1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50 static const unsigned int input_max_code[EV_CNT] = {
51 [EV_KEY] = KEY_MAX,
52 [EV_REL] = REL_MAX,
53 [EV_ABS] = ABS_MAX,
54 [EV_MSC] = MSC_MAX,
55 [EV_SW] = SW_MAX,
56 [EV_LED] = LED_MAX,
57 [EV_SND] = SND_MAX,
58 [EV_FF] = FF_MAX,
59 };
60
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)61 static inline int is_event_supported(unsigned int code,
62 unsigned long *bm, unsigned int max)
63 {
64 return code <= max && test_bit(code, bm);
65 }
66
input_defuzz_abs_event(int value,int old_val,int fuzz)67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68 {
69 if (fuzz) {
70 if (value > (long)old_val - fuzz / 2 &&
71 value < (long)old_val + fuzz / 2)
72 return old_val;
73
74 if (value > (long)old_val - fuzz &&
75 value < (long)old_val + fuzz)
76 return ((long)old_val * 3 + value) / 4;
77
78 if (value > (long)old_val - fuzz * 2 &&
79 value < (long)old_val + fuzz * 2)
80 return ((long)old_val + value) / 2;
81 }
82
83 return value;
84 }
85
input_start_autorepeat(struct input_dev * dev,int code)86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 }
95 }
96
input_stop_autorepeat(struct input_dev * dev)97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 del_timer(&dev->timer);
100 }
101
102 /*
103 * Pass event first through all filters and then, if event has not been
104 * filtered out, through all open handles. This function is called with
105 * dev->event_lock held and interrupts disabled.
106 */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)107 static unsigned int input_to_handler(struct input_handle *handle,
108 struct input_value *vals, unsigned int count)
109 {
110 struct input_handler *handler = handle->handler;
111 struct input_value *end = vals;
112 struct input_value *v;
113
114 if (handler->filter) {
115 for (v = vals; v != vals + count; v++) {
116 if (handler->filter(handle, v->type, v->code, v->value))
117 continue;
118 if (end != v)
119 *end = *v;
120 end++;
121 }
122 count = end - vals;
123 }
124
125 if (!count)
126 return 0;
127
128 if (handler->events)
129 handler->events(handle, vals, count);
130 else if (handler->event)
131 for (v = vals; v != vals + count; v++)
132 handler->event(handle, v->type, v->code, v->value);
133
134 return count;
135 }
136
137 /*
138 * Pass values first through all filters and then, if event has not been
139 * filtered out, through all open handles. This function is called with
140 * dev->event_lock held and interrupts disabled.
141 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)142 static void input_pass_values(struct input_dev *dev,
143 struct input_value *vals, unsigned int count)
144 {
145 struct input_handle *handle;
146 struct input_value *v;
147
148 if (!count)
149 return;
150
151 rcu_read_lock();
152
153 handle = rcu_dereference(dev->grab);
154 if (handle) {
155 count = input_to_handler(handle, vals, count);
156 } else {
157 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
158 if (handle->open) {
159 count = input_to_handler(handle, vals, count);
160 if (!count)
161 break;
162 }
163 }
164
165 rcu_read_unlock();
166
167 /* trigger auto repeat for key events */
168 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
169 for (v = vals; v != vals + count; v++) {
170 if (v->type == EV_KEY && v->value != 2) {
171 if (v->value)
172 input_start_autorepeat(dev, v->code);
173 else
174 input_stop_autorepeat(dev);
175 }
176 }
177 }
178 }
179
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)180 static void input_pass_event(struct input_dev *dev,
181 unsigned int type, unsigned int code, int value)
182 {
183 struct input_value vals[] = { { type, code, value } };
184
185 input_pass_values(dev, vals, ARRAY_SIZE(vals));
186 }
187
188 /*
189 * Generate software autorepeat event. Note that we take
190 * dev->event_lock here to avoid racing with input_event
191 * which may cause keys get "stuck".
192 */
input_repeat_key(struct timer_list * t)193 static void input_repeat_key(struct timer_list *t)
194 {
195 struct input_dev *dev = from_timer(dev, t, timer);
196 unsigned long flags;
197
198 spin_lock_irqsave(&dev->event_lock, flags);
199
200 if (test_bit(dev->repeat_key, dev->key) &&
201 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
202 struct input_value vals[] = {
203 { EV_KEY, dev->repeat_key, 2 },
204 input_value_sync
205 };
206
207 input_set_timestamp(dev, ktime_get());
208 input_pass_values(dev, vals, ARRAY_SIZE(vals));
209
210 if (dev->rep[REP_PERIOD])
211 mod_timer(&dev->timer, jiffies +
212 msecs_to_jiffies(dev->rep[REP_PERIOD]));
213 }
214
215 spin_unlock_irqrestore(&dev->event_lock, flags);
216 }
217
218 #define INPUT_IGNORE_EVENT 0
219 #define INPUT_PASS_TO_HANDLERS 1
220 #define INPUT_PASS_TO_DEVICE 2
221 #define INPUT_SLOT 4
222 #define INPUT_FLUSH 8
223 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
224
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)225 static int input_handle_abs_event(struct input_dev *dev,
226 unsigned int code, int *pval)
227 {
228 struct input_mt *mt = dev->mt;
229 bool is_mt_event;
230 int *pold;
231
232 if (code == ABS_MT_SLOT) {
233 /*
234 * "Stage" the event; we'll flush it later, when we
235 * get actual touch data.
236 */
237 if (mt && *pval >= 0 && *pval < mt->num_slots)
238 mt->slot = *pval;
239
240 return INPUT_IGNORE_EVENT;
241 }
242
243 is_mt_event = input_is_mt_value(code);
244
245 if (!is_mt_event) {
246 pold = &dev->absinfo[code].value;
247 } else if (mt) {
248 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
249 } else {
250 /*
251 * Bypass filtering for multi-touch events when
252 * not employing slots.
