1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
65
66 using namespace llvm;
67
68 #define DEBUG_TYPE "arm-instrinfo"
69
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
72
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75 cl::desc("Enable ARM 2-addr to 3-addr conv"));
76
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79 uint16_t MLxOpc; // MLA / MLS opcode
80 uint16_t MulOpc; // Expanded multiplication opcode
81 uint16_t AddSubOpc; // Expanded add / sub opcode
82 bool NegAcc; // True if the acc is negated before the add / sub.
83 bool HasLane; // True if instruction has an extra "lane" operand.
84 };
85
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
88 // fp scalar ops
89 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
90 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
91 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
92 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
93 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
94 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
95 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
96 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
97
98 // fp SIMD ops
99 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
100 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
101 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
102 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
103 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
104 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
105 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
106 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
107 };
108
ARMBaseInstrInfo(const ARMSubtarget & STI)109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111 Subtarget(STI) {
112 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114 llvm_unreachable("Duplicated entries?");
115 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
117 }
118 }
119
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124 const ScheduleDAG *DAG) const {
125 if (usePreRAHazardRecognizer()) {
126 const InstrItineraryData *II =
127 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
129 }
130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
131 }
132
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135 const ScheduleDAG *DAG) const {
136 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
137 return new ARMHazardRecognizer(II, DAG);
138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
139 }
140
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143 // FIXME: Thumb2 support.
144
145 if (!EnableARM3Addr)
146 return nullptr;
147
148 MachineFunction &MF = *MI.getParent()->getParent();
149 uint64_t TSFlags = MI.getDesc().TSFlags;
150 bool isPre = false;
151 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152 default: return nullptr;
153 case ARMII::IndexModePre:
154 isPre = true;
155 break;
156 case ARMII::IndexModePost:
157 break;
158 }
159
160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161 // operation.
162 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163 if (MemOpc == 0)
164 return nullptr;
165
166 MachineInstr *UpdateMI = nullptr;
167 MachineInstr *MemMI = nullptr;
168 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169 const MCInstrDesc &MCID = MI.getDesc();
170 unsigned NumOps = MCID.getNumOperands();
171 bool isLoad = !MI.mayStore();
172 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173 const MachineOperand &Base = MI.getOperand(2);
174 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175 Register WBReg = WB.getReg();
176 Register BaseReg = Base.getReg();
177 Register OffReg = Offset.getReg();
178 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180 switch (AddrMode) {
181 default: llvm_unreachable("Unknown indexed op!");
182 case ARMII::AddrMode2: {
183 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185 if (OffReg == 0) {
186 if (ARM_AM::getSOImmVal(Amt) == -1)
187 // Can't encode it in a so_imm operand. This transformation will
188 // add more than 1 instruction. Abandon!
189 return nullptr;
190 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192 .addReg(BaseReg)
193 .addImm(Amt)
194 .add(predOps(Pred))
195 .add(condCodeOp());
196 } else if (Amt != 0) {
197 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201 .addReg(BaseReg)
202 .addReg(OffReg)
203 .addReg(0)
204 .addImm(SOOpc)
205 .add(predOps(Pred))
206 .add(condCodeOp());
207 } else
208 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210 .addReg(BaseReg)
211 .addReg(OffReg)
212 .add(predOps(Pred))
213 .add(condCodeOp());
214 break;
215 }
216 case ARMII::AddrMode3 : {
217 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219 if (OffReg == 0)
220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223 .addReg(BaseReg)
224 .addImm(Amt)
225 .add(predOps(Pred))
226 .add(condCodeOp());
227 else
228 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230 .addReg(BaseReg)
231 .addReg(OffReg)
232 .add(predOps(Pred))
233 .add(condCodeOp());
234 break;
235 }
236 }
237
238 std::vector<MachineInstr*> NewMIs;
239 if (isPre) {
240 if (isLoad)
241 MemMI =
242 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243 .addReg(WBReg)
244 .addImm(0)
245 .addImm(Pred);
246 else
247 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248 .addReg(MI.getOperand(1).getReg())
249 .addReg(WBReg)
250 .addReg(0)
251 .addImm(0)
252 .addImm(Pred);
253 NewMIs.push_back(MemMI);
254 NewMIs.push_back(UpdateMI);
255 } else {
256 if (isLoad)
257 MemMI =
258 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259 .addReg(BaseReg)
260 .addImm(0)
261 .addImm(Pred);
262 else
263 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264 .addReg(MI.getOperand(1).getReg())
265 .addReg(BaseReg)
266 .addReg(0)
267 .addImm(0)
268 .addImm(Pred);
269 if (WB.isDead())
270 UpdateMI->getOperand(0).setIsDead();
271 NewMIs.push_back(UpdateMI);
272 NewMIs.push_back(MemMI);
273 }
274
275 // Transfer LiveVariables states, kill / dead info.
276 if (LV) {
277 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278 MachineOperand &MO = MI.getOperand(i);
279 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
280 Register Reg = MO.getReg();
281
282 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283 if (MO.isDef()) {
284 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285 if (MO.isDead())
286 LV->addVirtualRegisterDead(Reg, *NewMI);
287 }
288 if (MO.isUse() && MO.isKill()) {
289 for (unsigned j = 0; j < 2; ++j) {
290 // Look at the two new MI's in reverse order.
291 MachineInstr *NewMI = NewMIs[j];
292 if (!NewMI->readsRegister(Reg))
293 continue;
294 LV->addVirtualRegisterKilled(Reg, *NewMI);
295 if (VI.removeKill(MI))
296 VI.Kills.push_back(NewMI);
297 break;
298 }
299 }
300 }
301 }
302 }
303
304 MachineBasicBlock::iterator MBBI = MI.getIterator();
305 MFI->insert(MBBI, NewMIs[1]);
306 MFI->insert(MBBI, NewMIs[0]);
307 return NewMIs[0];
308 }
309
310 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312 MachineBasicBlock *&TBB,
313 MachineBasicBlock *&FBB,
314 SmallVectorImpl<MachineOperand> &Cond,
315 bool AllowModify) const {
316 TBB = nullptr;
317 FBB = nullptr;
318
319 MachineBasicBlock::iterator I = MBB.end();
320 if (I == MBB.begin())
321 return false; // Empty blocks are easy.
322 --I;
323
324 // Walk backwards from the end of the basic block until the branch is
325 // analyzed or we give up.
326 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327 // Flag to be raised on unanalyzeable instructions. This is useful in cases
328 // where we want to clean up on the end of the basic block before we bail
329 // out.
330 bool CantAnalyze = false;
331
332 // Skip over DEBUG values and predicated nonterminators.
333 while (I->isDebugInstr() || !I->isTerminator()) {
334 if (I == MBB.begin())
335 return false;
336 --I;
337 }
338
339 if (isIndirectBranchOpcode(I->getOpcode()) ||
340 isJumpTableBranchOpcode(I->getOpcode())) {
341 // Indirect branches and jump tables can't be analyzed, but we still want
342 // to clean up any instructions at the tail of the basic block.
343 CantAnalyze = true;
344 } else if (isUncondBranchOpcode(I->getOpcode())) {
345 TBB = I->getOperand(0).getMBB();
346 } else if (isCondBranchOpcode(I->getOpcode())) {
347 // Bail out if we encounter multiple conditional branches.
348 if (!Cond.empty())
349 return true;
350
351 assert(!FBB && "FBB should have been null.");
352 FBB = TBB;
353 TBB = I->getOperand(0).getMBB();
354 Cond.push_back(I->getOperand(1));
355 Cond.push_back(I->getOperand(2));
356 } else if (I->isReturn()) {
357 // Returns can't be analyzed, but we should run cleanup.
358 CantAnalyze = !isPredicated(*I);
359 } else {
360 // We encountered other unrecognized terminator. Bail out immediately.
361 return true;
362 }
363
364 // Cleanup code - to be run for unpredicated unconditional branches and
365 // returns.
366 if (!isPredicated(*I) &&
367 (isUncondBranchOpcode(I->getOpcode()) ||
368 isIndirectBranchOpcode(I->getOpcode()) ||
369 isJumpTableBranchOpcode(I->getOpcode()) ||
370 I->isReturn())) {
371 // Forget any previous condition branch information - it no longer applies.
372 Cond.clear();
373 FBB = nullptr;
374
375 // If we can modify the function, delete everything below this
376 // unconditional branch.
377 if (AllowModify) {
378 MachineBasicBlock::iterator DI = std::next(I);
379 while (DI != MBB.end()) {
380 MachineInstr &InstToDelete = *DI;
381 ++DI;
382 InstToDelete.eraseFromParent();
383 }
384 }
385 }
386
387 if (CantAnalyze)
388 return true;
389
390 if (I == MBB.begin())
391 return false;
392
393 --I;
394 }
395
396 // We made it past the terminators without bailing out - we must have
397 // analyzed this branch successfully.
398 return false;
399 }
400
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402 int *BytesRemoved) const {
403 assert(!BytesRemoved && "code size not handled");
404
405 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406 if (I == MBB.end())
407 return 0;
408
409 if (!isUncondBranchOpcode(I->getOpcode()) &&
410 !isCondBranchOpcode(I->getOpcode()))
411 return 0;
412
413 // Remove the branch.
414 I->eraseFromParent();
415
416 I = MBB.end();
417
418 if (I == MBB.begin()) return 1;
419 --I;
420 if (!isCondBranchOpcode(I->getOpcode()))
421 return 1;
422
423 // Remove the branch.
424 I->eraseFromParent();
425 return 2;
426 }
427
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429 MachineBasicBlock *TBB,
430 MachineBasicBlock *FBB,
431 ArrayRef<MachineOperand> Cond,
432 const DebugLoc &DL,
433 int *BytesAdded) const {
434 assert(!BytesAdded && "code size not handled");
435 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436 int BOpc = !AFI->isThumbFunction()
437 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438 int BccOpc = !AFI->isThumbFunction()
439 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
441
442 // Shouldn't be a fall through.
443 assert(TBB && "insertBranch must not be told to insert a fallthrough");
444 assert((Cond.size() == 2 || Cond.size() == 0) &&
445 "ARM branch conditions have two components!");
446
447 // For conditional branches, we use addOperand to preserve CPSR flags.
448
449 if (!FBB) {
450 if (Cond.empty()) { // Unconditional branch?
451 if (isThumb)
452 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453 else
454 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455 } else
456 BuildMI(&MBB, DL, get(BccOpc))
457 .addMBB(TBB)
458 .addImm(Cond[0].getImm())
459 .add(Cond[1]);
460 return 1;
461 }
462
463 // Two-way conditional branch.
464 BuildMI(&MBB, DL, get(BccOpc))
465 .addMBB(TBB)
466 .addImm(Cond[0].getImm())
467 .add(Cond[1]);
468 if (isThumb)
469 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470 else
471 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472 return 2;
473 }
474
475 bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479 return false;
480 }
481
isPredicated(const MachineInstr & MI) const482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483 if (MI.isBundle()) {
484 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486 while (++I != E && I->isInsideBundle()) {
487 int PIdx = I->findFirstPredOperandIdx();
488 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489 return true;
490 }
491 return false;
492 }
493
494 int PIdx = MI.findFirstPredOperandIdx();
495 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
496 }
497
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const498 bool ARMBaseInstrInfo::PredicateInstruction(
499 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
500 unsigned Opc = MI.getOpcode();
501 if (isUncondBranchOpcode(Opc)) {
502 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
503 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
504 .addImm(Pred[0].getImm())
505 .addReg(Pred[1].getReg());
506 return true;
507 }
508
509 int PIdx = MI.findFirstPredOperandIdx();
510 if (PIdx != -1) {
511 MachineOperand &PMO = MI.getOperand(PIdx);
512 PMO.setImm(Pred[0].getImm());
513 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
514 return true;
515 }
516 return false;
517 }
518
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
520 ArrayRef<MachineOperand> Pred2) const {
521 if (Pred1.size() > 2 || Pred2.size() > 2)
522 return false;
523
524 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
525 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
526 if (CC1 == CC2)
527 return true;
528
529 switch (CC1) {
530 default:
531 return false;
532 case ARMCC::AL:
533 return true;
534 case ARMCC::HS:
535 return CC2 == ARMCC::HI;
536 case ARMCC::LS:
537 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
538 case ARMCC::GE:
539 return CC2 == ARMCC::GT;
540 case ARMCC::LE:
541 return CC2 == ARMCC::LT;
542 }
543 }
544
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const545 bool ARMBaseInstrInfo::DefinesPredicate(
546 MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
547 bool Found = false;
548 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
549 const MachineOperand &MO = MI.getOperand(i);
550 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
551 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
552 Pred.push_back(MO);
553 Found = true;
554 }
555 }
556
557 return Found;
558 }
559
isCPSRDefined(const MachineInstr & MI)560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
561 for (const auto &MO : MI.operands())
562 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
563 return true;
564 return false;
565 }
566
isAddrMode3OpImm(const MachineInstr & MI,unsigned Op) const567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
568 unsigned Op) const {
569 const MachineOperand &Offset = MI.getOperand(Op + 1);
570 return Offset.getReg() != 0;
571 }
572
573 // Load with negative register offset requires additional 1cyc and +I unit
574 // for Cortex A57
isAddrMode3OpMinusReg(const MachineInstr & MI,unsigned Op) const575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
576 unsigned Op) const {
577 const MachineOperand &Offset = MI.getOperand(Op + 1);
578 const MachineOperand &Opc = MI.getOperand(Op + 2);
579 assert(Opc.isImm());
580 assert(Offset.isReg());
581 int64_t OpcImm = Opc.getImm();
582
583 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
584 return (isSub && Offset.getReg() != 0);
585 }
586
isLdstScaledReg(const MachineInstr & MI,unsigned Op) const587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
588 unsigned Op) const {
589 const MachineOperand &Opc = MI.getOperand(Op + 2);
590 unsigned OffImm = Opc.getImm();
591 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
592 }
593
594 // Load, scaled register offset, not plus LSL2
isLdstScaledRegNotPlusLsl2(const MachineInstr & MI,unsigned Op) const595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
596 unsigned Op) const {
597 const MachineOperand &Opc = MI.getOperand(Op + 2);
598 unsigned OffImm = Opc.getImm();
599
600 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
601 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
602 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
603 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
604 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
605 return !SimpleScaled;
606 }
607
608 // Minus reg for ldstso addr mode
isLdstSoMinusReg(const MachineInstr & MI,unsigned Op) const609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
610 unsigned Op) const {
611 unsigned OffImm = MI.getOperand(Op + 2).getImm();
612 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
613 }
614
615 // Load, scaled register offset
isAm2ScaledReg(const MachineInstr & MI,unsigned Op) const616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
617 unsigned Op) const {
618 unsigned OffImm = MI.getOperand(Op + 2).getImm();
619 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
620 }
621
isEligibleForITBlock(const MachineInstr * MI)622 static bool isEligibleForITBlock(const MachineInstr *MI) {
623 switch (MI->getOpcode()) {
624 default: return true;
625 case ARM::tADC: // ADC (register) T1
626 case ARM::tADDi3: // ADD (immediate) T1
627 case ARM::tADDi8: // ADD (immediate) T2
628 case ARM::tADDrr: // ADD (register) T1
629 case ARM::tAND: // AND (register) T1
630 case ARM::tASRri: // ASR (immediate) T1
631 case ARM::tASRrr: // ASR (register) T1
632 case ARM::tBIC: // BIC (register) T1
633 case ARM::tEOR: // EOR (register) T1
634 case ARM::tLSLri: // LSL (immediate) T1
635 case ARM::tLSLrr: // LSL (register) T1
636 case ARM::tLSRri: // LSR (immediate) T1
637 case ARM::tLSRrr: // LSR (register) T1
638 case ARM::tMUL: // MUL T1
639 case ARM::tMVN: // MVN (register) T1
640 case ARM::tORR: // ORR (register) T1
641 case ARM::tROR: // ROR (register) T1
642 case ARM::tRSB: // RSB (immediate) T1
643 case ARM::tSBC: // SBC (register) T1
644 case ARM::tSUBi3: // SUB (immediate) T1
645 case ARM::tSUBi8: // SUB (immediate) T2
646 case ARM::tSUBrr: // SUB (register) T1
647 return !ARMBaseInstrInfo::isCPSRDefined(*MI);
648 }
649 }
650
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
isPredicable(const MachineInstr & MI) const654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
655 if (!MI.isPredicable())
656 return false;
657
658 if (MI.isBundle())
659 return false;
660
661 if (!isEligibleForITBlock(&MI))
662 return false;
663
664 const ARMFunctionInfo *AFI =
665 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
666
667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668 // In their ARM encoding, they can't be encoded in a conditional form.
669 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
670 return false;
671
672 if (AFI->isThumb2Function()) {
673 if (getSubtarget().restrictIT())
674 return isV8EligibleForIT(&MI);
675 }
676
677 return true;
678 }
679
680 namespace llvm {
681
IsCPSRDead(const MachineInstr * MI)682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684 const MachineOperand &MO = MI->getOperand(i);
685 if (!MO.isReg() || MO.isUndef() || MO.isUse())
686 continue;
687 if (MO.getReg() != ARM::CPSR)
688 continue;
689 if (!MO.isDead())
690 return false;
691 }
692 // all definitions of CPSR are dead
693 return true;
694 }
695
696 } // end namespace llvm
697
698 /// GetInstSize - Return the size of the specified MachineInstr.
699 ///
getInstSizeInBytes(const MachineInstr & MI) const700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
701 const MachineBasicBlock &MBB = *MI.getParent();
702 const MachineFunction *MF = MBB.getParent();
703 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
704
705 const MCInstrDesc &MCID = MI.getDesc();
706 if (MCID.getSize())
707 return MCID.getSize();
708
709 switch (MI.getOpcode()) {
710 default:
711 // pseudo-instruction sizes are zero.
712 return 0;
713 case TargetOpcode::BUNDLE:
714 return getInstBundleLength(MI);
715 case ARM::MOVi16_ga_pcrel:
716 case ARM::MOVTi16_ga_pcrel:
717 case ARM::t2MOVi16_ga_pcrel:
718 case ARM::t2MOVTi16_ga_pcrel:
719 return 4;
720 case ARM::MOVi32imm:
721 case ARM::t2MOVi32imm:
722 return 8;
723 case ARM::CONSTPOOL_ENTRY:
724 case ARM::JUMPTABLE_INSTS:
725 case ARM::JUMPTABLE_ADDRS:
726 case ARM::JUMPTABLE_TBB:
727 case ARM::JUMPTABLE_TBH:
728 // If this machine instr is a constant pool entry, its size is recorded as
729 // operand #2.
730 return MI.getOperand(2).getImm();
731 case ARM::Int_eh_sjlj_longjmp:
732 return 16;
733 case ARM::tInt_eh_sjlj_longjmp:
734 return 10;
735 case ARM::tInt_WIN_eh_sjlj_longjmp:
736 return 12;
737 case ARM::Int_eh_sjlj_setjmp:
738 case ARM::Int_eh_sjlj_setjmp_nofp:
739 return 20;
740 case ARM::tInt_eh_sjlj_setjmp:
741 case ARM::t2Int_eh_sjlj_setjmp:
742 case ARM::t2Int_eh_sjlj_setjmp_nofp:
743 return 12;
744 case ARM::SPACE:
745 return MI.getOperand(1).getImm();
746 case ARM::INLINEASM:
747 case ARM::INLINEASM_BR: {
748 // If this machine instr is an inline asm, measure it.
749 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
750 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
751 Size = alignTo(Size, 4);
752 return Size;
753 }
754 }
755 }
756
getInstBundleLength(const MachineInstr & MI) const757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
758 unsigned Size = 0;
759 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
760 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
761 while (++I != E && I->isInsideBundle()) {
762 assert(!I->isBundle() && "No nested bundle!");
763 Size += getInstSizeInBytes(*I);
764 }
765 return Size;
766 }
767
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
769 MachineBasicBlock::iterator I,
770 unsigned DestReg, bool KillSrc,
771 const ARMSubtarget &Subtarget) const {
772 unsigned Opc = Subtarget.isThumb()
773 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
774 : ARM::MRS;
775
776 MachineInstrBuilder MIB =
777 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
778
779 // There is only 1 A/R class MRS instruction, and it always refers to
780 // APSR. However, there are lots of other possibilities on M-class cores.
781 if (Subtarget.isMClass())
782 MIB.addImm(0x800);
783
784 MIB.add(predOps(ARMCC::AL))
785 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
786 }
787
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
789 MachineBasicBlock::iterator I,
790 unsigned SrcReg, bool KillSrc,
791 const ARMSubtarget &Subtarget) const {
792 unsigned Opc = Subtarget.isThumb()
793 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
794 : ARM::MSR;
795
796 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
797
798 if (Subtarget.isMClass())
799 MIB.addImm(0x800);
800 else
801 MIB.addImm(8);
802
803 MIB.addReg(SrcReg, getKillRegState(KillSrc))
804 .add(predOps(ARMCC::AL))
805 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
806 }
807
addUnpredicatedMveVpredNOp(MachineInstrBuilder & MIB)808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
809 MIB.addImm(ARMVCC::None);
810 MIB.addReg(0);
811 }
812
addUnpredicatedMveVpredROp(MachineInstrBuilder & MIB,unsigned DestReg)813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
814 unsigned DestReg) {
815 addUnpredicatedMveVpredNOp(MIB);
816 MIB.addReg(DestReg, RegState::Undef);
817 }
818
addPredicatedMveVpredNOp(MachineInstrBuilder & MIB,unsigned Cond)819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
820 MIB.addImm(Cond);
821 MIB.addReg(ARM::VPR, RegState::Implicit);
822 }
823
addPredicatedMveVpredROp(MachineInstrBuilder & MIB,unsigned Cond,unsigned Inactive)824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
825 unsigned Cond, unsigned Inactive) {
826 addPredicatedMveVpredNOp(MIB, Cond);
827 MIB.addReg(Inactive);
828 }
829
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
831 MachineBasicBlock::iterator I,
832 const DebugLoc &DL, MCRegister DestReg,
833 MCRegister SrcReg, bool KillSrc) const {
834 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
835 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
836
837 if (GPRDest && GPRSrc) {
838 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
839 .addReg(SrcReg, getKillRegState(KillSrc))
840 .add(predOps(ARMCC::AL))
841 .add(condCodeOp());
842 return;
843 }
844
845 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
846 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
847
848 unsigned Opc = 0;
849 if (SPRDest && SPRSrc)
850 Opc = ARM::VMOVS;
851 else if (GPRDest && SPRSrc)
852 Opc = ARM::VMOVRS;
853 else if (SPRDest && GPRSrc)
854 Opc = ARM::VMOVSR;
855 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
856 Opc = ARM::VMOVD;
857 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
858 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
859
860 if (Opc) {
861 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
862 MIB.addReg(SrcReg, getKillRegState(KillSrc));
863 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
864 MIB.addReg(SrcReg, getKillRegState(KillSrc));
865 if (Opc == ARM::MVE_VORR)
866 addUnpredicatedMveVpredROp(MIB, DestReg);
867 else
868 MIB.add(predOps(ARMCC::AL));
869 return;
870 }
871
872 // Handle register classes that require multiple instructions.
