• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static const unsigned int input_max_code[EV_CNT] = {
51 	[EV_KEY] = KEY_MAX,
52 	[EV_REL] = REL_MAX,
53 	[EV_ABS] = ABS_MAX,
54 	[EV_MSC] = MSC_MAX,
55 	[EV_SW] = SW_MAX,
56 	[EV_LED] = LED_MAX,
57 	[EV_SND] = SND_MAX,
58 	[EV_FF] = FF_MAX,
59 };
60 
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)61 static inline int is_event_supported(unsigned int code,
62 				     unsigned long *bm, unsigned int max)
63 {
64 	return code <= max && test_bit(code, bm);
65 }
66 
input_defuzz_abs_event(int value,int old_val,int fuzz)67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68 {
69 	if (fuzz) {
70 		if (value > (long)old_val - fuzz / 2 &&
71 				value < (long)old_val + fuzz / 2)
72 			return old_val;
73 
74 		if (value > (long)old_val - fuzz &&
75 				value < (long)old_val + fuzz)
76 			return ((long)old_val * 3 + value) / 4;
77 
78 		if (value > (long)old_val - fuzz * 2 &&
79 				value < (long)old_val + fuzz * 2)
80 			return ((long)old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
input_start_autorepeat(struct input_dev * dev,int code)86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
input_stop_autorepeat(struct input_dev * dev)97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass event first through all filters and then, if event has not been
104  * filtered out, through all open handles. This function is called with
105  * dev->event_lock held and interrupts disabled.
106  */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)107 static unsigned int input_to_handler(struct input_handle *handle,
108 			struct input_value *vals, unsigned int count)
109 {
110 	struct input_handler *handler = handle->handler;
111 	struct input_value *end = vals;
112 	struct input_value *v;
113 
114 	if (handler->filter) {
115 		for (v = vals; v != vals + count; v++) {
116 			if (handler->filter(handle, v->type, v->code, v->value))
117 				continue;
118 			if (end != v)
119 				*end = *v;
120 			end++;
121 		}
122 		count = end - vals;
123 	}
124 
125 	if (!count)
126 		return 0;
127 
128 	if (handler->events)
129 		handler->events(handle, vals, count);
130 	else if (handler->event)
131 		for (v = vals; v != vals + count; v++)
132 			handler->event(handle, v->type, v->code, v->value);
133 
134 	return count;
135 }
136 
137 /*
138  * Pass values first through all filters and then, if event has not been
139  * filtered out, through all open handles. This function is called with
140  * dev->event_lock held and interrupts disabled.
141  */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)142 static void input_pass_values(struct input_dev *dev,
143 			      struct input_value *vals, unsigned int count)
144 {
145 	struct input_handle *handle;
146 	struct input_value *v;
147 
148 	if (!count)
149 		return;
150 
151 	rcu_read_lock();
152 
153 	handle = rcu_dereference(dev->grab);
154 	if (handle) {
155 		count = input_to_handler(handle, vals, count);
156 	} else {
157 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
158 			if (handle->open) {
159 				count = input_to_handler(handle, vals, count);
160 				if (!count)
161 					break;
162 			}
163 	}
164 
165 	rcu_read_unlock();
166 
167 	/* trigger auto repeat for key events */
168 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
169 		for (v = vals; v != vals + count; v++) {
170 			if (v->type == EV_KEY && v->value != 2) {
171 				if (v->value)
172 					input_start_autorepeat(dev, v->code);
173 				else
174 					input_stop_autorepeat(dev);
175 			}
176 		}
177 	}
178 }
179 
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)180 static void input_pass_event(struct input_dev *dev,
181 			     unsigned int type, unsigned int code, int value)
182 {
183 	struct input_value vals[] = { { type, code, value } };
184 
185 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
186 }
187 
188 /*
189  * Generate software autorepeat event. Note that we take
190  * dev->event_lock here to avoid racing with input_event
191  * which may cause keys get "stuck".
192  */
input_repeat_key(struct timer_list * t)193 static void input_repeat_key(struct timer_list *t)
194 {
195 	struct input_dev *dev = from_timer(dev, t, timer);
196 	unsigned long flags;
197 
198 	spin_lock_irqsave(&dev->event_lock, flags);
199 
200 	if (test_bit(dev->repeat_key, dev->key) &&
201 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
202 		struct input_value vals[] =  {
203 			{ EV_KEY, dev->repeat_key, 2 },
204 			input_value_sync
205 		};
206 
207 		input_set_timestamp(dev, ktime_get());
208 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
209 
210 		if (dev->rep[REP_PERIOD])
211 			mod_timer(&dev->timer, jiffies +
212 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
213 	}
214 
215 	spin_unlock_irqrestore(&dev->event_lock, flags);
216 }
217 
218 #define INPUT_IGNORE_EVENT	0
219 #define INPUT_PASS_TO_HANDLERS	1
220 #define INPUT_PASS_TO_DEVICE	2
221 #define INPUT_SLOT		4
222 #define INPUT_FLUSH		8
223 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
224 
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)225 static int input_handle_abs_event(struct input_dev *dev,
226 				  unsigned int code, int *pval)
227 {
228 	struct input_mt *mt = dev->mt;
229 	bool is_mt_event;
230 	int *pold;
231 
232 	if (code == ABS_MT_SLOT) {
233 		/*
234 		 * "Stage" the event; we'll flush it later, when we
235 		 * get actual touch data.
236 		 */
237 		if (mt && *pval >= 0 && *pval < mt->num_slots)
238 			mt->slot = *pval;
239 
240 		return INPUT_IGNORE_EVENT;
241 	}
242 
243 	is_mt_event = input_is_mt_value(code);
244 
245 	if (!is_mt_event) {
246 		pold = &dev->absinfo[code].value;
247 	} else if (mt) {
248 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
249 	} else {
250 		/*
251 		 * Bypass filtering for multi-touch events when
252 		 * not employing slots.
253 		 */
254 		pold = NULL;
255 	}
256 
257 	if (pold) {
258 		*pval = input_defuzz_abs_event(*pval, *pold,
259 						dev->absinfo[code].fuzz);
260 		if (*pold == *pval)
261 			return INPUT_IGNORE_EVENT;
262 
263 		*pold = *pval;
264 	}
265 
266 	/* Flush pending "slot" event */
267 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
268 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
269 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
270 	}
271 
272 	return INPUT_PASS_TO_HANDLERS;
273 }
274 
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)275 static int input_get_disposition(struct input_dev *dev,
276 			  unsigned int type, unsigned int code, int *pval)
277 {
278 	int disposition = INPUT_IGNORE_EVENT;
279 	int value = *pval;
280 
281 	switch (type) {
282 
283 	case EV_SYN:
284 		switch (code) {
285 		case SYN_CONFIG:
286 			disposition = INPUT_PASS_TO_ALL;
287 			break;
288 
289 		case SYN_REPORT:
290 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
291 			break;
292 		case SYN_MT_REPORT:
293 			disposition = INPUT_PASS_TO_HANDLERS;
294 			break;
295 		}
296 		break;
297 
298 	case EV_KEY:
299 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
300 
301 			/* auto-repeat bypasses state updates */
302 			if (value == 2) {
303 				disposition = INPUT_PASS_TO_HANDLERS;
304 				break;
305 			}
306 
307 			if (!!test_bit(code, dev->key) != !!value) {
308 
309 				__change_bit(code, dev->key);
310 				disposition = INPUT_PASS_TO_HANDLERS;
311 			}
312 		}
313 		break;
314 
315 	case EV_SW:
316 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
317 		    !!test_bit(code, dev->sw) != !!value) {
318 
319 			__change_bit(code, dev->sw);
320 			disposition = INPUT_PASS_TO_HANDLERS;
321 		}
322 		break;
323 
324 	case EV_ABS:
325 		if (is_event_supported(code, dev->absbit, ABS_MAX))
326 			disposition = input_handle_abs_event(dev, code, &value);
327 
328 		break;
329 
330 	case EV_REL:
331 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
332 			disposition = INPUT_PASS_TO_HANDLERS;
333 
334 		break;
335 
336 	case EV_MSC:
337 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
338 			disposition = INPUT_PASS_TO_ALL;
339 
340 		break;
341 
342 	case EV_LED:
343 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
344 		    !!test_bit(code, dev->led) != !!value) {
345 
346 			__change_bit(code, dev->led);
347 			disposition = INPUT_PASS_TO_ALL;
348 		}
349 		break;
350 
351 	case EV_SND:
352 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
353 
354 			if (!!test_bit(code, dev->snd) != !!value)
355 				__change_bit(code, dev->snd);
356 			disposition = INPUT_PASS_TO_ALL;
357 		}
358 		break;
359 
360 	case EV_REP:
361 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
362 			dev->rep[code] = value;
363 			disposition = INPUT_PASS_TO_ALL;
364 		}
365 		break;
366 
367 	case EV_FF:
368 		if (value >= 0)
369 			disposition = INPUT_PASS_TO_ALL;
370 		break;
371 
372 	case EV_PWR:
373 		disposition = INPUT_PASS_TO_ALL;
374 		break;
375 	}
376 
377 	*pval = value;
378 	return disposition;
379 }
380 
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)381 static void input_handle_event(struct input_dev *dev,
382 			       unsigned int type, unsigned int code, int value)
383 {
384 	int disposition = input_get_disposition(dev, type, code, &value);
385 
386 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
387 		add_input_randomness(type, code, value);
388 
389 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
390 		dev->event(dev, type, code, value);
391 
392 	if (!dev->vals)
393 		return;
394 
395 	if (disposition & INPUT_PASS_TO_HANDLERS) {
396 		struct input_value *v;
397 
398 		if (disposition & INPUT_SLOT) {
399 			v = &dev->vals[dev->num_vals++];
400 			v->type = EV_ABS;
401 			v->code = ABS_MT_SLOT;
402 			v->value = dev->mt->slot;
403 		}
404 
405 		v = &dev->vals[dev->num_vals++];
406 		v->type = type;
407 		v->code = code;
408 		v->value = value;
409 	}
410 
411 	if (disposition & INPUT_FLUSH) {
412 		if (dev->num_vals >= 2)
413 			input_pass_values(dev, dev->vals, dev->num_vals);
414 		dev->num_vals = 0;
415 		/*
416 		 * Reset the timestamp on flush so we won't end up
417 		 * with a stale one. Note we only need to reset the
418 		 * monolithic one as we use its presence when deciding
419 		 * whether to generate a synthetic timestamp.
