 * @elevator_queued: Number of queued requests on hctx.
145 	 */
146 	atomic_t                elevator_queued;
147 
148 	/** @cpuhp_online: List to store request if CPU is going to die */
149 	struct hlist_node	cpuhp_online;
150 	/** @cpuhp_dead: List to store request if some CPU die. */
151 	struct hlist_node	cpuhp_dead;
152 	/** @kobj: Kernel object for sysfs. */
153 	struct kobject		kobj;
154 
155 	/** @poll_considered: Count times blk_poll() was called. */
156 	unsigned long		poll_considered;
157 	/** @poll_invoked: Count how many requests blk_poll() polled. */
158 	unsigned long		poll_invoked;
159 	/** @poll_success: Count how many polled requests were completed. */
160 	unsigned long		poll_success;
161 
162 #ifdef CONFIG_BLK_DEBUG_FS
163 	/**
164 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
165 	 * as cpu<cpu_number>.
166 	 */
167 	struct dentry		*debugfs_dir;
168 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
169 	struct dentry		*sched_debugfs_dir;
170 #endif
171 
172 	/**
173 	 * @hctx_list: if this hctx is not in use, this is an entry in
174 	 * q->unused_hctx_list.
175 	 */
176 	struct list_head	hctx_list;
177 
178 	/**
179 	 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
180 	 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
181 	 * blk_mq_hw_ctx_size().
182 	 */
183 	struct srcu_struct	srcu[];
184 };
185 
186 /**
187  * struct blk_mq_queue_map - Map software queues to hardware queues
188  * @mq_map:       CPU ID to hardware queue index map. This is an array
189  *	with nr_cpu_ids elements. Each element has a value in the range
190  *	[@queue_offset, @queue_offset + @nr_queues).
191  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
192  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
193  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
194  *	set of hardware queues.
195  */
196 struct blk_mq_queue_map {
197 	unsigned int *mq_map;
198 	unsigned int nr_queues;
199 	unsigned int queue_offset;
200 };
201 
202 /**
203  * enum hctx_type - Type of hardware queue
204  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
205  * @HCTX_TYPE_READ:	Just for READ I/O.
206  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
207  * @HCTX_MAX_TYPES:	Number of types of hctx.
208  */
209 enum hctx_type {
210 	HCTX_TYPE_DEFAULT,
211 	HCTX_TYPE_READ,
212 	HCTX_TYPE_POLL,
213 
214 	HCTX_MAX_TYPES,
215 };
216 
217 /**
218  * struct blk_mq_tag_set - tag set that can be shared between request queues
219  * @map:	   One or more ctx -> hctx mappings. One map exists for each
220  *		   hardware queue type (enum hctx_type) that the driver wishes
221  *		   to support. There are no restrictions on maps being of the
222  *		   same size, and it's perfectly legal to share maps between
223  *		   types.
224  * @nr_maps:	   Number of elements in the @map array. A number in the range
225  *		   [1, HCTX_MAX_TYPES].
226  * @ops:	   Pointers to functions that implement block driver behavior.
227  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
228  *		   owns this data structure.
229  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
230  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
231  *		   allocations.
232  * @cmd_size:	   Number of additional bytes to allocate per request. The block
233  *		   driver owns these additional bytes.
234  * @numa_node:	   NUMA node the storage adapter has been connected to.
235  * @timeout:	   Request processing timeout in jiffies.
236  * @flags:	   Zero or more BLK_MQ_F_* flags.
237  * @driver_data:   Pointer to data owned by the block driver that created this
238  *		   tag set.
239  * @active_queues_shared_sbitmap:
240  * 		   number of active request queues per tag set.
241  * @__bitmap_tags: A shared tags sbitmap, used over all hctx's
242  * @__breserved_tags:
243  *		   A shared reserved tags sbitmap, used over all hctx's
244  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
245  *		   elements.
246  * @tag_list_lock: Serializes tag_list accesses.
247  * @tag_list:	   List of the request queues that use this tag set. See also
248  *		   request_queue.tag_set_list.
249  */
250 struct blk_mq_tag_set {
251 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
252 	unsigned int		nr_maps;
253 	const struct blk_mq_ops	*ops;
254 	unsigned int		nr_hw_queues;
255 	unsigned int		queue_depth;
256 	unsigned int		reserved_tags;
257 	unsigned int		cmd_size;
258 	int			numa_node;
259 	unsigned int		timeout;
260 	unsigned int		flags;
261 	void			*driver_data;
262 	atomic_t		active_queues_shared_sbitmap;
263 
264 	struct sbitmap_queue	__bitmap_tags;
265 	struct sbitmap_queue	__breserved_tags;
266 	struct blk_mq_tags	**tags;
267 
268 	struct mutex		tag_list_lock;
269 	struct list_head	tag_list;
270 };
271 
272 /**
273  * struct blk_mq_queue_data - Data about a request inserted in a queue
274  *
275  * @rq:   Request pointer.