873 unsigned BeginIdx = 0;
874 unsigned SubRegs = 0;
875 int Spacing = 1;
876
877 // Use VORRq when possible.
878 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
879 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
880 BeginIdx = ARM::qsub_0;
881 SubRegs = 2;
882 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
883 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
884 BeginIdx = ARM::qsub_0;
885 SubRegs = 4;
886 // Fall back to VMOVD.
887 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
888 Opc = ARM::VMOVD;
889 BeginIdx = ARM::dsub_0;
890 SubRegs = 2;
891 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
892 Opc = ARM::VMOVD;
893 BeginIdx = ARM::dsub_0;
894 SubRegs = 3;
895 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
896 Opc = ARM::VMOVD;
897 BeginIdx = ARM::dsub_0;
898 SubRegs = 4;
899 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
900 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
901 BeginIdx = ARM::gsub_0;
902 SubRegs = 2;
903 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
904 Opc = ARM::VMOVD;
905 BeginIdx = ARM::dsub_0;
906 SubRegs = 2;
907 Spacing = 2;
908 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
909 Opc = ARM::VMOVD;
910 BeginIdx = ARM::dsub_0;
911 SubRegs = 3;
912 Spacing = 2;
913 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
914 Opc = ARM::VMOVD;
915 BeginIdx = ARM::dsub_0;
916 SubRegs = 4;
917 Spacing = 2;
918 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
919 !Subtarget.hasFP64()) {
920 Opc = ARM::VMOVS;
921 BeginIdx = ARM::ssub_0;
922 SubRegs = 2;
923 } else if (SrcReg == ARM::CPSR) {
924 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
925 return;
926 } else if (DestReg == ARM::CPSR) {
927 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
928 return;
929 } else if (DestReg == ARM::VPR) {
930 assert(ARM::GPRRegClass.contains(SrcReg));
931 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
932 .addReg(SrcReg, getKillRegState(KillSrc))
933 .add(predOps(ARMCC::AL));
934 return;
935 } else if (SrcReg == ARM::VPR) {
936 assert(ARM::GPRRegClass.contains(DestReg));
937 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
938 .addReg(SrcReg, getKillRegState(KillSrc))
939 .add(predOps(ARMCC::AL));
940 return;
941 } else if (DestReg == ARM::FPSCR_NZCV) {
942 assert(ARM::GPRRegClass.contains(SrcReg));
943 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
944 .addReg(SrcReg, getKillRegState(KillSrc))
945 .add(predOps(ARMCC::AL));
946 return;
947 } else if (SrcReg == ARM::FPSCR_NZCV) {
948 assert(ARM::GPRRegClass.contains(DestReg));
949 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
950 .addReg(SrcReg, getKillRegState(KillSrc))
951 .add(predOps(ARMCC::AL));
952 return;
953 }
954
955 assert(Opc && "Impossible reg-to-reg copy");
956
957 const TargetRegisterInfo *TRI = &getRegisterInfo();
958 MachineInstrBuilder Mov;
959
960 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
961 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
962 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
963 Spacing = -Spacing;
964 }
965 #ifndef NDEBUG
966 SmallSet<unsigned, 4> DstRegs;
967 #endif
968 for (unsigned i = 0; i != SubRegs; ++i) {
969 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
970 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
971 assert(Dst && Src && "Bad sub-register");
972 #ifndef NDEBUG
973 assert(!DstRegs.count(Src) && "destructive vector copy");
974 DstRegs.insert(Dst);
975 #endif
976 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
977 // VORR (NEON or MVE) takes two source operands.
978 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
979 Mov.addReg(Src);
980 }
981 // MVE VORR takes predicate operands in place of an ordinary condition.
982 if (Opc == ARM::MVE_VORR)
983 addUnpredicatedMveVpredROp(Mov, Dst);
984 else
985 Mov = Mov.add(predOps(ARMCC::AL));
986 // MOVr can set CC.
987 if (Opc == ARM::MOVr)
988 Mov = Mov.add(condCodeOp());
989 }
990 // Add implicit super-register defs and kills to the last instruction.
991 Mov->addRegisterDefined(DestReg, TRI);
992 if (KillSrc)
993 Mov->addRegisterKilled(SrcReg, TRI);
994 }
995
996 Optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const997 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
998 // VMOVRRD is also a copy instruction but it requires
999 // special way of handling. It is more complex copy version
1000 // and since that we are not considering it. For recognition
1001 // of such instruction isExtractSubregLike MI interface fuction
1002 // could be used.
1003 // VORRq is considered as a move only if two inputs are
1004 // the same register.
1005 if (!MI.isMoveReg() ||
1006 (MI.getOpcode() == ARM::VORRq &&
1007 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1008 return None;
1009 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1010 }
1011
1012 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const1013 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1014 unsigned SubIdx, unsigned State,
1015 const TargetRegisterInfo *TRI) const {
1016 if (!SubIdx)
1017 return MIB.addReg(Reg, State);
1018
1019 if (Register::isPhysicalRegister(Reg))
1020 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1021 return MIB.addReg(Reg, State, SubIdx);
1022 }
1023
1024 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1025 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1026 unsigned SrcReg, bool isKill, int FI,
1027 const TargetRegisterClass *RC,
1028 const TargetRegisterInfo *TRI) const {
1029 MachineFunction &MF = *MBB.getParent();
1030 MachineFrameInfo &MFI = MF.getFrameInfo();
1031 unsigned Align = MFI.getObjectAlignment(FI);
1032
1033 MachineMemOperand *MMO = MF.getMachineMemOperand(
1034 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1035 MFI.getObjectSize(FI), Align);
1036
1037 switch (TRI->getSpillSize(*RC)) {
1038 case 2:
1039 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1040 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1041 .addReg(SrcReg, getKillRegState(isKill))
1042 .addFrameIndex(FI)
1043 .addImm(0)
1044 .addMemOperand(MMO)
1045 .add(predOps(ARMCC::AL));
1046 } else
1047 llvm_unreachable("Unknown reg class!");
1048 break;
1049 case 4:
1050 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1051 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1052 .addReg(SrcReg, getKillRegState(isKill))
1053 .addFrameIndex(FI)
1054 .addImm(0)
1055 .addMemOperand(MMO)
1056 .add(predOps(ARMCC::AL));
1057 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1058 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1059 .addReg(SrcReg, getKillRegState(isKill))
1060 .addFrameIndex(FI)
1061 .addImm(0)
1062 .addMemOperand(MMO)
1063 .add(predOps(ARMCC::AL));
1064 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1065 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1066 .addReg(SrcReg, getKillRegState(isKill))
1067 .addFrameIndex(FI)
1068 .addImm(0)
1069 .addMemOperand(MMO)
1070 .add(predOps(ARMCC::AL));
1071 } else
1072 llvm_unreachable("Unknown reg class!");
1073 break;
1074 case 8:
1075 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1076 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1077 .addReg(SrcReg, getKillRegState(isKill))
1078 .addFrameIndex(FI)
1079 .addImm(0)
1080 .addMemOperand(MMO)
1081 .add(predOps(ARMCC::AL));
1082 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1083 if (Subtarget.hasV5TEOps()) {
1084 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1085 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1086 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1087 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1088 .add(predOps(ARMCC::AL));
1089 } else {
1090 // Fallback to STM instruction, which has existed since the dawn of
1091 // time.
1092 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1093 .addFrameIndex(FI)
1094 .addMemOperand(MMO)
1095 .add(predOps(ARMCC::AL));
1096 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1097 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1098 }
1099 } else
1100 llvm_unreachable("Unknown reg class!");
1101 break;
1102 case 16:
1103 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1104 // Use aligned spills if the stack can be realigned.
1105 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1106 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1107 .addFrameIndex(FI)
1108 .addImm(16)
1109 .addReg(SrcReg, getKillRegState(isKill))
1110 .addMemOperand(MMO)
1111 .add(predOps(ARMCC::AL));
1112 } else {
1113 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1114 .addReg(SrcReg, getKillRegState(isKill))
1115 .addFrameIndex(FI)
1116 .addMemOperand(MMO)
1117 .add(predOps(ARMCC::AL));
1118 }
1119 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1120 Subtarget.hasMVEIntegerOps()) {
1121 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1122 MIB.addReg(SrcReg, getKillRegState(isKill))
1123 .addFrameIndex(FI)
1124 .addImm(0)
1125 .addMemOperand(MMO);
1126 addUnpredicatedMveVpredNOp(MIB);
1127 } else
1128 llvm_unreachable("Unknown reg class!");
1129 break;
1130 case 24:
1131 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1132 // Use aligned spills if the stack can be realigned.
1133 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1134 Subtarget.hasNEON()) {
1135 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1136 .addFrameIndex(FI)
1137 .addImm(16)
1138 .addReg(SrcReg, getKillRegState(isKill))
1139 .addMemOperand(MMO)
1140 .add(predOps(ARMCC::AL));
1141 } else {
1142 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1143 get(ARM::VSTMDIA))
1144 .addFrameIndex(FI)
1145 .add(predOps(ARMCC::AL))
1146 .addMemOperand(MMO);
1147 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1148 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1149 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1150 }
1151 } else
1152 llvm_unreachable("Unknown reg class!");
1153 break;
1154 case 32:
1155 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1156 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1157 Subtarget.hasNEON()) {
1158 // FIXME: It's possible to only store part of the QQ register if the
1159 // spilled def has a sub-register index.
1160 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1161 .addFrameIndex(FI)
1162 .addImm(16)
1163 .addReg(SrcReg, getKillRegState(isKill))
1164 .addMemOperand(MMO)
1165 .add(predOps(ARMCC::AL));
1166 } else {
1167 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1168 get(ARM::VSTMDIA))
1169 .addFrameIndex(FI)
1170 .add(predOps(ARMCC::AL))
1171 .addMemOperand(MMO);
1172 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1173 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1174 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1175 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1176 }
1177 } else
1178 llvm_unreachable("Unknown reg class!");
1179 break;
1180 case 64:
1181 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1182 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1183 .addFrameIndex(FI)
1184 .add(predOps(ARMCC::AL))
1185 .addMemOperand(MMO);
1186 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1187 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1188 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1189 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1190 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1191 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1192 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1193 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1194 } else
1195 llvm_unreachable("Unknown reg class!");
1196 break;
1197 default:
1198 llvm_unreachable("Unknown reg class!");
1199 }
1200 }
1201
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1202 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1203 int &FrameIndex) const {
1204 switch (MI.getOpcode()) {
1205 default: break;
1206 case ARM::STRrs:
1207 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1208 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1209 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1210 MI.getOperand(3).getImm() == 0) {
1211 FrameIndex = MI.getOperand(1).getIndex();
1212 return MI.getOperand(0).getReg();
1213 }
1214 break;
1215 case ARM::STRi12:
1216 case ARM::t2STRi12:
1217 case ARM::tSTRspi:
1218 case ARM::VSTRD:
1219 case ARM::VSTRS:
1220 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1221 MI.getOperand(2).getImm() == 0) {
1222 FrameIndex = MI.getOperand(1).getIndex();
1223 return MI.getOperand(0).getReg();
1224 }
1225 break;
1226 case ARM::VSTR_P0_off:
1227 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1228 MI.getOperand(1).getImm() == 0) {
1229 FrameIndex = MI.getOperand(0).getIndex();
1230 return ARM::P0;
1231 }
1232 break;
1233 case ARM::VST1q64:
1234 case ARM::VST1d64TPseudo:
1235 case ARM::VST1d64QPseudo:
1236 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1237 FrameIndex = MI.getOperand(0).getIndex();
1238 return MI.getOperand(2).getReg();
1239 }
1240 break;
1241 case ARM::VSTMQIA:
1242 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1243 FrameIndex = MI.getOperand(1).getIndex();
1244 return MI.getOperand(0).getReg();
1245 }
1246 break;
1247 }
1248
1249 return 0;
1250 }
1251
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1252 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1253 int &FrameIndex) const {
1254 SmallVector<const MachineMemOperand *, 1> Accesses;
1255 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1256 Accesses.size() == 1) {
1257 FrameIndex =
1258 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1259 ->getFrameIndex();
1260 return true;
1261 }
1262 return false;
1263 }
1264
1265 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1266 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1267 unsigned DestReg, int FI,
1268 const TargetRegisterClass *RC,
1269 const TargetRegisterInfo *TRI) const {
1270 DebugLoc DL;
1271 if (I != MBB.end()) DL = I->getDebugLoc();
1272 MachineFunction &MF = *MBB.getParent();
1273 MachineFrameInfo &MFI = MF.getFrameInfo();
1274 unsigned Align = MFI.getObjectAlignment(FI);
1275 MachineMemOperand *MMO = MF.getMachineMemOperand(
1276 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1277 MFI.getObjectSize(FI), Align);
1278
1279 switch (TRI->getSpillSize(*RC)) {
1280 case 2:
1281 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1282 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1283 .addFrameIndex(FI)
1284 .addImm(0)
1285 .addMemOperand(MMO)
1286 .add(predOps(ARMCC::AL));
1287 } else
1288 llvm_unreachable("Unknown reg class!");
1289 break;
1290 case 4:
1291 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1292 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1293 .addFrameIndex(FI)
1294 .addImm(0)
1295 .addMemOperand(MMO)
1296 .add(predOps(ARMCC::AL));
1297 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1298 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1299 .addFrameIndex(FI)
1300 .addImm(0)
1301 .addMemOperand(MMO)
1302 .add(predOps(ARMCC::AL));
1303 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1304 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1305 .addFrameIndex(FI)
1306 .addImm(0)
1307 .addMemOperand(MMO)
1308 .add(predOps(ARMCC::AL));
1309 } else
1310 llvm_unreachable("Unknown reg class!");
1311 break;
1312 case 8:
1313 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1314 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1315 .addFrameIndex(FI)
1316 .addImm(0)
1317 .addMemOperand(MMO)
1318 .add(predOps(ARMCC::AL));
1319 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1320 MachineInstrBuilder MIB;
1321
1322 if (Subtarget.hasV5TEOps()) {
1323 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1324 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1325 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1326 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1327 .add(predOps(ARMCC::AL));
1328 } else {
1329 // Fallback to LDM instruction, which has existed since the dawn of
1330 // time.
1331 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1332 .addFrameIndex(FI)
1333 .addMemOperand(MMO)
1334 .add(predOps(ARMCC::AL));
1335 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1336 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1337 }
1338
1339 if (Register::isPhysicalRegister(DestReg))
1340 MIB.addReg(DestReg, RegState::ImplicitDefine);
1341 } else
1342 llvm_unreachable("Unknown reg class!");
1343 break;
1344 case 16:
1345 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1346 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1347 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1348 .addFrameIndex(FI)
1349 .addImm(16)
1350 .addMemOperand(MMO)
1351 .add(predOps(ARMCC::AL));
1352 } else {
1353 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1354 .addFrameIndex(FI)
1355 .addMemOperand(MMO)
1356 .add(predOps(ARMCC::AL));
1357 }
1358 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1359 Subtarget.hasMVEIntegerOps()) {
1360 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1361 MIB.addFrameIndex(FI)
1362 .addImm(0)
1363 .addMemOperand(MMO);
1364 addUnpredicatedMveVpredNOp(MIB);
1365 } else
1366 llvm_unreachable("Unknown reg class!");
1367 break;
1368 case 24:
1369 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1370 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1371 Subtarget.hasNEON()) {
1372 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1373 .addFrameIndex(FI)
1374 .addImm(16)
1375 .addMemOperand(MMO)
1376 .add(predOps(ARMCC::AL));
1377 } else {
1378 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1379 .addFrameIndex(FI)
1380 .addMemOperand(MMO)
1381 .add(predOps(ARMCC::AL));
1382 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1383 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1384 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1385 if (Register::isPhysicalRegister(DestReg))
1386 MIB.addReg(DestReg, RegState::ImplicitDefine);
1387 }
1388 } else
1389 llvm_unreachable("Unknown reg class!");
1390 break;
1391 case 32:
1392 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1393 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1394 Subtarget.hasNEON()) {
1395 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1396 .addFrameIndex(FI)
1397 .addImm(16)
1398 .addMemOperand(MMO)
1399 .add(predOps(ARMCC::AL));
1400 } else {
1401 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1402 .addFrameIndex(FI)
1403 .add(predOps(ARMCC::AL))
1404 .addMemOperand(MMO);
1405 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1406 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1407 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1408 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1409 if (Register::isPhysicalRegister(DestReg))
1410 MIB.addReg(DestReg, RegState::ImplicitDefine);
1411 }
1412 } else
1413 llvm_unreachable("Unknown reg class!");
1414 break;
1415 case 64:
1416 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1417 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1418 .addFrameIndex(FI)
1419 .add(predOps(ARMCC::AL))
1420 .addMemOperand(MMO);
1421 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1422 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1423 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1424 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1425 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1426 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1427 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1428 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1429 if (Register::isPhysicalRegister(DestReg))
1430 MIB.addReg(DestReg, RegState::ImplicitDefine);
1431 } else
1432 llvm_unreachable("Unknown reg class!");
1433 break;
1434 default:
1435 llvm_unreachable("Unknown regclass!");
1436 }
1437 }
1438
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1439 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1440 int &FrameIndex) const {
1441 switch (MI.getOpcode()) {
1442 default: break;
1443 case ARM::LDRrs:
1444 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1445 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1446 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1447 MI.getOperand(3).getImm() == 0) {
1448 FrameIndex = MI.getOperand(1).getIndex();
1449 return MI.getOperand(0).getReg();
1450 }
1451 break;
1452 case ARM::LDRi12:
1453 case ARM::t2LDRi12:
1454 case ARM::tLDRspi:
1455 case ARM::VLDRD:
1456 case ARM::VLDRS:
1457 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1458 MI.getOperand(2).getImm() == 0) {
1459 FrameIndex = MI.getOperand(1).getIndex();
1460 return MI.getOperand(0).getReg();
1461 }
1462 break;
1463 case ARM::VLDR_P0_off:
1464 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1465 MI.getOperand(1).getImm() == 0) {
1466 FrameIndex = MI.getOperand(0).getIndex();
1467 return ARM::P0;
1468 }
1469 break;
1470 case ARM::VLD1q64:
1471 case ARM::VLD1d8TPseudo:
1472 case ARM::VLD1d16TPseudo:
1473 case ARM::VLD1d32TPseudo:
1474 case ARM::VLD1d64TPseudo:
1475 case ARM::VLD1d8QPseudo:
1476 case ARM::VLD1d16QPseudo:
1477 case ARM::VLD1d32QPseudo:
1478 case ARM::VLD1d64QPseudo:
1479 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1480 FrameIndex = MI.getOperand(1).getIndex();
1481 return MI.getOperand(0).getReg();
1482 }
1483 break;
1484 case ARM::VLDMQIA:
1485 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1486 FrameIndex = MI.getOperand(1).getIndex();
1487 return MI.getOperand(0).getReg();
1488 }
1489 break;
1490 }
1491
1492 return 0;
1493 }
1494
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1495 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1496 int &FrameIndex) const {
1497 SmallVector<const MachineMemOperand *, 1> Accesses;
1498 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1499 Accesses.size() == 1) {
1500 FrameIndex =
1501 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1502 ->getFrameIndex();
1503 return true;
1504 }
1505 return false;
1506 }
1507
1508 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1509 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1510 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1511 bool isThumb1 = Subtarget.isThumb1Only();
1512 bool isThumb2 = Subtarget.isThumb2();
1513 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1514
1515 DebugLoc dl = MI->getDebugLoc();
1516 MachineBasicBlock *BB = MI->getParent();
1517
1518 MachineInstrBuilder LDM, STM;
1519 if (isThumb1 || !MI->getOperand(1).isDead()) {
1520 MachineOperand LDWb(MI->getOperand(1));
1521 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1522 : isThumb1 ? ARM::tLDMIA_UPD
1523 : ARM::LDMIA_UPD))
1524 .add(LDWb);
1525 } else {
1526 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1527 }
1528
1529 if (isThumb1 || !MI->getOperand(0).isDead()) {
1530 MachineOperand STWb(MI->getOperand(0));
1531 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1532 : isThumb1 ? ARM::tSTMIA_UPD
1533 : ARM::STMIA_UPD))
1534 .add(STWb);
1535 } else {
1536 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1537 }
1538
1539 MachineOperand LDBase(MI->getOperand(3));
1540 LDM.add(LDBase).add(predOps(ARMCC::AL));
1541
1542 MachineOperand STBase(MI->getOperand(2));
1543 STM.add(STBase).add(predOps(ARMCC::AL));
1544
1545 // Sort the scratch registers into ascending order.
