1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/srcu.h>
8 #include <linux/lockdep.h>
9
10 struct blk_mq_tags;
11 struct blk_flush_queue;
12
13 /**
14 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
15 * block device
16 */
17 struct blk_mq_hw_ctx {
18 struct {
19 /** @lock: Protects the dispatch list. */
20 spinlock_t lock;
21 /**
22 * @dispatch: Used for requests that are ready to be
23 * dispatched to the hardware but for some reason (e.g. lack of
24 * resources) could not be sent to the hardware. As soon as the
25 * driver can send new requests, requests at this list will
26 * be sent first for a fairer dispatch.
27 */
28 struct list_head dispatch;
29 /**
30 * @state: BLK_MQ_S_* flags. Defines the state of the hw
31 * queue (active, scheduled to restart, stopped).
32 */
33 unsigned long state;
34 } ____cacheline_aligned_in_smp;
35
36 /**
37 * @run_work: Used for scheduling a hardware queue run at a later time.
38 */
39 struct delayed_work run_work;
40 /** @cpumask: Map of available CPUs where this hctx can run. */
41 cpumask_var_t cpumask;
42 /**
43 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
44 * selection from @cpumask.
45 */
46 int next_cpu;
47 /**
48 * @next_cpu_batch: Counter of how many works left in the batch before
49 * changing to the next CPU.
50 */
51 int next_cpu_batch;
52
53 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
54 unsigned long flags;
55
56 /**
57 * @sched_data: Pointer owned by the IO scheduler attached to a request
58 * queue. It's up to the IO scheduler how to use this pointer.
59 */
60 void *sched_data;
61 /**
62 * @queue: Pointer to the request queue that owns this hardware context.
63 */
64 struct request_queue *queue;
65 /** @fq: Queue of requests that need to perform a flush operation. */
66 struct blk_flush_queue *fq;
67
68 /**
69 * @driver_data: Pointer to data owned by the block driver that created
70 * this hctx
71 */
72 void *driver_data;
73
74 /**
75 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
76 * pending request in that software queue.
77 */
78 struct sbitmap ctx_map;
79
80 /**
81 * @dispatch_from: Software queue to be used when no scheduler was
82 * selected.
83 */
84 struct blk_mq_ctx *dispatch_from;
85 /**
86 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
87 * decide if the hw_queue is busy using Exponential Weighted Moving
88 * Average algorithm.
89 */
90 unsigned int dispatch_busy;
91
92 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
93 unsigned short type;
94 /** @nr_ctx: Number of software queues. */
95 unsigned short nr_ctx;
96 /** @ctxs: Array of software queues. */
97 struct blk_mq_ctx **ctxs;
98
99 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
100 spinlock_t dispatch_wait_lock;
101 /**
102 * @dispatch_wait: Waitqueue to put requests when there is no tag
103 * available at the moment, to wait for another try in the future.
104 */
105 wait_queue_entry_t dispatch_wait;
106
107 /**
108 * @wait_index: Index of next available dispatch_wait queue to insert
109 * requests.
110 */
111 atomic_t wait_index;
112
113 /**
114 * @tags: Tags owned by the block driver. A tag at this set is only
115 * assigned when a request is dispatched from a hardware queue.
116 */
117 struct blk_mq_tags *tags;
118 /**
119 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
120 * scheduler associated with a request queue, a tag is assigned when
121 * that request is allocated. Else, this member is not used.
122 */
123 struct blk_mq_tags *sched_tags;
124
125 /** @queued: Number of queued requests. */
126 unsigned long queued;
127 /** @run: Number of dispatched requests. */
128 unsigned long run;
129 #define BLK_MQ_MAX_DISPATCH_ORDER 7
130 /** @dispatched: Number of dispatch requests by queue. */
131 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
132
133 /** @numa_node: NUMA node the storage adapter has been connected to. */
134 unsigned int numa_node;
135 /** @queue_num: Index of this hardware queue. */
136 unsigned int queue_num;
137
138 /**
139 * @nr_active: Number of active requests. Only used when a tag set is
140 * shared across request queues.
141 */
142 atomic_t nr_active;
143 /**
144 * @elevator_queued: Number of queued requests on hctx.
145 */
146 atomic_t elevator_queued;
147
148 /** @cpuhp_online: List to store request if CPU is going to die */
149 struct hlist_node cpuhp_online;
150 /** @cpuhp_dead: List to store request if some CPU die. */
151 struct hlist_node cpuhp_dead;
152 /** @kobj: Kernel object for sysfs. */
153 struct kobject kobj;
154
155 /** @poll_considered: Count times blk_poll() was called. */
156 unsigned long poll_considered;
157 /** @poll_invoked: Count how many requests blk_poll() polled. */
158 unsigned long poll_invoked;
159 /** @poll_success: Count how many polled requests were completed. */
160 unsigned long poll_success;
161
162 #ifdef CONFIG_BLK_DEBUG_FS
163 /**
164 * @debugfs_dir: debugfs directory for this hardware queue. Named
165 * as cpu<cpu_number>.