253 */
254 pold = NULL;
255 }
256
257 if (pold) {
258 *pval = input_defuzz_abs_event(*pval, *pold,
259 dev->absinfo[code].fuzz);
260 if (*pold == *pval)
261 return INPUT_IGNORE_EVENT;
262
263 *pold = *pval;
264 }
265
266 /* Flush pending "slot" event */
267 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
268 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
269 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
270 }
271
272 return INPUT_PASS_TO_HANDLERS;
273 }
274
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)275 static int input_get_disposition(struct input_dev *dev,
276 unsigned int type, unsigned int code, int *pval)
277 {
278 int disposition = INPUT_IGNORE_EVENT;
279 int value = *pval;
280
281 switch (type) {
282
283 case EV_SYN:
284 switch (code) {
285 case SYN_CONFIG:
286 disposition = INPUT_PASS_TO_ALL;
287 break;
288
289 case SYN_REPORT:
290 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
291 break;
292 case SYN_MT_REPORT:
293 disposition = INPUT_PASS_TO_HANDLERS;
294 break;
295 }
296 break;
297
298 case EV_KEY:
299 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
300
301 /* auto-repeat bypasses state updates */
302 if (value == 2) {
303 disposition = INPUT_PASS_TO_HANDLERS;
304 break;
305 }
306
307 if (!!test_bit(code, dev->key) != !!value) {
308
309 __change_bit(code, dev->key);
310 disposition = INPUT_PASS_TO_HANDLERS;
311 }
312 }
313 break;
314
315 case EV_SW:
316 if (is_event_supported(code, dev->swbit, SW_MAX) &&
317 !!test_bit(code, dev->sw) != !!value) {
318
319 __change_bit(code, dev->sw);
320 disposition = INPUT_PASS_TO_HANDLERS;
321 }
322 break;
323
324 case EV_ABS:
325 if (is_event_supported(code, dev->absbit, ABS_MAX))
326 disposition = input_handle_abs_event(dev, code, &value);
327
328 break;
329
330 case EV_REL:
331 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
332 disposition = INPUT_PASS_TO_HANDLERS;
333
334 break;
335
336 case EV_MSC:
337 if (is_event_supported(code, dev->mscbit, MSC_MAX))
338 disposition = INPUT_PASS_TO_ALL;
339
340 break;
341
342 case EV_LED:
343 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
344 !!test_bit(code, dev->led) != !!value) {
345
346 __change_bit(code, dev->led);
347 disposition = INPUT_PASS_TO_ALL;
348 }
349 break;
350
351 case EV_SND:
352 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
353
354 if (!!test_bit(code, dev->snd) != !!value)
355 __change_bit(code, dev->snd);
356 disposition = INPUT_PASS_TO_ALL;
357 }
358 break;
359
360 case EV_REP:
361 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
362 dev->rep[code] = value;
363 disposition = INPUT_PASS_TO_ALL;
364 }
365 break;
366
367 case EV_FF:
368 if (value >= 0)
369 disposition = INPUT_PASS_TO_ALL;
370 break;
371
372 case EV_PWR:
373 disposition = INPUT_PASS_TO_ALL;
374 break;
375 }
376
377 *pval = value;
378 return disposition;
379 }
380
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)381 static void input_handle_event(struct input_dev *dev,
382 unsigned int type, unsigned int code, int value)
383 {
384 int disposition = input_get_disposition(dev, type, code, &value);
385
386 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
387 add_input_randomness(type, code, value);
388
389 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
390 dev->event(dev, type, code, value);
391
392 if (!dev->vals)
393 return;
394
395 if (disposition & INPUT_PASS_TO_HANDLERS) {
396 struct input_value *v;
397
398 if (disposition & INPUT_SLOT) {
399 v = &dev->vals[dev->num_vals++];
400 v->type = EV_ABS;
401 v->code = ABS_MT_SLOT;
402 v->value = dev->mt->slot;
403 }
404
405 v = &dev->vals[dev->num_vals++];
406 v->type = type;
407 v->code = code;
408 v->value = value;
409 }
410
411 if (disposition & INPUT_FLUSH) {
412 if (dev->num_vals >= 2)
413 input_pass_values(dev, dev->vals, dev->num_vals);
414 dev->num_vals = 0;
415 /*
416 * Reset the timestamp on flush so we won't end up
417 * with a stale one. Note we only need to reset the
418 * monolithic one as we use its presence when deciding
419 * whether to generate a synthetic timestamp.
420 */
421 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
422 } else if (dev->num_vals >= dev->max_vals - 2) {
423 dev->vals[dev->num_vals++] = input_value_sync;
424 input_pass_values(dev, dev->vals, dev->num_vals);
425 dev->num_vals = 0;
426 }
427
428 }
429
430 /**
431 * input_event() - report new input event
432 * @dev: device that generated the event
433 * @type: type of the event
434 * @code: event code
435 * @value: value of the event
436 *
437 * This function should be used by drivers implementing various input
438 * devices to report input events. See also input_inject_event().
439 *
440 * NOTE: input_event() may be safely used right after input device was
441 * allocated with input_allocate_device(), even before it is registered
442 * with input_register_device(), but the event will not reach any of the
443 * input handlers. Such early invocation of input_event() may be used
444 * to 'seed' initial state of a switch or initial position of absolute
445 * axis, etc.
446 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)447 void input_event(struct input_dev *dev,
448 unsigned int type, unsigned int code, int value)
449 {
450 unsigned long flags;
451
452 if (is_event_supported(type, dev->evbit, EV_MAX)) {
453
454 spin_lock_irqsave(&dev->event_lock, flags);
455 input_handle_event(dev, type, code, value);
456 spin_unlock_irqrestore(&dev->event_lock, flags);
457 }
458 }
459 EXPORT_SYMBOL(input_event);
460
461 /**
462 * input_inject_event() - send input event from input handler
463 * @handle: input handle to send event through
464 * @type: type of the event
465 * @code: event code
466 * @value: value of the event
467 *
468 * Similar to input_event() but will ignore event if device is
469 * "grabbed" and handle injecting event is not the one that owns
470 * the device.
471 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)472 void input_inject_event(struct input_handle *handle,
473 unsigned int type, unsigned int code, int value)
474 {
475 struct input_dev *dev = handle->dev;
476 struct input_handle *grab;
477 unsigned long flags;
478
479 if (is_event_supported(type, dev->evbit, EV_MAX)) {
480 spin_lock_irqsave(&dev->event_lock, flags);
481
482 rcu_read_lock();
483 grab = rcu_dereference(dev->grab);
484 if (!grab || grab == handle)
485 input_handle_event(dev, type, code, value);
486 rcu_read_unlock();
487
488 spin_unlock_irqrestore(&dev->event_lock, flags);
489 }
490 }
491 EXPORT_SYMBOL(input_inject_event);
492
493 /**
494 * input_alloc_absinfo - allocates array of input_absinfo structs
495 * @dev: the input device emitting absolute events
496 *
497 * If the absinfo struct the caller asked for is already allocated, this
498 * functions will not do anything.
499 */
input_alloc_absinfo(struct input_dev * dev)500 void input_alloc_absinfo(struct input_dev *dev)
501 {
502 if (dev->absinfo)
503 return;
504
505 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
506 if (!dev->absinfo) {
507 dev_err(dev->dev.parent ?: &dev->dev,
508 "%s: unable to allocate memory\n", __func__);
509 /*
510 * We will handle this allocation failure in
511 * input_register_device() when we refuse to register input
512 * device with ABS bits but without absinfo.
513 */
514 }
515 }
516 EXPORT_SYMBOL(input_alloc_absinfo);
517
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)518 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
519 int min, int max, int fuzz, int flat)
520 {
521 struct input_absinfo *absinfo;
522
523 input_alloc_absinfo(dev);
524 if (!dev->absinfo)
525 return;
526
527 absinfo = &dev->absinfo[axis];
528 absinfo->minimum = min;
529 absinfo->maximum = max;
530 absinfo->fuzz = fuzz;
531 absinfo->flat = flat;
532
533 __set_bit(EV_ABS, dev->evbit);
534 __set_bit(axis, dev->absbit);
535 }
536 EXPORT_SYMBOL(input_set_abs_params);
537
538
539 /**
540 * input_grab_device - grabs device for exclusive use
541 * @handle: input handle that wants to own the device
542 *
543 * When a device is grabbed by an input handle all events generated by
544 * the device are delivered only to this handle. Also events injected
545 * by other input handles are ignored while device is grabbed.
546 */
input_grab_device(struct input_handle * handle)547 int input_grab_device(struct input_handle *handle)
548 {
549 struct input_dev *dev = handle->dev;
550 int retval;
551
552 retval = mutex_lock_interruptible(&dev->mutex);
553 if (retval)
554 return retval;
555
556 if (dev->grab) {
557 retval = -EBUSY;
558 goto out;
559 }
560
561 rcu_assign_pointer(dev->grab, handle);
562
563 out:
564 mutex_unlock(&dev->mutex);
565 return retval;
566 }
567 EXPORT_SYMBOL(input_grab_device);
568
__input_release_device(struct input_handle * handle)569 static void __input_release_device(struct input_handle *handle)
570 {
571 struct input_dev *dev = handle->dev;
572 struct input_handle *grabber;
573
574 grabber = rcu_dereference_protected(dev->grab,
575 lockdep_is_held(&dev->mutex));
576 if (grabber == handle) {
577 rcu_assign_pointer(dev->grab, NULL);
578 /* Make sure input_pass_event() notices that grab is gone */
579 synchronize_rcu();
580
581 list_for_each_entry(handle, &dev->h_list, d_node)
582 if (handle->open && handle->handler->start)
583 handle->handler->start(handle);
584 }
585 }
586
587 /**
588 * input_release_device - release previously grabbed device
589 * @handle: input handle that owns the device
590 *
591 * Releases previously grabbed device so that other input handles can
592 * start receiving input events. Upon release all handlers attached
593 * to the device have their start() method called so they have a change
594 * to synchronize device state with the rest of the system.