1546 const TargetRegisterInfo &TRI = getRegisterInfo();
1547 SmallVector<unsigned, 6> ScratchRegs;
1548 for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1549 ScratchRegs.push_back(MI->getOperand(I).getReg());
1550 llvm::sort(ScratchRegs,
1551 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1552 return TRI.getEncodingValue(Reg1) <
1553 TRI.getEncodingValue(Reg2);
1554 });
1555
1556 for (const auto &Reg : ScratchRegs) {
1557 LDM.addReg(Reg, RegState::Define);
1558 STM.addReg(Reg, RegState::Kill);
1559 }
1560
1561 BB->erase(MI);
1562 }
1563
expandPostRAPseudo(MachineInstr & MI) const1564 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1565 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1566 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1567 "LOAD_STACK_GUARD currently supported only for MachO.");
1568 expandLoadStackGuard(MI);
1569 MI.getParent()->erase(MI);
1570 return true;
1571 }
1572
1573 if (MI.getOpcode() == ARM::MEMCPY) {
1574 expandMEMCPY(MI);
1575 return true;
1576 }
1577
1578 // This hook gets to expand COPY instructions before they become
1579 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1580 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1581 // changed into a VORR that can go down the NEON pipeline.
1582 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1583 return false;
1584
1585 // Look for a copy between even S-registers. That is where we keep floats
1586 // when using NEON v2f32 instructions for f32 arithmetic.
1587 Register DstRegS = MI.getOperand(0).getReg();
1588 Register SrcRegS = MI.getOperand(1).getReg();
1589 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1590 return false;
1591
1592 const TargetRegisterInfo *TRI = &getRegisterInfo();
1593 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1594 &ARM::DPRRegClass);
1595 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1596 &ARM::DPRRegClass);
1597 if (!DstRegD || !SrcRegD)
1598 return false;
1599
1600 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1601 // legal if the COPY already defines the full DstRegD, and it isn't a
1602 // sub-register insertion.
1603 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1604 return false;
1605
1606 // A dead copy shouldn't show up here, but reject it just in case.
1607 if (MI.getOperand(0).isDead())
1608 return false;
1609
1610 // All clear, widen the COPY.
1611 LLVM_DEBUG(dbgs() << "widening: " << MI);
1612 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1613
1614 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1615 // or some other super-register.
1616 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1617 if (ImpDefIdx != -1)
1618 MI.RemoveOperand(ImpDefIdx);
1619
1620 // Change the opcode and operands.
1621 MI.setDesc(get(ARM::VMOVD));
1622 MI.getOperand(0).setReg(DstRegD);
1623 MI.getOperand(1).setReg(SrcRegD);
1624 MIB.add(predOps(ARMCC::AL));
1625
1626 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1627 // register scavenger and machine verifier, so we need to indicate that we
1628 // are reading an undefined value from SrcRegD, but a proper value from
1629 // SrcRegS.
1630 MI.getOperand(1).setIsUndef();
1631 MIB.addReg(SrcRegS, RegState::Implicit);
1632
1633 // SrcRegD may actually contain an unrelated value in the ssub_1
1634 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1635 if (MI.getOperand(1).isKill()) {
1636 MI.getOperand(1).setIsKill(false);
1637 MI.addRegisterKilled(SrcRegS, TRI, true);
1638 }
1639
1640 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1641 return true;
1642 }
1643
1644 /// Create a copy of a const pool value. Update CPI to the new index and return
1645 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1646 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1647 MachineConstantPool *MCP = MF.getConstantPool();
1648 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1649
1650 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1651 assert(MCPE.isMachineConstantPoolEntry() &&
1652 "Expecting a machine constantpool entry!");
1653 ARMConstantPoolValue *ACPV =
1654 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1655
1656 unsigned PCLabelId = AFI->createPICLabelUId();
1657 ARMConstantPoolValue *NewCPV = nullptr;
1658
1659 // FIXME: The below assumes PIC relocation model and that the function
1660 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1661 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1662 // instructions, so that's probably OK, but is PIC always correct when
1663 // we get here?
1664 if (ACPV->isGlobalValue())
1665 NewCPV = ARMConstantPoolConstant::Create(
1666 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1667 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1668 else if (ACPV->isExtSymbol())
1669 NewCPV = ARMConstantPoolSymbol::
1670 Create(MF.getFunction().getContext(),
1671 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1672 else if (ACPV->isBlockAddress())
1673 NewCPV = ARMConstantPoolConstant::
1674 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1675 ARMCP::CPBlockAddress, 4);
1676 else if (ACPV->isLSDA())
1677 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1678 ARMCP::CPLSDA, 4);
1679 else if (ACPV->isMachineBasicBlock())
1680 NewCPV = ARMConstantPoolMBB::
1681 Create(MF.getFunction().getContext(),
1682 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1683 else
1684 llvm_unreachable("Unexpected ARM constantpool value type!!");
1685 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1686 return PCLabelId;
1687 }
1688
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1689 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1690 MachineBasicBlock::iterator I,
1691 unsigned DestReg, unsigned SubIdx,
1692 const MachineInstr &Orig,
1693 const TargetRegisterInfo &TRI) const {
1694 unsigned Opcode = Orig.getOpcode();
1695 switch (Opcode) {
1696 default: {
1697 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1698 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1699 MBB.insert(I, MI);
1700 break;
1701 }
1702 case ARM::tLDRpci_pic:
1703 case ARM::t2LDRpci_pic: {
1704 MachineFunction &MF = *MBB.getParent();
1705 unsigned CPI = Orig.getOperand(1).getIndex();
1706 unsigned PCLabelId = duplicateCPV(MF, CPI);
1707 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1708 .addConstantPoolIndex(CPI)
1709 .addImm(PCLabelId)
1710 .cloneMemRefs(Orig);
1711 break;
1712 }
1713 }
1714 }
1715
1716 MachineInstr &
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const1717 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1718 MachineBasicBlock::iterator InsertBefore,
1719 const MachineInstr &Orig) const {
1720 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1721 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1722 for (;;) {
1723 switch (I->getOpcode()) {
1724 case ARM::tLDRpci_pic:
1725 case ARM::t2LDRpci_pic: {
1726 MachineFunction &MF = *MBB.getParent();
1727 unsigned CPI = I->getOperand(1).getIndex();
1728 unsigned PCLabelId = duplicateCPV(MF, CPI);
1729 I->getOperand(1).setIndex(CPI);
1730 I->getOperand(2).setImm(PCLabelId);
1731 break;
1732 }
1733 }
1734 if (!I->isBundledWithSucc())
1735 break;
1736 ++I;
1737 }
1738 return Cloned;
1739 }
1740
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1741 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1742 const MachineInstr &MI1,
1743 const MachineRegisterInfo *MRI) const {
1744 unsigned Opcode = MI0.getOpcode();
1745 if (Opcode == ARM::t2LDRpci ||
1746 Opcode == ARM::t2LDRpci_pic ||
1747 Opcode == ARM::tLDRpci ||
1748 Opcode == ARM::tLDRpci_pic ||
1749 Opcode == ARM::LDRLIT_ga_pcrel ||
1750 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1751 Opcode == ARM::tLDRLIT_ga_pcrel ||
1752 Opcode == ARM::MOV_ga_pcrel ||
1753 Opcode == ARM::MOV_ga_pcrel_ldr ||
1754 Opcode == ARM::t2MOV_ga_pcrel) {
1755 if (MI1.getOpcode() != Opcode)
1756 return false;
1757 if (MI0.getNumOperands() != MI1.getNumOperands())
1758 return false;
1759
1760 const MachineOperand &MO0 = MI0.getOperand(1);
1761 const MachineOperand &MO1 = MI1.getOperand(1);
1762 if (MO0.getOffset() != MO1.getOffset())
1763 return false;
1764
1765 if (Opcode == ARM::LDRLIT_ga_pcrel ||
1766 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1767 Opcode == ARM::tLDRLIT_ga_pcrel ||
1768 Opcode == ARM::MOV_ga_pcrel ||
1769 Opcode == ARM::MOV_ga_pcrel_ldr ||
1770 Opcode == ARM::t2MOV_ga_pcrel)
1771 // Ignore the PC labels.
1772 return MO0.getGlobal() == MO1.getGlobal();
1773
1774 const MachineFunction *MF = MI0.getParent()->getParent();
1775 const MachineConstantPool *MCP = MF->getConstantPool();
1776 int CPI0 = MO0.getIndex();
1777 int CPI1 = MO1.getIndex();
1778 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1779 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1780 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1781 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1782 if (isARMCP0 && isARMCP1) {
1783 ARMConstantPoolValue *ACPV0 =
1784 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1785 ARMConstantPoolValue *ACPV1 =
1786 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1787 return ACPV0->hasSameValue(ACPV1);
1788 } else if (!isARMCP0 && !isARMCP1) {
1789 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1790 }
1791 return false;
1792 } else if (Opcode == ARM::PICLDR) {
1793 if (MI1.getOpcode() != Opcode)
1794 return false;
1795 if (MI0.getNumOperands() != MI1.getNumOperands())
1796 return false;
1797
1798 Register Addr0 = MI0.getOperand(1).getReg();
1799 Register Addr1 = MI1.getOperand(1).getReg();
1800 if (Addr0 != Addr1) {
1801 if (!MRI || !Register::isVirtualRegister(Addr0) ||
1802 !Register::isVirtualRegister(Addr1))
1803 return false;
1804
1805 // This assumes SSA form.
1806 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1807 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1808 // Check if the loaded value, e.g. a constantpool of a global address, are
1809 // the same.
1810 if (!produceSameValue(*Def0, *Def1, MRI))
1811 return false;
1812 }
1813
1814 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1815 // %12 = PICLDR %11, 0, 14, %noreg
1816 const MachineOperand &MO0 = MI0.getOperand(i);
1817 const MachineOperand &MO1 = MI1.getOperand(i);
1818 if (!MO0.isIdenticalTo(MO1))
1819 return false;
1820 }
1821 return true;
1822 }
1823
1824 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1825 }
1826
1827 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1828 /// determine if two loads are loading from the same base address. It should
1829 /// only return true if the base pointers are the same and the only differences
1830 /// between the two addresses is the offset. It also returns the offsets by
1831 /// reference.
1832 ///
1833 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1834 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1835 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1836 int64_t &Offset1,
1837 int64_t &Offset2) const {
1838 // Don't worry about Thumb: just ARM and Thumb2.
1839 if (Subtarget.isThumb1Only()) return false;
1840
1841 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1842 return false;
1843
1844 switch (Load1->getMachineOpcode()) {
1845 default:
1846 return false;
1847 case ARM::LDRi12:
1848 case ARM::LDRBi12:
1849 case ARM::LDRD:
1850 case ARM::LDRH:
1851 case ARM::LDRSB:
1852 case ARM::LDRSH:
1853 case ARM::VLDRD:
1854 case ARM::VLDRS:
1855 case ARM::t2LDRi8:
1856 case ARM::t2LDRBi8:
1857 case ARM::t2LDRDi8:
1858 case ARM::t2LDRSHi8:
1859 case ARM::t2LDRi12:
1860 case ARM::t2LDRBi12:
1861 case ARM::t2LDRSHi12:
1862 break;
1863 }
1864
1865 switch (Load2->getMachineOpcode()) {
1866 default:
1867 return false;
1868 case ARM::LDRi12:
1869 case ARM::LDRBi12:
1870 case ARM::LDRD:
1871 case ARM::LDRH:
1872 case ARM::LDRSB:
1873 case ARM::LDRSH:
1874 case ARM::VLDRD:
1875 case ARM::VLDRS:
1876 case ARM::t2LDRi8:
1877 case ARM::t2LDRBi8:
1878 case ARM::t2LDRSHi8:
1879 case ARM::t2LDRi12:
1880 case ARM::t2LDRBi12:
1881 case ARM::t2LDRSHi12:
1882 break;
1883 }
1884
1885 // Check if base addresses and chain operands match.
1886 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1887 Load1->getOperand(4) != Load2->getOperand(4))
1888 return false;
1889
1890 // Index should be Reg0.
1891 if (Load1->getOperand(3) != Load2->getOperand(3))
1892 return false;
1893
1894 // Determine the offsets.
1895 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1896 isa<ConstantSDNode>(Load2->getOperand(1))) {
1897 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1898 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1899 return true;
1900 }
1901
1902 return false;
1903 }
1904
1905 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1906 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1907 /// be scheduled togther. On some targets if two loads are loading from
1908 /// addresses in the same cache line, it's better if they are scheduled
1909 /// together. This function takes two integers that represent the load offsets
1910 /// from the common base address. It returns true if it decides it's desirable
1911 /// to schedule the two loads together. "NumLoads" is the number of loads that
1912 /// have already been scheduled after Load1.
1913 ///
1914 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1915 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1916 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1917 int64_t Offset1, int64_t Offset2,
1918 unsigned NumLoads) const {
1919 // Don't worry about Thumb: just ARM and Thumb2.
1920 if (Subtarget.isThumb1Only()) return false;
1921
1922 assert(Offset2 > Offset1);
1923
1924 if ((Offset2 - Offset1) / 8 > 64)
1925 return false;
1926
1927 // Check if the machine opcodes are different. If they are different
1928 // then we consider them to not be of the same base address,
1929 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1930 // In this case, they are considered to be the same because they are different
1931 // encoding forms of the same basic instruction.
1932 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1933 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1934 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1935 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1936 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1937 return false; // FIXME: overly conservative?
1938
1939 // Four loads in a row should be sufficient.
1940 if (NumLoads >= 3)
1941 return false;
1942
1943 return true;
1944 }
1945
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1946 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1947 const MachineBasicBlock *MBB,
1948 const MachineFunction &MF) const {
1949 // Debug info is never a scheduling boundary. It's necessary to be explicit
1950 // due to the special treatment of IT instructions below, otherwise a
1951 // dbg_value followed by an IT will result in the IT instruction being
1952 // considered a scheduling hazard, which is wrong. It should be the actual
1953 // instruction preceding the dbg_value instruction(s), just like it is
1954 // when debug info is not present.
1955 if (MI.isDebugInstr())
1956 return false;
1957
1958 // Terminators and labels can't be scheduled around.
1959 if (MI.isTerminator() || MI.isPosition())
1960 return true;
1961
1962 // Treat the start of the IT block as a scheduling boundary, but schedule
1963 // t2IT along with all instructions following it.
1964 // FIXME: This is a big hammer. But the alternative is to add all potential
1965 // true and anti dependencies to IT block instructions as implicit operands
1966 // to the t2IT instruction. The added compile time and complexity does not
1967 // seem worth it.
1968 MachineBasicBlock::const_iterator I = MI;
1969 // Make sure to skip any debug instructions
1970 while (++I != MBB->end() && I->isDebugInstr())
1971 ;
1972 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1973 return true;
1974
1975 // Don't attempt to schedule around any instruction that defines
1976 // a stack-oriented pointer, as it's unlikely to be profitable. This
1977 // saves compile time, because it doesn't require every single
1978 // stack slot reference to depend on the instruction that does the
1979 // modification.
1980 // Calls don't actually change the stack pointer, even if they have imp-defs.
1981 // No ARM calling conventions change the stack pointer. (X86 calling
1982 // conventions sometimes do).
1983 if (!MI.isCall() && MI.definesRegister(ARM::SP))
1984 return true;
1985
1986 return false;
1987 }
1988
1989 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const1990 isProfitableToIfCvt(MachineBasicBlock &MBB,
1991 unsigned NumCycles, unsigned ExtraPredCycles,
1992 BranchProbability Probability) const {
1993 if (!NumCycles)
1994 return false;
1995
1996 // If we are optimizing for size, see if the branch in the predecessor can be
1997 // lowered to cbn?z by the constant island lowering pass, and return false if
1998 // so. This results in a shorter instruction sequence.
1999 if (MBB.getParent()->getFunction().hasOptSize()) {
2000 MachineBasicBlock *Pred = *MBB.pred_begin();
2001 if (!Pred->empty()) {
2002 MachineInstr *LastMI = &*Pred->rbegin();
2003 if (LastMI->getOpcode() == ARM::t2Bcc) {
2004 const TargetRegisterInfo *TRI = &getRegisterInfo();
2005 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2006 if (CmpMI)
2007 return false;
2008 }
2009 }
2010 }
2011 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2012 MBB, 0, 0, Probability);
2013 }
2014
2015 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const2016 isProfitableToIfCvt(MachineBasicBlock &TBB,
2017 unsigned TCycles, unsigned TExtra,
2018 MachineBasicBlock &FBB,
2019 unsigned FCycles, unsigned FExtra,
2020 BranchProbability Probability) const {
2021 if (!TCycles)
2022 return false;
2023
2024 // In thumb code we often end up trading one branch for a IT block, and
2025 // if we are cloning the instruction can increase code size. Prevent
2026 // blocks with multiple predecesors from being ifcvted to prevent this
2027 // cloning.
2028 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2029 if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2030 return false;
2031 }
2032
2033 // Attempt to estimate the relative costs of predication versus branching.
2034 // Here we scale up each component of UnpredCost to avoid precision issue when
2035 // scaling TCycles/FCycles by Probability.
2036 const unsigned ScalingUpFactor = 1024;
2037
2038 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2039 unsigned UnpredCost;
2040 if (!Subtarget.hasBranchPredictor()) {
2041 // When we don't have a branch predictor it's always cheaper to not take a
2042 // branch than take it, so we have to take that into account.
2043 unsigned NotTakenBranchCost = 1;
2044 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2045 unsigned TUnpredCycles, FUnpredCycles;
2046 if (!FCycles) {
2047 // Triangle: TBB is the fallthrough
2048 TUnpredCycles = TCycles + NotTakenBranchCost;
2049 FUnpredCycles = TakenBranchCost;
2050 } else {
2051 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2052 TUnpredCycles = TCycles + TakenBranchCost;
2053 FUnpredCycles = FCycles + NotTakenBranchCost;
2054 // The branch at the end of FBB will disappear when it's predicated, so
2055 // discount it from PredCost.
2056 PredCost -= 1 * ScalingUpFactor;
2057 }
2058 // The total cost is the cost of each path scaled by their probabilites
2059 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2060 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2061 UnpredCost = TUnpredCost + FUnpredCost;
2062 // When predicating assume that the first IT can be folded away but later
2063 // ones cost one cycle each
2064 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2065 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2066 }
2067 } else {
2068 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2069 unsigned FUnpredCost =
2070 Probability.getCompl().scale(FCycles * ScalingUpFactor);
2071 UnpredCost = TUnpredCost + FUnpredCost;
2072 UnpredCost += 1 * ScalingUpFactor; // The branch itself
2073 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2074 }
2075
2076 return PredCost <= UnpredCost;
2077 }
2078
2079 unsigned
extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts) const2080 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2081 unsigned NumInsts) const {
2082 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2083 // ARM has a condition code field in every predicable instruction, using it
2084 // doesn't change code size.
2085 return Subtarget.isThumb2() ? divideCeil(NumInsts, 4) * 2 : 0;
2086 }
2087
2088 unsigned
predictBranchSizeForIfCvt(MachineInstr & MI) const2089 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2090 // If this branch is likely to be folded into the comparison to form a
2091 // CB(N)Z, then removing it won't reduce code size at all, because that will
2092 // just replace the CB(N)Z with a CMP.
2093 if (MI.getOpcode() == ARM::t2Bcc &&
2094 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2095 return 0;
2096
2097 unsigned Size = getInstSizeInBytes(MI);
2098
2099 // For Thumb2, all branches are 32-bit instructions during the if conversion
2100 // pass, but may be replaced with 16-bit instructions during size reduction.
2101 // Since the branches considered by if conversion tend to be forward branches
2102 // over small basic blocks, they are very likely to be in range for the
2103 // narrow instructions, so we assume the final code size will be half what it
2104 // currently is.
2105 if (Subtarget.isThumb2())
2106 Size /= 2;
2107
2108 return Size;
2109 }
2110
2111 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const2112 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2113 MachineBasicBlock &FMBB) const {
2114 // Reduce false anti-dependencies to let the target's out-of-order execution
2115 // engine do its thing.
2116 return Subtarget.isProfitableToUnpredicate();
2117 }
2118
2119 /// getInstrPredicate - If instruction is predicated, returns its predicate
2120 /// condition, otherwise returns AL. It also returns the condition code
2121 /// register by reference.
getInstrPredicate(const MachineInstr & MI,unsigned & PredReg)2122 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2123 unsigned &PredReg) {
2124 int PIdx = MI.findFirstPredOperandIdx();
2125 if (PIdx == -1) {
2126 PredReg = 0;
2127 return ARMCC::AL;
2128 }
2129
2130 PredReg = MI.getOperand(PIdx+1).getReg();
2131 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2132 }
2133
getMatchingCondBranchOpcode(unsigned Opc)2134 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2135 if (Opc == ARM::B)
2136 return ARM::Bcc;
2137 if (Opc == ARM::tB)
2138 return ARM::tBcc;
2139 if (Opc == ARM::t2B)
2140 return ARM::t2Bcc;
2141
2142 llvm_unreachable("Unknown unconditional branch opcode!");
2143 }
2144
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2145 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2146 bool NewMI,
2147 unsigned OpIdx1,
2148 unsigned OpIdx2) const {
2149 switch (MI.getOpcode()) {
2150 case ARM::MOVCCr:
2151 case ARM::t2MOVCCr: {
2152 // MOVCC can be commuted by inverting the condition.
2153 unsigned PredReg = 0;
2154 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2155 // MOVCC AL can't be inverted. Shouldn't happen.
2156 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2157 return nullptr;
2158 MachineInstr *CommutedMI =
2159 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2160 if (!CommutedMI)
2161 return nullptr;
2162 // After swapping the MOVCC operands, also invert the condition.
2163 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2164 .setImm(ARMCC::getOppositeCondition(CC));
2165 return CommutedMI;
2166 }
2167 }
2168 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2169 }
2170
2171 /// Identify instructions that can be folded into a MOVCC instruction, and
2172 /// return the defining instruction.
2173 MachineInstr *
canFoldIntoMOVCC(unsigned Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII) const2174 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI,
2175 const TargetInstrInfo *TII) const {
2176 if (!Register::isVirtualRegister(Reg))
2177 return nullptr;
2178 if (!MRI.hasOneNonDBGUse(Reg))
2179 return nullptr;
2180 MachineInstr *MI = MRI.getVRegDef(Reg);
2181 if (!MI)
2182 return nullptr;
2183 // Check if MI can be predicated and folded into the MOVCC.
2184 if (!isPredicable(*MI))
2185 return nullptr;
2186 // Check if MI has any non-dead defs or physreg uses. This also detects
2187 // predicated instructions which will be reading CPSR.
2188 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2189 const MachineOperand &MO = MI->getOperand(i);
2190 // Reject frame index operands, PEI can't handle the predicated pseudos.