420 		 */
421 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
422 	} else if (dev->num_vals >= dev->max_vals - 2) {
423 		dev->vals[dev->num_vals++] = input_value_sync;
424 		input_pass_values(dev, dev->vals, dev->num_vals);
425 		dev->num_vals = 0;
426 	}
427 
428 }
429 
430 /**
431  * input_event() - report new input event
432  * @dev: device that generated the event
433  * @type: type of the event
434  * @code: event code
435  * @value: value of the event
436  *
437  * This function should be used by drivers implementing various input
438  * devices to report input events. See also input_inject_event().
439  *
440  * NOTE: input_event() may be safely used right after input device was
441  * allocated with input_allocate_device(), even before it is registered
442  * with input_register_device(), but the event will not reach any of the
443  * input handlers. Such early invocation of input_event() may be used
444  * to 'seed' initial state of a switch or initial position of absolute
445  * axis, etc.
446  */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)447 void input_event(struct input_dev *dev,
448 		 unsigned int type, unsigned int code, int value)
449 {
450 	unsigned long flags;
451 
452 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
453 
454 		spin_lock_irqsave(&dev->event_lock, flags);
455 		input_handle_event(dev, type, code, value);
456 		spin_unlock_irqrestore(&dev->event_lock, flags);
457 	}
458 }
459 EXPORT_SYMBOL(input_event);
460 
461 /**
462  * input_inject_event() - send input event from input handler
463  * @handle: input handle to send event through
464  * @type: type of the event
465  * @code: event code
466  * @value: value of the event
467  *
468  * Similar to input_event() but will ignore event if device is
469  * "grabbed" and handle injecting event is not the one that owns
470  * the device.
471  */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)472 void input_inject_event(struct input_handle *handle,
473 			unsigned int type, unsigned int code, int value)
474 {
475 	struct input_dev *dev = handle->dev;
476 	struct input_handle *grab;
477 	unsigned long flags;
478 
479 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
480 		spin_lock_irqsave(&dev->event_lock, flags);
481 
482 		rcu_read_lock();
483 		grab = rcu_dereference(dev->grab);
484 		if (!grab || grab == handle)
485 			input_handle_event(dev, type, code, value);
486 		rcu_read_unlock();
487 
488 		spin_unlock_irqrestore(&dev->event_lock, flags);
489 	}
490 }
491 EXPORT_SYMBOL(input_inject_event);
492 
493 /**
494  * input_alloc_absinfo - allocates array of input_absinfo structs
495  * @dev: the input device emitting absolute events
496  *
497  * If the absinfo struct the caller asked for is already allocated, this
498  * functions will not do anything.
499  */
input_alloc_absinfo(struct input_dev * dev)500 void input_alloc_absinfo(struct input_dev *dev)
501 {
502 	if (dev->absinfo)
503 		return;
504 
505 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
506 	if (!dev->absinfo) {
507 		dev_err(dev->dev.parent ?: &dev->dev,
508 			"%s: unable to allocate memory\n", __func__);
509 		/*
510 		 * We will handle this allocation failure in
511 		 * input_register_device() when we refuse to register input
512 		 * device with ABS bits but without absinfo.
513 		 */
514 	}
515 }
516 EXPORT_SYMBOL(input_alloc_absinfo);
517 
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)518 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
519 			  int min, int max, int fuzz, int flat)
520 {
521 	struct input_absinfo *absinfo;
522 
523 	input_alloc_absinfo(dev);
524 	if (!dev->absinfo)
525 		return;
526 
527 	absinfo = &dev->absinfo[axis];
528 	absinfo->minimum = min;
529 	absinfo->maximum = max;
530 	absinfo->fuzz = fuzz;
531 	absinfo->flat = flat;
532 
533 	__set_bit(EV_ABS, dev->evbit);
534 	__set_bit(axis, dev->absbit);
535 }
536 EXPORT_SYMBOL(input_set_abs_params);
537 
538 
539 /**
540  * input_grab_device - grabs device for exclusive use
541  * @handle: input handle that wants to own the device
542  *
543  * When a device is grabbed by an input handle all events generated by
544  * the device are delivered only to this handle. Also events injected
545  * by other input handles are ignored while device is grabbed.
546  */
input_grab_device(struct input_handle * handle)547 int input_grab_device(struct input_handle *handle)
548 {
549 	struct input_dev *dev = handle->dev;
550 	int retval;
551 
552 	retval = mutex_lock_interruptible(&dev->mutex);
553 	if (retval)
554 		return retval;
555 
556 	if (dev->grab) {
557 		retval = -EBUSY;
558 		goto out;
559 	}
560 
561 	rcu_assign_pointer(dev->grab, handle);
562 
563  out:
564 	mutex_unlock(&dev->mutex);
565 	return retval;
566 }
567 EXPORT_SYMBOL(input_grab_device);
568 
__input_release_device(struct input_handle * handle)569 static void __input_release_device(struct input_handle *handle)
570 {
571 	struct input_dev *dev = handle->dev;
572 	struct input_handle *grabber;
573 
574 	grabber = rcu_dereference_protected(dev->grab,
575 					    lockdep_is_held(&dev->mutex));
576 	if (grabber == handle) {
577 		rcu_assign_pointer(dev->grab, NULL);
578 		/* Make sure input_pass_event() notices that grab is gone */
579 		synchronize_rcu();
580 
581 		list_for_each_entry(handle, &dev->h_list, d_node)
582 			if (handle->open && handle->handler->start)
583 				handle->handler->start(handle);
584 	}
585 }
586 
587 /**
588  * input_release_device - release previously grabbed device
589  * @handle: input handle that owns the device
590  *
591  * Releases previously grabbed device so that other input handles can
592  * start receiving input events. Upon release all handlers attached
593  * to the device have their start() method called so they have a change
594  * to synchronize device state with the rest of the system.
595  */
input_release_device(struct input_handle * handle)596 void input_release_device(struct input_handle *handle)
597 {
598 	struct input_dev *dev = handle->dev;
599 
600 	mutex_lock(&dev->mutex);
601 	__input_release_device(handle);
602 	mutex_unlock(&dev->mutex);
603 }
604 EXPORT_SYMBOL(input_release_device);
605 
606 /**
607  * input_open_device - open input device
608  * @handle: handle through which device is being accessed
609  *
610  * This function should be called by input handlers when they
611  * want to start receive events from given input device.
612  */
input_open_device(struct input_handle * handle)613 int input_open_device(struct input_handle *handle)
614 {
615 	struct input_dev *dev = handle->dev;
616 	int retval;
617 
618 	retval = mutex_lock_interruptible(&dev->mutex);
619 	if (retval)
620 		return retval;
621 
622 	if (dev->going_away) {
623 		retval = -ENODEV;
624 		goto out;
625 	}
626 
627 	handle->open++;
628 
629 	if (dev->users++) {
630 		/*
631 		 * Device is already opened, so we can exit immediately and
632 		 * report success.
633 		 */
634 		goto out;
635 	}
636 
637 	if (dev->open) {
638 		retval = dev->open(dev);
639 		if (retval) {
640 			dev->users--;
641 			handle->open--;
642 			/*
643 			 * Make sure we are not delivering any more events
644 			 * through this handle
645 			 */
646 			synchronize_rcu();
647 			goto out;
648 		}
649 	}
650 
651 	if (dev->poller)
652 		input_dev_poller_start(dev->poller);
653 
654  out:
655 	mutex_unlock(&dev->mutex);
656 	return retval;
657 }
658 EXPORT_SYMBOL(input_open_device);
659 
input_flush_device(struct input_handle * handle,struct file * file)660 int input_flush_device(struct input_handle *handle, struct file *file)
661 {
662 	struct input_dev *dev = handle->dev;
663 	int retval;
664 
665 	retval = mutex_lock_interruptible(&dev->mutex);
666 	if (retval)
667 		return retval;
668 
669 	if (dev->flush)
670 		retval = dev->flush(dev, file);
671 
672 	mutex_unlock(&dev->mutex);
673 	return retval;
674 }
675 EXPORT_SYMBOL(input_flush_device);
676 
677 /**
678  * input_close_device - close input device
679  * @handle: handle through which device is being accessed
680  *
681  * This function should be called by input handlers when they
682  * want to stop receive events from given input device.
683  */
input_close_device(struct input_handle * handle)684 void input_close_device(struct input_handle *handle)
685 {
686 	struct input_dev *dev = handle->dev;
687 
688 	mutex_lock(&dev->mutex);
689 
690 	__input_release_device(handle);
691 
692 	if (!--dev->users) {
693 		if (dev->poller)
694 			input_dev_poller_stop(dev->poller);
695 
696 		if (dev->close)
697 			dev->close(dev);
698 	}
699 
700 	if (!--handle->open) {
701 		/*
702 		 * synchronize_rcu() makes sure that input_pass_event()
703 		 * completed and that no more input events are delivered
704 		 * through this handle
705 		 */
706 		synchronize_rcu();
707 	}
708 
709 	mutex_unlock(&dev->mutex);
710 }
711 EXPORT_SYMBOL(input_close_device);
712 
713 /*
714  * Simulate keyup events for all keys that are marked as pressed.