595 */
input_release_device(struct input_handle * handle)596 void input_release_device(struct input_handle *handle)
597 {
598 struct input_dev *dev = handle->dev;
599
600 mutex_lock(&dev->mutex);
601 __input_release_device(handle);
602 mutex_unlock(&dev->mutex);
603 }
604 EXPORT_SYMBOL(input_release_device);
605
606 /**
607 * input_open_device - open input device
608 * @handle: handle through which device is being accessed
609 *
610 * This function should be called by input handlers when they
611 * want to start receive events from given input device.
612 */
input_open_device(struct input_handle * handle)613 int input_open_device(struct input_handle *handle)
614 {
615 struct input_dev *dev = handle->dev;
616 int retval;
617
618 retval = mutex_lock_interruptible(&dev->mutex);
619 if (retval)
620 return retval;
621
622 if (dev->going_away) {
623 retval = -ENODEV;
624 goto out;
625 }
626
627 handle->open++;
628
629 if (dev->users++) {
630 /*
631 * Device is already opened, so we can exit immediately and
632 * report success.
633 */
634 goto out;
635 }
636
637 if (dev->open) {
638 retval = dev->open(dev);
639 if (retval) {
640 dev->users--;
641 handle->open--;
642 /*
643 * Make sure we are not delivering any more events
644 * through this handle
645 */
646 synchronize_rcu();
647 goto out;
648 }
649 }
650
651 if (dev->poller)
652 input_dev_poller_start(dev->poller);
653
654 out:
655 mutex_unlock(&dev->mutex);
656 return retval;
657 }
658 EXPORT_SYMBOL(input_open_device);
659
input_flush_device(struct input_handle * handle,struct file * file)660 int input_flush_device(struct input_handle *handle, struct file *file)
661 {
662 struct input_dev *dev = handle->dev;
663 int retval;
664
665 retval = mutex_lock_interruptible(&dev->mutex);
666 if (retval)
667 return retval;
668
669 if (dev->flush)
670 retval = dev->flush(dev, file);
671
672 mutex_unlock(&dev->mutex);
673 return retval;
674 }
675 EXPORT_SYMBOL(input_flush_device);
676
677 /**
678 * input_close_device - close input device
679 * @handle: handle through which device is being accessed
680 *
681 * This function should be called by input handlers when they
682 * want to stop receive events from given input device.
683 */
input_close_device(struct input_handle * handle)684 void input_close_device(struct input_handle *handle)
685 {
686 struct input_dev *dev = handle->dev;
687
688 mutex_lock(&dev->mutex);
689
690 __input_release_device(handle);
691
692 if (!--dev->users) {
693 if (dev->poller)
694 input_dev_poller_stop(dev->poller);
695
696 if (dev->close)
697 dev->close(dev);
698 }
699
700 if (!--handle->open) {
701 /*
702 * synchronize_rcu() makes sure that input_pass_event()
703 * completed and that no more input events are delivered
704 * through this handle
705 */
706 synchronize_rcu();
707 }
708
709 mutex_unlock(&dev->mutex);
710 }
711 EXPORT_SYMBOL(input_close_device);
712
713 /*
714 * Simulate keyup events for all keys that are marked as pressed.
715 * The function must be called with dev->event_lock held.
716 */
input_dev_release_keys(struct input_dev * dev)717 static void input_dev_release_keys(struct input_dev *dev)
718 {
719 bool need_sync = false;
720 int code;
721
722 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
723 for_each_set_bit(code, dev->key, KEY_CNT) {
724 input_pass_event(dev, EV_KEY, code, 0);
725 need_sync = true;
726 }
727
728 if (need_sync)
729 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
730
731 memset(dev->key, 0, sizeof(dev->key));
732 }
733 }
734
735 /*
736 * Prepare device for unregistering
737 */
input_disconnect_device(struct input_dev * dev)738 static void input_disconnect_device(struct input_dev *dev)
739 {
740 struct input_handle *handle;
741
742 /*
743 * Mark device as going away. Note that we take dev->mutex here
744 * not to protect access to dev->going_away but rather to ensure
745 * that there are no threads in the middle of input_open_device()
746 */
747 mutex_lock(&dev->mutex);
748 dev->going_away = true;
749 mutex_unlock(&dev->mutex);
750
751 spin_lock_irq(&dev->event_lock);
752
753 /*
754 * Simulate keyup events for all pressed keys so that handlers
755 * are not left with "stuck" keys. The driver may continue
756 * generate events even after we done here but they will not
757 * reach any handlers.
758 */
759 input_dev_release_keys(dev);
760
761 list_for_each_entry(handle, &dev->h_list, d_node)
762 handle->open = 0;
763
764 spin_unlock_irq(&dev->event_lock);
765 }
766
767 /**
768 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
769 * @ke: keymap entry containing scancode to be converted.
770 * @scancode: pointer to the location where converted scancode should
771 * be stored.
772 *
773 * This function is used to convert scancode stored in &struct keymap_entry
774 * into scalar form understood by legacy keymap handling methods. These
775 * methods expect scancodes to be represented as 'unsigned int'.
776 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)777 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
778 unsigned int *scancode)
779 {
780 switch (ke->len) {
781 case 1:
782 *scancode = *((u8 *)ke->scancode);
783 break;
784
785 case 2:
786 *scancode = *((u16 *)ke->scancode);
787 break;
788
789 case 4:
790 *scancode = *((u32 *)ke->scancode);
791 break;
792
793 default:
794 return -EINVAL;
795 }
796
797 return 0;
798 }
799 EXPORT_SYMBOL(input_scancode_to_scalar);
800
801 /*
802 * Those routines handle the default case where no [gs]etkeycode() is
803 * defined. In this case, an array indexed by the scancode is used.