2191 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2192 return nullptr;
2193 if (!MO.isReg())
2194 continue;
2195 // MI can't have any tied operands, that would conflict with predication.
2196 if (MO.isTied())
2197 return nullptr;
2198 if (Register::isPhysicalRegister(MO.getReg()))
2199 return nullptr;
2200 if (MO.isDef() && !MO.isDead())
2201 return nullptr;
2202 }
2203 bool DontMoveAcrossStores = true;
2204 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2205 return nullptr;
2206 return MI;
2207 }
2208
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const2209 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2210 SmallVectorImpl<MachineOperand> &Cond,
2211 unsigned &TrueOp, unsigned &FalseOp,
2212 bool &Optimizable) const {
2213 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2214 "Unknown select instruction");
2215 // MOVCC operands:
2216 // 0: Def.
2217 // 1: True use.
2218 // 2: False use.
2219 // 3: Condition code.
2220 // 4: CPSR use.
2221 TrueOp = 1;
2222 FalseOp = 2;
2223 Cond.push_back(MI.getOperand(3));
2224 Cond.push_back(MI.getOperand(4));
2225 // We can always fold a def.
2226 Optimizable = true;
2227 return false;
2228 }
2229
2230 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const2231 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2232 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2233 bool PreferFalse) const {
2234 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2235 "Unknown select instruction");
2236 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2237 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2238 bool Invert = !DefMI;
2239 if (!DefMI)
2240 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2241 if (!DefMI)
2242 return nullptr;
2243
2244 // Find new register class to use.
2245 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2246 Register DestReg = MI.getOperand(0).getReg();
2247 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2248 if (!MRI.constrainRegClass(DestReg, PreviousClass))
2249 return nullptr;
2250
2251 // Create a new predicated version of DefMI.
2252 // Rfalse is the first use.
2253 MachineInstrBuilder NewMI =
2254 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2255
2256 // Copy all the DefMI operands, excluding its (null) predicate.
2257 const MCInstrDesc &DefDesc = DefMI->getDesc();
2258 for (unsigned i = 1, e = DefDesc.getNumOperands();
2259 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2260 NewMI.add(DefMI->getOperand(i));
2261
2262 unsigned CondCode = MI.getOperand(3).getImm();
2263 if (Invert)
2264 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2265 else
2266 NewMI.addImm(CondCode);
2267 NewMI.add(MI.getOperand(4));
2268
2269 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2270 if (NewMI->hasOptionalDef())
2271 NewMI.add(condCodeOp());
2272
2273 // The output register value when the predicate is false is an implicit
2274 // register operand tied to the first def.
2275 // The tie makes the register allocator ensure the FalseReg is allocated the
2276 // same register as operand 0.
2277 FalseReg.setImplicit();
2278 NewMI.add(FalseReg);
2279 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2280
2281 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2282 SeenMIs.insert(NewMI);
2283 SeenMIs.erase(DefMI);
2284
2285 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2286 // DefMI would be invalid when tranferred inside the loop. Checking for a
2287 // loop is expensive, but at least remove kill flags if they are in different
2288 // BBs.
2289 if (DefMI->getParent() != MI.getParent())
2290 NewMI->clearKillInfo();
2291
2292 // The caller will erase MI, but not DefMI.
2293 DefMI->eraseFromParent();
2294 return NewMI;
2295 }
2296
2297 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2298 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2299 /// def operand.
2300 ///
2301 /// This will go away once we can teach tblgen how to set the optional CPSR def
2302 /// operand itself.
2303 struct AddSubFlagsOpcodePair {
2304 uint16_t PseudoOpc;
2305 uint16_t MachineOpc;
2306 };
2307
2308 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2309 {ARM::ADDSri, ARM::ADDri},
2310 {ARM::ADDSrr, ARM::ADDrr},
2311 {ARM::ADDSrsi, ARM::ADDrsi},
2312 {ARM::ADDSrsr, ARM::ADDrsr},
2313
2314 {ARM::SUBSri, ARM::SUBri},
2315 {ARM::SUBSrr, ARM::SUBrr},
2316 {ARM::SUBSrsi, ARM::SUBrsi},
2317 {ARM::SUBSrsr, ARM::SUBrsr},
2318
2319 {ARM::RSBSri, ARM::RSBri},
2320 {ARM::RSBSrsi, ARM::RSBrsi},
2321 {ARM::RSBSrsr, ARM::RSBrsr},
2322
2323 {ARM::tADDSi3, ARM::tADDi3},
2324 {ARM::tADDSi8, ARM::tADDi8},
2325 {ARM::tADDSrr, ARM::tADDrr},
2326 {ARM::tADCS, ARM::tADC},
2327
2328 {ARM::tSUBSi3, ARM::tSUBi3},
2329 {ARM::tSUBSi8, ARM::tSUBi8},
2330 {ARM::tSUBSrr, ARM::tSUBrr},
2331 {ARM::tSBCS, ARM::tSBC},
2332 {ARM::tRSBS, ARM::tRSB},
2333 {ARM::tLSLSri, ARM::tLSLri},
2334
2335 {ARM::t2ADDSri, ARM::t2ADDri},
2336 {ARM::t2ADDSrr, ARM::t2ADDrr},
2337 {ARM::t2ADDSrs, ARM::t2ADDrs},
2338
2339 {ARM::t2SUBSri, ARM::t2SUBri},
2340 {ARM::t2SUBSrr, ARM::t2SUBrr},
2341 {ARM::t2SUBSrs, ARM::t2SUBrs},
2342
2343 {ARM::t2RSBSri, ARM::t2RSBri},
2344 {ARM::t2RSBSrs, ARM::t2RSBrs},
2345 };
2346
convertAddSubFlagsOpcode(unsigned OldOpc)2347 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2348 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2349 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2350 return AddSubFlagsOpcodeMap[i].MachineOpc;
2351 return 0;
2352 }
2353
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,unsigned DestReg,unsigned BaseReg,int NumBytes,ARMCC::CondCodes Pred,unsigned PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)2354 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2355 MachineBasicBlock::iterator &MBBI,
2356 const DebugLoc &dl, unsigned DestReg,
2357 unsigned BaseReg, int NumBytes,
2358 ARMCC::CondCodes Pred, unsigned PredReg,
2359 const ARMBaseInstrInfo &TII,
2360 unsigned MIFlags) {
2361 if (NumBytes == 0 && DestReg != BaseReg) {
2362 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2363 .addReg(BaseReg, RegState::Kill)
2364 .add(predOps(Pred, PredReg))
2365 .add(condCodeOp())
2366 .setMIFlags(MIFlags);
2367 return;
2368 }
2369
2370 bool isSub = NumBytes < 0;
2371 if (isSub) NumBytes = -NumBytes;
2372
2373 while (NumBytes) {
2374 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2375 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2376 assert(ThisVal && "Didn't extract field correctly");
2377
2378 // We will handle these bits from offset, clear them.
2379 NumBytes &= ~ThisVal;
2380
2381 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2382
2383 // Build the new ADD / SUB.
2384 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2385 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2386 .addReg(BaseReg, RegState::Kill)
2387 .addImm(ThisVal)
2388 .add(predOps(Pred, PredReg))
2389 .add(condCodeOp())
2390 .setMIFlags(MIFlags);
2391 BaseReg = DestReg;
2392 }
2393 }
2394
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2395 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2396 MachineFunction &MF, MachineInstr *MI,
2397 unsigned NumBytes) {
2398 // This optimisation potentially adds lots of load and store
2399 // micro-operations, it's only really a great benefit to code-size.
2400 if (!Subtarget.hasMinSize())
2401 return false;
2402
2403 // If only one register is pushed/popped, LLVM can use an LDR/STR
2404 // instead. We can't modify those so make sure we're dealing with an
2405 // instruction we understand.
2406 bool IsPop = isPopOpcode(MI->getOpcode());
2407 bool IsPush = isPushOpcode(MI->getOpcode());
2408 if (!IsPush && !IsPop)
2409 return false;
2410
2411 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2412 MI->getOpcode() == ARM::VLDMDIA_UPD;
2413 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2414 MI->getOpcode() == ARM::tPOP ||
2415 MI->getOpcode() == ARM::tPOP_RET;
2416
2417 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2418 MI->getOperand(1).getReg() == ARM::SP)) &&
2419 "trying to fold sp update into non-sp-updating push/pop");
2420
2421 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2422 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2423 // if this is violated.
2424 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2425 return false;
2426
2427 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2428 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2429 int RegListIdx = IsT1PushPop ? 2 : 4;
2430
2431 // Calculate the space we'll need in terms of registers.
2432 unsigned RegsNeeded;
2433 const TargetRegisterClass *RegClass;
2434 if (IsVFPPushPop) {
2435 RegsNeeded = NumBytes / 8;
2436 RegClass = &ARM::DPRRegClass;
2437 } else {
2438 RegsNeeded = NumBytes / 4;
2439 RegClass = &ARM::GPRRegClass;
2440 }
2441
2442 // We're going to have to strip all list operands off before
2443 // re-adding them since the order matters, so save the existing ones
2444 // for later.
2445 SmallVector<MachineOperand, 4> RegList;
2446
2447 // We're also going to need the first register transferred by this
2448 // instruction, which won't necessarily be the first register in the list.
2449 unsigned FirstRegEnc = -1;
2450
2451 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2452 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2453 MachineOperand &MO = MI->getOperand(i);
2454 RegList.push_back(MO);
2455
2456 if (MO.isReg() && !MO.isImplicit() &&
2457 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2458 FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2459 }
2460
2461 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2462
2463 // Now try to find enough space in the reglist to allocate NumBytes.
2464 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2465 --CurRegEnc) {
2466 unsigned CurReg = RegClass->getRegister(CurRegEnc);
2467 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2468 continue;
2469 if (!IsPop) {
2470 // Pushing any register is completely harmless, mark the register involved
2471 // as undef since we don't care about its value and must not restore it
2472 // during stack unwinding.
2473 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2474 false, false, true));
2475 --RegsNeeded;
2476 continue;
2477 }
2478
2479 // However, we can only pop an extra register if it's not live. For
2480 // registers live within the function we might clobber a return value
2481 // register; the other way a register can be live here is if it's
2482 // callee-saved.
2483 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2484 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2485 MachineBasicBlock::LQR_Dead) {
2486 // VFP pops don't allow holes in the register list, so any skip is fatal
2487 // for our transformation. GPR pops do, so we should just keep looking.
2488 if (IsVFPPushPop)
2489 return false;
2490 else
2491 continue;
2492 }
2493
2494 // Mark the unimportant registers as <def,dead> in the POP.
2495 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2496 true));
2497 --RegsNeeded;
2498 }
2499
2500 if (RegsNeeded > 0)
2501 return false;
2502
2503 // Finally we know we can profitably perform the optimisation so go
2504 // ahead: strip all existing registers off and add them back again
2505 // in the right order.
2506 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2507 MI->RemoveOperand(i);
2508
2509 // Add the complete list back in.
2510 MachineInstrBuilder MIB(MF, &*MI);
2511 for (int i = RegList.size() - 1; i >= 0; --i)
2512 MIB.add(RegList[i]);
2513
2514 return true;
2515 }
2516
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2517 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2518 unsigned FrameReg, int &Offset,
2519 const ARMBaseInstrInfo &TII) {
2520 unsigned Opcode = MI.getOpcode();
2521 const MCInstrDesc &Desc = MI.getDesc();
2522 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2523 bool isSub = false;
2524
2525 // Memory operands in inline assembly always use AddrMode2.
2526 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2527 AddrMode = ARMII::AddrMode2;
2528
2529 if (Opcode == ARM::ADDri) {
2530 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2531 if (Offset == 0) {
2532 // Turn it into a move.
2533 MI.setDesc(TII.get(ARM::MOVr));
2534 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2535 MI.RemoveOperand(FrameRegIdx+1);
2536 Offset = 0;
2537 return true;
2538 } else if (Offset < 0) {
2539 Offset = -Offset;
2540 isSub = true;
2541 MI.setDesc(TII.get(ARM::SUBri));
2542 }
2543
2544 // Common case: small offset, fits into instruction.
2545 if (ARM_AM::getSOImmVal(Offset) != -1) {
2546 // Replace the FrameIndex with sp / fp
2547 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2548 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2549 Offset = 0;
2550 return true;
2551 }
2552
2553 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2554 // as possible.
2555 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2556 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2557
2558 // We will handle these bits from offset, clear them.
2559 Offset &= ~ThisImmVal;
2560
2561 // Get the properly encoded SOImmVal field.
2562 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2563 "Bit extraction didn't work?");
2564 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2565 } else {
2566 unsigned ImmIdx = 0;
2567 int InstrOffs = 0;
2568 unsigned NumBits = 0;
2569 unsigned Scale = 1;
2570 switch (AddrMode) {
2571 case ARMII::AddrMode_i12:
2572 ImmIdx = FrameRegIdx + 1;
2573 InstrOffs = MI.getOperand(ImmIdx).getImm();
2574 NumBits = 12;
2575 break;
2576 case ARMII::AddrMode2:
2577 ImmIdx = FrameRegIdx+2;
2578 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2579 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2580 InstrOffs *= -1;
2581 NumBits = 12;
2582 break;
2583 case ARMII::AddrMode3:
2584 ImmIdx = FrameRegIdx+2;
2585 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2586 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2587 InstrOffs *= -1;
2588 NumBits = 8;
2589 break;
2590 case ARMII::AddrMode4:
2591 case ARMII::AddrMode6:
2592 // Can't fold any offset even if it's zero.
2593 return false;
2594 case ARMII::AddrMode5:
2595 ImmIdx = FrameRegIdx+1;
2596 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2597 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2598 InstrOffs *= -1;
2599 NumBits = 8;
2600 Scale = 4;
2601 break;
2602 case ARMII::AddrMode5FP16:
2603 ImmIdx = FrameRegIdx+1;
2604 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2605 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2606 InstrOffs *= -1;
2607 NumBits = 8;
2608 Scale = 2;
2609 break;
2610 case ARMII::AddrModeT2_i7:
2611 case ARMII::AddrModeT2_i7s2:
2612 case ARMII::AddrModeT2_i7s4:
2613 ImmIdx = FrameRegIdx+1;
2614 InstrOffs = MI.getOperand(ImmIdx).getImm();
2615 NumBits = 7;
2616 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2617 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2618 break;
2619 default:
2620 llvm_unreachable("Unsupported addressing mode!");
2621 }
2622
2623 Offset += InstrOffs * Scale;
2624 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2625 if (Offset < 0) {
2626 Offset = -Offset;
2627 isSub = true;
2628 }
2629
2630 // Attempt to fold address comp. if opcode has offset bits
2631 if (NumBits > 0) {
2632 // Common case: small offset, fits into instruction.
2633 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2634 int ImmedOffset = Offset / Scale;
2635 unsigned Mask = (1 << NumBits) - 1;
2636 if ((unsigned)Offset <= Mask * Scale) {
2637 // Replace the FrameIndex with sp
2638 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2639 // FIXME: When addrmode2 goes away, this will simplify (like the
2640 // T2 version), as the LDR.i12 versions don't need the encoding
2641 // tricks for the offset value.
2642 if (isSub) {
2643 if (AddrMode == ARMII::AddrMode_i12)
2644 ImmedOffset = -ImmedOffset;
2645 else
2646 ImmedOffset |= 1 << NumBits;
2647 }
2648 ImmOp.ChangeToImmediate(ImmedOffset);
2649 Offset = 0;
2650 return true;
2651 }
2652
2653 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2654 ImmedOffset = ImmedOffset & Mask;
2655 if (isSub) {
2656 if (AddrMode == ARMII::AddrMode_i12)
2657 ImmedOffset = -ImmedOffset;
2658 else
2659 ImmedOffset |= 1 << NumBits;
2660 }
2661 ImmOp.ChangeToImmediate(ImmedOffset);
2662 Offset &= ~(Mask*Scale);
2663 }
2664 }
2665
2666 Offset = (isSub) ? -Offset : Offset;
2667 return Offset == 0;
2668 }
2669
2670 /// analyzeCompare - For a comparison instruction, return the source registers
2671 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2672 /// compares against in CmpValue. Return true if the comparison instruction
2673 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const2674 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2675 unsigned &SrcReg2, int &CmpMask,
2676 int &CmpValue) const {
2677 switch (MI.getOpcode()) {
2678 default: break;
2679 case ARM::CMPri:
2680 case ARM::t2CMPri:
2681 case ARM::tCMPi8:
2682 SrcReg = MI.getOperand(0).getReg();
2683 SrcReg2 = 0;
2684 CmpMask = ~0;
2685 CmpValue = MI.getOperand(1).getImm();
2686 return true;
2687 case ARM::CMPrr:
2688 case ARM::t2CMPrr:
2689 case ARM::tCMPr:
2690 SrcReg = MI.getOperand(0).getReg();
2691 SrcReg2 = MI.getOperand(1).getReg();
2692 CmpMask = ~0;
2693 CmpValue = 0;
2694 return true;
2695 case ARM::TSTri:
2696 case ARM::t2TSTri:
2697 SrcReg = MI.getOperand(0).getReg();
2698 SrcReg2 = 0;
2699 CmpMask = MI.getOperand(1).getImm();
2700 CmpValue = 0;
2701 return true;
2702 }
2703
2704 return false;
2705 }
2706
2707 /// isSuitableForMask - Identify a suitable 'and' instruction that
2708 /// operates on the given source register and applies the same mask
2709 /// as a 'tst' instruction. Provide a limited look-through for copies.
2710 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,unsigned SrcReg,int CmpMask,bool CommonUse)2711 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2712 int CmpMask, bool CommonUse) {
2713 switch (MI->getOpcode()) {
2714 case ARM::ANDri:
2715 case ARM::t2ANDri:
2716 if (CmpMask != MI->getOperand(2).getImm())
2717 return false;
2718 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2719 return true;
2720 break;
2721 }
2722
2723 return false;
2724 }
2725
2726 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2727 /// the condition code if we modify the instructions such that flags are
2728 /// set by ADD(a,b,X).
getCmpToAddCondition(ARMCC::CondCodes CC)2729 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2730 switch (CC) {
2731 default: return ARMCC::AL;
2732 case ARMCC::HS: return ARMCC::LO;
2733 case ARMCC::LO: return ARMCC::HS;
2734 case ARMCC::VS: return ARMCC::VS;
2735 case ARMCC::VC: return ARMCC::VC;
2736 }
2737 }
2738
2739 /// isRedundantFlagInstr - check whether the first instruction, whose only
2740 /// purpose is to update flags, can be made redundant.
2741 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2742 /// CMPri can be made redundant by SUBri if the operands are the same.
2743 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2744 /// This function can be extended later on.
isRedundantFlagInstr(const MachineInstr * CmpI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,const MachineInstr * OI,bool & IsThumb1)2745 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2746 unsigned SrcReg, unsigned SrcReg2,
2747 int ImmValue, const MachineInstr *OI,
2748 bool &IsThumb1) {
2749 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2750 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2751 ((OI->getOperand(1).getReg() == SrcReg &&
2752 OI->getOperand(2).getReg() == SrcReg2) ||
2753 (OI->getOperand(1).getReg() == SrcReg2 &&
2754 OI->getOperand(2).getReg() == SrcReg))) {
2755 IsThumb1 = false;
2756 return true;
2757 }
2758
2759 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2760 ((OI->getOperand(2).getReg() == SrcReg &&
2761 OI->getOperand(3).getReg() == SrcReg2) ||
2762 (OI->getOperand(2).getReg() == SrcReg2 &&
2763 OI->getOperand(3).getReg() == SrcReg))) {
2764 IsThumb1 = true;
2765 return true;
2766 }
2767
2768 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2769 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2770 OI->getOperand(1).getReg() == SrcReg &&
2771 OI->getOperand(2).getImm() == ImmValue) {
2772 IsThumb1 = false;
2773 return true;
2774 }
2775
2776 if (CmpI->getOpcode() == ARM::tCMPi8 &&
2777 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2778 OI->getOperand(2).getReg() == SrcReg &&
2779 OI->getOperand(3).getImm() == ImmValue) {
2780 IsThumb1 = true;
2781 return true;
2782 }
2783
2784 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2785 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2786 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2787 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2788 OI->getOperand(0).getReg() == SrcReg &&
2789 OI->getOperand(1).getReg() == SrcReg2) {
2790 IsThumb1 = false;
2791 return true;
2792 }
2793
2794 if (CmpI->getOpcode() == ARM::tCMPr &&
2795 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2796 OI->getOpcode() == ARM::tADDrr) &&
2797 OI->getOperand(0).getReg() == SrcReg &&
2798 OI->getOperand(2).getReg() == SrcReg2) {
2799 IsThumb1 = true;
2800 return true;
2801 }
2802
2803 return false;
2804 }
2805
isOptimizeCompareCandidate(MachineInstr * MI,bool & IsThumb1)2806 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2807 switch (MI->getOpcode()) {
2808 default: return false;
2809 case ARM::tLSLri:
2810 case ARM::tLSRri:
2811 case ARM::tLSLrr:
2812 case ARM::tLSRrr:
2813 case ARM::tSUBrr:
2814 case ARM::tADDrr:
2815 case ARM::tADDi3:
2816 case ARM::tADDi8:
2817 case ARM::tSUBi3:
2818 case ARM::tSUBi8:
2819 case ARM::tMUL:
2820 case ARM::tADC:
2821 case ARM::tSBC:
2822 case ARM::tRSB:
2823 case ARM::tAND:
2824 case ARM::tORR:
2825 case ARM::tEOR:
2826 case ARM::tBIC:
2827 case ARM::tMVN:
2828 case ARM::tASRri:
2829 case ARM::tASRrr:
2830 case ARM::tROR:
2831 IsThumb1 = true;
2832 LLVM_FALLTHROUGH;
2833 case ARM::RSBrr:
2834 case ARM::RSBri:
2835 case ARM::RSCrr:
2836 case ARM::RSCri:
2837 case ARM::ADDrr:
2838 case ARM::ADDri:
2839 case ARM::ADCrr:
2840 case ARM::ADCri:
2841 case ARM::SUBrr:
2842 case ARM::SUBri:
2843 case ARM::SBCrr:
2844 case ARM::SBCri:
2845 case ARM::t2RSBri:
2846 case ARM::t2ADDrr:
2847 case ARM::t2ADDri:
2848 case ARM::t2ADCrr:
2849 case ARM::t2ADCri:
2850 case ARM::t2SUBrr:
2851 case ARM::t2SUBri:
2852 case ARM::t2SBCrr:
2853 case ARM::t2SBCri:
2854 case ARM::ANDrr:
2855 case ARM::ANDri:
2856 case ARM::t2ANDrr:
2857 case ARM::t2ANDri:
2858 case ARM::ORRrr:
2859 case ARM::ORRri:
2860 case ARM::t2ORRrr:
2861 case ARM::t2ORRri:
2862 case ARM::EORrr:
2863 case ARM::EORri:
2864 case ARM::t2EORrr:
2865 case ARM::t2EORri:
2866 case ARM::t2LSRri:
2867 case ARM::t2LSRrr:
2868 case ARM::t2LSLri:
2869 case ARM::t2LSLrr:
2870 return true;
2871 }
2872 }
2873
2874 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2875 /// comparison into one that sets the zero bit in the flags register;
2876 /// Remove a redundant Compare instruction if an earlier instruction can set the
2877 /// flags in the same way as Compare.