715  * The function must be called with dev->event_lock held.
716  */
input_dev_release_keys(struct input_dev * dev)717 static void input_dev_release_keys(struct input_dev *dev)
718 {
719 	bool need_sync = false;
720 	int code;
721 
722 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
723 		for_each_set_bit(code, dev->key, KEY_CNT) {
724 			input_pass_event(dev, EV_KEY, code, 0);
725 			need_sync = true;
726 		}
727 
728 		if (need_sync)
729 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
730 
731 		memset(dev->key, 0, sizeof(dev->key));
732 	}
733 }
734 
735 /*
736  * Prepare device for unregistering
737  */
input_disconnect_device(struct input_dev * dev)738 static void input_disconnect_device(struct input_dev *dev)
739 {
740 	struct input_handle *handle;
741 
742 	/*
743 	 * Mark device as going away. Note that we take dev->mutex here
744 	 * not to protect access to dev->going_away but rather to ensure
745 	 * that there are no threads in the middle of input_open_device()
746 	 */
747 	mutex_lock(&dev->mutex);
748 	dev->going_away = true;
749 	mutex_unlock(&dev->mutex);
750 
751 	spin_lock_irq(&dev->event_lock);
752 
753 	/*
754 	 * Simulate keyup events for all pressed keys so that handlers
755 	 * are not left with "stuck" keys. The driver may continue
756 	 * generate events even after we done here but they will not
757 	 * reach any handlers.
758 	 */
759 	input_dev_release_keys(dev);
760 
761 	list_for_each_entry(handle, &dev->h_list, d_node)
762 		handle->open = 0;
763 
764 	spin_unlock_irq(&dev->event_lock);
765 }
766 
767 /**
768  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
769  * @ke: keymap entry containing scancode to be converted.
770  * @scancode: pointer to the location where converted scancode should
771  *	be stored.
772  *
773  * This function is used to convert scancode stored in &struct keymap_entry
774  * into scalar form understood by legacy keymap handling methods. These
775  * methods expect scancodes to be represented as 'unsigned int'.
776  */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)777 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
778 			     unsigned int *scancode)
779 {
780 	switch (ke->len) {
781 	case 1:
782 		*scancode = *((u8 *)ke->scancode);
783 		break;
784 
785 	case 2:
786 		*scancode = *((u16 *)ke->scancode);
787 		break;
788 
789 	case 4:
790 		*scancode = *((u32 *)ke->scancode);
791 		break;
792 
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL(input_scancode_to_scalar);
800 
801 /*
802  * Those routines handle the default case where no [gs]etkeycode() is
803  * defined. In this case, an array indexed by the scancode is used.
804  */
805 
input_fetch_keycode(struct input_dev * dev,unsigned int index)806 static unsigned int input_fetch_keycode(struct input_dev *dev,
807 					unsigned int index)
808 {
809 	switch (dev->keycodesize) {
810 	case 1:
811 		return ((u8 *)dev->keycode)[index];
812 
813 	case 2:
814 		return ((u16 *)dev->keycode)[index];
815 
816 	default:
817 		return ((u32 *)dev->keycode)[index];
818 	}
819 }
820 
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)821 static int input_default_getkeycode(struct input_dev *dev,
822 				    struct input_keymap_entry *ke)
823 {
824 	unsigned int index;
825 	int error;
826 
827 	if (!dev->keycodesize)
828 		return -EINVAL;
829 
830 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
831 		index = ke->index;
832 	else {
833 		error = input_scancode_to_scalar(ke, &index);
834 		if (error)
835 			return error;
836 	}
837 
838 	if (index >= dev->keycodemax)
839 		return -EINVAL;
840 
841 	ke->keycode = input_fetch_keycode(dev, index);
842 	ke->index = index;
843 	ke->len = sizeof(index);
844 	memcpy(ke->scancode, &index, sizeof(index));
845 
846 	return 0;
847 }
848 
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)849 static int input_default_setkeycode(struct input_dev *dev,
850 				    const struct input_keymap_entry *ke,
851 				    unsigned int *old_keycode)
852 {
853 	unsigned int index;
854 	int error;
855 	int i;
856 
857 	if (!dev->keycodesize)
858 		return -EINVAL;
859 
860 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
861 		index = ke->index;
862 	} else {
863 		error = input_scancode_to_scalar(ke, &index);
864 		if (error)
865 			return error;
866 	}
867 
868 	if (index >= dev->keycodemax)
869 		return -EINVAL;
870 
871 	if (dev->keycodesize < sizeof(ke->keycode) &&
872 			(ke->keycode >> (dev->keycodesize * 8)))
873 		return -EINVAL;
874 
875 	switch (dev->keycodesize) {
876 		case 1: {
877 			u8 *k = (u8 *)dev->keycode;
878 			*old_keycode = k[index];
879 			k[index] = ke->keycode;
880 			break;
881 		}
882 		case 2: {
883 			u16 *k = (u16 *)dev->keycode;
884 			*old_keycode = k[index];
885 			k[index] = ke->keycode;
886 			break;
887 		}
888 		default: {
889 			u32 *k = (u32 *)dev->keycode;
890 			*old_keycode = k[index];
891 			k[index] = ke->keycode;
892 			break;
893 		}
894 	}
895 
896 	if (*old_keycode <= KEY_MAX) {
897 		__clear_bit(*old_keycode, dev->keybit);
898 		for (i = 0; i < dev->keycodemax; i++) {
899 			if (input_fetch_keycode(dev, i) == *old_keycode) {
900 				__set_bit(*old_keycode, dev->keybit);
901 				/* Setting the bit twice is useless, so break */
902 				break;
903 			}
904 		}
905 	}
906 
907 	__set_bit(ke->keycode, dev->keybit);
908 	return 0;
909 }
910 
911 /**
912  * input_get_keycode - retrieve keycode currently mapped to a given scancode
913  * @dev: input device which keymap is being queried
914  * @ke: keymap entry
915  *
916  * This function should be called by anyone interested in retrieving current
917  * keymap. Presently evdev handlers use it.
918  */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)919 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
920 {
921 	unsigned long flags;
922 	int retval;
923 
924 	spin_lock_irqsave(&dev->event_lock, flags);
925 	retval = dev->getkeycode(dev, ke);
926 	spin_unlock_irqrestore(&dev->event_lock, flags);
927 
928 	return retval;
929 }
930 EXPORT_SYMBOL(input_get_keycode);
931 
932 /**
933  * input_set_keycode - attribute a keycode to a given scancode
934  * @dev: input device which keymap is being updated
935  * @ke: new keymap entry
936  *
937  * This function should be called by anyone needing to update current
938  * keymap. Presently keyboard and evdev handlers use it.
939  */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)940 int input_set_keycode(struct input_dev *dev,
941 		      const struct input_keymap_entry *ke)
942 {
943 	unsigned long flags;
944 	unsigned int old_keycode;
945 	int retval;
946 
947 	if (ke->keycode > KEY_MAX)
948 		return -EINVAL;
949 
950 	spin_lock_irqsave(&dev->event_lock, flags);
951 
952 	retval = dev->setkeycode(dev, ke, &old_keycode);
953 	if (retval)
954 		goto out;
955 
956 	/* Make sure KEY_RESERVED did not get enabled. */
957 	__clear_bit(KEY_RESERVED, dev->keybit);
958 
959 	/*
960 	 * Simulate keyup event if keycode is not present
961 	 * in the keymap anymore
962 	 */
963 	if (old_keycode > KEY_MAX) {
964 		dev_warn(dev->dev.parent ?: &dev->dev,
965 			 "%s: got too big old keycode %#x\n",
966 			 __func__, old_keycode);
967 	} else if (test_bit(EV_KEY, dev->evbit) &&
968 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
969 		   __test_and_clear_bit(old_keycode, dev->key)) {
970 		struct input_value vals[] =  {
971 			{ EV_KEY, old_keycode, 0 },
972 			input_value_sync
973 		};
974 
975 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
976 	}
977 
978  out:
979 	spin_unlock_irqrestore(&dev->event_lock, flags);
980 
981 	return retval;
982 }
983 EXPORT_SYMBOL(input_set_keycode);
984 
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)985 bool input_match_device_id(const struct input_dev *dev,
986 			   const struct input_device_id *id)
987 {
988 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
989 		if (id->bustype != dev->id.bustype)
990 			return false;
991 
992 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
993 		if (id->vendor != dev->id.vendor)
994 			return false;
995 
996 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
997 		if (id->product != dev->id.product)
998 			return false;
999 
1000 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1001 		if (id->version != dev->id.version)
1002 			return false;
1003 
1004 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1005 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1006 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1007 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1008 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1009 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1010 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1011 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1012 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1013 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1014 		return false;
1015 	}
1016 
1017 	return true;
1018 }
1019 EXPORT_SYMBOL(input_match_device_id);
1020 
input_match_device(struct input_handler * handler,struct input_dev * dev)1021 static const struct input_device_id *input_match_device(struct input_handler *handler,
1022 							struct input_dev *dev)
1023 {
1024 	const struct input_device_id *id;
1025 
1026 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1027 		if (input_match_device_id(dev, id) &&
1028 		    (!handler->match || handler->match(handler, dev))) {
1029 			return id;
1030 		}
1031 	}
1032 
1033 	return NULL;
1034 }
1035 
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1036 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1037 {
1038 	const struct input_device_id *id;
1039 	int error;
1040 
1041 	id = input_match_device(handler, dev);
1042 	if (!id)
1043 		return -ENODEV;
1044 
1045 	error = handler->connect(handler, dev, id);
1046 	if (error && error != -ENODEV)
1047 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1048 		       handler->name, kobject_name(&dev->dev.kobj), error);
1049 
1050 	return error;
1051 }
1052 
1053 #ifdef CONFIG_COMPAT
1054 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1055 static int input_bits_to_string(char *buf, int buf_size,
1056 				unsigned long bits, bool skip_empty)
1057 {
1058 	int len = 0;
1059 
1060 	if (in_compat_syscall()) {
1061 		u32 dword = bits >> 32;
1062 		if (dword || !skip_empty)
1063 			len += snprintf(buf, buf_size, "%x ", dword);
1064 
1065 		dword = bits & 0xffffffffUL;
1066 		if (dword || !skip_empty || len)
1067 			len += snprintf(buf + len, max(buf_size - len, 0),
1068 					"%x", dword);
1069 	} else {
1070 		if (bits || !skip_empty)
1071 			len += snprintf(buf, buf_size, "%lx", bits);
1072 	}
1073 
1074 	return len;
1075 }
1076 
1077 #else /* !CONFIG_COMPAT */
1078 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1079 static int input_bits_to_string(char *buf, int buf_size,
1080 				unsigned long bits, bool skip_empty)
1081 {
1082 	return bits || !skip_empty ?