804 */
805
input_fetch_keycode(struct input_dev * dev,unsigned int index)806 static unsigned int input_fetch_keycode(struct input_dev *dev,
807 unsigned int index)
808 {
809 switch (dev->keycodesize) {
810 case 1:
811 return ((u8 *)dev->keycode)[index];
812
813 case 2:
814 return ((u16 *)dev->keycode)[index];
815
816 default:
817 return ((u32 *)dev->keycode)[index];
818 }
819 }
820
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)821 static int input_default_getkeycode(struct input_dev *dev,
822 struct input_keymap_entry *ke)
823 {
824 unsigned int index;
825 int error;
826
827 if (!dev->keycodesize)
828 return -EINVAL;
829
830 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
831 index = ke->index;
832 else {
833 error = input_scancode_to_scalar(ke, &index);
834 if (error)
835 return error;
836 }
837
838 if (index >= dev->keycodemax)
839 return -EINVAL;
840
841 ke->keycode = input_fetch_keycode(dev, index);
842 ke->index = index;
843 ke->len = sizeof(index);
844 memcpy(ke->scancode, &index, sizeof(index));
845
846 return 0;
847 }
848
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)849 static int input_default_setkeycode(struct input_dev *dev,
850 const struct input_keymap_entry *ke,
851 unsigned int *old_keycode)
852 {
853 unsigned int index;
854 int error;
855 int i;
856
857 if (!dev->keycodesize)
858 return -EINVAL;
859
860 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
861 index = ke->index;
862 } else {
863 error = input_scancode_to_scalar(ke, &index);
864 if (error)
865 return error;
866 }
867
868 if (index >= dev->keycodemax)
869 return -EINVAL;
870
871 if (dev->keycodesize < sizeof(ke->keycode) &&
872 (ke->keycode >> (dev->keycodesize * 8)))
873 return -EINVAL;
874
875 switch (dev->keycodesize) {
876 case 1: {
877 u8 *k = (u8 *)dev->keycode;
878 *old_keycode = k[index];
879 k[index] = ke->keycode;
880 break;
881 }
882 case 2: {
883 u16 *k = (u16 *)dev->keycode;
884 *old_keycode = k[index];
885 k[index] = ke->keycode;
886 break;
887 }
888 default: {
889 u32 *k = (u32 *)dev->keycode;
890 *old_keycode = k[index];
891 k[index] = ke->keycode;
892 break;
893 }
894 }
895
896 if (*old_keycode <= KEY_MAX) {
897 __clear_bit(*old_keycode, dev->keybit);
898 for (i = 0; i < dev->keycodemax; i++) {
899 if (input_fetch_keycode(dev, i) == *old_keycode) {
900 __set_bit(*old_keycode, dev->keybit);
901 /* Setting the bit twice is useless, so break */
902 break;
903 }
904 }
905 }
906
907 __set_bit(ke->keycode, dev->keybit);
908 return 0;
909 }
910
911 /**
912 * input_get_keycode - retrieve keycode currently mapped to a given scancode
913 * @dev: input device which keymap is being queried
914 * @ke: keymap entry
915 *
916 * This function should be called by anyone interested in retrieving current
917 * keymap. Presently evdev handlers use it.
918 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)919 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
920 {
921 unsigned long flags;
922 int retval;
923
924 spin_lock_irqsave(&dev->event_lock, flags);
925 retval = dev->getkeycode(dev, ke);
926 spin_unlock_irqrestore(&dev->event_lock, flags);
927
928 return retval;
929 }
930 EXPORT_SYMBOL(input_get_keycode);
931
932 /**
933 * input_set_keycode - attribute a keycode to a given scancode
934 * @dev: input device which keymap is being updated
935 * @ke: new keymap entry
936 *
937 * This function should be called by anyone needing to update current
938 * keymap. Presently keyboard and evdev handlers use it.
939 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)940 int input_set_keycode(struct input_dev *dev,
941 const struct input_keymap_entry *ke)
942 {
943 unsigned long flags;
944 unsigned int old_keycode;
945 int retval;
946
947 if (ke->keycode > KEY_MAX)
948 return -EINVAL;
949
950 spin_lock_irqsave(&dev->event_lock, flags);
951
952 retval = dev->setkeycode(dev, ke, &old_keycode);
953 if (retval)
954 goto out;
955
956 /* Make sure KEY_RESERVED did not get enabled. */
957 __clear_bit(KEY_RESERVED, dev->keybit);
958
959 /*
960 * Simulate keyup event if keycode is not present
961 * in the keymap anymore
962 */
963 if (old_keycode > KEY_MAX) {
964 dev_warn(dev->dev.parent ?: &dev->dev,
965 "%s: got too big old keycode %#x\n",
966 __func__, old_keycode);
967 } else if (test_bit(EV_KEY, dev->evbit) &&
968 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
969 __test_and_clear_bit(old_keycode, dev->key)) {
970 struct input_value vals[] = {
971 { EV_KEY, old_keycode, 0 },
972 input_value_sync
973 };
974
975 input_pass_values(dev, vals, ARRAY_SIZE(vals));
976 }
977
978 out:
979 spin_unlock_irqrestore(&dev->event_lock, flags);
980
981 return retval;
982 }
983 EXPORT_SYMBOL(input_set_keycode);
984
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)985 bool input_match_device_id(const struct input_dev *dev,
986 const struct input_device_id *id)
987 {
988 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
989 if (id->bustype != dev->id.bustype)
990 return false;
991
992 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
993 if (id->vendor != dev->id.vendor)
994 return false;
995
996 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
997 if (id->product != dev->id.product)
998 return false;
999
1000 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1001 if (id->version != dev->id.version)
1002 return false;
1003
1004 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1005 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1006 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1007 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1008 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1009 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1010 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1011 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1012 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1013 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1014 return false;
1015 }
1016
1017 return true;
1018 }
1019 EXPORT_SYMBOL(input_match_device_id);
1020
input_match_device(struct input_handler * handler,struct input_dev * dev)1021 static const struct input_device_id *input_match_device(struct input_handler *handler,
1022 struct input_dev *dev)
1023 {
1024 const struct input_device_id *id;
1025
1026 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1027 if (input_match_device_id(dev, id) &&
1028 (!handler->match || handler->match(handler, dev))) {
1029 return id;
1030 }
1031 }
1032
1033 return NULL;
1034 }
1035
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1036 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1037 {
1038 const struct input_device_id *id;
1039 int error;
1040
1041 id = input_match_device(handler, dev);
1042 if (!id)
1043 return -ENODEV;
1044
1045 error = handler->connect(handler, dev, id);
1046 if (error && error != -ENODEV)
1047 pr_err("failed to attach handler %s to device %s, error: %d\n",
1048 handler->name, kobject_name(&dev->dev.kobj), error);
1049
1050 return error;
1051 }
1052
1053 #ifdef CONFIG_COMPAT
1054
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1055 static int input_bits_to_string(char *buf, int buf_size,
1056 unsigned long bits, bool skip_empty)
1057 {
1058 int len = 0;
1059
1060 if (in_compat_syscall()) {
1061 u32 dword = bits >> 32;
1062 if (dword || !skip_empty)
1063 len += snprintf(buf, buf_size, "%x ", dword);
1064
1065 dword = bits & 0xffffffffUL;
1066 if (dword || !skip_empty || len)
1067 len += snprintf(buf + len, max(buf_size - len, 0),
1068 "%x", dword);
1069 } else {
1070 if (bits || !skip_empty)
1071 len += snprintf(buf, buf_size, "%lx", bits);
1072 }
1073
1074 return len;
1075 }
1076
1077 #else /* !CONFIG_COMPAT */
1078
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1079 static int input_bits_to_string(char *buf, int buf_size,
1080 unsigned long bits, bool skip_empty)
1081 {
1082 return bits || !skip_empty ?
1083 snprintf(buf, buf_size, "%lx", bits) : 0;
1084 }
1085
1086 #endif
1087
1088 #ifdef CONFIG_PROC_FS
1089
1090 static struct proc_dir_entry *proc_bus_input_dir;
1091 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1092 static int input_devices_state;
1093
input_wakeup_procfs_readers(void)1094 static inline void input_wakeup_procfs_readers(void)
1095 {
1096 input_devices_state++;
1097 wake_up(&input_devices_poll_wait);
1098 }
1099
input_proc_devices_poll(struct file * file,poll_table * wait)1100 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1101 {
1102 poll_wait(file, &input_devices_poll_wait, wait);
1103 if (file->f_version != input_devices_state) {
1104 file->f_version = input_devices_state;
1105 return EPOLLIN | EPOLLRDNORM;
1106 }
1107
1108 return 0;
1109 }
1110
1111 union input_seq_state {
1112 struct {
1113 unsigned short pos;
1114 bool mutex_acquired;
1115 };
1116 void *p;
1117 };
1118
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1119 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1120 {
1121 union input_seq_state *state = (union input_seq_state *)&seq->private;
1122 int error;
1123
1124 /* We need to fit into seq->private pointer */
1125 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1126
1127 error = mutex_lock_interruptible(&input_mutex);
1128 if (error) {
1129 state->mutex_acquired = false;
1130 return ERR_PTR(error);
1131 }
1132
1133 state->mutex_acquired = true;
1134
1135 return seq_list_start(&input_dev_list, *pos);
1136 }
1137
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1138 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1139 {
1140 return seq_list_next(v, &input_dev_list, pos);
1141 }
1142
input_seq_stop(struct seq_file * seq,void * v)1143 static void input_seq_stop(struct seq_file *seq, void *v)
1144 {
1145 union input_seq_state *state = (union input_seq_state *)&seq->private;
1146
1147 if (state->mutex_acquired)
1148 mutex_unlock(&input_mutex);
1149 }
1150
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1151 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1152 unsigned long *bitmap, int max)
1153 {
1154 int i;
1155 bool skip_empty = true;
1156 char buf[18];
1157
1158 seq_printf(seq, "B: %s=", name);
1159
1160 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1161 if (input_bits_to_string(buf, sizeof(buf),
1162 bitmap[i], skip_empty)) {
1163 skip_empty = false;
1164 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1165 }
1166 }
1167
1168 /*
1169 * If no output was produced print a single 0.