2878 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2879 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2880 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2881 bool ARMBaseInstrInfo::optimizeCompareInstr(
2882 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2883 int CmpValue, const MachineRegisterInfo *MRI) const {
2884 // Get the unique definition of SrcReg.
2885 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2886 if (!MI) return false;
2887
2888 // Masked compares sometimes use the same register as the corresponding 'and'.
2889 if (CmpMask != ~0) {
2890 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2891 MI = nullptr;
2892 for (MachineRegisterInfo::use_instr_iterator
2893 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2894 UI != UE; ++UI) {
2895 if (UI->getParent() != CmpInstr.getParent())
2896 continue;
2897 MachineInstr *PotentialAND = &*UI;
2898 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2899 isPredicated(*PotentialAND))
2900 continue;
2901 MI = PotentialAND;
2902 break;
2903 }
2904 if (!MI) return false;
2905 }
2906 }
2907
2908 // Get ready to iterate backward from CmpInstr.
2909 MachineBasicBlock::iterator I = CmpInstr, E = MI,
2910 B = CmpInstr.getParent()->begin();
2911
2912 // Early exit if CmpInstr is at the beginning of the BB.
2913 if (I == B) return false;
2914
2915 // There are two possible candidates which can be changed to set CPSR:
2916 // One is MI, the other is a SUB or ADD instruction.
2917 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2918 // ADDr[ri](r1, r2, X).
2919 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2920 MachineInstr *SubAdd = nullptr;
2921 if (SrcReg2 != 0)
2922 // MI is not a candidate for CMPrr.
2923 MI = nullptr;
2924 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2925 // Conservatively refuse to convert an instruction which isn't in the same
2926 // BB as the comparison.
2927 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2928 // Thus we cannot return here.
2929 if (CmpInstr.getOpcode() == ARM::CMPri ||
2930 CmpInstr.getOpcode() == ARM::t2CMPri ||
2931 CmpInstr.getOpcode() == ARM::tCMPi8)
2932 MI = nullptr;
2933 else
2934 return false;
2935 }
2936
2937 bool IsThumb1 = false;
2938 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2939 return false;
2940
2941 // We also want to do this peephole for cases like this: if (a*b == 0),
2942 // and optimise away the CMP instruction from the generated code sequence:
2943 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2944 // resulting from the select instruction, but these MOVS instructions for
2945 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2946 // However, if we only have MOVS instructions in between the CMP and the
2947 // other instruction (the MULS in this example), then the CPSR is dead so we
2948 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2949 // reordering and then continue the analysis hoping we can eliminate the
2950 // CMP. This peephole works on the vregs, so is still in SSA form. As a
2951 // consequence, the movs won't redefine/kill the MUL operands which would
2952 // make this reordering illegal.
2953 const TargetRegisterInfo *TRI = &getRegisterInfo();
2954 if (MI && IsThumb1) {
2955 --I;
2956 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
2957 bool CanReorder = true;
2958 for (; I != E; --I) {
2959 if (I->getOpcode() != ARM::tMOVi8) {
2960 CanReorder = false;
2961 break;
2962 }
2963 }
2964 if (CanReorder) {
2965 MI = MI->removeFromParent();
2966 E = CmpInstr;
2967 CmpInstr.getParent()->insert(E, MI);
2968 }
2969 }
2970 I = CmpInstr;
2971 E = MI;
2972 }
2973
2974 // Check that CPSR isn't set between the comparison instruction and the one we
2975 // want to change. At the same time, search for SubAdd.
2976 bool SubAddIsThumb1 = false;
2977 do {
2978 const MachineInstr &Instr = *--I;
2979
2980 // Check whether CmpInstr can be made redundant by the current instruction.
2981 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
2982 SubAddIsThumb1)) {
2983 SubAdd = &*I;
2984 break;
2985 }
2986
2987 // Allow E (which was initially MI) to be SubAdd but do not search before E.
2988 if (I == E)
2989 break;
2990
2991 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2992 Instr.readsRegister(ARM::CPSR, TRI))
2993 // This instruction modifies or uses CPSR after the one we want to
2994 // change. We can't do this transformation.
2995 return false;
2996
2997 if (I == B) {
2998 // In some cases, we scan the use-list of an instruction for an AND;
2999 // that AND is in the same BB, but may not be scheduled before the
3000 // corresponding TST. In that case, bail out.
3001 //
3002 // FIXME: We could try to reschedule the AND.
3003 return false;
3004 }
3005 } while (true);
3006
3007 // Return false if no candidates exist.
3008 if (!MI && !SubAdd)
3009 return false;
3010
3011 // If we found a SubAdd, use it as it will be closer to the CMP
3012 if (SubAdd) {
3013 MI = SubAdd;
3014 IsThumb1 = SubAddIsThumb1;
3015 }
3016
3017 // We can't use a predicated instruction - it doesn't always write the flags.
3018 if (isPredicated(*MI))
3019 return false;
3020
3021 // Scan forward for the use of CPSR
3022 // When checking against MI: if it's a conditional code that requires
3023 // checking of the V bit or C bit, then this is not safe to do.
3024 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3025 // If we are done with the basic block, we need to check whether CPSR is
3026 // live-out.
3027 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3028 OperandsToUpdate;
3029 bool isSafe = false;
3030 I = CmpInstr;
3031 E = CmpInstr.getParent()->end();
3032 while (!isSafe && ++I != E) {
3033 const MachineInstr &Instr = *I;
3034 for (unsigned IO = 0, EO = Instr.getNumOperands();
3035 !isSafe && IO != EO; ++IO) {
3036 const MachineOperand &MO = Instr.getOperand(IO);
3037 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3038 isSafe = true;
3039 break;
3040 }
3041 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3042 continue;
3043 if (MO.isDef()) {
3044 isSafe = true;
3045 break;
3046 }
3047 // Condition code is after the operand before CPSR except for VSELs.
3048 ARMCC::CondCodes CC;
3049 bool IsInstrVSel = true;
3050 switch (Instr.getOpcode()) {
3051 default:
3052 IsInstrVSel = false;
3053 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3054 break;
3055 case ARM::VSELEQD:
3056 case ARM::VSELEQS:
3057 case ARM::VSELEQH:
3058 CC = ARMCC::EQ;
3059 break;
3060 case ARM::VSELGTD:
3061 case ARM::VSELGTS:
3062 case ARM::VSELGTH:
3063 CC = ARMCC::GT;
3064 break;
3065 case ARM::VSELGED:
3066 case ARM::VSELGES:
3067 case ARM::VSELGEH:
3068 CC = ARMCC::GE;
3069 break;
3070 case ARM::VSELVSD:
3071 case ARM::VSELVSS:
3072 case ARM::VSELVSH:
3073 CC = ARMCC::VS;
3074 break;
3075 }
3076
3077 if (SubAdd) {
3078 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3079 // on CMP needs to be updated to be based on SUB.
3080 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3081 // needs to be modified.
3082 // Push the condition code operands to OperandsToUpdate.
3083 // If it is safe to remove CmpInstr, the condition code of these
3084 // operands will be modified.
3085 unsigned Opc = SubAdd->getOpcode();
3086 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3087 Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3088 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3089 Opc == ARM::tSUBi8;
3090 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3091 if (!IsSub ||
3092 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3093 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3094 // VSel doesn't support condition code update.
3095 if (IsInstrVSel)
3096 return false;
3097 // Ensure we can swap the condition.
3098 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3099 if (NewCC == ARMCC::AL)
3100 return false;
3101 OperandsToUpdate.push_back(
3102 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3103 }
3104 } else {
3105 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3106 switch (CC) {
3107 case ARMCC::EQ: // Z
3108 case ARMCC::NE: // Z
3109 case ARMCC::MI: // N
3110 case ARMCC::PL: // N
3111 case ARMCC::AL: // none
3112 // CPSR can be used multiple times, we should continue.
3113 break;
3114 case ARMCC::HS: // C
3115 case ARMCC::LO: // C
3116 case ARMCC::VS: // V
3117 case ARMCC::VC: // V
3118 case ARMCC::HI: // C Z
3119 case ARMCC::LS: // C Z
3120 case ARMCC::GE: // N V
3121 case ARMCC::LT: // N V
3122 case ARMCC::GT: // Z N V
3123 case ARMCC::LE: // Z N V
3124 // The instruction uses the V bit or C bit which is not safe.
3125 return false;
3126 }
3127 }
3128 }
3129 }
3130
3131 // If CPSR is not killed nor re-defined, we should check whether it is
3132 // live-out. If it is live-out, do not optimize.
3133 if (!isSafe) {
3134 MachineBasicBlock *MBB = CmpInstr.getParent();
3135 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3136 SE = MBB->succ_end(); SI != SE; ++SI)
3137 if ((*SI)->isLiveIn(ARM::CPSR))
3138 return false;
3139 }
3140
3141 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3142 // set CPSR so this is represented as an explicit output)
3143 if (!IsThumb1) {
3144 MI->getOperand(5).setReg(ARM::CPSR);
3145 MI->getOperand(5).setIsDef(true);
3146 }
3147 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3148 CmpInstr.eraseFromParent();
3149
3150 // Modify the condition code of operands in OperandsToUpdate.
3151 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3152 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3153 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3154 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3155
3156 MI->clearRegisterDeads(ARM::CPSR);
3157
3158 return true;
3159 }
3160
shouldSink(const MachineInstr & MI) const3161 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3162 // Do not sink MI if it might be used to optimize a redundant compare.
3163 // We heuristically only look at the instruction immediately following MI to
3164 // avoid potentially searching the entire basic block.
3165 if (isPredicated(MI))
3166 return true;
3167 MachineBasicBlock::const_iterator Next = &MI;
3168 ++Next;
3169 unsigned SrcReg, SrcReg2;
3170 int CmpMask, CmpValue;
3171 bool IsThumb1;
3172 if (Next != MI.getParent()->end() &&
3173 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3174 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3175 return false;
3176 return true;
3177 }
3178
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const3179 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3180 unsigned Reg,
3181 MachineRegisterInfo *MRI) const {
3182 // Fold large immediates into add, sub, or, xor.
3183 unsigned DefOpc = DefMI.getOpcode();
3184 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3185 return false;
3186 if (!DefMI.getOperand(1).isImm())
3187 // Could be t2MOVi32imm @xx
3188 return false;
3189
3190 if (!MRI->hasOneNonDBGUse(Reg))
3191 return false;
3192
3193 const MCInstrDesc &DefMCID = DefMI.getDesc();
3194 if (DefMCID.hasOptionalDef()) {
3195 unsigned NumOps = DefMCID.getNumOperands();
3196 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3197 if (MO.getReg() == ARM::CPSR && !MO.isDead())
3198 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3199 // to delete DefMI.
3200 return false;
3201 }
3202
3203 const MCInstrDesc &UseMCID = UseMI.getDesc();
3204 if (UseMCID.hasOptionalDef()) {
3205 unsigned NumOps = UseMCID.getNumOperands();
3206 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3207 // If the instruction sets the flag, do not attempt this optimization
3208 // since it may change the semantics of the code.
3209 return false;
3210 }
3211
3212 unsigned UseOpc = UseMI.getOpcode();
3213 unsigned NewUseOpc = 0;
3214 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3215 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3216 bool Commute = false;
3217 switch (UseOpc) {
3218 default: return false;
3219 case ARM::SUBrr:
3220 case ARM::ADDrr:
3221 case ARM::ORRrr:
3222 case ARM::EORrr:
3223 case ARM::t2SUBrr:
3224 case ARM::t2ADDrr:
3225 case ARM::t2ORRrr:
3226 case ARM::t2EORrr: {
3227 Commute = UseMI.getOperand(2).getReg() != Reg;
3228 switch (UseOpc) {
3229 default: break;
3230 case ARM::ADDrr:
3231 case ARM::SUBrr:
3232 if (UseOpc == ARM::SUBrr && Commute)
3233 return false;
3234
3235 // ADD/SUB are special because they're essentially the same operation, so
3236 // we can handle a larger range of immediates.
3237 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3238 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3239 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3240 ImmVal = -ImmVal;
3241 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3242 } else
3243 return false;
3244 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3245 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3246 break;
3247 case ARM::ORRrr:
3248 case ARM::EORrr:
3249 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3250 return false;
3251 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3252 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3253 switch (UseOpc) {
3254 default: break;
3255 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3256 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3257 }
3258 break;
3259 case ARM::t2ADDrr:
3260 case ARM::t2SUBrr: {
3261 if (UseOpc == ARM::t2SUBrr && Commute)
3262 return false;
3263
3264 // ADD/SUB are special because they're essentially the same operation, so
3265 // we can handle a larger range of immediates.
3266 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3267 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3268 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3269 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3270 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3271 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3272 ImmVal = -ImmVal;
3273 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3274 } else
3275 return false;
3276 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3277 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3278 break;
3279 }
3280 case ARM::t2ORRrr:
3281 case ARM::t2EORrr:
3282 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3283 return false;
3284 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3285 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3286 switch (UseOpc) {
3287 default: break;
3288 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3289 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3290 }
3291 break;
3292 }
3293 }
3294 }
3295
3296 unsigned OpIdx = Commute ? 2 : 1;
3297 Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3298 bool isKill = UseMI.getOperand(OpIdx).isKill();
3299 const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3300 Register NewReg = MRI->createVirtualRegister(TRC);
3301 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3302 NewReg)
3303 .addReg(Reg1, getKillRegState(isKill))
3304 .addImm(SOImmValV1)
3305 .add(predOps(ARMCC::AL))
3306 .add(condCodeOp());
3307 UseMI.setDesc(get(NewUseOpc));
3308 UseMI.getOperand(1).setReg(NewReg);
3309 UseMI.getOperand(1).setIsKill();
3310 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3311 DefMI.eraseFromParent();
3312 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3313 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3314 // Then the below code will not be needed, as the input/output register
3315 // classes will be rgpr or gprSP.
3316 // For now, we fix the UseMI operand explicitly here:
3317 switch(NewUseOpc){
3318 case ARM::t2ADDspImm:
3319 case ARM::t2SUBspImm:
3320 case ARM::t2ADDri:
3321 case ARM::t2SUBri:
3322 MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC);
3323 }
3324 return true;
3325 }
3326
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)3327 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3328 const MachineInstr &MI) {
3329 switch (MI.getOpcode()) {
3330 default: {
3331 const MCInstrDesc &Desc = MI.getDesc();
3332 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3333 assert(UOps >= 0 && "bad # UOps");
3334 return UOps;
3335 }
3336
3337 case ARM::LDRrs:
3338 case ARM::LDRBrs:
3339 case ARM::STRrs:
3340 case ARM::STRBrs: {
3341 unsigned ShOpVal = MI.getOperand(3).getImm();
3342 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3343 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3344 if (!isSub &&
3345 (ShImm == 0 ||
3346 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3347 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3348 return 1;
3349 return 2;
3350 }
3351
3352 case ARM::LDRH:
3353 case ARM::STRH: {
3354 if (!MI.getOperand(2).getReg())
3355 return 1;
3356
3357 unsigned ShOpVal = MI.getOperand(3).getImm();
3358 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3359 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3360 if (!isSub &&
3361 (ShImm == 0 ||
3362 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3363 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3364 return 1;
3365 return 2;
3366 }
3367
3368 case ARM::LDRSB:
3369 case ARM::LDRSH:
3370 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3371
3372 case ARM::LDRSB_POST:
3373 case ARM::LDRSH_POST: {
3374 Register Rt = MI.getOperand(0).getReg();
3375 Register Rm = MI.getOperand(3).getReg();
3376 return (Rt == Rm) ? 4 : 3;
3377 }
3378
3379 case ARM::LDR_PRE_REG:
3380 case ARM::LDRB_PRE_REG: {
3381 Register Rt = MI.getOperand(0).getReg();
3382 Register Rm = MI.getOperand(3).getReg();
3383 if (Rt == Rm)
3384 return 3;
3385 unsigned ShOpVal = MI.getOperand(4).getImm();
3386 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3387 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3388 if (!isSub &&
3389 (ShImm == 0 ||
3390 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3391 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3392 return 2;
3393 return 3;
3394 }
3395
3396 case ARM::STR_PRE_REG:
3397 case ARM::STRB_PRE_REG: {
3398 unsigned ShOpVal = MI.getOperand(4).getImm();
3399 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3400 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3401 if (!isSub &&
3402 (ShImm == 0 ||
3403 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3404 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3405 return 2;
3406 return 3;
3407 }
3408
3409 case ARM::LDRH_PRE:
3410 case ARM::STRH_PRE: {
3411 Register Rt = MI.getOperand(0).getReg();
3412 Register Rm = MI.getOperand(3).getReg();
3413 if (!Rm)
3414 return 2;
3415 if (Rt == Rm)
3416 return 3;
3417 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3418 }
3419
3420 case ARM::LDR_POST_REG:
3421 case ARM::LDRB_POST_REG:
3422 case ARM::LDRH_POST: {
3423 Register Rt = MI.getOperand(0).getReg();
3424 Register Rm = MI.getOperand(3).getReg();
3425 return (Rt == Rm) ? 3 : 2;
3426 }
3427
3428 case ARM::LDR_PRE_IMM:
3429 case ARM::LDRB_PRE_IMM:
3430 case ARM::LDR_POST_IMM:
3431 case ARM::LDRB_POST_IMM:
3432 case ARM::STRB_POST_IMM:
3433 case ARM::STRB_POST_REG:
3434 case ARM::STRB_PRE_IMM:
3435 case ARM::STRH_POST:
3436 case ARM::STR_POST_IMM:
3437 case ARM::STR_POST_REG:
3438 case ARM::STR_PRE_IMM:
3439 return 2;
3440
3441 case ARM::LDRSB_PRE:
3442 case ARM::LDRSH_PRE: {
3443 Register Rm = MI.getOperand(3).getReg();
3444 if (Rm == 0)
3445 return 3;
3446 Register Rt = MI.getOperand(0).getReg();
3447 if (Rt == Rm)
3448 return 4;
3449 unsigned ShOpVal = MI.getOperand(4).getImm();
3450 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3451 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3452 if (!isSub &&
3453 (ShImm == 0 ||
3454 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3455 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3456 return 3;
3457 return 4;
3458 }
3459
3460 case ARM::LDRD: {
3461 Register Rt = MI.getOperand(0).getReg();
3462 Register Rn = MI.getOperand(2).getReg();
3463 Register Rm = MI.getOperand(3).getReg();
3464 if (Rm)
3465 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3466 : 3;
3467 return (Rt == Rn) ? 3 : 2;
3468 }
3469
3470 case ARM::STRD: {
3471 Register Rm = MI.getOperand(3).getReg();
3472 if (Rm)
3473 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3474 : 3;
3475 return 2;
3476 }
3477
3478 case ARM::LDRD_POST:
3479 case ARM::t2LDRD_POST:
3480 return 3;
3481
3482 case ARM::STRD_POST:
3483 case ARM::t2STRD_POST:
3484 return 4;
3485
3486 case ARM::LDRD_PRE: {
3487 Register Rt = MI.getOperand(0).getReg();
3488 Register Rn = MI.getOperand(3).getReg();
3489 Register Rm = MI.getOperand(4).getReg();
3490 if (Rm)
3491 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3492 : 4;
3493 return (Rt == Rn) ? 4 : 3;
3494 }
3495
3496 case ARM::t2LDRD_PRE: {
3497 Register Rt = MI.getOperand(0).getReg();
3498 Register Rn = MI.getOperand(3).getReg();
3499 return (Rt == Rn) ? 4 : 3;
3500 }
3501
3502 case ARM::STRD_PRE: {
3503 Register Rm = MI.getOperand(4).getReg();
3504 if (Rm)
3505 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3506 : 4;
3507 return 3;
3508 }
3509
3510 case ARM::t2STRD_PRE:
3511 return 3;
3512
3513 case ARM::t2LDR_POST:
3514 case ARM::t2LDRB_POST:
3515 case ARM::t2LDRB_PRE:
3516 case ARM::t2LDRSBi12:
3517 case ARM::t2LDRSBi8:
3518 case ARM::t2LDRSBpci:
3519 case ARM::t2LDRSBs:
3520 case ARM::t2LDRH_POST:
3521 case ARM::t2LDRH_PRE:
3522 case ARM::t2LDRSBT:
3523 case ARM::t2LDRSB_POST:
3524 case ARM::t2LDRSB_PRE:
3525 case ARM::t2LDRSH_POST:
3526 case ARM::t2LDRSH_PRE:
3527 case ARM::t2LDRSHi12:
3528 case ARM::t2LDRSHi8:
3529 case ARM::t2LDRSHpci:
3530 case ARM::t2LDRSHs:
3531 return 2;
3532
3533 case ARM::t2LDRDi8: {
3534 Register Rt = MI.getOperand(0).getReg();
3535 Register Rn = MI.getOperand(2).getReg();
3536 return (Rt == Rn) ? 3 : 2;
3537 }
3538
3539 case ARM::t2STRB_POST:
3540 case ARM::t2STRB_PRE:
3541 case ARM::t2STRBs:
3542 case ARM::t2STRDi8:
3543 case ARM::t2STRH_POST:
3544 case ARM::t2STRH_PRE:
3545 case ARM::t2STRHs:
3546 case ARM::t2STR_POST:
3547 case ARM::t2STR_PRE:
3548 case ARM::t2STRs:
3549 return 2;
3550 }
3551 }
3552
3553 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3554 // can't be easily determined return 0 (missing MachineMemOperand).