1083 		snprintf(buf, buf_size, "%lx", bits) : 0;
1084 }
1085 
1086 #endif
1087 
1088 #ifdef CONFIG_PROC_FS
1089 
1090 static struct proc_dir_entry *proc_bus_input_dir;
1091 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1092 static int input_devices_state;
1093 
input_wakeup_procfs_readers(void)1094 static inline void input_wakeup_procfs_readers(void)
1095 {
1096 	input_devices_state++;
1097 	wake_up(&input_devices_poll_wait);
1098 }
1099 
input_proc_devices_poll(struct file * file,poll_table * wait)1100 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1101 {
1102 	poll_wait(file, &input_devices_poll_wait, wait);
1103 	if (file->f_version != input_devices_state) {
1104 		file->f_version = input_devices_state;
1105 		return EPOLLIN | EPOLLRDNORM;
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 union input_seq_state {
1112 	struct {
1113 		unsigned short pos;
1114 		bool mutex_acquired;
1115 	};
1116 	void *p;
1117 };
1118 
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1119 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1120 {
1121 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1122 	int error;
1123 
1124 	/* We need to fit into seq->private pointer */
1125 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1126 
1127 	error = mutex_lock_interruptible(&input_mutex);
1128 	if (error) {
1129 		state->mutex_acquired = false;
1130 		return ERR_PTR(error);
1131 	}
1132 
1133 	state->mutex_acquired = true;
1134 
1135 	return seq_list_start(&input_dev_list, *pos);
1136 }
1137 
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1138 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1139 {
1140 	return seq_list_next(v, &input_dev_list, pos);
1141 }
1142 
input_seq_stop(struct seq_file * seq,void * v)1143 static void input_seq_stop(struct seq_file *seq, void *v)
1144 {
1145 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1146 
1147 	if (state->mutex_acquired)
1148 		mutex_unlock(&input_mutex);
1149 }
1150 
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1151 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1152 				   unsigned long *bitmap, int max)
1153 {
1154 	int i;
1155 	bool skip_empty = true;
1156 	char buf[18];
1157 
1158 	seq_printf(seq, "B: %s=", name);
1159 
1160 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1161 		if (input_bits_to_string(buf, sizeof(buf),
1162 					 bitmap[i], skip_empty)) {
1163 			skip_empty = false;
1164 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * If no output was produced print a single 0.
1170 	 */
1171 	if (skip_empty)
1172 		seq_putc(seq, '0');
1173 
1174 	seq_putc(seq, '\n');
1175 }
1176 
input_devices_seq_show(struct seq_file * seq,void * v)1177 static int input_devices_seq_show(struct seq_file *seq, void *v)
1178 {
1179 	struct input_dev *dev = container_of(v, struct input_dev, node);
1180 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1181 	struct input_handle *handle;
1182 
1183 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1184 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1185 
1186 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1187 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1188 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1189 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1190 	seq_puts(seq, "H: Handlers=");
1191 
1192 	list_for_each_entry(handle, &dev->h_list, d_node)
1193 		seq_printf(seq, "%s ", handle->name);
1194 	seq_putc(seq, '\n');
1195 
1196 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1197 
1198 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1199 	if (test_bit(EV_KEY, dev->evbit))
1200 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1201 	if (test_bit(EV_REL, dev->evbit))
1202 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1203 	if (test_bit(EV_ABS, dev->evbit))
1204 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1205 	if (test_bit(EV_MSC, dev->evbit))
1206 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1207 	if (test_bit(EV_LED, dev->evbit))
1208 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1209 	if (test_bit(EV_SND, dev->evbit))
1210 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1211 	if (test_bit(EV_FF, dev->evbit))
1212 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1213 	if (test_bit(EV_SW, dev->evbit))
1214 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1215 
1216 	seq_putc(seq, '\n');
1217 
1218 	kfree(path);
1219 	return 0;
1220 }
1221 
1222 static const struct seq_operations input_devices_seq_ops = {
1223 	.start	= input_devices_seq_start,
1224 	.next	= input_devices_seq_next,
1225 	.stop	= input_seq_stop,
1226 	.show	= input_devices_seq_show,
1227 };
1228 
input_proc_devices_open(struct inode * inode,struct file * file)1229 static int input_proc_devices_open(struct inode *inode, struct file *file)
1230 {
1231 	return seq_open(file, &input_devices_seq_ops);
1232 }
1233 
1234 static const struct proc_ops input_devices_proc_ops = {
1235 	.proc_open	= input_proc_devices_open,
1236 	.proc_poll	= input_proc_devices_poll,
1237 	.proc_read	= seq_read,
1238 	.proc_lseek	= seq_lseek,
1239 	.proc_release	= seq_release,
1240 };
1241 
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1242 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1243 {
1244 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1245 	int error;
1246 
1247 	/* We need to fit into seq->private pointer */
1248 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1249 
1250 	error = mutex_lock_interruptible(&input_mutex);
1251 	if (error) {
1252 		state->mutex_acquired = false;
1253 		return ERR_PTR(error);
1254 	}
1255 
1256 	state->mutex_acquired = true;
1257 	state->pos = *pos;
1258 
1259 	return seq_list_start(&input_handler_list, *pos);
1260 }
1261 
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1262 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1263 {
1264 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1265 
1266 	state->pos = *pos + 1;
1267 	return seq_list_next(v, &input_handler_list, pos);
1268 }
1269 
input_handlers_seq_show(struct seq_file * seq,void * v)1270 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1271 {
1272 	struct input_handler *handler = container_of(v, struct input_handler, node);
1273 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1274 
1275 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1276 	if (handler->filter)
1277 		seq_puts(seq, " (filter)");
1278 	if (handler->legacy_minors)
1279 		seq_printf(seq, " Minor=%d", handler->minor);
1280 	seq_putc(seq, '\n');
1281 
1282 	return 0;
1283 }
1284 
1285 static const struct seq_operations input_handlers_seq_ops = {
1286 	.start	= input_handlers_seq_start,
1287 	.next	= input_handlers_seq_next,
1288 	.stop	= input_seq_stop,
1289 	.show	= input_handlers_seq_show,
1290 };
1291 
input_proc_handlers_open(struct inode * inode,struct file * file)1292 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1293 {
1294 	return seq_open(file, &input_handlers_seq_ops);
1295 }
1296 
1297 static const struct proc_ops input_handlers_proc_ops = {
1298 	.proc_open	= input_proc_handlers_open,
1299 	.proc_read	= seq_read,
1300 	.proc_lseek	= seq_lseek,
1301 	.proc_release	= seq_release,
1302 };
1303 
input_proc_init(void)1304 static int __init input_proc_init(void)
1305 {
1306 	struct proc_dir_entry *entry;
1307 
1308 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1309 	if (!proc_bus_input_dir)
1310 		return -ENOMEM;
1311 
1312 	entry = proc_create("devices", 0, proc_bus_input_dir,
1313 			    &input_devices_proc_ops);
1314 	if (!entry)
1315 		goto fail1;
1316 
1317 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1318 			    &input_handlers_proc_ops);
1319 	if (!entry)
1320 		goto fail2;
1321 
1322 	return 0;
1323 
1324  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1325  fail1: remove_proc_entry("bus/input", NULL);
1326 	return -ENOMEM;
1327 }
1328 
input_proc_exit(void)1329 static void input_proc_exit(void)
1330 {
1331 	remove_proc_entry("devices", proc_bus_input_dir);
1332 	remove_proc_entry("handlers", proc_bus_input_dir);
1333 	remove_proc_entry("bus/input", NULL);
1334 }
1335 
1336 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1337 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1338 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1339 static inline void input_proc_exit(void) { }
1340 #endif
1341 
1342 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1343 static ssize_t input_dev_show_##name(struct device *dev,		\
1344 				     struct device_attribute *attr,	\
1345 				     char *buf)				\
1346 {									\
1347 	struct input_dev *input_dev = to_input_dev(dev);		\
1348 									\
1349 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1350 			 input_dev->name ? input_dev->name : "");	\
1351 }									\
1352 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1353 
1354 INPUT_DEV_STRING_ATTR_SHOW(name);
1355 INPUT_DEV_STRING_ATTR_SHOW(phys);
1356 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1357 
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1358 static int input_print_modalias_bits(char *buf, int size,
1359 				     char name, unsigned long *bm,
1360 				     unsigned int min_bit, unsigned int max_bit)
1361 {
1362 	int len = 0, i;
1363 
1364 	len += snprintf(buf, max(size, 0), "%c", name);
1365 	for (i = min_bit; i < max_bit; i++)
1366 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1367 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1368 	return len;
1369 }
1370 
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1371 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1372 				int add_cr)
1373 {
1374 	int len;
1375 
1376 	len = snprintf(buf, max(size, 0),
1377 		       "input:b%04Xv%04Xp%04Xe%04X-",
1378 		       id->id.bustype, id->id.vendor,
1379 		       id->id.product, id->id.version);
1380 
1381 	len += input_print_modalias_bits(buf + len, size - len,
1382 				'e', id->evbit, 0, EV_MAX);
1383 	len += input_print_modalias_bits(buf + len, size - len,
1384 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1385 	len += input_print_modalias_bits(buf + len, size - len,
1386 				'r', id->relbit, 0, REL_MAX);