166 */
167 struct dentry *debugfs_dir;
168 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
169 struct dentry *sched_debugfs_dir;
170 #endif
171
172 /**
173 * @hctx_list: if this hctx is not in use, this is an entry in
174 * q->unused_hctx_list.
175 */
176 struct list_head hctx_list;
177
178 /**
179 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
180 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
181 * blk_mq_hw_ctx_size().
182 */
183 struct srcu_struct srcu[];
184 };
185
186 /**
187 * struct blk_mq_queue_map - Map software queues to hardware queues
188 * @mq_map: CPU ID to hardware queue index map. This is an array
189 * with nr_cpu_ids elements. Each element has a value in the range
190 * [@queue_offset, @queue_offset + @nr_queues).
191 * @nr_queues: Number of hardware queues to map CPU IDs onto.
192 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
193 * driver to map each hardware queue type (enum hctx_type) onto a distinct
194 * set of hardware queues.
195 */
196 struct blk_mq_queue_map {
197 unsigned int *mq_map;
198 unsigned int nr_queues;
199 unsigned int queue_offset;
200 };
201
202 /**
203 * enum hctx_type - Type of hardware queue
204 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
205 * @HCTX_TYPE_READ: Just for READ I/O.
206 * @HCTX_TYPE_POLL: Polled I/O of any kind.
207 * @HCTX_MAX_TYPES: Number of types of hctx.
208 */
209 enum hctx_type {
210 HCTX_TYPE_DEFAULT,
211 HCTX_TYPE_READ,
212 HCTX_TYPE_POLL,
213
214 HCTX_MAX_TYPES,
215 };
216
217 /**
218 * struct blk_mq_tag_set - tag set that can be shared between request queues
219 * @map: One or more ctx -> hctx mappings. One map exists for each
220 * hardware queue type (enum hctx_type) that the driver wishes
221 * to support. There are no restrictions on maps being of the
222 * same size, and it's perfectly legal to share maps between
223 * types.
224 * @nr_maps: Number of elements in the @map array. A number in the range
225 * [1, HCTX_MAX_TYPES].
226 * @ops: Pointers to functions that implement block driver behavior.
227 * @nr_hw_queues: Number of hardware queues supported by the block driver that
228 * owns this data structure.
229 * @queue_depth: Number of tags per hardware queue, reserved tags included.
230 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
231 * allocations.
232 * @cmd_size: Number of additional bytes to allocate per request. The block
233 * driver owns these additional bytes.
234 * @numa_node: NUMA node the storage adapter has been connected to.
235 * @timeout: Request processing timeout in jiffies.
236 * @flags: Zero or more BLK_MQ_F_* flags.
237 * @driver_data: Pointer to data owned by the block driver that created this
238 * tag set.
239 * @active_queues_shared_sbitmap:
240 * number of active request queues per tag set.
241 * @__bitmap_tags: A shared tags sbitmap, used over all hctx's
242 * @__breserved_tags:
243 * A shared reserved tags sbitmap, used over all hctx's
244 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
245 * elements.
246 * @tag_list_lock: Serializes tag_list accesses.
247 * @tag_list: List of the request queues that use this tag set. See also
248 * request_queue.tag_set_list.
249 */
250 struct blk_mq_tag_set {
251 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
252 unsigned int nr_maps;
253 const struct blk_mq_ops *ops;
254 unsigned int nr_hw_queues;
255 unsigned int queue_depth;
256 unsigned int reserved_tags;
257 unsigned int cmd_size;
258 int numa_node;
259 unsigned int timeout;
260 unsigned int flags;
261 void *driver_data;
262 atomic_t active_queues_shared_sbitmap;
263
264 struct sbitmap_queue __bitmap_tags;
265 struct sbitmap_queue __breserved_tags;
266 struct blk_mq_tags **tags;
267
268 struct mutex tag_list_lock;
269 struct list_head tag_list;
270 };
271
272 /**
273 * struct blk_mq_queue_data - Data about a request inserted in a queue
274 *
275 * @rq: Request pointer.
276 * @last: If it is the last request in the queue.
277 */
278 struct blk_mq_queue_data {
279 struct request *rq;
280 bool last;
281 };
282
283 typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
284 bool);
285 typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
286
287 /**
288 * struct blk_mq_ops - Callback functions that implements block driver
289 * behaviour.