3555 //
3556 // FIXME: The current MachineInstr design does not support relying on machine
3557 // mem operands to determine the width of a memory access. Instead, we expect
3558 // the target to provide this information based on the instruction opcode and
3559 // operands. However, using MachineMemOperand is the best solution now for
3560 // two reasons:
3561 //
3562 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3563 // operands. This is much more dangerous than using the MachineMemOperand
3564 // sizes because CodeGen passes can insert/remove optional machine operands. In
3565 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3566 // postRA passes as well.
3567 //
3568 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3569 // machine model that calls this should handle the unknown (zero size) case.
3570 //
3571 // Long term, we should require a target hook that verifies MachineMemOperand
3572 // sizes during MC lowering. That target hook should be local to MC lowering
3573 // because we can't ensure that it is aware of other MI forms. Doing this will
3574 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3575 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3576 unsigned Size = 0;
3577 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3578 E = MI.memoperands_end();
3579 I != E; ++I) {
3580 Size += (*I)->getSize();
3581 }
3582 // FIXME: The scheduler currently can't handle values larger than 16. But
3583 // the values can actually go up to 32 for floating-point load/store
3584 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3585 // operations isn't right; we could end up with "extra" memory operands for
3586 // various reasons, like tail merge merging two memory operations.
3587 return std::min(Size / 4, 16U);
3588 }
3589
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3590 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3591 unsigned NumRegs) {
3592 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3593 switch (Opc) {
3594 default:
3595 break;
3596 case ARM::VLDMDIA_UPD:
3597 case ARM::VLDMDDB_UPD:
3598 case ARM::VLDMSIA_UPD:
3599 case ARM::VLDMSDB_UPD:
3600 case ARM::VSTMDIA_UPD:
3601 case ARM::VSTMDDB_UPD:
3602 case ARM::VSTMSIA_UPD:
3603 case ARM::VSTMSDB_UPD:
3604 case ARM::LDMIA_UPD:
3605 case ARM::LDMDA_UPD:
3606 case ARM::LDMDB_UPD:
3607 case ARM::LDMIB_UPD:
3608 case ARM::STMIA_UPD:
3609 case ARM::STMDA_UPD:
3610 case ARM::STMDB_UPD:
3611 case ARM::STMIB_UPD:
3612 case ARM::tLDMIA_UPD:
3613 case ARM::tSTMIA_UPD:
3614 case ARM::t2LDMIA_UPD:
3615 case ARM::t2LDMDB_UPD:
3616 case ARM::t2STMIA_UPD:
3617 case ARM::t2STMDB_UPD:
3618 ++UOps; // One for base register writeback.
3619 break;
3620 case ARM::LDMIA_RET:
3621 case ARM::tPOP_RET:
3622 case ARM::t2LDMIA_RET:
3623 UOps += 2; // One for base reg wb, one for write to pc.
3624 break;
3625 }
3626 return UOps;
3627 }
3628
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3629 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3630 const MachineInstr &MI) const {
3631 if (!ItinData || ItinData->isEmpty())
3632 return 1;
3633
3634 const MCInstrDesc &Desc = MI.getDesc();
3635 unsigned Class = Desc.getSchedClass();
3636 int ItinUOps = ItinData->getNumMicroOps(Class);
3637 if (ItinUOps >= 0) {
3638 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3639 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3640
3641 return ItinUOps;
3642 }
3643
3644 unsigned Opc = MI.getOpcode();
3645 switch (Opc) {
3646 default:
3647 llvm_unreachable("Unexpected multi-uops instruction!");
3648 case ARM::VLDMQIA:
3649 case ARM::VSTMQIA:
3650 return 2;
3651
3652 // The number of uOps for load / store multiple are determined by the number
3653 // registers.
3654 //
3655 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3656 // same cycle. The scheduling for the first load / store must be done
3657 // separately by assuming the address is not 64-bit aligned.
3658 //
3659 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3660 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3661 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3662 case ARM::VLDMDIA:
3663 case ARM::VLDMDIA_UPD:
3664 case ARM::VLDMDDB_UPD:
3665 case ARM::VLDMSIA:
3666 case ARM::VLDMSIA_UPD:
3667 case ARM::VLDMSDB_UPD:
3668 case ARM::VSTMDIA:
3669 case ARM::VSTMDIA_UPD:
3670 case ARM::VSTMDDB_UPD:
3671 case ARM::VSTMSIA:
3672 case ARM::VSTMSIA_UPD:
3673 case ARM::VSTMSDB_UPD: {
3674 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3675 return (NumRegs / 2) + (NumRegs % 2) + 1;
3676 }
3677
3678 case ARM::LDMIA_RET:
3679 case ARM::LDMIA:
3680 case ARM::LDMDA:
3681 case ARM::LDMDB:
3682 case ARM::LDMIB:
3683 case ARM::LDMIA_UPD:
3684 case ARM::LDMDA_UPD:
3685 case ARM::LDMDB_UPD:
3686 case ARM::LDMIB_UPD:
3687 case ARM::STMIA:
3688 case ARM::STMDA:
3689 case ARM::STMDB:
3690 case ARM::STMIB:
3691 case ARM::STMIA_UPD:
3692 case ARM::STMDA_UPD:
3693 case ARM::STMDB_UPD:
3694 case ARM::STMIB_UPD:
3695 case ARM::tLDMIA:
3696 case ARM::tLDMIA_UPD:
3697 case ARM::tSTMIA_UPD:
3698 case ARM::tPOP_RET:
3699 case ARM::tPOP:
3700 case ARM::tPUSH:
3701 case ARM::t2LDMIA_RET:
3702 case ARM::t2LDMIA:
3703 case ARM::t2LDMDB:
3704 case ARM::t2LDMIA_UPD:
3705 case ARM::t2LDMDB_UPD:
3706 case ARM::t2STMIA:
3707 case ARM::t2STMDB:
3708 case ARM::t2STMIA_UPD:
3709 case ARM::t2STMDB_UPD: {
3710 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3711 switch (Subtarget.getLdStMultipleTiming()) {
3712 case ARMSubtarget::SingleIssuePlusExtras:
3713 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3714 case ARMSubtarget::SingleIssue:
3715 // Assume the worst.
3716 return NumRegs;
3717 case ARMSubtarget::DoubleIssue: {
3718 if (NumRegs < 4)
3719 return 2;
3720 // 4 registers would be issued: 2, 2.
3721 // 5 registers would be issued: 2, 2, 1.
3722 unsigned UOps = (NumRegs / 2);
3723 if (NumRegs % 2)
3724 ++UOps;
3725 return UOps;
3726 }
3727 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3728 unsigned UOps = (NumRegs / 2);
3729 // If there are odd number of registers or if it's not 64-bit aligned,
3730 // then it takes an extra AGU (Address Generation Unit) cycle.
3731 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3732 (*MI.memoperands_begin())->getAlignment() < 8)
3733 ++UOps;
3734 return UOps;
3735 }
3736 }
3737 }
3738 }
3739 llvm_unreachable("Didn't find the number of microops");
3740 }
3741
3742 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3743 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3744 const MCInstrDesc &DefMCID,
3745 unsigned DefClass,
3746 unsigned DefIdx, unsigned DefAlign) const {
3747 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3748 if (RegNo <= 0)
3749 // Def is the address writeback.
3750 return ItinData->getOperandCycle(DefClass, DefIdx);
3751
3752 int DefCycle;
3753 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3754 // (regno / 2) + (regno % 2) + 1
3755 DefCycle = RegNo / 2 + 1;
3756 if (RegNo % 2)
3757 ++DefCycle;
3758 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3759 DefCycle = RegNo;
3760 bool isSLoad = false;
3761
3762 switch (DefMCID.getOpcode()) {
3763 default: break;
3764 case ARM::VLDMSIA:
3765 case ARM::VLDMSIA_UPD:
3766 case ARM::VLDMSDB_UPD:
3767 isSLoad = true;
3768 break;
3769 }
3770
3771 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3772 // then it takes an extra cycle.
3773 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3774 ++DefCycle;
3775 } else {
3776 // Assume the worst.
3777 DefCycle = RegNo + 2;
3778 }
3779
3780 return DefCycle;
3781 }
3782
isLDMBaseRegInList(const MachineInstr & MI) const3783 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3784 Register BaseReg = MI.getOperand(0).getReg();
3785 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3786 const auto &Op = MI.getOperand(i);
3787 if (Op.isReg() && Op.getReg() == BaseReg)
3788 return true;
3789 }
3790 return false;
3791 }
3792 unsigned
getLDMVariableDefsSize(const MachineInstr & MI) const3793 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3794 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3795 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3796 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3797 }
3798
3799 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3800 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3801 const MCInstrDesc &DefMCID,
3802 unsigned DefClass,
3803 unsigned DefIdx, unsigned DefAlign) const {
3804 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3805 if (RegNo <= 0)
3806 // Def is the address writeback.
3807 return ItinData->getOperandCycle(DefClass, DefIdx);
3808
3809 int DefCycle;
3810 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3811 // 4 registers would be issued: 1, 2, 1.
3812 // 5 registers would be issued: 1, 2, 2.
3813 DefCycle = RegNo / 2;
3814 if (DefCycle < 1)
3815 DefCycle = 1;
3816 // Result latency is issue cycle + 2: E2.
3817 DefCycle += 2;
3818 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3819 DefCycle = (RegNo / 2);
3820 // If there are odd number of registers or if it's not 64-bit aligned,
3821 // then it takes an extra AGU (Address Generation Unit) cycle.
3822 if ((RegNo % 2) || DefAlign < 8)
3823 ++DefCycle;
3824 // Result latency is AGU cycles + 2.
3825 DefCycle += 2;
3826 } else {
3827 // Assume the worst.
3828 DefCycle = RegNo + 2;
3829 }
3830
3831 return DefCycle;
3832 }
3833
3834 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3835 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3836 const MCInstrDesc &UseMCID,
3837 unsigned UseClass,
3838 unsigned UseIdx, unsigned UseAlign) const {
3839 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3840 if (RegNo <= 0)
3841 return ItinData->getOperandCycle(UseClass, UseIdx);
3842
3843 int UseCycle;
3844 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3845 // (regno / 2) + (regno % 2) + 1
3846 UseCycle = RegNo / 2 + 1;
3847 if (RegNo % 2)
3848 ++UseCycle;
3849 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3850 UseCycle = RegNo;
3851 bool isSStore = false;
3852
3853 switch (UseMCID.getOpcode()) {
3854 default: break;
3855 case ARM::VSTMSIA:
3856 case ARM::VSTMSIA_UPD:
3857 case ARM::VSTMSDB_UPD:
3858 isSStore = true;
3859 break;
3860 }
3861
3862 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3863 // then it takes an extra cycle.
3864 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3865 ++UseCycle;
3866 } else {
3867 // Assume the worst.
3868 UseCycle = RegNo + 2;
3869 }
3870
3871 return UseCycle;
3872 }
3873
3874 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3875 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3876 const MCInstrDesc &UseMCID,
3877 unsigned UseClass,
3878 unsigned UseIdx, unsigned UseAlign) const {
3879 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3880 if (RegNo <= 0)
3881 return ItinData->getOperandCycle(UseClass, UseIdx);
3882
3883 int UseCycle;
3884 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3885 UseCycle = RegNo / 2;
3886 if (UseCycle < 2)
3887 UseCycle = 2;
3888 // Read in E3.
3889 UseCycle += 2;
3890 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3891 UseCycle = (RegNo / 2);
3892 // If there are odd number of registers or if it's not 64-bit aligned,
3893 // then it takes an extra AGU (Address Generation Unit) cycle.
3894 if ((RegNo % 2) || UseAlign < 8)
3895 ++UseCycle;
3896 } else {
3897 // Assume the worst.
3898 UseCycle = 1;
3899 }
3900 return UseCycle;
3901 }
3902
3903 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3904 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3905 const MCInstrDesc &DefMCID,
3906 unsigned DefIdx, unsigned DefAlign,
3907 const MCInstrDesc &UseMCID,
3908 unsigned UseIdx, unsigned UseAlign) const {
3909 unsigned DefClass = DefMCID.getSchedClass();
3910 unsigned UseClass = UseMCID.getSchedClass();
3911
3912 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3913 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3914
3915 // This may be a def / use of a variable_ops instruction, the operand
3916 // latency might be determinable dynamically. Let the target try to
3917 // figure it out.
3918 int DefCycle = -1;
3919 bool LdmBypass = false;
3920 switch (DefMCID.getOpcode()) {
3921 default:
3922 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3923 break;
3924
3925 case ARM::VLDMDIA:
3926 case ARM::VLDMDIA_UPD:
3927 case ARM::VLDMDDB_UPD:
3928 case ARM::VLDMSIA:
3929 case ARM::VLDMSIA_UPD:
3930 case ARM::VLDMSDB_UPD:
3931 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3932 break;
3933
3934 case ARM::LDMIA_RET:
3935 case ARM::LDMIA:
3936 case ARM::LDMDA:
3937 case ARM::LDMDB:
3938 case ARM::LDMIB:
3939 case ARM::LDMIA_UPD:
3940 case ARM::LDMDA_UPD:
3941 case ARM::LDMDB_UPD:
3942 case ARM::LDMIB_UPD:
3943 case ARM::tLDMIA:
3944 case ARM::tLDMIA_UPD:
3945 case ARM::tPUSH:
3946 case ARM::t2LDMIA_RET:
3947 case ARM::t2LDMIA:
3948 case ARM::t2LDMDB:
3949 case ARM::t2LDMIA_UPD:
3950 case ARM::t2LDMDB_UPD:
3951 LdmBypass = true;
3952 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3953 break;
3954 }
3955
3956 if (DefCycle == -1)
3957 // We can't seem to determine the result latency of the def, assume it's 2.
3958 DefCycle = 2;
3959
3960 int UseCycle = -1;
3961 switch (UseMCID.getOpcode()) {
3962 default:
3963 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3964 break;
3965
3966 case ARM::VSTMDIA:
3967 case ARM::VSTMDIA_UPD:
3968 case ARM::VSTMDDB_UPD:
3969 case ARM::VSTMSIA:
3970 case ARM::VSTMSIA_UPD:
3971 case ARM::VSTMSDB_UPD:
3972 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3973 break;
3974
3975 case ARM::STMIA:
3976 case ARM::STMDA:
3977 case ARM::STMDB:
3978 case ARM::STMIB:
3979 case ARM::STMIA_UPD:
3980 case ARM::STMDA_UPD:
3981 case ARM::STMDB_UPD:
3982 case ARM::STMIB_UPD:
3983 case ARM::tSTMIA_UPD:
3984 case ARM::tPOP_RET:
3985 case ARM::tPOP:
3986 case ARM::t2STMIA:
3987 case ARM::t2STMDB:
3988 case ARM::t2STMIA_UPD:
3989 case ARM::t2STMDB_UPD:
3990 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3991 break;
3992 }
3993
3994 if (UseCycle == -1)
3995 // Assume it's read in the first stage.
3996 UseCycle = 1;
3997
3998 UseCycle = DefCycle - UseCycle + 1;
3999 if (UseCycle > 0) {
4000 if (LdmBypass) {
4001 // It's a variable_ops instruction so we can't use DefIdx here. Just use
4002 // first def operand.
4003 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4004 UseClass, UseIdx))
4005 --UseCycle;
4006 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4007 UseClass, UseIdx)) {
4008 --UseCycle;
4009 }
4010 }
4011
4012 return UseCycle;
4013 }
4014
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)4015 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4016 const MachineInstr *MI, unsigned Reg,
4017 unsigned &DefIdx, unsigned &Dist) {
4018 Dist = 0;
4019
4020 MachineBasicBlock::const_iterator I = MI; ++I;
4021 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4022 assert(II->isInsideBundle() && "Empty bundle?");
4023
4024 int Idx = -1;
4025 while (II->isInsideBundle()) {
4026 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4027 if (Idx != -1)
4028 break;
4029 --II;
4030 ++Dist;
4031 }
4032
4033 assert(Idx != -1 && "Cannot find bundled definition!");
4034 DefIdx = Idx;
4035 return &*II;
4036 }
4037
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)4038 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4039 const MachineInstr &MI, unsigned Reg,
4040 unsigned &UseIdx, unsigned &Dist) {
4041 Dist = 0;
4042
4043 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4044 assert(II->isInsideBundle() && "Empty bundle?");
4045 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4046
4047 // FIXME: This doesn't properly handle multiple uses.
4048 int Idx = -1;
4049 while (II != E && II->isInsideBundle()) {
4050 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4051 if (Idx != -1)
4052 break;
4053 if (II->getOpcode() != ARM::t2IT)
4054 ++Dist;
4055 ++II;
4056 }
4057
4058 if (Idx == -1) {
4059 Dist = 0;
4060 return nullptr;
4061 }
4062
4063 UseIdx = Idx;
4064 return &*II;
4065 }
4066
4067 /// Return the number of cycles to add to (or subtract from) the static
4068 /// itinerary based on the def opcode and alignment. The caller will ensure that
4069 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)4070 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4071 const MachineInstr &DefMI,
4072 const MCInstrDesc &DefMCID, unsigned DefAlign) {
4073 int Adjust = 0;
4074 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4075 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4076 // variants are one cycle cheaper.
4077 switch (DefMCID.getOpcode()) {
4078 default: break;
4079 case ARM::LDRrs:
4080 case ARM::LDRBrs: {
4081 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4082 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4083 if (ShImm == 0 ||
4084 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4085 --Adjust;
4086 break;
4087 }
4088 case ARM::t2LDRs:
4089 case ARM::t2LDRBs:
4090 case ARM::t2LDRHs:
4091 case ARM::t2LDRSHs: {
4092 // Thumb2 mode: lsl only.
4093 unsigned ShAmt = DefMI.getOperand(3).getImm();
4094 if (ShAmt == 0 || ShAmt == 2)
4095 --Adjust;
4096 break;
4097 }
4098 }
4099 } else if (Subtarget.isSwift()) {
4100 // FIXME: Properly handle all of the latency adjustments for address
4101 // writeback.
4102 switch (DefMCID.getOpcode()) {
4103 default: break;
4104 case ARM::LDRrs:
4105 case ARM::LDRBrs: {
4106 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4107 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4108 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4109 if (!isSub &&
4110 (ShImm == 0 ||
4111 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4112 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4113 Adjust -= 2;
4114 else if (!isSub &&
4115 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4116 --Adjust;
4117 break;
4118 }
4119 case ARM::t2LDRs:
4120 case ARM::t2LDRBs:
4121 case ARM::t2LDRHs:
4122 case ARM::t2LDRSHs: {
4123 // Thumb2 mode: lsl only.
4124 unsigned ShAmt = DefMI.getOperand(3).getImm();
4125 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4126 Adjust -= 2;
4127 break;
4128 }
4129 }
4130 }
4131
4132 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4133 switch (DefMCID.getOpcode()) {
4134 default: break;
4135 case ARM::VLD1q8:
4136 case ARM::VLD1q16:
4137 case ARM::VLD1q32:
4138 case ARM::VLD1q64:
4139 case ARM::VLD1q8wb_fixed:
4140 case ARM::VLD1q16wb_fixed:
4141 case ARM::VLD1q32wb_fixed:
4142 case ARM::VLD1q64wb_fixed:
4143 case ARM::VLD1q8wb_register:
4144 case ARM::VLD1q16wb_register:
4145 case ARM::VLD1q32wb_register:
4146 case ARM::VLD1q64wb_register:
4147 case ARM::VLD2d8:
4148 case ARM::VLD2d16:
4149 case ARM::VLD2d32:
4150 case ARM::VLD2q8:
4151 case ARM::VLD2q16:
4152 case ARM::VLD2q32:
4153 case ARM::VLD2d8wb_fixed:
4154 case ARM::VLD2d16wb_fixed:
4155 case ARM::VLD2d32wb_fixed:
4156 case ARM::VLD2q8wb_fixed:
4157 case ARM::VLD2q16wb_fixed:
4158 case ARM::VLD2q32wb_fixed:
4159 case ARM::VLD2d8wb_register:
4160 case ARM::VLD2d16wb_register:
4161 case ARM::VLD2d32wb_register:
4162 case ARM::VLD2q8wb_register:
4163 case ARM::VLD2q16wb_register:
4164 case ARM::VLD2q32wb_register:
4165 case ARM::VLD3d8:
4166 case ARM::VLD3d16:
4167 case ARM::VLD3d32:
4168 case ARM::VLD1d64T:
4169 case ARM::VLD3d8_UPD:
4170 case ARM::VLD3d16_UPD:
4171 case ARM::VLD3d32_UPD:
4172 case ARM::VLD1d64Twb_fixed:
4173 case ARM::VLD1d64Twb_register:
4174 case ARM::VLD3q8_UPD:
4175 case ARM::VLD3q16_UPD:
4176 case ARM::VLD3q32_UPD:
4177 case ARM::VLD4d8:
4178 case ARM::VLD4d16:
4179 case ARM::VLD4d32:
4180 case ARM::VLD1d64Q:
4181 case ARM::VLD4d8_UPD:
4182 case ARM::VLD4d16_UPD:
4183 case ARM::VLD4d32_UPD:
4184 case ARM::VLD1d64Qwb_fixed:
4185 case ARM::VLD1d64Qwb_register:
4186 case ARM::VLD4q8_UPD:
4187 case ARM::VLD4q16_UPD:
4188 case ARM::VLD4q32_UPD:
4189 case ARM::VLD1DUPq8:
4190 case ARM::VLD1DUPq16:
4191 case ARM::VLD1DUPq32:
4192 case ARM::VLD1DUPq8wb_fixed:
4193 case ARM::VLD1DUPq16wb_fixed:
4194 case ARM::VLD1DUPq32wb_fixed:
4195 case ARM::VLD1DUPq8wb_register:
4196 case ARM::VLD1DUPq16wb_register:
4197 case ARM::VLD1DUPq32wb_register:
4198 case ARM::VLD2DUPd8:
4199 case ARM::VLD2DUPd16:
4200 case ARM::VLD2DUPd32:
4201 case ARM::VLD2DUPd8wb_fixed:
4202 case ARM::VLD2DUPd16wb_fixed:
4203 case ARM::VLD2DUPd32wb_fixed:
4204 case ARM::VLD2DUPd8wb_register:
4205 case ARM::VLD2DUPd16wb_register:
4206 case ARM::VLD2DUPd32wb_register:
4207 case ARM::VLD4DUPd8:
4208 case ARM::VLD4DUPd16:
4209 case ARM::VLD4DUPd32:
4210 case ARM::VLD4DUPd8_UPD:
4211 case ARM::VLD4DUPd16_UPD:
4212 case ARM::VLD4DUPd32_UPD:
4213 case ARM::VLD1LNd8:
4214 case ARM::VLD1LNd16:
4215 case ARM::VLD1LNd32:
4216 case ARM::VLD1LNd8_UPD:
4217 case ARM::VLD1LNd16_UPD:
4218 case ARM::VLD1LNd32_UPD:
4219 case ARM::VLD2LNd8:
4220 case ARM::VLD2LNd16:
4221 case ARM::VLD2LNd32:
4222 case ARM::VLD2LNq16:
4223 case ARM::VLD2LNq32:
4224 case ARM::VLD2LNd8_UPD:
4225 case ARM::VLD2LNd16_UPD:
4226 case ARM::VLD2LNd32_UPD:
4227 case ARM::VLD2LNq16_UPD:
4228 case ARM::VLD2LNq32_UPD:
4229 case ARM::VLD4LNd8:
4230 case ARM::VLD4LNd16:
4231 case ARM::VLD4LNd32:
4232 case ARM::VLD4LNq16:
4233 case ARM::VLD4LNq32:
4234 case ARM::VLD4LNd8_UPD:
4235 case ARM::VLD4LNd16_UPD:
4236 case ARM::VLD4LNd32_UPD:
4237 case ARM::VLD4LNq16_UPD:
4238 case ARM::VLD4LNq32_UPD:
4239 // If the address is not 64-bit aligned, the latencies of these
4240 // instructions increases by one.