1387 	len += input_print_modalias_bits(buf + len, size - len,
1388 				'a', id->absbit, 0, ABS_MAX);
1389 	len += input_print_modalias_bits(buf + len, size - len,
1390 				'm', id->mscbit, 0, MSC_MAX);
1391 	len += input_print_modalias_bits(buf + len, size - len,
1392 				'l', id->ledbit, 0, LED_MAX);
1393 	len += input_print_modalias_bits(buf + len, size - len,
1394 				's', id->sndbit, 0, SND_MAX);
1395 	len += input_print_modalias_bits(buf + len, size - len,
1396 				'f', id->ffbit, 0, FF_MAX);
1397 	len += input_print_modalias_bits(buf + len, size - len,
1398 				'w', id->swbit, 0, SW_MAX);
1399 
1400 	if (add_cr)
1401 		len += snprintf(buf + len, max(size - len, 0), "\n");
1402 
1403 	return len;
1404 }
1405 
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1406 static ssize_t input_dev_show_modalias(struct device *dev,
1407 				       struct device_attribute *attr,
1408 				       char *buf)
1409 {
1410 	struct input_dev *id = to_input_dev(dev);
1411 	ssize_t len;
1412 
1413 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1414 
1415 	return min_t(int, len, PAGE_SIZE);
1416 }
1417 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1418 
1419 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1420 			      int max, int add_cr);
1421 
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1422 static ssize_t input_dev_show_properties(struct device *dev,
1423 					 struct device_attribute *attr,
1424 					 char *buf)
1425 {
1426 	struct input_dev *input_dev = to_input_dev(dev);
1427 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1428 				     INPUT_PROP_MAX, true);
1429 	return min_t(int, len, PAGE_SIZE);
1430 }
1431 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1432 
1433 static struct attribute *input_dev_attrs[] = {
1434 	&dev_attr_name.attr,
1435 	&dev_attr_phys.attr,
1436 	&dev_attr_uniq.attr,
1437 	&dev_attr_modalias.attr,
1438 	&dev_attr_properties.attr,
1439 	NULL
1440 };
1441 
1442 static const struct attribute_group input_dev_attr_group = {
1443 	.attrs	= input_dev_attrs,
1444 };
1445 
1446 #define INPUT_DEV_ID_ATTR(name)						\
1447 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1448 					struct device_attribute *attr,	\
1449 					char *buf)			\
1450 {									\
1451 	struct input_dev *input_dev = to_input_dev(dev);		\
1452 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1453 }									\
1454 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1455 
1456 INPUT_DEV_ID_ATTR(bustype);
1457 INPUT_DEV_ID_ATTR(vendor);
1458 INPUT_DEV_ID_ATTR(product);
1459 INPUT_DEV_ID_ATTR(version);
1460 
1461 static struct attribute *input_dev_id_attrs[] = {
1462 	&dev_attr_bustype.attr,
1463 	&dev_attr_vendor.attr,
1464 	&dev_attr_product.attr,
1465 	&dev_attr_version.attr,
1466 	NULL
1467 };
1468 
1469 static const struct attribute_group input_dev_id_attr_group = {
1470 	.name	= "id",
1471 	.attrs	= input_dev_id_attrs,
1472 };
1473 
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1474 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1475 			      int max, int add_cr)
1476 {
1477 	int i;
1478 	int len = 0;
1479 	bool skip_empty = true;
1480 
1481 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1482 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1483 					    bitmap[i], skip_empty);
1484 		if (len) {
1485 			skip_empty = false;
1486 			if (i > 0)
1487 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * If no output was produced print a single 0.
1493 	 */
1494 	if (len == 0)
1495 		len = snprintf(buf, buf_size, "%d", 0);
1496 
1497 	if (add_cr)
1498 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1499 
1500 	return len;
1501 }
1502 
1503 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1504 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1505 				       struct device_attribute *attr,	\
1506 				       char *buf)			\
1507 {									\
1508 	struct input_dev *input_dev = to_input_dev(dev);		\
1509 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1510 				     input_dev->bm##bit, ev##_MAX,	\
1511 				     true);				\
1512 	return min_t(int, len, PAGE_SIZE);				\
1513 }									\
1514 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1515 
1516 INPUT_DEV_CAP_ATTR(EV, ev);
1517 INPUT_DEV_CAP_ATTR(KEY, key);
1518 INPUT_DEV_CAP_ATTR(REL, rel);
1519 INPUT_DEV_CAP_ATTR(ABS, abs);
1520 INPUT_DEV_CAP_ATTR(MSC, msc);
1521 INPUT_DEV_CAP_ATTR(LED, led);
1522 INPUT_DEV_CAP_ATTR(SND, snd);
1523 INPUT_DEV_CAP_ATTR(FF, ff);
1524 INPUT_DEV_CAP_ATTR(SW, sw);
1525 
1526 static struct attribute *input_dev_caps_attrs[] = {
1527 	&dev_attr_ev.attr,
1528 	&dev_attr_key.attr,
1529 	&dev_attr_rel.attr,
1530 	&dev_attr_abs.attr,
1531 	&dev_attr_msc.attr,
1532 	&dev_attr_led.attr,
1533 	&dev_attr_snd.attr,
1534 	&dev_attr_ff.attr,
1535 	&dev_attr_sw.attr,
1536 	NULL
1537 };
1538 
1539 static const struct attribute_group input_dev_caps_attr_group = {
1540 	.name	= "capabilities",
1541 	.attrs	= input_dev_caps_attrs,
1542 };
1543 
1544 static const struct attribute_group *input_dev_attr_groups[] = {
1545 	&input_dev_attr_group,
1546 	&input_dev_id_attr_group,
1547 	&input_dev_caps_attr_group,
1548 	&input_poller_attribute_group,
1549 	NULL
1550 };
1551 
input_dev_release(struct device * device)1552 static void input_dev_release(struct device *device)
1553 {
1554 	struct input_dev *dev = to_input_dev(device);
1555 
1556 	input_ff_destroy(dev);
1557 	input_mt_destroy_slots(dev);
1558 	kfree(dev->poller);
1559 	kfree(dev->absinfo);
1560 	kfree(dev->vals);
1561 	kfree(dev);
1562 
1563 	module_put(THIS_MODULE);
1564 }
1565 
1566 /*
1567  * Input uevent interface - loading event handlers based on
1568  * device bitfields.
1569  */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1570 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1571 				   const char *name, unsigned long *bitmap, int max)
1572 {
1573 	int len;
1574 
1575 	if (add_uevent_var(env, "%s", name))
1576 		return -ENOMEM;
1577 
1578 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1579 				 sizeof(env->buf) - env->buflen,
1580 				 bitmap, max, false);
1581 	if (len >= (sizeof(env->buf) - env->buflen))
1582 		return -ENOMEM;
1583 
1584 	env->buflen += len;
1585 	return 0;
1586 }
1587 
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1588 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1589 					 struct input_dev *dev)
1590 {
1591 	int len;
1592 
1593 	if (add_uevent_var(env, "MODALIAS="))
1594 		return -ENOMEM;
1595 
1596 	len = input_print_modalias(&env->buf[env->buflen - 1],
1597 				   sizeof(env->buf) - env->buflen,
1598 				   dev, 0);
1599 	if (len >= (sizeof(env->buf) - env->buflen))
1600 		return -ENOMEM;
1601 
1602 	env->buflen += len;
1603 	return 0;
1604 }
1605 
1606 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1607 	do {								\
1608 		int err = add_uevent_var(env, fmt, val);		\
1609 		if (err)						\
1610 			return err;					\
1611 	} while (0)
1612 
1613 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1614 	do {								\
1615 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1616 		if (err)						\
1617 			return err;					\
1618 	} while (0)
1619 
1620 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1621 	do {								\
1622 		int err = input_add_uevent_modalias_var(env, dev);	\
1623 		if (err)						\
1624 			return err;					\
1625 	} while (0)
1626 
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1627 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1628 {
1629 	struct input_dev *dev = to_input_dev(device);
1630 
1631 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1632 				dev->id.bustype, dev->id.vendor,
1633 				dev->id.product, dev->id.version);
1634 	if (dev->name)
1635 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1636 	if (dev->phys)
1637 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1638 	if (dev->uniq)
1639 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1640 
1641 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1642 
1643 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1644 	if (test_bit(EV_KEY, dev->evbit))
1645 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1646 	if (test_bit(EV_REL, dev->evbit))
1647 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1648 	if (test_bit(EV_ABS, dev->evbit))
1649 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1650 	if (test_bit(EV_MSC, dev->evbit))
1651 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1652 	if (test_bit(EV_LED, dev->evbit))
1653 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1654 	if (test_bit(EV_SND, dev->evbit))
1655 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1656 	if (test_bit(EV_FF, dev->evbit))
1657 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1658 	if (test_bit(EV_SW, dev->evbit))
1659 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1660 
1661 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1662 
1663 	return 0;
1664 }
1665 
1666 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1667 	do {								\
1668 		int i;							\
1669 		bool active;						\
1670 									\
1671 		if (!test_bit(EV_##type, dev->evbit))			\
1672 			break;						\
1673 									\
1674 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1675 			active = test_bit(i, dev->bits);		\
1676 			if (!active && !on)				\
1677 				continue;				\
1678 									\
1679 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1680 		}							\
1681 	} while (0)
1682 
input_dev_toggle(struct input_dev * dev,bool activate)1683 static void input_dev_toggle(struct input_dev *dev, bool activate)
1684 {
1685 	if (!dev->event)
1686 		return;
1687 
1688 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1689 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1690 
1691 	if (activate && test_bit(EV_REP, dev->evbit)) {
1692 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1693 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1694 	}
1695 }
1696 
1697 /**
1698  * input_reset_device() - reset/restore the state of input device
1699  * @dev: input device whose state needs to be reset
1700  *
1701  * This function tries to reset the state of an opened input device and
1702  * bring internal state and state if the hardware in sync with each other.