1170 */
1171 if (skip_empty)
1172 seq_putc(seq, '0');
1173
1174 seq_putc(seq, '\n');
1175 }
1176
input_devices_seq_show(struct seq_file * seq,void * v)1177 static int input_devices_seq_show(struct seq_file *seq, void *v)
1178 {
1179 struct input_dev *dev = container_of(v, struct input_dev, node);
1180 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1181 struct input_handle *handle;
1182
1183 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1184 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1185
1186 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1187 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1188 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1189 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1190 seq_puts(seq, "H: Handlers=");
1191
1192 list_for_each_entry(handle, &dev->h_list, d_node)
1193 seq_printf(seq, "%s ", handle->name);
1194 seq_putc(seq, '\n');
1195
1196 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1197
1198 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1199 if (test_bit(EV_KEY, dev->evbit))
1200 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1201 if (test_bit(EV_REL, dev->evbit))
1202 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1203 if (test_bit(EV_ABS, dev->evbit))
1204 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1205 if (test_bit(EV_MSC, dev->evbit))
1206 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1207 if (test_bit(EV_LED, dev->evbit))
1208 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1209 if (test_bit(EV_SND, dev->evbit))
1210 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1211 if (test_bit(EV_FF, dev->evbit))
1212 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1213 if (test_bit(EV_SW, dev->evbit))
1214 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1215
1216 seq_putc(seq, '\n');
1217
1218 kfree(path);
1219 return 0;
1220 }
1221
1222 static const struct seq_operations input_devices_seq_ops = {
1223 .start = input_devices_seq_start,
1224 .next = input_devices_seq_next,
1225 .stop = input_seq_stop,
1226 .show = input_devices_seq_show,
1227 };
1228
input_proc_devices_open(struct inode * inode,struct file * file)1229 static int input_proc_devices_open(struct inode *inode, struct file *file)
1230 {
1231 return seq_open(file, &input_devices_seq_ops);
1232 }
1233
1234 static const struct proc_ops input_devices_proc_ops = {
1235 .proc_open = input_proc_devices_open,
1236 .proc_poll = input_proc_devices_poll,
1237 .proc_read = seq_read,
1238 .proc_lseek = seq_lseek,
1239 .proc_release = seq_release,
1240 };
1241
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1242 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1243 {
1244 union input_seq_state *state = (union input_seq_state *)&seq->private;
1245 int error;
1246
1247 /* We need to fit into seq->private pointer */
1248 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1249
1250 error = mutex_lock_interruptible(&input_mutex);
1251 if (error) {
1252 state->mutex_acquired = false;
1253 return ERR_PTR(error);
1254 }
1255
1256 state->mutex_acquired = true;
1257 state->pos = *pos;
1258
1259 return seq_list_start(&input_handler_list, *pos);
1260 }
1261
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1262 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1263 {
1264 union input_seq_state *state = (union input_seq_state *)&seq->private;
1265
1266 state->pos = *pos + 1;
1267 return seq_list_next(v, &input_handler_list, pos);
1268 }
1269
input_handlers_seq_show(struct seq_file * seq,void * v)1270 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1271 {
1272 struct input_handler *handler = container_of(v, struct input_handler, node);
1273 union input_seq_state *state = (union input_seq_state *)&seq->private;
1274
1275 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1276 if (handler->filter)
1277 seq_puts(seq, " (filter)");
1278 if (handler->legacy_minors)
1279 seq_printf(seq, " Minor=%d", handler->minor);
1280 seq_putc(seq, '\n');
1281
1282 return 0;
1283 }
1284
1285 static const struct seq_operations input_handlers_seq_ops = {
1286 .start = input_handlers_seq_start,
1287 .next = input_handlers_seq_next,
1288 .stop = input_seq_stop,
1289 .show = input_handlers_seq_show,
1290 };
1291
input_proc_handlers_open(struct inode * inode,struct file * file)1292 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1293 {
1294 return seq_open(file, &input_handlers_seq_ops);
1295 }
1296
1297 static const struct proc_ops input_handlers_proc_ops = {
1298 .proc_open = input_proc_handlers_open,
1299 .proc_read = seq_read,
1300 .proc_lseek = seq_lseek,
1301 .proc_release = seq_release,
1302 };
1303
input_proc_init(void)1304 static int __init input_proc_init(void)
1305 {
1306 struct proc_dir_entry *entry;
1307
1308 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1309 if (!proc_bus_input_dir)
1310 return -ENOMEM;
1311
1312 entry = proc_create("devices", 0, proc_bus_input_dir,
1313 &input_devices_proc_ops);
1314 if (!entry)
1315 goto fail1;
1316
1317 entry = proc_create("handlers", 0, proc_bus_input_dir,
1318 &input_handlers_proc_ops);
1319 if (!entry)
1320 goto fail2;
1321
1322 return 0;
1323
1324 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1325 fail1: remove_proc_entry("bus/input", NULL);
1326 return -ENOMEM;
1327 }
1328
input_proc_exit(void)1329 static void input_proc_exit(void)
1330 {
1331 remove_proc_entry("devices", proc_bus_input_dir);
1332 remove_proc_entry("handlers", proc_bus_input_dir);
1333 remove_proc_entry("bus/input", NULL);
1334 }
1335
1336 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1337 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1338 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1339 static inline void input_proc_exit(void) { }
1340 #endif
1341
1342 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1343 static ssize_t input_dev_show_##name(struct device *dev, \
1344 struct device_attribute *attr, \
1345 char *buf) \
1346 { \
1347 struct input_dev *input_dev = to_input_dev(dev); \
1348 \
1349 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1350 input_dev->name ? input_dev->name : ""); \
1351 } \
1352 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1353
1354 INPUT_DEV_STRING_ATTR_SHOW(name);
1355 INPUT_DEV_STRING_ATTR_SHOW(phys);
1356 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1357
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1358 static int input_print_modalias_bits(char *buf, int size,