4241 ++Adjust;
4242 break;
4243 }
4244 }
4245 return Adjust;
4246 }
4247
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4248 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4249 const MachineInstr &DefMI,
4250 unsigned DefIdx,
4251 const MachineInstr &UseMI,
4252 unsigned UseIdx) const {
4253 // No operand latency. The caller may fall back to getInstrLatency.
4254 if (!ItinData || ItinData->isEmpty())
4255 return -1;
4256
4257 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4258 Register Reg = DefMO.getReg();
4259
4260 const MachineInstr *ResolvedDefMI = &DefMI;
4261 unsigned DefAdj = 0;
4262 if (DefMI.isBundle())
4263 ResolvedDefMI =
4264 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4265 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4266 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4267 return 1;
4268 }
4269
4270 const MachineInstr *ResolvedUseMI = &UseMI;
4271 unsigned UseAdj = 0;
4272 if (UseMI.isBundle()) {
4273 ResolvedUseMI =
4274 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4275 if (!ResolvedUseMI)
4276 return -1;
4277 }
4278
4279 return getOperandLatencyImpl(
4280 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4281 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4282 }
4283
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const4284 int ARMBaseInstrInfo::getOperandLatencyImpl(
4285 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4286 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4287 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4288 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4289 if (Reg == ARM::CPSR) {
4290 if (DefMI.getOpcode() == ARM::FMSTAT) {
4291 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4292 return Subtarget.isLikeA9() ? 1 : 20;
4293 }
4294
4295 // CPSR set and branch can be paired in the same cycle.
4296 if (UseMI.isBranch())
4297 return 0;
4298
4299 // Otherwise it takes the instruction latency (generally one).
4300 unsigned Latency = getInstrLatency(ItinData, DefMI);
4301
4302 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4303 // its uses. Instructions which are otherwise scheduled between them may
4304 // incur a code size penalty (not able to use the CPSR setting 16-bit
4305 // instructions).
4306 if (Latency > 0 && Subtarget.isThumb2()) {
4307 const MachineFunction *MF = DefMI.getParent()->getParent();
4308 // FIXME: Use Function::hasOptSize().
4309 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4310 --Latency;
4311 }
4312 return Latency;
4313 }
4314
4315 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4316 return -1;
4317
4318 unsigned DefAlign = DefMI.hasOneMemOperand()
4319 ? (*DefMI.memoperands_begin())->getAlignment()
4320 : 0;
4321 unsigned UseAlign = UseMI.hasOneMemOperand()
4322 ? (*UseMI.memoperands_begin())->getAlignment()
4323 : 0;
4324
4325 // Get the itinerary's latency if possible, and handle variable_ops.
4326 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4327 UseIdx, UseAlign);
4328 // Unable to find operand latency. The caller may resort to getInstrLatency.
4329 if (Latency < 0)
4330 return Latency;
4331
4332 // Adjust for IT block position.
4333 int Adj = DefAdj + UseAdj;
4334
4335 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4336 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4337 if (Adj >= 0 || (int)Latency > -Adj) {
4338 return Latency + Adj;
4339 }
4340 // Return the itinerary latency, which may be zero but not less than zero.
4341 return Latency;
4342 }
4343
4344 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const4345 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4346 SDNode *DefNode, unsigned DefIdx,
4347 SDNode *UseNode, unsigned UseIdx) const {
4348 if (!DefNode->isMachineOpcode())
4349 return 1;
4350
4351 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4352
4353 if (isZeroCost(DefMCID.Opcode))
4354 return 0;
4355
4356 if (!ItinData || ItinData->isEmpty())
4357 return DefMCID.mayLoad() ? 3 : 1;
4358
4359 if (!UseNode->isMachineOpcode()) {
4360 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4361 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4362 int Threshold = 1 + Adj;
4363 return Latency <= Threshold ? 1 : Latency - Adj;
4364 }
4365
4366 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4367 auto *DefMN = cast<MachineSDNode>(DefNode);
4368 unsigned DefAlign = !DefMN->memoperands_empty()
4369 ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4370 auto *UseMN = cast<MachineSDNode>(UseNode);
4371 unsigned UseAlign = !UseMN->memoperands_empty()
4372 ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4373 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4374 UseMCID, UseIdx, UseAlign);
4375
4376 if (Latency > 1 &&
4377 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4378 Subtarget.isCortexA7())) {
4379 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4380 // variants are one cycle cheaper.
4381 switch (DefMCID.getOpcode()) {
4382 default: break;
4383 case ARM::LDRrs:
4384 case ARM::LDRBrs: {
4385 unsigned ShOpVal =
4386 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4387 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4388 if (ShImm == 0 ||
4389 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4390 --Latency;
4391 break;
4392 }
4393 case ARM::t2LDRs:
4394 case ARM::t2LDRBs:
4395 case ARM::t2LDRHs:
4396 case ARM::t2LDRSHs: {
4397 // Thumb2 mode: lsl only.
4398 unsigned ShAmt =
4399 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4400 if (ShAmt == 0 || ShAmt == 2)
4401 --Latency;
4402 break;
4403 }
4404 }
4405 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4406 // FIXME: Properly handle all of the latency adjustments for address
4407 // writeback.
4408 switch (DefMCID.getOpcode()) {
4409 default: break;
4410 case ARM::LDRrs:
4411 case ARM::LDRBrs: {
4412 unsigned ShOpVal =
4413 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4414 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4415 if (ShImm == 0 ||
4416 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4417 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4418 Latency -= 2;
4419 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4420 --Latency;
4421 break;
4422 }
4423 case ARM::t2LDRs:
4424 case ARM::t2LDRBs:
4425 case ARM::t2LDRHs:
4426 case ARM::t2LDRSHs:
4427 // Thumb2 mode: lsl 0-3 only.
4428 Latency -= 2;
4429 break;
4430 }
4431 }
4432
4433 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4434 switch (DefMCID.getOpcode()) {
4435 default: break;
4436 case ARM::VLD1q8:
4437 case ARM::VLD1q16:
4438 case ARM::VLD1q32:
4439 case ARM::VLD1q64:
4440 case ARM::VLD1q8wb_register:
4441 case ARM::VLD1q16wb_register:
4442 case ARM::VLD1q32wb_register:
4443 case ARM::VLD1q64wb_register:
4444 case ARM::VLD1q8wb_fixed:
4445 case ARM::VLD1q16wb_fixed:
4446 case ARM::VLD1q32wb_fixed:
4447 case ARM::VLD1q64wb_fixed:
4448 case ARM::VLD2d8:
4449 case ARM::VLD2d16:
4450 case ARM::VLD2d32:
4451 case ARM::VLD2q8Pseudo:
4452 case ARM::VLD2q16Pseudo:
4453 case ARM::VLD2q32Pseudo:
4454 case ARM::VLD2d8wb_fixed:
4455 case ARM::VLD2d16wb_fixed:
4456 case ARM::VLD2d32wb_fixed:
4457 case ARM::VLD2q8PseudoWB_fixed:
4458 case ARM::VLD2q16PseudoWB_fixed:
4459 case ARM::VLD2q32PseudoWB_fixed:
4460 case ARM::VLD2d8wb_register:
4461 case ARM::VLD2d16wb_register:
4462 case ARM::VLD2d32wb_register:
4463 case ARM::VLD2q8PseudoWB_register:
4464 case ARM::VLD2q16PseudoWB_register:
4465 case ARM::VLD2q32PseudoWB_register:
4466 case ARM::VLD3d8Pseudo:
4467 case ARM::VLD3d16Pseudo:
4468 case ARM::VLD3d32Pseudo:
4469 case ARM::VLD1d8TPseudo:
4470 case ARM::VLD1d16TPseudo:
4471 case ARM::VLD1d32TPseudo:
4472 case ARM::VLD1d64TPseudo:
4473 case ARM::VLD1d64TPseudoWB_fixed:
4474 case ARM::VLD1d64TPseudoWB_register:
4475 case ARM::VLD3d8Pseudo_UPD:
4476 case ARM::VLD3d16Pseudo_UPD:
4477 case ARM::VLD3d32Pseudo_UPD:
4478 case ARM::VLD3q8Pseudo_UPD:
4479 case ARM::VLD3q16Pseudo_UPD:
4480 case ARM::VLD3q32Pseudo_UPD:
4481 case ARM::VLD3q8oddPseudo:
4482 case ARM::VLD3q16oddPseudo:
4483 case ARM::VLD3q32oddPseudo:
4484 case ARM::VLD3q8oddPseudo_UPD:
4485 case ARM::VLD3q16oddPseudo_UPD:
4486 case ARM::VLD3q32oddPseudo_UPD:
4487 case ARM::VLD4d8Pseudo:
4488 case ARM::VLD4d16Pseudo:
4489 case ARM::VLD4d32Pseudo:
4490 case ARM::VLD1d8QPseudo:
4491 case ARM::VLD1d16QPseudo:
4492 case ARM::VLD1d32QPseudo:
4493 case ARM::VLD1d64QPseudo:
4494 case ARM::VLD1d64QPseudoWB_fixed:
4495 case ARM::VLD1d64QPseudoWB_register:
4496 case ARM::VLD1q8HighQPseudo:
4497 case ARM::VLD1q8LowQPseudo_UPD:
4498 case ARM::VLD1q8HighTPseudo:
4499 case ARM::VLD1q8LowTPseudo_UPD:
4500 case ARM::VLD1q16HighQPseudo:
4501 case ARM::VLD1q16LowQPseudo_UPD:
4502 case ARM::VLD1q16HighTPseudo:
4503 case ARM::VLD1q16LowTPseudo_UPD:
4504 case ARM::VLD1q32HighQPseudo:
4505 case ARM::VLD1q32LowQPseudo_UPD:
4506 case ARM::VLD1q32HighTPseudo:
4507 case ARM::VLD1q32LowTPseudo_UPD:
4508 case ARM::VLD1q64HighQPseudo:
4509 case ARM::VLD1q64LowQPseudo_UPD:
4510 case ARM::VLD1q64HighTPseudo:
4511 case ARM::VLD1q64LowTPseudo_UPD:
4512 case ARM::VLD4d8Pseudo_UPD:
4513 case ARM::VLD4d16Pseudo_UPD:
4514 case ARM::VLD4d32Pseudo_UPD:
4515 case ARM::VLD4q8Pseudo_UPD:
4516 case ARM::VLD4q16Pseudo_UPD:
4517 case ARM::VLD4q32Pseudo_UPD:
4518 case ARM::VLD4q8oddPseudo:
4519 case ARM::VLD4q16oddPseudo:
4520 case ARM::VLD4q32oddPseudo:
4521 case ARM::VLD4q8oddPseudo_UPD:
4522 case ARM::VLD4q16oddPseudo_UPD:
4523 case ARM::VLD4q32oddPseudo_UPD:
4524 case ARM::VLD1DUPq8:
4525 case ARM::VLD1DUPq16:
4526 case ARM::VLD1DUPq32:
4527 case ARM::VLD1DUPq8wb_fixed:
4528 case ARM::VLD1DUPq16wb_fixed:
4529 case ARM::VLD1DUPq32wb_fixed:
4530 case ARM::VLD1DUPq8wb_register:
4531 case ARM::VLD1DUPq16wb_register:
4532 case ARM::VLD1DUPq32wb_register:
4533 case ARM::VLD2DUPd8:
4534 case ARM::VLD2DUPd16:
4535 case ARM::VLD2DUPd32:
4536 case ARM::VLD2DUPd8wb_fixed:
4537 case ARM::VLD2DUPd16wb_fixed:
4538 case ARM::VLD2DUPd32wb_fixed:
4539 case ARM::VLD2DUPd8wb_register:
4540 case ARM::VLD2DUPd16wb_register:
4541 case ARM::VLD2DUPd32wb_register:
4542 case ARM::VLD2DUPq8EvenPseudo:
4543 case ARM::VLD2DUPq8OddPseudo:
4544 case ARM::VLD2DUPq16EvenPseudo:
4545 case ARM::VLD2DUPq16OddPseudo:
4546 case ARM::VLD2DUPq32EvenPseudo:
4547 case ARM::VLD2DUPq32OddPseudo:
4548 case ARM::VLD3DUPq8EvenPseudo:
4549 case ARM::VLD3DUPq8OddPseudo:
4550 case ARM::VLD3DUPq16EvenPseudo:
4551 case ARM::VLD3DUPq16OddPseudo:
4552 case ARM::VLD3DUPq32EvenPseudo:
4553 case ARM::VLD3DUPq32OddPseudo:
4554 case ARM::VLD4DUPd8Pseudo:
4555 case ARM::VLD4DUPd16Pseudo:
4556 case ARM::VLD4DUPd32Pseudo:
4557 case ARM::VLD4DUPd8Pseudo_UPD:
4558 case ARM::VLD4DUPd16Pseudo_UPD:
4559 case ARM::VLD4DUPd32Pseudo_UPD:
4560 case ARM::VLD4DUPq8EvenPseudo:
4561 case ARM::VLD4DUPq8OddPseudo:
4562 case ARM::VLD4DUPq16EvenPseudo:
4563 case ARM::VLD4DUPq16OddPseudo:
4564 case ARM::VLD4DUPq32EvenPseudo:
4565 case ARM::VLD4DUPq32OddPseudo:
4566 case ARM::VLD1LNq8Pseudo:
4567 case ARM::VLD1LNq16Pseudo:
4568 case ARM::VLD1LNq32Pseudo:
4569 case ARM::VLD1LNq8Pseudo_UPD:
4570 case ARM::VLD1LNq16Pseudo_UPD:
4571 case ARM::VLD1LNq32Pseudo_UPD:
4572 case ARM::VLD2LNd8Pseudo:
4573 case ARM::VLD2LNd16Pseudo:
4574 case ARM::VLD2LNd32Pseudo:
4575 case ARM::VLD2LNq16Pseudo:
4576 case ARM::VLD2LNq32Pseudo:
4577 case ARM::VLD2LNd8Pseudo_UPD:
4578 case ARM::VLD2LNd16Pseudo_UPD:
4579 case ARM::VLD2LNd32Pseudo_UPD:
4580 case ARM::VLD2LNq16Pseudo_UPD:
4581 case ARM::VLD2LNq32Pseudo_UPD:
4582 case ARM::VLD4LNd8Pseudo:
4583 case ARM::VLD4LNd16Pseudo:
4584 case ARM::VLD4LNd32Pseudo:
4585 case ARM::VLD4LNq16Pseudo:
4586 case ARM::VLD4LNq32Pseudo:
4587 case ARM::VLD4LNd8Pseudo_UPD:
4588 case ARM::VLD4LNd16Pseudo_UPD:
4589 case ARM::VLD4LNd32Pseudo_UPD:
4590 case ARM::VLD4LNq16Pseudo_UPD:
4591 case ARM::VLD4LNq32Pseudo_UPD:
4592 // If the address is not 64-bit aligned, the latencies of these
4593 // instructions increases by one.
4594 ++Latency;
4595 break;
4596 }
4597
4598 return Latency;
4599 }
4600
getPredicationCost(const MachineInstr & MI) const4601 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4602 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4603 MI.isImplicitDef())
4604 return 0;
4605
4606 if (MI.isBundle())
4607 return 0;
4608
4609 const MCInstrDesc &MCID = MI.getDesc();
4610
4611 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4612 !Subtarget.cheapPredicableCPSRDef())) {
4613 // When predicated, CPSR is an additional source operand for CPSR updating
4614 // instructions, this apparently increases their latencies.
4615 return 1;
4616 }
4617 return 0;
4618 }
4619
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4620 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4621 const MachineInstr &MI,
4622 unsigned *PredCost) const {
4623 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4624 MI.isImplicitDef())
4625 return 1;
4626
4627 // An instruction scheduler typically runs on unbundled instructions, however
4628 // other passes may query the latency of a bundled instruction.
4629 if (MI.isBundle()) {
4630 unsigned Latency = 0;
4631 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4632 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4633 while (++I != E && I->isInsideBundle()) {
4634 if (I->getOpcode() != ARM::t2IT)
4635 Latency += getInstrLatency(ItinData, *I, PredCost);
4636 }
4637 return Latency;
4638 }
4639
4640 const MCInstrDesc &MCID = MI.getDesc();
4641 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4642 !Subtarget.cheapPredicableCPSRDef()))) {
4643 // When predicated, CPSR is an additional source operand for CPSR updating
4644 // instructions, this apparently increases their latencies.
4645 *PredCost = 1;
4646 }
4647 // Be sure to call getStageLatency for an empty itinerary in case it has a
4648 // valid MinLatency property.
4649 if (!ItinData)
4650 return MI.mayLoad() ? 3 : 1;
4651
4652 unsigned Class = MCID.getSchedClass();
4653
4654 // For instructions with variable uops, use uops as latency.
4655 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4656 return getNumMicroOps(ItinData, MI);
4657
4658 // For the common case, fall back on the itinerary's latency.
4659 unsigned Latency = ItinData->getStageLatency(Class);
4660
4661 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4662 unsigned DefAlign =
4663 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4664 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4665 if (Adj >= 0 || (int)Latency > -Adj) {
4666 return Latency + Adj;
4667 }
4668 return Latency;
4669 }
4670
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4671 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4672 SDNode *Node) const {
4673 if (!Node->isMachineOpcode())
4674 return 1;
4675
4676 if (!ItinData || ItinData->isEmpty())
4677 return 1;
4678
4679 unsigned Opcode = Node->getMachineOpcode();
4680 switch (Opcode) {
4681 default:
4682 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4683 case ARM::VLDMQIA:
4684 case ARM::VSTMQIA:
4685 return 2;
4686 }
4687 }
4688
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4689 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4690 const MachineRegisterInfo *MRI,
4691 const MachineInstr &DefMI,
4692 unsigned DefIdx,
4693 const MachineInstr &UseMI,
4694 unsigned UseIdx) const {
4695 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4696 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4697 if (Subtarget.nonpipelinedVFP() &&
4698 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4699 return true;
4700
4701 // Hoist VFP / NEON instructions with 4 or higher latency.
4702 unsigned Latency =
4703 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4704 if (Latency <= 3)
4705 return false;
4706 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4707 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4708 }
4709
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4710 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4711 const MachineInstr &DefMI,
4712 unsigned DefIdx) const {
4713 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4714 if (!ItinData || ItinData->isEmpty())
4715 return false;
4716
4717 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4718 if (DDomain == ARMII::DomainGeneral) {
4719 unsigned DefClass = DefMI.getDesc().getSchedClass();
4720 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4721 return (DefCycle != -1 && DefCycle <= 2);
4722 }
4723 return false;
4724 }
4725
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4726 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4727 StringRef &ErrInfo) const {
4728 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4729 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4730 return false;
4731 }
4732 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4733 // Make sure we don't generate a lo-lo mov that isn't supported.