290 */
291 struct blk_mq_ops {
292 /**
293 * @queue_rq: Queue a new request from block IO.
294 */
295 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
296 const struct blk_mq_queue_data *);
297
298 /**
299 * @commit_rqs: If a driver uses bd->last to judge when to submit
300 * requests to hardware, it must define this function. In case of errors
301 * that make us stop issuing further requests, this hook serves the
302 * purpose of kicking the hardware (which the last request otherwise
303 * would have done).
304 */
305 void (*commit_rqs)(struct blk_mq_hw_ctx *);
306
307 /**
308 * @get_budget: Reserve budget before queue request, once .queue_rq is
309 * run, it is driver's responsibility to release the
310 * reserved budget. Also we have to handle failure case
311 * of .get_budget for avoiding I/O deadlock.
312 */
313 bool (*get_budget)(struct request_queue *);
314
315 /**
316 * @put_budget: Release the reserved budget.
317 */
318 void (*put_budget)(struct request_queue *);
319
320 /**
321 * @timeout: Called on request timeout.
322 */
323 enum blk_eh_timer_return (*timeout)(struct request *, bool);
324
325 /**
326 * @poll: Called to poll for completion of a specific tag.
327 */
328 int (*poll)(struct blk_mq_hw_ctx *);
329
330 /**
331 * @complete: Mark the request as complete.
332 */
333 void (*complete)(struct request *);
334
335 /**
336 * @init_hctx: Called when the block layer side of a hardware queue has
337 * been set up, allowing the driver to allocate/init matching
338 * structures.
339 */
340 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
341 /**
342 * @exit_hctx: Ditto for exit/teardown.
343 */
344 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
345
346 /**
347 * @init_request: Called for every command allocated by the block layer
348 * to allow the driver to set up driver specific data.
349 *
350 * Tag greater than or equal to queue_depth is for setting up
351 * flush request.
352 */
353 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
354 unsigned int, unsigned int);
355 /**
356 * @exit_request: Ditto for exit/teardown.
357 */
358 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
359 unsigned int);
360
361 /**
362 * @initialize_rq_fn: Called from inside blk_get_request().
363 */
364 void (*initialize_rq_fn)(struct request *rq);
365
366 /**
367 * @cleanup_rq: Called before freeing one request which isn't completed
368 * yet, and usually for freeing the driver private data.
369 */
370 void (*cleanup_rq)(struct request *);
371
372 /**
373 * @busy: If set, returns whether or not this queue currently is busy.
374 */
375 bool (*busy)(struct request_queue *);
376
377 /**
378 * @map_queues: This allows drivers specify their own queue mapping by
379 * overriding the setup-time function that builds the mq_map.
380 */
381 int (*map_queues)(struct blk_mq_tag_set *set);
382
383 #ifdef CONFIG_BLK_DEBUG_FS
384 /**
385 * @show_rq: Used by the debugfs implementation to show driver-specific
386 * information about a request.
387 */
388 void (*show_rq)(struct seq_file *m, struct request *rq);
389 #endif
390 };
391
392 enum {
393 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
394 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
395 /*
396 * Set when this device requires underlying blk-mq device for
397 * completing IO:
398 */
399 BLK_MQ_F_STACKING = 1 << 2,
400 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
401 BLK_MQ_F_BLOCKING = 1 << 5,
402 /* Do not allow an I/O scheduler to be configured. */
403 BLK_MQ_F_NO_SCHED = 1 << 6,
404 /*
405 * Select 'none' during queue registration in case of a single hwq
406 * or shared hwqs instead of 'mq-deadline'.
407 */
408 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
409 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
410 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
411
412 BLK_MQ_S_STOPPED = 0,
413 BLK_MQ_S_TAG_ACTIVE = 1,
414 BLK_MQ_S_SCHED_RESTART = 2,
415
416 /* hw queue is inactive after all its CPUs become offline */
417 BLK_MQ_S_INACTIVE = 3,
418
419 BLK_MQ_MAX_DEPTH = 10240,
420
421 BLK_MQ_CPU_WORK_BATCH = 8,
422 };
423 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
424 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
425 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
426 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
427 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
428 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
429
430 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
431 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
432 void *queuedata);
433 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
434 struct request_queue *q,
435 bool elevator_init);
436 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
437 const struct blk_mq_ops *ops,
438 unsigned int queue_depth,
439 unsigned int set_flags);
440 void blk_mq_unregister_dev(struct device *, struct request_queue *);
441
442 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
443 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
444
445 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
446
447 void blk_mq_free_request(struct request *rq);
448
449 bool blk_mq_queue_inflight(struct request_queue *q);
450
451 enum {
452 /* return when out of requests */
453 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
454 /* allocate from reserved pool */
455 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
456 /* set RQF_PM */
457 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
458 };
459
460 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
461 blk_mq_req_flags_t flags);
462 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
463 unsigned int op, blk_mq_req_flags_t flags,
464 unsigned int hctx_idx);
465 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
466
467 enum {
468 BLK_MQ_UNIQUE_TAG_BITS = 16,
469 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
470 };
471
472 u32 blk_mq_unique_tag(struct request *rq);
473
blk_mq_unique_tag_to_hwq(u32 unique_tag)474 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
475 {
476 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
477 }
478
blk_mq_unique_tag_to_tag(u32 unique_tag)479 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
480 {
481 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
482 }
483
484 /**
485 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
486 * @rq: target request.