1703  * We mark all keys as released, restore LED state, repeat rate, etc.
1704  */
input_reset_device(struct input_dev * dev)1705 void input_reset_device(struct input_dev *dev)
1706 {
1707 	unsigned long flags;
1708 
1709 	mutex_lock(&dev->mutex);
1710 	spin_lock_irqsave(&dev->event_lock, flags);
1711 
1712 	input_dev_toggle(dev, true);
1713 	input_dev_release_keys(dev);
1714 
1715 	spin_unlock_irqrestore(&dev->event_lock, flags);
1716 	mutex_unlock(&dev->mutex);
1717 }
1718 EXPORT_SYMBOL(input_reset_device);
1719 
1720 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1721 static int input_dev_suspend(struct device *dev)
1722 {
1723 	struct input_dev *input_dev = to_input_dev(dev);
1724 
1725 	spin_lock_irq(&input_dev->event_lock);
1726 
1727 	/*
1728 	 * Keys that are pressed now are unlikely to be
1729 	 * still pressed when we resume.
1730 	 */
1731 	input_dev_release_keys(input_dev);
1732 
1733 	/* Turn off LEDs and sounds, if any are active. */
1734 	input_dev_toggle(input_dev, false);
1735 
1736 	spin_unlock_irq(&input_dev->event_lock);
1737 
1738 	return 0;
1739 }
1740 
input_dev_resume(struct device * dev)1741 static int input_dev_resume(struct device *dev)
1742 {
1743 	struct input_dev *input_dev = to_input_dev(dev);
1744 
1745 	spin_lock_irq(&input_dev->event_lock);
1746 
1747 	/* Restore state of LEDs and sounds, if any were active. */
1748 	input_dev_toggle(input_dev, true);
1749 
1750 	spin_unlock_irq(&input_dev->event_lock);
1751 
1752 	return 0;
1753 }
1754 
input_dev_freeze(struct device * dev)1755 static int input_dev_freeze(struct device *dev)
1756 {
1757 	struct input_dev *input_dev = to_input_dev(dev);
1758 
1759 	spin_lock_irq(&input_dev->event_lock);
1760 
1761 	/*
1762 	 * Keys that are pressed now are unlikely to be
1763 	 * still pressed when we resume.
1764 	 */
1765 	input_dev_release_keys(input_dev);
1766 
1767 	spin_unlock_irq(&input_dev->event_lock);
1768 
1769 	return 0;
1770 }
1771 
input_dev_poweroff(struct device * dev)1772 static int input_dev_poweroff(struct device *dev)
1773 {
1774 	struct input_dev *input_dev = to_input_dev(dev);
1775 
1776 	spin_lock_irq(&input_dev->event_lock);
1777 
1778 	/* Turn off LEDs and sounds, if any are active. */
1779 	input_dev_toggle(input_dev, false);
1780 
1781 	spin_unlock_irq(&input_dev->event_lock);
1782 
1783 	return 0;
1784 }
1785 
1786 static const struct dev_pm_ops input_dev_pm_ops = {
1787 	.suspend	= input_dev_suspend,
1788 	.resume		= input_dev_resume,
1789 	.freeze		= input_dev_freeze,
1790 	.poweroff	= input_dev_poweroff,
1791 	.restore	= input_dev_resume,
1792 };
1793 #endif /* CONFIG_PM */
1794 
1795 static const struct device_type input_dev_type = {
1796 	.groups		= input_dev_attr_groups,
1797 	.release	= input_dev_release,
1798 	.uevent		= input_dev_uevent,
1799 #ifdef CONFIG_PM_SLEEP
1800 	.pm		= &input_dev_pm_ops,
1801 #endif
1802 };
1803 
input_devnode(struct device * dev,umode_t * mode)1804 static char *input_devnode(struct device *dev, umode_t *mode)
1805 {
1806 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1807 }
1808 
1809 struct class input_class = {
1810 	.name		= "input",
1811 	.devnode	= input_devnode,
1812 };
1813 EXPORT_SYMBOL_GPL(input_class);
1814 
1815 /**
1816  * input_allocate_device - allocate memory for new input device
1817  *
1818  * Returns prepared struct input_dev or %NULL.
1819  *
1820  * NOTE: Use input_free_device() to free devices that have not been
1821  * registered; input_unregister_device() should be used for already
1822  * registered devices.
1823  */
input_allocate_device(void)1824 struct input_dev *input_allocate_device(void)
1825 {
1826 	static atomic_t input_no = ATOMIC_INIT(-1);
1827 	struct input_dev *dev;
1828 
1829 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1830 	if (dev) {
1831 		dev->dev.type = &input_dev_type;
1832 		dev->dev.class = &input_class;
1833 		device_initialize(&dev->dev);
1834 		mutex_init(&dev->mutex);
1835 		spin_lock_init(&dev->event_lock);
1836 		timer_setup(&dev->timer, NULL, 0);
1837 		INIT_LIST_HEAD(&dev->h_list);
1838 		INIT_LIST_HEAD(&dev->node);
1839 
1840 		dev_set_name(&dev->dev, "input%lu",
1841 			     (unsigned long)atomic_inc_return(&input_no));
1842 
1843 		__module_get(THIS_MODULE);
1844 	}
1845 
1846 	return dev;
1847 }
1848 EXPORT_SYMBOL(input_allocate_device);
1849 
1850 struct input_devres {
1851 	struct input_dev *input;
1852 };
1853 
devm_input_device_match(struct device * dev,void * res,void * data)1854 static int devm_input_device_match(struct device *dev, void *res, void *data)
1855 {
1856 	struct input_devres *devres = res;
1857 
1858 	return devres->input == data;
1859 }
1860 
devm_input_device_release(struct device * dev,void * res)1861 static void devm_input_device_release(struct device *dev, void *res)
1862 {
1863 	struct input_devres *devres = res;
1864 	struct input_dev *input = devres->input;
1865 
1866 	dev_dbg(dev, "%s: dropping reference to %s\n",
1867 		__func__, dev_name(&input->dev));
1868 	input_put_device(input);
1869 }
1870 
1871 /**
1872  * devm_input_allocate_device - allocate managed input device
1873  * @dev: device owning the input device being created
1874  *
1875  * Returns prepared struct input_dev or %NULL.
1876  *
1877  * Managed input devices do not need to be explicitly unregistered or
1878  * freed as it will be done automatically when owner device unbinds from
1879  * its driver (or binding fails). Once managed input device is allocated,
1880  * it is ready to be set up and registered in the same fashion as regular
1881  * input device. There are no special devm_input_device_[un]register()
1882  * variants, regular ones work with both managed and unmanaged devices,
1883  * should you need them. In most cases however, managed input device need
1884  * not be explicitly unregistered or freed.
1885  *
1886  * NOTE: the owner device is set up as parent of input device and users
1887  * should not override it.
1888  */
devm_input_allocate_device(struct device * dev)1889 struct input_dev *devm_input_allocate_device(struct device *dev)
1890 {
1891 	struct input_dev *input;
1892 	struct input_devres *devres;
1893 
1894 	devres = devres_alloc(devm_input_device_release,
1895 			      sizeof(*devres), GFP_KERNEL);
1896 	if (!devres)
1897 		return NULL;
1898 
1899 	input = input_allocate_device();
1900 	if (!input) {
1901 		devres_free(devres);
1902 		return NULL;
1903 	}
1904 
1905 	input->dev.parent = dev;
1906 	input->devres_managed = true;
1907 
1908 	devres->input = input;
1909 	devres_add(dev, devres);
1910 
1911 	return input;
1912 }
1913 EXPORT_SYMBOL(devm_input_allocate_device);
1914 
1915 /**
1916  * input_free_device - free memory occupied by input_dev structure
1917  * @dev: input device to free
1918  *
1919  * This function should only be used if input_register_device()
1920  * was not called yet or if it failed. Once device was registered
1921  * use input_unregister_device() and memory will be freed once last
1922  * reference to the device is dropped.
1923  *
1924  * Device should be allocated by input_allocate_device().
1925  *
1926  * NOTE: If there are references to the input device then memory
1927  * will not be freed until last reference is dropped.
1928  */
input_free_device(struct input_dev * dev)1929 void input_free_device(struct input_dev *dev)
1930 {
1931 	if (dev) {
1932 		if (dev->devres_managed)
1933 			WARN_ON(devres_destroy(dev->dev.parent,
1934 						devm_input_device_release,
1935 						devm_input_device_match,
1936 						dev));
1937 		input_put_device(dev);
1938 	}
1939 }
1940 EXPORT_SYMBOL(input_free_device);
1941 
1942 /**
1943  * input_set_timestamp - set timestamp for input events
1944  * @dev: input device to set timestamp for
1945  * @timestamp: the time at which the event has occurred
1946  *   in CLOCK_MONOTONIC
1947  *
1948  * This function is intended to provide to the input system a more
1949  * accurate time of when an event actually occurred. The driver should
1950  * call this function as soon as a timestamp is acquired ensuring
1951  * clock conversions in input_set_timestamp are done correctly.