1359 char name, unsigned long *bm,
1360 unsigned int min_bit, unsigned int max_bit)
1361 {
1362 int len = 0, i;
1363
1364 len += snprintf(buf, max(size, 0), "%c", name);
1365 for (i = min_bit; i < max_bit; i++)
1366 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1367 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1368 return len;
1369 }
1370
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1371 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1372 int add_cr)
1373 {
1374 int len;
1375
1376 len = snprintf(buf, max(size, 0),
1377 "input:b%04Xv%04Xp%04Xe%04X-",
1378 id->id.bustype, id->id.vendor,
1379 id->id.product, id->id.version);
1380
1381 len += input_print_modalias_bits(buf + len, size - len,
1382 'e', id->evbit, 0, EV_MAX);
1383 len += input_print_modalias_bits(buf + len, size - len,
1384 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1385 len += input_print_modalias_bits(buf + len, size - len,
1386 'r', id->relbit, 0, REL_MAX);
1387 len += input_print_modalias_bits(buf + len, size - len,
1388 'a', id->absbit, 0, ABS_MAX);
1389 len += input_print_modalias_bits(buf + len, size - len,
1390 'm', id->mscbit, 0, MSC_MAX);
1391 len += input_print_modalias_bits(buf + len, size - len,
1392 'l', id->ledbit, 0, LED_MAX);
1393 len += input_print_modalias_bits(buf + len, size - len,
1394 's', id->sndbit, 0, SND_MAX);
1395 len += input_print_modalias_bits(buf + len, size - len,
1396 'f', id->ffbit, 0, FF_MAX);
1397 len += input_print_modalias_bits(buf + len, size - len,
1398 'w', id->swbit, 0, SW_MAX);
1399
1400 if (add_cr)
1401 len += snprintf(buf + len, max(size - len, 0), "\n");
1402
1403 return len;
1404 }
1405
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1406 static ssize_t input_dev_show_modalias(struct device *dev,
1407 struct device_attribute *attr,
1408 char *buf)
1409 {
1410 struct input_dev *id = to_input_dev(dev);
1411 ssize_t len;
1412
1413 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1414
1415 return min_t(int, len, PAGE_SIZE);
1416 }
1417 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1418
1419 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1420 int max, int add_cr);
1421
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1422 static ssize_t input_dev_show_properties(struct device *dev,
1423 struct device_attribute *attr,
1424 char *buf)
1425 {
1426 struct input_dev *input_dev = to_input_dev(dev);
1427 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1428 INPUT_PROP_MAX, true);
1429 return min_t(int, len, PAGE_SIZE);
1430 }
1431 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1432
1433 static struct attribute *input_dev_attrs[] = {
1434 &dev_attr_name.attr,
1435 &dev_attr_phys.attr,
1436 &dev_attr_uniq.attr,
1437 &dev_attr_modalias.attr,
1438 &dev_attr_properties.attr,
1439 NULL
1440 };
1441
1442 static const struct attribute_group input_dev_attr_group = {
1443 .attrs = input_dev_attrs,
1444 };
1445
1446 #define INPUT_DEV_ID_ATTR(name) \
1447 static ssize_t input_dev_show_id_##name(struct device *dev, \
1448 struct device_attribute *attr, \
1449 char *buf) \
1450 { \
1451 struct input_dev *input_dev = to_input_dev(dev); \
1452 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1453 } \
1454 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1455
1456 INPUT_DEV_ID_ATTR(bustype);
1457 INPUT_DEV_ID_ATTR(vendor);
1458 INPUT_DEV_ID_ATTR(product);
1459 INPUT_DEV_ID_ATTR(version);
1460
1461 static struct attribute *input_dev_id_attrs[] = {
1462 &dev_attr_bustype.attr,
1463 &dev_attr_vendor.attr,
1464 &dev_attr_product.attr,
1465 &dev_attr_version.attr,
1466 NULL
1467 };
1468
1469 static const struct attribute_group input_dev_id_attr_group = {
1470 .name = "id",
1471 .attrs = input_dev_id_attrs,
1472 };
1473
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1474 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1475 int max, int add_cr)
1476 {
1477 int i;
1478 int len = 0;
1479 bool skip_empty = true;
1480
1481 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1482 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1483 bitmap[i], skip_empty);
1484 if (len) {
1485 skip_empty = false;
1486 if (i > 0)
1487 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1488 }
1489 }
1490
1491 /*
1492 * If no output was produced print a single 0.
1493 */
1494 if (len == 0)
1495 len = snprintf(buf, buf_size, "%d", 0);
1496
1497 if (add_cr)
1498 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1499
1500 return len;
1501 }
1502
1503 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1504 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1505 struct device_attribute *attr, \
1506 char *buf) \
1507 { \
1508 struct input_dev *input_dev = to_input_dev(dev); \
1509 int len = input_print_bitmap(buf, PAGE_SIZE, \
1510 input_dev->bm##bit, ev##_MAX, \
1511 true); \
1512 return min_t(int, len, PAGE_SIZE); \
1513 } \
1514 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1515
1516 INPUT_DEV_CAP_ATTR(EV, ev);
1517 INPUT_DEV_CAP_ATTR(KEY, key);
1518 INPUT_DEV_CAP_ATTR(REL, rel);
1519 INPUT_DEV_CAP_ATTR(ABS, abs);
1520 INPUT_DEV_CAP_ATTR(MSC, msc);
1521 INPUT_DEV_CAP_ATTR(LED, led);
1522 INPUT_DEV_CAP_ATTR(SND, snd);
1523 INPUT_DEV_CAP_ATTR(FF, ff);
1524 INPUT_DEV_CAP_ATTR(SW, sw);
1525
1526 static struct attribute *input_dev_caps_attrs[] = {
1527 &dev_attr_ev.attr,
1528 &dev_attr_key.attr,
1529 &dev_attr_rel.attr,
1530 &dev_attr_abs.attr,
1531 &dev_attr_msc.attr,
1532 &dev_attr_led.attr,
1533 &dev_attr_snd.attr,
1534 &dev_attr_ff.attr,
1535 &dev_attr_sw.attr,
1536 NULL
1537 };
1538
1539 static const struct attribute_group input_dev_caps_attr_group = {
1540 .name = "capabilities",
1541 .attrs = input_dev_caps_attrs,
1542 };
1543
1544 static const struct attribute_group *input_dev_attr_groups[] = {
1545 &input_dev_attr_group,
1546 &input_dev_id_attr_group,
1547 &input_dev_caps_attr_group,
1548 &input_poller_attribute_group,
1549 NULL
1550 };
1551
input_dev_release(struct device * device)1552 static void input_dev_release(struct device *device)
1553 {
1554 struct input_dev *dev = to_input_dev(device);
1555
1556 input_ff_destroy(dev);
1557 input_mt_destroy_slots(dev);
1558 kfree(dev->poller);
1559 kfree(dev->absinfo);
1560 kfree(dev->vals);
1561 kfree(dev);
1562
1563 module_put(THIS_MODULE);
1564 }
1565
1566 /*
1567 * Input uevent interface - loading event handlers based on
1568 * device bitfields.