276  * @last: If it is the last request in the queue.
277  */
278 struct blk_mq_queue_data {
279 	struct request *rq;
280 	bool last;
281 };
282 
283 typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
284 		bool);
285 typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
286 
287 /**
288  * struct blk_mq_ops - Callback functions that implements block driver
289  * behaviour.
290  */
291 struct blk_mq_ops {
292 	/**
293 	 * @queue_rq: Queue a new request from block IO.
294 	 */
295 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
296 				 const struct blk_mq_queue_data *);
297 
298 	/**
299 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
300 	 * requests to hardware, it must define this function. In case of errors
301 	 * that make us stop issuing further requests, this hook serves the
302 	 * purpose of kicking the hardware (which the last request otherwise
303 	 * would have done).
304 	 */
305 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
306 
307 	/**
308 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
309 	 * run, it is driver's responsibility to release the
310 	 * reserved budget. Also we have to handle failure case
311 	 * of .get_budget for avoiding I/O deadlock.
312 	 */
313 	bool (*get_budget)(struct request_queue *);
314 
315 	/**
316 	 * @put_budget: Release the reserved budget.
317 	 */
318 	void (*put_budget)(struct request_queue *);
319 
320 	/**
321 	 * @timeout: Called on request timeout.
322 	 */
323 	enum blk_eh_timer_return (*timeout)(struct request *, bool);
324 
325 	/**
326 	 * @poll: Called to poll for completion of a specific tag.
327 	 */
328 	int (*poll)(struct blk_mq_hw_ctx *);
329 
330 	/**
331 	 * @complete: Mark the request as complete.
332 	 */
333 	void (*complete)(struct request *);
334 
335 	/**
336 	 * @init_hctx: Called when the block layer side of a hardware queue has
337 	 * been set up, allowing the driver to allocate/init matching
338 	 * structures.
339 	 */
340 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
341 	/**
342 	 * @exit_hctx: Ditto for exit/teardown.
343 	 */
344 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
345 
346 	/**
347 	 * @init_request: Called for every command allocated by the block layer
348 	 * to allow the driver to set up driver specific data.
349 	 *
350 	 * Tag greater than or equal to queue_depth is for setting up
351 	 * flush request.
352 	 */
353 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
354 			    unsigned int, unsigned int);
355 	/**
356 	 * @exit_request: Ditto for exit/teardown.
357 	 */
358 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
359 			     unsigned int);
360 
361 	/**
362 	 * @initialize_rq_fn: Called from inside blk_get_request().
363 	 */
364 	void (*initialize_rq_fn)(struct request *rq);
365 
366 	/**
367 	 * @cleanup_rq: Called before freeing one request which isn't completed
368 	 * yet, and usually for freeing the driver private data.
369 	 */
370 	void (*cleanup_rq)(struct request *);
371 
372 	/**
373 	 * @busy: If set, returns whether or not this queue currently is busy.
374 	 */
375 	bool (*busy)(struct request_queue *);
376 
377 	/**
378 	 * @map_queues: This allows drivers specify their own queue mapping by
379 	 * overriding the setup-time function that builds the mq_map.
380 	 */
381 	int (*map_queues)(struct blk_mq_tag_set *set);
382 
383 #ifdef CONFIG_BLK_DEBUG_FS
384 	/**
385 	 * @show_rq: Used by the debugfs implementation to show driver-specific
386 	 * information about a request.
387 	 */
388 	void (*show_rq)(struct seq_file *m, struct request *rq);
389 #endif
390 };
391 
392 enum {
393 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
394 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
395 	/*
396 	 * Set when this device requires underlying blk-mq device for
397 	 * completing IO:
398 	 */
399 	BLK_MQ_F_STACKING	= 1 << 2,
400 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
401 	BLK_MQ_F_BLOCKING	= 1 << 5,
402 	/* Do not allow an I/O scheduler to be configured. */
403 	BLK_MQ_F_NO_SCHED	= 1 << 6,
404 	/*
405 	 * Select 'none' during queue registration in case of a single hwq
406 	 * or shared hwqs instead of 'mq-deadline'.