1952  *
1953  * The system entering suspend state between timestamp acquisition and
1954  * calling input_set_timestamp can result in inaccurate conversions.
1955  */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)1956 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1957 {
1958 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
1959 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1960 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1961 							   TK_OFFS_BOOT);
1962 }
1963 EXPORT_SYMBOL(input_set_timestamp);
1964 
1965 /**
1966  * input_get_timestamp - get timestamp for input events
1967  * @dev: input device to get timestamp from
1968  *
1969  * A valid timestamp is a timestamp of non-zero value.
1970  */
input_get_timestamp(struct input_dev * dev)1971 ktime_t *input_get_timestamp(struct input_dev *dev)
1972 {
1973 	const ktime_t invalid_timestamp = ktime_set(0, 0);
1974 
1975 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1976 		input_set_timestamp(dev, ktime_get());
1977 
1978 	return dev->timestamp;
1979 }
1980 EXPORT_SYMBOL(input_get_timestamp);
1981 
1982 /**
1983  * input_set_capability - mark device as capable of a certain event
1984  * @dev: device that is capable of emitting or accepting event
1985  * @type: type of the event (EV_KEY, EV_REL, etc...)
1986  * @code: event code
1987  *
1988  * In addition to setting up corresponding bit in appropriate capability
1989  * bitmap the function also adjusts dev->evbit.
1990  */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1991 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1992 {
1993 	if (type < EV_CNT && input_max_code[type] &&
1994 	    code > input_max_code[type]) {
1995 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
1996 		       type);
1997 		dump_stack();
1998 		return;
1999 	}
2000 
2001 	switch (type) {
2002 	case EV_KEY:
2003 		__set_bit(code, dev->keybit);
2004 		break;
2005 
2006 	case EV_REL:
2007 		__set_bit(code, dev->relbit);
2008 		break;
2009 
2010 	case EV_ABS:
2011 		input_alloc_absinfo(dev);
2012 		if (!dev->absinfo)
2013 			return;
2014 
2015 		__set_bit(code, dev->absbit);
2016 		break;
2017 
2018 	case EV_MSC:
2019 		__set_bit(code, dev->mscbit);
2020 		break;
2021 
2022 	case EV_SW:
2023 		__set_bit(code, dev->swbit);
2024 		break;
2025 
2026 	case EV_LED:
2027 		__set_bit(code, dev->ledbit);
2028 		break;
2029 
2030 	case EV_SND:
2031 		__set_bit(code, dev->sndbit);
2032 		break;
2033 
2034 	case EV_FF:
2035 		__set_bit(code, dev->ffbit);
2036 		break;
2037 
2038 	case EV_PWR:
2039 		/* do nothing */
2040 		break;
2041 
2042 	default:
2043 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2044 		dump_stack();
2045 		return;
2046 	}
2047 
2048 	__set_bit(type, dev->evbit);
2049 }
2050 EXPORT_SYMBOL(input_set_capability);
2051 
input_estimate_events_per_packet(struct input_dev * dev)2052 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2053 {
2054 	int mt_slots;
2055 	int i;
2056 	unsigned int events;
2057 
2058 	if (dev->mt) {
2059 		mt_slots = dev->mt->num_slots;
2060 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2061 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2062 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2063 		mt_slots = clamp(mt_slots, 2, 32);
2064 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2065 		mt_slots = 2;
2066 	} else {
2067 		mt_slots = 0;
2068 	}
2069 
2070 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2071 
2072 	if (test_bit(EV_ABS, dev->evbit))
2073 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2074 			events += input_is_mt_axis(i) ? mt_slots : 1;
2075 
2076 	if (test_bit(EV_REL, dev->evbit))
2077 		events += bitmap_weight(dev->relbit, REL_CNT);
2078 
2079 	/* Make room for KEY and MSC events */
2080 	events += 7;
2081 
2082 	return events;
2083 }
2084 
2085 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2086 	do {								\
2087 		if (!test_bit(EV_##type, dev->evbit))			\
2088 			memset(dev->bits##bit, 0,			\
2089 				sizeof(dev->bits##bit));		\
2090 	} while (0)
2091 
input_cleanse_bitmasks(struct input_dev * dev)2092 static void input_cleanse_bitmasks(struct input_dev *dev)
2093 {
2094 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2095 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2096 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2097 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2098 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2099 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2100 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2101 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2102 }
2103 
__input_unregister_device(struct input_dev * dev)2104 static void __input_unregister_device(struct input_dev *dev)
2105 {
2106 	struct input_handle *handle, *next;
2107 
2108 	input_disconnect_device(dev);
2109 
2110 	mutex_lock(&input_mutex);
2111 
2112 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2113 		handle->handler->disconnect(handle);
2114 	WARN_ON(!list_empty(&dev->h_list));
2115 
2116 	del_timer_sync(&dev->timer);
2117 	list_del_init(&dev->node);
2118 
2119 	input_wakeup_procfs_readers();
2120 
2121 	mutex_unlock(&input_mutex);
2122 
2123 	device_del(&dev->dev);
2124 }
2125 
devm_input_device_unregister(struct device * dev,void * res)2126 static void devm_input_device_unregister(struct device *dev, void *res)
2127 {
2128 	struct input_devres *devres = res;
2129 	struct input_dev *input = devres->input;
2130 
2131 	dev_dbg(dev, "%s: unregistering device %s\n",
2132 		__func__, dev_name(&input->dev));
2133 	__input_unregister_device(input);
2134 }
2135 
2136 /**
2137  * input_enable_softrepeat - enable software autorepeat
2138  * @dev: input device
2139  * @delay: repeat delay
2140  * @period: repeat period
2141  *
2142  * Enable software autorepeat on the input device.
2143  */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2144 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2145 {
2146 	dev->timer.function = input_repeat_key;
2147 	dev->rep[REP_DELAY] = delay;
2148 	dev->rep[REP_PERIOD] = period;
2149 }
2150 EXPORT_SYMBOL(input_enable_softrepeat);
2151 
2152 /**
2153  * input_register_device - register device with input core
2154  * @dev: device to be registered
2155  *
2156  * This function registers device with input core. The device must be
2157  * allocated with input_allocate_device() and all it's capabilities
2158  * set up before registering.
2159  * If function fails the device must be freed with input_free_device().
2160  * Once device has been successfully registered it can be unregistered
2161  * with input_unregister_device(); input_free_device() should not be
2162  * called in this case.
2163  *
2164  * Note that this function is also used to register managed input devices
2165  * (ones allocated with devm_input_allocate_device()). Such managed input
2166  * devices need not be explicitly unregistered or freed, their tear down
2167  * is controlled by the devres infrastructure. It is also worth noting
2168  * that tear down of managed input devices is internally a 2-step process:
2169  * registered managed input device is first unregistered, but stays in
2170  * memory and can still handle input_event() calls (although events will
2171  * not be delivered anywhere). The freeing of managed input device will
2172  * happen later, when devres stack is unwound to the point where device
2173  * allocation was made.
2174  */
input_register_device(struct input_dev * dev)2175 int input_register_device(struct input_dev *dev)
2176 {
2177 	struct input_devres *devres = NULL;
2178 	struct input_handler *handler;
2179 	unsigned int packet_size;
2180 	const char *path;
2181 	int error;
2182 
2183 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2184 		dev_err(&dev->dev,
2185 			"Absolute device without dev->absinfo, refusing to register\n");
2186 		return -EINVAL;
2187 	}
2188 
2189 	if (dev->devres_managed) {
2190 		devres = devres_alloc(devm_input_device_unregister,
2191 				      sizeof(*devres), GFP_KERNEL);
2192 		if (!devres)
2193 			return -ENOMEM;
2194 
2195 		devres->input = dev;
2196 	}
2197 
2198 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2199 	__set_bit(EV_SYN, dev->evbit);
2200 
2201 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2202 	__clear_bit(KEY_RESERVED, dev->keybit);
2203 
2204 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2205 	input_cleanse_bitmasks(dev);
2206 
2207 	packet_size = input_estimate_events_per_packet(dev);
2208 	if (dev->hint_events_per_packet < packet_size)
2209 		dev->hint_events_per_packet = packet_size;
2210 
2211 	dev->max_vals = dev->hint_events_per_packet + 2;
2212 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2213 	if (!dev->vals) {
2214 		error = -ENOMEM;
2215 		goto err_devres_free;
2216 	}
2217 
2218 	/*
2219 	 * If delay and period are pre-set by the driver, then autorepeating
2220 	 * is handled by the driver itself and we don't do it in input.c.