1569 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1570 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1571 const char *name, unsigned long *bitmap, int max)
1572 {
1573 int len;
1574
1575 if (add_uevent_var(env, "%s", name))
1576 return -ENOMEM;
1577
1578 len = input_print_bitmap(&env->buf[env->buflen - 1],
1579 sizeof(env->buf) - env->buflen,
1580 bitmap, max, false);
1581 if (len >= (sizeof(env->buf) - env->buflen))
1582 return -ENOMEM;
1583
1584 env->buflen += len;
1585 return 0;
1586 }
1587
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1588 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1589 struct input_dev *dev)
1590 {
1591 int len;
1592
1593 if (add_uevent_var(env, "MODALIAS="))
1594 return -ENOMEM;
1595
1596 len = input_print_modalias(&env->buf[env->buflen - 1],
1597 sizeof(env->buf) - env->buflen,
1598 dev, 0);
1599 if (len >= (sizeof(env->buf) - env->buflen))
1600 return -ENOMEM;
1601
1602 env->buflen += len;
1603 return 0;
1604 }
1605
1606 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1607 do { \
1608 int err = add_uevent_var(env, fmt, val); \
1609 if (err) \
1610 return err; \
1611 } while (0)
1612
1613 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1614 do { \
1615 int err = input_add_uevent_bm_var(env, name, bm, max); \
1616 if (err) \
1617 return err; \
1618 } while (0)
1619
1620 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1621 do { \
1622 int err = input_add_uevent_modalias_var(env, dev); \
1623 if (err) \
1624 return err; \
1625 } while (0)
1626
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1627 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1628 {
1629 struct input_dev *dev = to_input_dev(device);
1630
1631 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1632 dev->id.bustype, dev->id.vendor,
1633 dev->id.product, dev->id.version);
1634 if (dev->name)
1635 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1636 if (dev->phys)
1637 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1638 if (dev->uniq)
1639 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1640
1641 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1642
1643 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1644 if (test_bit(EV_KEY, dev->evbit))
1645 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1646 if (test_bit(EV_REL, dev->evbit))
1647 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1648 if (test_bit(EV_ABS, dev->evbit))
1649 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1650 if (test_bit(EV_MSC, dev->evbit))
1651 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1652 if (test_bit(EV_LED, dev->evbit))
1653 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1654 if (test_bit(EV_SND, dev->evbit))
1655 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1656 if (test_bit(EV_FF, dev->evbit))
1657 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1658 if (test_bit(EV_SW, dev->evbit))
1659 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1660
1661 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1662
1663 return 0;
1664 }
1665
1666 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1667 do { \
1668 int i; \
1669 bool active; \
1670 \
1671 if (!test_bit(EV_##type, dev->evbit)) \
1672 break; \
1673 \
1674 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1675 active = test_bit(i, dev->bits); \
1676 if (!active && !on) \
1677 continue; \
1678 \
1679 dev->event(dev, EV_##type, i, on ? active : 0); \
1680 } \
1681 } while (0)
1682
input_dev_toggle(struct input_dev * dev,bool activate)1683 static void input_dev_toggle(struct input_dev *dev, bool activate)
1684 {
1685 if (!dev->event)
1686 return;
1687
1688 INPUT_DO_TOGGLE(dev, LED, led, activate);
1689 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1690
1691 if (activate && test_bit(EV_REP, dev->evbit)) {
1692 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1693 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1694 }
1695 }
1696
1697 /**
1698 * input_reset_device() - reset/restore the state of input device
1699 * @dev: input device whose state needs to be reset
1700 *
1701 * This function tries to reset the state of an opened input device and
1702 * bring internal state and state if the hardware in sync with each other.
1703 * We mark all keys as released, restore LED state, repeat rate, etc.
1704 */
input_reset_device(struct input_dev * dev)1705 void input_reset_device(struct input_dev *dev)
1706 {
1707 unsigned long flags;
1708
1709 mutex_lock(&dev->mutex);
1710 spin_lock_irqsave(&dev->event_lock, flags);
1711
1712 input_dev_toggle(dev, true);
1713 input_dev_release_keys(dev);
1714
1715 spin_unlock_irqrestore(&dev->event_lock, flags);
1716 mutex_unlock(&dev->mutex);
1717 }
1718 EXPORT_SYMBOL(input_reset_device);
1719
1720 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1721 static int input_dev_suspend(struct device *dev)
1722 {
1723 struct input_dev *input_dev = to_input_dev(dev);
1724
1725 spin_lock_irq(&input_dev->event_lock);
1726
1727 /*
1728 * Keys that are pressed now are unlikely to be
1729 * still pressed when we resume.
1730 */
1731 input_dev_release_keys(input_dev);
1732
1733 /* Turn off LEDs and sounds, if any are active. */
1734 input_dev_toggle(input_dev, false);
1735
1736 spin_unlock_irq(&input_dev->event_lock);
1737
1738 return 0;
1739 }
1740
input_dev_resume(struct device * dev)1741 static int input_dev_resume(struct device *dev)
1742 {
1743 struct input_dev *input_dev = to_input_dev(dev);
1744
1745 spin_lock_irq(&input_dev->event_lock);
1746
1747 /* Restore state of LEDs and sounds, if any were active. */
1748 input_dev_toggle(input_dev, true);
1749
1750 spin_unlock_irq(&input_dev->event_lock);
1751
1752 return 0;
1753 }
1754
input_dev_freeze(struct device * dev)1755 static int input_dev_freeze(struct device *dev)
1756 {
1757 struct input_dev *input_dev = to_input_dev(dev);
1758
1759 spin_lock_irq(&input_dev->event_lock);
1760
1761 /*
1762 * Keys that are pressed now are unlikely to be
1763 * still pressed when we resume.
1764 */
1765 input_dev_release_keys(input_dev);
1766
1767 spin_unlock_irq(&input_dev->event_lock);
1768
1769 return 0;
1770 }
1771
input_dev_poweroff(struct device * dev)1772 static int input_dev_poweroff(struct device *dev)
1773 {
1774 struct input_dev *input_dev = to_input_dev(dev);
1775
1776 spin_lock_irq(&input_dev->event_lock);
1777
1778 /* Turn off LEDs and sounds, if any are active. */
1779 input_dev_toggle(input_dev, false);
1780
1781 spin_unlock_irq(&input_dev->event_lock);
1782
1783 return 0;
1784 }
1785
1786 static const struct dev_pm_ops input_dev_pm_ops = {
1787 .suspend = input_dev_suspend,
1788 .resume = input_dev_resume,
1789 .freeze = input_dev_freeze,
1790 .poweroff = input_dev_poweroff,
1791 .restore = input_dev_resume,
1792 };
1793 #endif /* CONFIG_PM */
1794
1795 static const struct device_type input_dev_type = {
1796 .groups = input_dev_attr_groups,
1797 .release = input_dev_release,
1798 .uevent = input_dev_uevent,
1799 #ifdef CONFIG_PM_SLEEP
1800 .pm = &input_dev_pm_ops,
1801 #endif
1802 };
1803
input_devnode(struct device * dev,umode_t * mode)1804 static char *input_devnode(struct device *dev, umode_t *mode)
1805 {
1806 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1807 }
1808
1809 struct class input_class = {
1810 .name = "input",
1811 .devnode = input_devnode,
1812 };
1813 EXPORT_SYMBOL_GPL(input_class);
1814
1815 /**
1816 * input_allocate_device - allocate memory for new input device
1817 *
1818 * Returns prepared struct input_dev or %NULL.
1819 *
1820 * NOTE: Use input_free_device() to free devices that have not been
1821 * registered; input_unregister_device() should be used for already
1822 * registered devices.
1823 */
input_allocate_device(void)1824 struct input_dev *input_allocate_device(void)
1825 {
1826 static atomic_t input_no = ATOMIC_INIT(-1);
1827 struct input_dev *dev;
1828
1829 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1830 if (dev) {
1831 dev->dev.type = &input_dev_type;
1832 dev->dev.class = &input_class;
1833 device_initialize(&dev->dev);
1834 mutex_init(&dev->mutex);
1835 spin_lock_init(&dev->event_lock);
1836 timer_setup(&dev->timer, NULL, 0);
1837 INIT_LIST_HEAD(&dev->h_list);
1838 INIT_LIST_HEAD(&dev->node);
1839
1840 dev_set_name(&dev->dev, "input%lu",
1841 (unsigned long)atomic_inc_return(&input_no));
1842
1843 __module_get(THIS_MODULE);
1844 }
1845
1846 return dev;
1847 }
1848 EXPORT_SYMBOL(input_allocate_device);
1849
1850 struct input_devres {
1851 struct input_dev *input;
1852 };
1853
devm_input_device_match(struct device * dev,void * res,void * data)1854 static int devm_input_device_match(struct device *dev, void *res, void *data)
1855 {
1856 struct input_devres *devres = res;
1857
1858 return devres->input == data;
1859 }
1860
devm_input_device_release(struct device * dev,void * res)1861 static void devm_input_device_release(struct device *dev, void *res)
1862 {
1863 struct input_devres *devres = res;
1864 struct input_dev *input = devres->input;
1865
1866 dev_dbg(dev, "%s: dropping reference to %s\n",
1867 __func__, dev_name(&input->dev));
1868 input_put_device(input);
1869 }
1870
1871 /**
1872 * devm_input_allocate_device - allocate managed input device
1873 * @dev: device owning the input device being created
1874 *
1875 * Returns prepared struct input_dev or %NULL.