4734 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4735 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4736 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4737 return false;
4738 }
4739 }
4740 if (MI.getOpcode() == ARM::tPUSH ||
4741 MI.getOpcode() == ARM::tPOP ||
4742 MI.getOpcode() == ARM::tPOP_RET) {
4743 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4744 if (MI.getOperand(i).isImplicit() ||
4745 !MI.getOperand(i).isReg())
4746 continue;
4747 Register Reg = MI.getOperand(i).getReg();
4748 if (Reg < ARM::R0 || Reg > ARM::R7) {
4749 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4750 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4751 ErrInfo = "Unsupported register in Thumb1 push/pop";
4752 return false;
4753 }
4754 }
4755 }
4756 }
4757 return true;
4758 }
4759
4760 // LoadStackGuard has so far only been implemented for MachO. Different code
4761 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4762 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4763 unsigned LoadImmOpc,
4764 unsigned LoadOpc) const {
4765 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4766 "ROPI/RWPI not currently supported with stack guard");
4767
4768 MachineBasicBlock &MBB = *MI->getParent();
4769 DebugLoc DL = MI->getDebugLoc();
4770 Register Reg = MI->getOperand(0).getReg();
4771 const GlobalValue *GV =
4772 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4773 MachineInstrBuilder MIB;
4774
4775 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4776 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4777
4778 if (Subtarget.isGVIndirectSymbol(GV)) {
4779 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4780 MIB.addReg(Reg, RegState::Kill).addImm(0);
4781 auto Flags = MachineMemOperand::MOLoad |
4782 MachineMemOperand::MODereferenceable |
4783 MachineMemOperand::MOInvariant;
4784 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4785 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4786 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4787 }
4788
4789 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4790 MIB.addReg(Reg, RegState::Kill)
4791 .addImm(0)
4792 .cloneMemRefs(*MI)
4793 .add(predOps(ARMCC::AL));
4794 }
4795
4796 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4797 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4798 unsigned &AddSubOpc,
4799 bool &NegAcc, bool &HasLane) const {
4800 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4801 if (I == MLxEntryMap.end())
4802 return false;
4803
4804 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4805 MulOpc = Entry.MulOpc;
4806 AddSubOpc = Entry.AddSubOpc;
4807 NegAcc = Entry.NegAcc;
4808 HasLane = Entry.HasLane;
4809 return true;
4810 }
4811
4812 //===----------------------------------------------------------------------===//
4813 // Execution domains.
4814 //===----------------------------------------------------------------------===//
4815 //
4816 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4817 // and some can go down both. The vmov instructions go down the VFP pipeline,
4818 // but they can be changed to vorr equivalents that are executed by the NEON
4819 // pipeline.
4820 //
4821 // We use the following execution domain numbering:
4822 //
4823 enum ARMExeDomain {
4824 ExeGeneric = 0,
4825 ExeVFP = 1,
4826 ExeNEON = 2
4827 };
4828
4829 //
4830 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4831 //
4832 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const4833 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4834 // If we don't have access to NEON instructions then we won't be able
4835 // to swizzle anything to the NEON domain. Check to make sure.
4836 if (Subtarget.hasNEON()) {
4837 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4838 // if they are not predicated.
4839 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4840 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4841
4842 // CortexA9 is particularly picky about mixing the two and wants these
4843 // converted.
4844 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4845 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4846 MI.getOpcode() == ARM::VMOVS))
4847 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4848 }
4849 // No other instructions can be swizzled, so just determine their domain.
4850 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4851
4852 if (Domain & ARMII::DomainNEON)
4853 return std::make_pair(ExeNEON, 0);
4854
4855 // Certain instructions can go either way on Cortex-A8.
4856 // Treat them as NEON instructions.
4857 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4858 return std::make_pair(ExeNEON, 0);
4859
4860 if (Domain & ARMII::DomainVFP)
4861 return std::make_pair(ExeVFP, 0);
4862
4863 return std::make_pair(ExeGeneric, 0);
4864 }
4865
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4866 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4867 unsigned SReg, unsigned &Lane) {
4868 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4869 Lane = 0;
4870
4871 if (DReg != ARM::NoRegister)
4872 return DReg;
4873
4874 Lane = 1;
4875 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4876
4877 assert(DReg && "S-register with no D super-register?");
4878 return DReg;
4879 }
4880
4881 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4882 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4883 /// zero if no register needs to be defined as implicit-use.
4884 ///
4885 /// If the function cannot determine if an SPR should be marked implicit use or
4886 /// not, it returns false.
4887 ///
4888 /// This function handles cases where an instruction is being modified from taking
4889 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4890 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4891 /// lane of the DPR).
4892 ///
4893 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4894 /// (including the case where the DPR itself is defined), it should not.
4895 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4896 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4897 MachineInstr &MI, unsigned DReg,
4898 unsigned Lane, unsigned &ImplicitSReg) {
4899 // If the DPR is defined or used already, the other SPR lane will be chained
4900 // correctly, so there is nothing to be done.
4901 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4902 ImplicitSReg = 0;
4903 return true;
4904 }
4905
4906 // Otherwise we need to go searching to see if the SPR is set explicitly.
4907 ImplicitSReg = TRI->getSubReg(DReg,
4908 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4909 MachineBasicBlock::LivenessQueryResult LQR =
4910 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4911
4912 if (LQR == MachineBasicBlock::LQR_Live)
4913 return true;
4914 else if (LQR == MachineBasicBlock::LQR_Unknown)
4915 return false;
4916
4917 // If the register is known not to be live, there is no need to add an
4918 // implicit-use.
4919 ImplicitSReg = 0;
4920 return true;
4921 }
4922
setExecutionDomain(MachineInstr & MI,unsigned Domain) const4923 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4924 unsigned Domain) const {
4925 unsigned DstReg, SrcReg, DReg;
4926 unsigned Lane;
4927 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4928 const TargetRegisterInfo *TRI = &getRegisterInfo();
4929 switch (MI.getOpcode()) {
4930 default:
4931 llvm_unreachable("cannot handle opcode!");
4932 break;
4933 case ARM::VMOVD:
4934 if (Domain != ExeNEON)
4935 break;
4936
4937 // Zap the predicate operands.
4938 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4939
4940 // Make sure we've got NEON instructions.
4941 assert(Subtarget.hasNEON() && "VORRd requires NEON");
4942
4943 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4944 DstReg = MI.getOperand(0).getReg();
4945 SrcReg = MI.getOperand(1).getReg();
4946
4947 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4948 MI.RemoveOperand(i - 1);
4949
4950 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4951 MI.setDesc(get(ARM::VORRd));
4952 MIB.addReg(DstReg, RegState::Define)
4953 .addReg(SrcReg)
4954 .addReg(SrcReg)
4955 .add(predOps(ARMCC::AL));
4956 break;
4957 case ARM::VMOVRS:
4958 if (Domain != ExeNEON)
4959 break;
4960 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4961
4962 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4963 DstReg = MI.getOperand(0).getReg();
4964 SrcReg = MI.getOperand(1).getReg();
4965
4966 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4967 MI.RemoveOperand(i - 1);
4968
4969 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4970
4971 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4972 // Note that DSrc has been widened and the other lane may be undef, which
4973 // contaminates the entire register.
4974 MI.setDesc(get(ARM::VGETLNi32));
4975 MIB.addReg(DstReg, RegState::Define)
4976 .addReg(DReg, RegState::Undef)
4977 .addImm(Lane)
4978 .add(predOps(ARMCC::AL));
4979
4980 // The old source should be an implicit use, otherwise we might think it
4981 // was dead before here.
4982 MIB.addReg(SrcReg, RegState::Implicit);
4983 break;
4984 case ARM::VMOVSR: {
4985 if (Domain != ExeNEON)
4986 break;
4987 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4988
4989 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4990 DstReg = MI.getOperand(0).getReg();
4991 SrcReg = MI.getOperand(1).getReg();
4992
4993 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4994
4995 unsigned ImplicitSReg;
4996 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4997 break;
4998
4999 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5000 MI.RemoveOperand(i - 1);
5001
5002 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5003 // Again DDst may be undefined at the beginning of this instruction.
5004 MI.setDesc(get(ARM::VSETLNi32));
5005 MIB.addReg(DReg, RegState::Define)
5006 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5007 .addReg(SrcReg)
5008 .addImm(Lane)
5009 .add(predOps(ARMCC::AL));
5010
5011 // The narrower destination must be marked as set to keep previous chains
5012 // in place.
5013 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5014 if (ImplicitSReg != 0)
5015 MIB.addReg(ImplicitSReg, RegState::Implicit);
5016 break;
5017 }
5018 case ARM::VMOVS: {
5019 if (Domain != ExeNEON)
5020 break;
5021
5022 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5023 DstReg = MI.getOperand(0).getReg();
5024 SrcReg = MI.getOperand(1).getReg();
5025
5026 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5027 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5028 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5029
5030 unsigned ImplicitSReg;
5031 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5032 break;
5033
5034 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5035 MI.RemoveOperand(i - 1);
5036
5037 if (DSrc == DDst) {
5038 // Destination can be:
5039 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5040 MI.setDesc(get(ARM::VDUPLN32d));
5041 MIB.addReg(DDst, RegState::Define)
5042 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5043 .addImm(SrcLane)
5044 .add(predOps(ARMCC::AL));
5045
5046 // Neither the source or the destination are naturally represented any
5047 // more, so add them in manually.
5048 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5049 MIB.addReg(SrcReg, RegState::Implicit);
5050 if (ImplicitSReg != 0)
5051 MIB.addReg(ImplicitSReg, RegState::Implicit);
5052 break;
5053 }
5054
5055 // In general there's no single instruction that can perform an S <-> S
5056 // move in NEON space, but a pair of VEXT instructions *can* do the
5057 // job. It turns out that the VEXTs needed will only use DSrc once, with
5058 // the position based purely on the combination of lane-0 and lane-1
5059 // involved. For example
5060 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5061 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5062 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5063 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5064 //
5065 // Pattern of the MachineInstrs is:
5066 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5067 MachineInstrBuilder NewMIB;
5068 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5069 DDst);
5070
5071 // On the first instruction, both DSrc and DDst may be undef if present.
5072 // Specifically when the original instruction didn't have them as an
5073 // <imp-use>.
5074 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5075 bool CurUndef = !MI.readsRegister(CurReg, TRI);
5076 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5077
5078 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5079 CurUndef = !MI.readsRegister(CurReg, TRI);
5080 NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5081 .addImm(1)
5082 .add(predOps(ARMCC::AL));
5083
5084 if (SrcLane == DstLane)
5085 NewMIB.addReg(SrcReg, RegState::Implicit);
5086
5087 MI.setDesc(get(ARM::VEXTd32));
5088 MIB.addReg(DDst, RegState::Define);
5089
5090 // On the second instruction, DDst has definitely been defined above, so
5091 // it is not undef. DSrc, if present, can be undef as above.
5092 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5093 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5094 MIB.addReg(CurReg, getUndefRegState(CurUndef));
5095
5096 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5097 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5098 MIB.addReg(CurReg, getUndefRegState(CurUndef))
5099 .addImm(1)
5100 .add(predOps(ARMCC::AL));
5101
5102 if (SrcLane != DstLane)
5103 MIB.addReg(SrcReg, RegState::Implicit);
5104
5105 // As before, the original destination is no longer represented, add it
5106 // implicitly.
5107 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5108 if (ImplicitSReg != 0)
5109 MIB.addReg(ImplicitSReg, RegState::Implicit);
5110 break;
5111 }
5112 }
5113 }
5114
5115 //===----------------------------------------------------------------------===//
5116 // Partial register updates
5117 //===----------------------------------------------------------------------===//
5118 //
5119 // Swift renames NEON registers with 64-bit granularity. That means any
5120 // instruction writing an S-reg implicitly reads the containing D-reg. The
5121 // problem is mostly avoided by translating f32 operations to v2f32 operations
5122 // on D-registers, but f32 loads are still a problem.
5123 //
5124 // These instructions can load an f32 into a NEON register:
5125 //
5126 // VLDRS - Only writes S, partial D update.
5127 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5128 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5129 //
5130 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5131 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5132 const MachineInstr &MI, unsigned OpNum,
5133 const TargetRegisterInfo *TRI) const {
5134 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5135 if (!PartialUpdateClearance)
5136 return 0;
5137
5138 assert(TRI && "Need TRI instance");
5139
5140 const MachineOperand &MO = MI.getOperand(OpNum);
5141 if (MO.readsReg())
5142 return 0;
5143 Register Reg = MO.getReg();
5144 int UseOp = -1;
5145
5146 switch (MI.getOpcode()) {
5147 // Normal instructions writing only an S-register.
5148 case ARM::VLDRS:
5149 case ARM::FCONSTS:
5150 case ARM::VMOVSR:
5151 case ARM::VMOVv8i8:
5152 case ARM::VMOVv4i16:
5153 case ARM::VMOVv2i32:
5154 case ARM::VMOVv2f32:
5155 case ARM::VMOVv1i64:
5156 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5157 break;
5158
5159 // Explicitly reads the dependency.
5160 case ARM::VLD1LNd32:
5161 UseOp = 3;
5162 break;
5163 default:
5164 return 0;
5165 }
5166
5167 // If this instruction actually reads a value from Reg, there is no unwanted
5168 // dependency.
5169 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5170 return 0;
5171
5172 // We must be able to clobber the whole D-reg.
5173 if (Register::isVirtualRegister(Reg)) {
5174 // Virtual register must be a def undef foo:ssub_0 operand.
5175 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5176 return 0;
5177 } else if (ARM::SPRRegClass.contains(Reg)) {
5178 // Physical register: MI must define the full D-reg.
5179 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5180 &ARM::DPRRegClass);
5181 if (!DReg || !MI.definesRegister(DReg, TRI))
5182 return 0;
5183 }
5184
5185 // MI has an unwanted D-register dependency.
5186 // Avoid defs in the previous N instructrions.
5187 return PartialUpdateClearance;
5188 }
5189
5190 // Break a partial register dependency after getPartialRegUpdateClearance
5191 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5192 void ARMBaseInstrInfo::breakPartialRegDependency(
5193 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5194 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5195 assert(TRI && "Need TRI instance");
5196
5197 const MachineOperand &MO = MI.getOperand(OpNum);
5198 Register Reg = MO.getReg();
5199 assert(Register::isPhysicalRegister(Reg) &&
5200 "Can't break virtual register dependencies.");
5201 unsigned DReg = Reg;
5202
5203 // If MI defines an S-reg, find the corresponding D super-register.
5204 if (ARM::SPRRegClass.contains(Reg)) {
5205 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5206 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5207 }
5208
5209 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5210 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5211
5212 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5213 // the full D-register by loading the same value to both lanes. The
5214 // instruction is micro-coded with 2 uops, so don't do this until we can
5215 // properly schedule micro-coded instructions. The dispatcher stalls cause
5216 // too big regressions.
5217
5218 // Insert the dependency-breaking FCONSTD before MI.
5219 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5220 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5221 .addImm(96)
5222 .add(predOps(ARMCC::AL));
5223 MI.addRegisterKilled(DReg, TRI, true);
5224 }
5225
hasNOP() const5226 bool ARMBaseInstrInfo::hasNOP() const {
5227 return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5228 }
5229
isSwiftFastImmShift(const MachineInstr * MI) const5230 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5231 if (MI->getNumOperands() < 4)
5232 return true;
5233 unsigned ShOpVal = MI->getOperand(3).getImm();
5234 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5235 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5236 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5237 ((ShImm == 1 || ShImm == 2) &&
5238 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5239 return true;
5240
5241 return false;
5242 }
5243
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const5244 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5245 const MachineInstr &MI, unsigned DefIdx,
5246 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5247 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5248 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5249
5250 switch (MI.getOpcode()) {
5251 case ARM::VMOVDRR:
5252 // dX = VMOVDRR rY, rZ
5253 // is the same as:
5254 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5255 // Populate the InputRegs accordingly.
5256 // rY
5257 const MachineOperand *MOReg = &MI.getOperand(1);
5258 if (!MOReg->isUndef())
5259 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5260 MOReg->getSubReg(), ARM::ssub_0));
5261 // rZ
5262 MOReg = &MI.getOperand(2);
5263 if (!MOReg->isUndef())
5264 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5265 MOReg->getSubReg(), ARM::ssub_1));
5266 return true;
5267 }
5268 llvm_unreachable("Target dependent opcode missing");
5269 }
5270
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const5271 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5272 const MachineInstr &MI, unsigned DefIdx,
5273 RegSubRegPairAndIdx &InputReg) const {
5274 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5275 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5276
5277 switch (MI.getOpcode()) {
5278 case ARM::VMOVRRD:
5279 // rX, rY = VMOVRRD dZ
5280 // is the same as:
5281 // rX = EXTRACT_SUBREG dZ, ssub_0
5282 // rY = EXTRACT_SUBREG dZ, ssub_1
5283 const MachineOperand &MOReg = MI.getOperand(2);
5284 if (MOReg.isUndef())
5285 return false;
5286 InputReg.Reg = MOReg.getReg();
5287 InputReg.SubReg = MOReg.getSubReg();
5288 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5289 return true;
5290 }
5291 llvm_unreachable("Target dependent opcode missing");
5292 }
5293
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const5294 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5295 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5296 RegSubRegPairAndIdx &InsertedReg) const {
5297 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5298 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5299
5300 switch (MI.getOpcode()) {
5301 case ARM::VSETLNi32:
5302 // dX = VSETLNi32 dY, rZ, imm
5303 const MachineOperand &MOBaseReg = MI.getOperand(1);
5304 const MachineOperand &MOInsertedReg = MI.getOperand(2);
5305 if (MOInsertedReg.isUndef())
5306 return false;
5307 const MachineOperand &MOIndex = MI.getOperand(3);
5308 BaseReg.Reg = MOBaseReg.getReg();
5309 BaseReg.SubReg = MOBaseReg.getSubReg();
5310
5311 InsertedReg.Reg = MOInsertedReg.getReg();
5312 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5313 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5314 return true;
5315 }
5316 llvm_unreachable("Target dependent opcode missing");
5317 }
5318
5319 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const5320 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5321 const unsigned Mask = ARMII::MO_OPTION_MASK;
5322 return std::make_pair(TF & Mask, TF & ~Mask);
5323 }
5324
5325 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const5326 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5327 using namespace ARMII;
5328
5329 static const std::pair<unsigned, const char *> TargetFlags[] = {
5330 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5331 return makeArrayRef(TargetFlags);
5332 }
5333
5334 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const5335 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5336 using namespace ARMII;
5337
5338 static const std::pair<unsigned, const char *> TargetFlags[] = {
5339 {MO_COFFSTUB, "arm-coffstub"},
5340 {MO_GOT, "arm-got"},
5341 {MO_SBREL, "arm-sbrel"},
5342 {MO_DLLIMPORT, "arm-dllimport"},
5343 {MO_SECREL, "arm-secrel"},
5344 {MO_NONLAZY, "arm-nonlazy"}};
5345 return makeArrayRef(TargetFlags);
5346 }
5347
isAddImmediate(const MachineInstr & MI,Register Reg) const5348 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5349 Register Reg) const {
5350 int Sign = 1;
5351 unsigned Opcode = MI.getOpcode();
5352 int64_t Offset = 0;
5353
5354 // TODO: Handle cases where Reg is a super- or sub-register of the
5355 // destination register.
5356 if (Reg != MI.getOperand(0).getReg())
5357 return None;
5358
5359 // We describe SUBri or ADDri instructions.
5360 if (Opcode == ARM::SUBri)
5361 Sign = -1;
5362 else if (Opcode != ARM::ADDri)
5363 return None;
5364
5365 // TODO: Third operand can be global address (usually some string). Since
5366 // strings can be relocated we cannot calculate their offsets for
5367 // now.
5368 if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() ||
5369 !MI.getOperand(2).isImm())
5370 return None;
5371
5372 Offset = MI.getOperand(2).getImm() * Sign;
5373 return RegImmPair{MI.getOperand(1).getReg(), Offset};
5374 }
5375
registerDefinedBetween(unsigned Reg,MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI)5376 bool llvm::registerDefinedBetween(unsigned Reg,
5377 MachineBasicBlock::iterator From,
5378 MachineBasicBlock::iterator To,
5379 const TargetRegisterInfo *TRI) {
5380 for (auto I = From; I != To; ++I)
5381 if (I->modifiesRegister(Reg, TRI))
5382 return true;
5383 return false;
5384 }
5385
findCMPToFoldIntoCBZ(MachineInstr * Br,const TargetRegisterInfo * TRI)5386 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5387 const TargetRegisterInfo *TRI) {
5388 // Search backwards to the instruction that defines CSPR. This may or not
5389 // be a CMP, we check that after this loop. If we find another instruction
5390 // that reads cpsr, we return nullptr.
5391 MachineBasicBlock::iterator CmpMI = Br;
5392 while (CmpMI != Br->getParent()->begin()) {
5393 --CmpMI;
5394 if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5395 break;
5396 if (CmpMI->readsRegister(ARM::CPSR, TRI))
5397 break;
5398 }
5399
5400 // Check that this inst is a CMP r[0-7], #0 and that the register
5401 // is not redefined between the cmp and the br.
5402 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5403 return nullptr;
5404 Register Reg = CmpMI->getOperand(0).getReg();
5405 unsigned PredReg = 0;
5406 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5407 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5408 return nullptr;
5409 if (!isARMLowRegister(Reg))
5410 return nullptr;
5411 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5412 return nullptr;
5413
5414 return &*CmpMI;
5415 }
5416
ConstantMaterializationCost(unsigned Val,const ARMSubtarget * Subtarget,bool ForCodesize)5417 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5418 const ARMSubtarget *Subtarget,
5419 bool ForCodesize) {
5420 if (Subtarget->isThumb()) {
5421 if (Val <= 255) // MOV
5422 return ForCodesize ? 2 : 1;
5423 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
5424 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5425 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5426 return ForCodesize ? 4 : 1;
5427 if (Val <= 510) // MOV + ADDi8
5428 return ForCodesize ? 4 : 2;
5429 if (~Val <= 255) // MOV + MVN
5430 return ForCodesize ? 4 : 2;
5431 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5432 return ForCodesize ? 4 : 2;
5433 } else {
5434 if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5435 return ForCodesize ? 4 : 1;
5436 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5437 return ForCodesize ? 4 : 1;
5438 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5439 return ForCodesize ? 4 : 1;
5440 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5441 return ForCodesize ? 8 : 2;
5442 }
5443 if (Subtarget->useMovt()) // MOVW + MOVT
5444 return ForCodesize ? 8 : 2;
5445 return ForCodesize ? 8 : 3; // Literal pool load
5446 }
5447
HasLowerConstantMaterializationCost(unsigned Val1,unsigned Val2,const ARMSubtarget * Subtarget,bool ForCodesize)5448 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5449 const ARMSubtarget *Subtarget,
5450 bool ForCodesize) {
5451 // Check with ForCodesize
5452 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5453 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5454 if (Cost1 < Cost2)
5455 return true;
5456 if (Cost1 > Cost2)
5457 return false;
5458
5459 // If they are equal, try with !ForCodesize
5460 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5461 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5462 }
5463