2221 	 */
2222 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2223 		input_enable_softrepeat(dev, 250, 33);
2224 
2225 	if (!dev->getkeycode)
2226 		dev->getkeycode = input_default_getkeycode;
2227 
2228 	if (!dev->setkeycode)
2229 		dev->setkeycode = input_default_setkeycode;
2230 
2231 	if (dev->poller)
2232 		input_dev_poller_finalize(dev->poller);
2233 
2234 	error = device_add(&dev->dev);
2235 	if (error)
2236 		goto err_free_vals;
2237 
2238 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2239 	pr_info("%s as %s\n",
2240 		dev->name ? dev->name : "Unspecified device",
2241 		path ? path : "N/A");
2242 	kfree(path);
2243 
2244 	error = mutex_lock_interruptible(&input_mutex);
2245 	if (error)
2246 		goto err_device_del;
2247 
2248 	list_add_tail(&dev->node, &input_dev_list);
2249 
2250 	list_for_each_entry(handler, &input_handler_list, node)
2251 		input_attach_handler(dev, handler);
2252 
2253 	input_wakeup_procfs_readers();
2254 
2255 	mutex_unlock(&input_mutex);
2256 
2257 	if (dev->devres_managed) {
2258 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2259 			__func__, dev_name(&dev->dev));
2260 		devres_add(dev->dev.parent, devres);
2261 	}
2262 	return 0;
2263 
2264 err_device_del:
2265 	device_del(&dev->dev);
2266 err_free_vals:
2267 	kfree(dev->vals);
2268 	dev->vals = NULL;
2269 err_devres_free:
2270 	devres_free(devres);
2271 	return error;
2272 }
2273 EXPORT_SYMBOL(input_register_device);
2274 
2275 /**
2276  * input_unregister_device - unregister previously registered device
2277  * @dev: device to be unregistered
2278  *
2279  * This function unregisters an input device. Once device is unregistered
2280  * the caller should not try to access it as it may get freed at any moment.
2281  */
input_unregister_device(struct input_dev * dev)2282 void input_unregister_device(struct input_dev *dev)
2283 {
2284 	if (dev->devres_managed) {
2285 		WARN_ON(devres_destroy(dev->dev.parent,
2286 					devm_input_device_unregister,
2287 					devm_input_device_match,
2288 					dev));
2289 		__input_unregister_device(dev);
2290 		/*
2291 		 * We do not do input_put_device() here because it will be done
2292 		 * when 2nd devres fires up.
2293 		 */
2294 	} else {
2295 		__input_unregister_device(dev);
2296 		input_put_device(dev);
2297 	}
2298 }
2299 EXPORT_SYMBOL(input_unregister_device);
2300 
2301 /**
2302  * input_register_handler - register a new input handler
2303  * @handler: handler to be registered
2304  *
2305  * This function registers a new input handler (interface) for input
2306  * devices in the system and attaches it to all input devices that
2307  * are compatible with the handler.
2308  */
input_register_handler(struct input_handler * handler)2309 int input_register_handler(struct input_handler *handler)
2310 {
2311 	struct input_dev *dev;
2312 	int error;
2313 
2314 	error = mutex_lock_interruptible(&input_mutex);
2315 	if (error)
2316 		return error;
2317 
2318 	INIT_LIST_HEAD(&handler->h_list);
2319 
2320 	list_add_tail(&handler->node, &input_handler_list);
2321 
2322 	list_for_each_entry(dev, &input_dev_list, node)
2323 		input_attach_handler(dev, handler);
2324 
2325 	input_wakeup_procfs_readers();
2326 
2327 	mutex_unlock(&input_mutex);
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL(input_register_handler);
2331 
2332 /**
2333  * input_unregister_handler - unregisters an input handler
2334  * @handler: handler to be unregistered
2335  *
2336  * This function disconnects a handler from its input devices and
2337  * removes it from lists of known handlers.
2338  */
input_unregister_handler(struct input_handler * handler)2339 void input_unregister_handler(struct input_handler *handler)
2340 {
2341 	struct input_handle *handle, *next;
2342 
2343 	mutex_lock(&input_mutex);
2344 
2345 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2346 		handler->disconnect(handle);
2347 	WARN_ON(!list_empty(&handler->h_list));
2348 
2349 	list_del_init(&handler->node);
2350 
2351 	input_wakeup_procfs_readers();
2352 
2353 	mutex_unlock(&input_mutex);
2354 }
2355 EXPORT_SYMBOL(input_unregister_handler);
2356 
2357 /**
2358  * input_handler_for_each_handle - handle iterator
2359  * @handler: input handler to iterate
2360  * @data: data for the callback
2361  * @fn: function to be called for each handle
2362  *
2363  * Iterate over @bus's list of devices, and call @fn for each, passing
2364  * it @data and stop when @fn returns a non-zero value. The function is
2365  * using RCU to traverse the list and therefore may be using in atomic
2366  * contexts. The @fn callback is invoked from RCU critical section and
2367  * thus must not sleep.
2368  */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2369 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2370 				  int (*fn)(struct input_handle *, void *))
2371 {
2372 	struct input_handle *handle;
2373 	int retval = 0;
2374 
2375 	rcu_read_lock();
2376 
2377 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2378 		retval = fn(handle, data);
2379 		if (retval)
2380 			break;
2381 	}
2382 
2383 	rcu_read_unlock();
2384 
2385 	return retval;
2386 }
2387 EXPORT_SYMBOL(input_handler_for_each_handle);
2388 
2389 /**
2390  * input_register_handle - register a new input handle
2391  * @handle: handle to register
2392  *
2393  * This function puts a new input handle onto device's
2394  * and handler's lists so that events can flow through
2395  * it once it is opened using input_open_device().
2396  *
2397  * This function is supposed to be called from handler's
2398  * connect() method.
2399  */
input_register_handle(struct input_handle * handle)2400 int input_register_handle(struct input_handle *handle)
2401 {
2402 	struct input_handler *handler = handle->handler;
2403 	struct input_dev *dev = handle->dev;
2404 	int error;
2405 
2406 	/*
2407 	 * We take dev->mutex here to prevent race with
2408 	 * input_release_device().
2409 	 */
2410 	error = mutex_lock_interruptible(&dev->mutex);
2411 	if (error)
2412 		return error;
2413 
2414 	/*
2415 	 * Filters go to the head of the list, normal handlers
2416 	 * to the tail.
2417 	 */
2418 	if (handler->filter)
2419 		list_add_rcu(&handle->d_node, &dev->h_list);
2420 	else
2421 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2422 
2423 	mutex_unlock(&dev->mutex);
2424 
2425 	/*
2426 	 * Since we are supposed to be called from ->connect()
2427 	 * which is mutually exclusive with ->disconnect()
2428 	 * we can't be racing with input_unregister_handle()
2429 	 * and so separate lock is not needed here.
2430 	 */
2431 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2432 
2433 	if (handler->start)
2434 		handler->start(handle);
2435 
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(input_register_handle);
2439 
2440 /**
2441  * input_unregister_handle - unregister an input handle
2442  * @handle: handle to unregister
2443  *
2444  * This function removes input handle from device's
2445  * and handler's lists.
2446  *
2447  * This function is supposed to be called from handler's
2448  * disconnect() method.
2449  */
input_unregister_handle(struct input_handle * handle)2450 void input_unregister_handle(struct input_handle *handle)
2451 {
2452 	struct input_dev *dev = handle->dev;
2453 
2454 	list_del_rcu(&handle->h_node);
2455 
2456 	/*
2457 	 * Take dev->mutex to prevent race with input_release_device().
2458 	 */
2459 	mutex_lock(&dev->mutex);
2460 	list_del_rcu(&handle->d_node);
2461 	mutex_unlock(&dev->mutex);
2462 
2463 	synchronize_rcu();
2464 }
2465 EXPORT_SYMBOL(input_unregister_handle);
2466 
2467 /**
2468  * input_get_new_minor - allocates a new input minor number
2469  * @legacy_base: beginning or the legacy range to be searched
2470  * @legacy_num: size of legacy range
2471  * @allow_dynamic: whether we can also take ID from the dynamic range
2472  *
2473  * This function allocates a new device minor for from input major namespace.
2474  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2475  * parameters and whether ID can be allocated from dynamic range if there are
2476  * no free IDs in legacy range.
2477  */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2478 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2479 			bool allow_dynamic)
2480 {
2481 	/*
2482 	 * This function should be called from input handler's ->connect()
2483 	 * methods, which are serialized with input_mutex, so no additional
2484 	 * locking is needed here.
2485 	 */
2486 	if (legacy_base >= 0) {
2487 		int minor = ida_simple_get(&input_ida,
2488 					   legacy_base,
2489 					   legacy_base + legacy_num,
2490 					   GFP_KERNEL);
2491 		if (minor >= 0 || !allow_dynamic)
2492 			return minor;
2493 	}
2494 
2495 	return ida_simple_get(&input_ida,
2496 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2497 			      GFP_KERNEL);
2498 }
2499 EXPORT_SYMBOL(input_get_new_minor);
2500 
2501 /**
2502  * input_free_minor - release previously allocated minor
2503  * @minor: minor to be released
2504  *
2505  * This function releases previously allocated input minor so that it can be
2506  * reused later.
2507  */
input_free_minor(unsigned int minor)2508 void input_free_minor(unsigned int minor)
2509 {
2510 	ida_simple_remove(&input_ida, minor);
2511 }
2512 EXPORT_SYMBOL(input_free_minor);
2513 
input_init(void)2514 static int __init input_init(void)
2515 {
2516 	int err;
2517 
2518 	err = class_register(&input_class);
2519 	if (err) {
2520 		pr_err("unable to register input_dev class\n");
2521 		return err;
2522 	}
2523 
2524 	err = input_proc_init();
2525 	if (err)
2526 		goto fail1;
2527 
2528 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2529 				     INPUT_MAX_CHAR_DEVICES, "input");
2530 	if (err) {
2531 		pr_err("unable to register char major %d", INPUT_MAJOR);
2532 		goto fail2;
2533 	}
2534 
2535 	return 0;
2536 
2537  fail2:	input_proc_exit();
2538  fail1:	class_unregister(&input_class);
2539 	return err;
2540 }
2541 
input_exit(void)2542 static void __exit input_exit(void)
2543 {
2544 	input_proc_exit();
2545 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2546 				 INPUT_MAX_CHAR_DEVICES);
2547 	class_unregister(&input_class);
2548 }
2549 
2550 subsys_initcall(input_init);
2551 module_exit(input_exit);
2552