487 */
blk_mq_rq_state(struct request * rq)488 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
489 {
490 return READ_ONCE(rq->state);
491 }
492
blk_mq_request_started(struct request * rq)493 static inline int blk_mq_request_started(struct request *rq)
494 {
495 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
496 }
497
blk_mq_request_completed(struct request * rq)498 static inline int blk_mq_request_completed(struct request *rq)
499 {
500 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
501 }
502
503 void blk_mq_start_request(struct request *rq);
504 void blk_mq_end_request(struct request *rq, blk_status_t error);
505 void __blk_mq_end_request(struct request *rq, blk_status_t error);
506
507 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
508 void blk_mq_kick_requeue_list(struct request_queue *q);
509 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
510 void blk_mq_complete_request(struct request *rq);
511 bool blk_mq_complete_request_remote(struct request *rq);
512 bool blk_mq_queue_stopped(struct request_queue *q);
513 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
514 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
515 void blk_mq_stop_hw_queues(struct request_queue *q);
516 void blk_mq_start_hw_queues(struct request_queue *q);
517 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
518 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
519 void blk_mq_quiesce_queue(struct request_queue *q);
520 void blk_mq_unquiesce_queue(struct request_queue *q);
521 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
522 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
523 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
524 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
525 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
526 busy_tag_iter_fn *fn, void *priv);
527 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
528 void blk_mq_freeze_queue(struct request_queue *q);
529 void blk_mq_unfreeze_queue(struct request_queue *q);
530 void blk_freeze_queue_start(struct request_queue *q);
531 void blk_mq_freeze_queue_wait(struct request_queue *q);
532 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
533 unsigned long timeout);
534
535 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
536 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
537
538 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
539
540 unsigned int blk_mq_rq_cpu(struct request *rq);
541
542 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)543 static inline bool blk_should_fake_timeout(struct request_queue *q)
544 {
545 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
546 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
547 return __blk_should_fake_timeout(q);
548 return false;
549 }
550
551 /**
552 * blk_mq_rq_from_pdu - cast a PDU to a request
553 * @pdu: the PDU (Protocol Data Unit) to be casted
554 *
555 * Return: request
556 *
557 * Driver command data is immediately after the request. So subtract request
558 * size to get back to the original request.
559 */
blk_mq_rq_from_pdu(void * pdu)560 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
561 {
562 return pdu - sizeof(struct request);
563 }
564
565 /**
566 * blk_mq_rq_to_pdu - cast a request to a PDU
567 * @rq: the request to be casted
568 *
569 * Return: pointer to the PDU
570 *
571 * Driver command data is immediately after the request. So add request to get
572 * the PDU.
573 */
blk_mq_rq_to_pdu(struct request * rq)574 static inline void *blk_mq_rq_to_pdu(struct request *rq)
575 {
576 return rq + 1;
577 }
578
579 #define queue_for_each_hw_ctx(q, hctx, i) \
580 for ((i) = 0; (i) < (q)->nr_hw_queues && \
581 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
582
583 #define hctx_for_each_ctx(hctx, ctx, i) \
584 for ((i) = 0; (i) < (hctx)->nr_ctx && \
585 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
586
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)587 static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx,
588 struct request *rq)
589 {
590 if (rq->tag != -1)
591 return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT);
592
593 return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) |
594 BLK_QC_T_INTERNAL;
595 }
596
blk_mq_cleanup_rq(struct request * rq)597 static inline void blk_mq_cleanup_rq(struct request *rq)
598 {
599 if (rq->q->mq_ops->cleanup_rq)
600 rq->q->mq_ops->cleanup_rq(rq);
601 }
602
603 blk_qc_t blk_mq_submit_bio(struct bio *bio);
604 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
605 struct lock_class_key *key);
606
607 #endif
608