407 	 */
408 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
409 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
410 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
411 
412 	BLK_MQ_S_STOPPED	= 0,
413 	BLK_MQ_S_TAG_ACTIVE	= 1,
414 	BLK_MQ_S_SCHED_RESTART	= 2,
415 
416 	/* hw queue is inactive after all its CPUs become offline */
417 	BLK_MQ_S_INACTIVE	= 3,
418 
419 	BLK_MQ_MAX_DEPTH	= 10240,
420 
421 	BLK_MQ_CPU_WORK_BATCH	= 8,
422 };
423 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
424 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
425 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
426 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
427 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
428 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
429 
430 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
431 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
432 		void *queuedata);
433 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
434 						  struct request_queue *q,
435 						  bool elevator_init);
436 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
437 						const struct blk_mq_ops *ops,
438 						unsigned int queue_depth,
439 						unsigned int set_flags);
440 void blk_mq_unregister_dev(struct device *, struct request_queue *);
441 
442 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
443 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
444 
445 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
446 
447 void blk_mq_free_request(struct request *rq);
448 
449 bool blk_mq_queue_inflight(struct request_queue *q);
450 
451 enum {
452 	/* return when out of requests */
453 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
454 	/* allocate from reserved pool */
455 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
456 	/* set RQF_PM */
457 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
458 };
459 
460 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
461 		blk_mq_req_flags_t flags);
462 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
463 		unsigned int op, blk_mq_req_flags_t flags,
464 		unsigned int hctx_idx);
465 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
466 
467 enum {
468 	BLK_MQ_UNIQUE_TAG_BITS = 16,
469 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
470 };
471 
472 u32 blk_mq_unique_tag(struct request *rq);
473 
blk_mq_unique_tag_to_hwq(u32 unique_tag)474 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
475 {
476 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
477 }
478 
blk_mq_unique_tag_to_tag(u32 unique_tag)479 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
480 {
481 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
482 }
483 
484 /**
485  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
486  * @rq: target request.
487  */
blk_mq_rq_state(struct request * rq)488 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
489 {
490 	return READ_ONCE(rq->state);
491 }
492 
blk_mq_request_started(struct request * rq)493 static inline int blk_mq_request_started(struct request *rq)
494 {
495 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
496 }
497 
blk_mq_request_completed(struct request * rq)498 static inline int blk_mq_request_completed(struct request *rq)
499 {
500 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
501 }
502 
503 void blk_mq_start_request(struct request *rq);
504 void blk_mq_end_request(struct request *rq, blk_status_t error);
505 void __blk_mq_end_request(struct request *rq, blk_status_t error);
506 
507 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
508 void blk_mq_kick_requeue_list(struct request_queue *q);
509 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
510 void blk_mq_complete_request(struct request *rq);
511 bool blk_mq_complete_request_remote(struct request *rq);
512 bool blk_mq_queue_stopped(struct request_queue *q);
513 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
514 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
515 void blk_mq_stop_hw_queues(struct request_queue *q);
516 void blk_mq_start_hw_queues(struct request_queue *q);
517 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
518 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
519 void blk_mq_quiesce_queue(struct request_queue *q);
520 void blk_mq_unquiesce_queue(struct request_queue *q);
521 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
522 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
523 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
524 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
525 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
526 		busy_tag_iter_fn *fn, void *priv);
527 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
528 void blk_mq_freeze_queue(struct request_queue *q);
529 void blk_mq_unfreeze_queue(struct request_queue *q);
530 void blk_freeze_queue_start(struct request_queue *q);
531 void blk_mq_freeze_queue_wait(struct request_queue *q);
532 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
533 				     unsigned long timeout);
534 
535 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
536 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
537 
538 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
539 
540 unsigned int blk_mq_rq_cpu(struct request *rq);
541 
542 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)543 static inline bool blk_should_fake_timeout(struct request_queue *q)
544 {
545 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
546 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
547 		return __blk_should_fake_timeout(q);
548 	return false;
549 }
550 
551 /**
552  * blk_mq_rq_from_pdu - cast a PDU to a request
553  * @pdu: the PDU (Protocol Data Unit) to be casted
554  *
555  * Return: request
556  *
557  * Driver command data is immediately after the request. So subtract request
558  * size to get back to the original request.
559  */
blk_mq_rq_from_pdu(void * pdu)560 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
561 {
562 	return pdu - sizeof(struct request);
563 }
564 
565 /**
566  * blk_mq_rq_to_pdu - cast a request to a PDU
567  * @rq: the request to be casted
568  *
569  * Return: pointer to the PDU
570  *
571  * Driver command data is immediately after the request. So add request to get
572  * the PDU.
573  */
blk_mq_rq_to_pdu(struct request * rq)574 static inline void *blk_mq_rq_to_pdu(struct request *rq)
575 {
576 	return rq + 1;
577 }
578 
579 #define queue_for_each_hw_ctx(q, hctx, i)				\
580 	for ((i) = 0; (i) < (q)->nr_hw_queues &&			\
581 	     ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
582 
583 #define hctx_for_each_ctx(hctx, ctx, i)					\
584 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
585 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
586 
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)587 static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx,
588 		struct request *rq)
589 {
590 	if (rq->tag != -1)
591 		return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT);
592 
593 	return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) |
594 			BLK_QC_T_INTERNAL;
595 }
596 
blk_mq_cleanup_rq(struct request * rq)597 static inline void blk_mq_cleanup_rq(struct request *rq)
598 {
599 	if (rq->q->mq_ops->cleanup_rq)
600 		rq->q->mq_ops->cleanup_rq(rq);
601 }
602 
603 blk_qc_t blk_mq_submit_bio(struct bio *bio);
604 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
605 		struct lock_class_key *key);
606 
607 #endif
608