1876 *
1877 * Managed input devices do not need to be explicitly unregistered or
1878 * freed as it will be done automatically when owner device unbinds from
1879 * its driver (or binding fails). Once managed input device is allocated,
1880 * it is ready to be set up and registered in the same fashion as regular
1881 * input device. There are no special devm_input_device_[un]register()
1882 * variants, regular ones work with both managed and unmanaged devices,
1883 * should you need them. In most cases however, managed input device need
1884 * not be explicitly unregistered or freed.
1885 *
1886 * NOTE: the owner device is set up as parent of input device and users
1887 * should not override it.
1888 */
devm_input_allocate_device(struct device * dev)1889 struct input_dev *devm_input_allocate_device(struct device *dev)
1890 {
1891 struct input_dev *input;
1892 struct input_devres *devres;
1893
1894 devres = devres_alloc(devm_input_device_release,
1895 sizeof(*devres), GFP_KERNEL);
1896 if (!devres)
1897 return NULL;
1898
1899 input = input_allocate_device();
1900 if (!input) {
1901 devres_free(devres);
1902 return NULL;
1903 }
1904
1905 input->dev.parent = dev;
1906 input->devres_managed = true;
1907
1908 devres->input = input;
1909 devres_add(dev, devres);
1910
1911 return input;
1912 }
1913 EXPORT_SYMBOL(devm_input_allocate_device);
1914
1915 /**
1916 * input_free_device - free memory occupied by input_dev structure
1917 * @dev: input device to free
1918 *
1919 * This function should only be used if input_register_device()
1920 * was not called yet or if it failed. Once device was registered
1921 * use input_unregister_device() and memory will be freed once last
1922 * reference to the device is dropped.
1923 *
1924 * Device should be allocated by input_allocate_device().
1925 *
1926 * NOTE: If there are references to the input device then memory
1927 * will not be freed until last reference is dropped.
1928 */
input_free_device(struct input_dev * dev)1929 void input_free_device(struct input_dev *dev)
1930 {
1931 if (dev) {
1932 if (dev->devres_managed)
1933 WARN_ON(devres_destroy(dev->dev.parent,
1934 devm_input_device_release,
1935 devm_input_device_match,
1936 dev));
1937 input_put_device(dev);
1938 }
1939 }
1940 EXPORT_SYMBOL(input_free_device);
1941
1942 /**
1943 * input_set_timestamp - set timestamp for input events
1944 * @dev: input device to set timestamp for
1945 * @timestamp: the time at which the event has occurred
1946 * in CLOCK_MONOTONIC
1947 *
1948 * This function is intended to provide to the input system a more
1949 * accurate time of when an event actually occurred. The driver should
1950 * call this function as soon as a timestamp is acquired ensuring
1951 * clock conversions in input_set_timestamp are done correctly.
1952 *
1953 * The system entering suspend state between timestamp acquisition and
1954 * calling input_set_timestamp can result in inaccurate conversions.
1955 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)1956 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1957 {
1958 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1959 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1960 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1961 TK_OFFS_BOOT);
1962 }
1963 EXPORT_SYMBOL(input_set_timestamp);
1964
1965 /**
1966 * input_get_timestamp - get timestamp for input events
1967 * @dev: input device to get timestamp from
1968 *
1969 * A valid timestamp is a timestamp of non-zero value.
1970 */
input_get_timestamp(struct input_dev * dev)1971 ktime_t *input_get_timestamp(struct input_dev *dev)
1972 {
1973 const ktime_t invalid_timestamp = ktime_set(0, 0);
1974
1975 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1976 input_set_timestamp(dev, ktime_get());
1977
1978 return dev->timestamp;
1979 }
1980 EXPORT_SYMBOL(input_get_timestamp);
1981
1982 /**
1983 * input_set_capability - mark device as capable of a certain event
1984 * @dev: device that is capable of emitting or accepting event
1985 * @type: type of the event (EV_KEY, EV_REL, etc...)
1986 * @code: event code
1987 *
1988 * In addition to setting up corresponding bit in appropriate capability
1989 * bitmap the function also adjusts dev->evbit.
1990 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1991 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1992 {
1993 if (type < EV_CNT && input_max_code[type] &&
1994 code > input_max_code[type]) {
1995 pr_err("%s: invalid code %u for type %u\n", __func__, code,
1996 type);
1997 dump_stack();
1998 return;
1999 }
2000
2001 switch (type) {
2002 case EV_KEY:
2003 __set_bit(code, dev->keybit);
2004 break;
2005
2006 case EV_REL:
2007 __set_bit(code, dev->relbit);
2008 break;
2009
2010 case EV_ABS:
2011 input_alloc_absinfo(dev);
2012 if (!dev->absinfo)
2013 return;
2014
2015 __set_bit(code, dev->absbit);
2016 break;
2017
2018 case EV_MSC:
2019 __set_bit(code, dev->mscbit);
2020 break;
2021
2022 case EV_SW:
2023 __set_bit(code, dev->swbit);
2024 break;
2025
2026 case EV_LED:
2027 __set_bit(code, dev->ledbit);
2028 break;
2029
2030 case EV_SND:
2031 __set_bit(code, dev->sndbit);
2032 break;
2033
2034 case EV_FF:
2035 __set_bit(code, dev->ffbit);
2036 break;
2037
2038 case EV_PWR:
2039 /* do nothing */
2040 break;
2041
2042 default:
2043 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2044 dump_stack();
2045 return;
2046 }
2047
2048 __set_bit(type, dev->evbit);
2049 }
2050 EXPORT_SYMBOL(input_set_capability);
2051
input_estimate_events_per_packet(struct input_dev * dev)2052 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2053 {
2054 int mt_slots;
2055 int i;
2056 unsigned int events;
2057
2058 if (dev->mt) {
2059 mt_slots = dev->mt->num_slots;
2060 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2061 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2062 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2063 mt_slots = clamp(mt_slots, 2, 32);
2064 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2065 mt_slots = 2;
2066 } else {
2067 mt_slots = 0;
2068 }
2069
2070 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2071
2072 if (test_bit(EV_ABS, dev->evbit))
2073 for_each_set_bit(i, dev->absbit, ABS_CNT)
2074 events += input_is_mt_axis(i) ? mt_slots : 1;
2075
2076 if (test_bit(EV_REL, dev->evbit))
2077 events += bitmap_weight(dev->relbit, REL_CNT);
2078
2079 /* Make room for KEY and MSC events */
2080 events += 7;
2081
2082 return events;
2083 }
2084
2085 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2086 do { \
2087 if (!test_bit(EV_##type, dev->evbit)) \
2088 memset(dev->bits##bit, 0, \
2089 sizeof(dev->bits##bit)); \
2090 } while (0)
2091
input_cleanse_bitmasks(struct input_dev * dev)2092 static void input_cleanse_bitmasks(struct input_dev *dev)
2093 {
2094 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2095 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2096 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2097 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2098 INPUT_CLEANSE_BITMASK(dev, LED, led);
2099 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2100 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2101 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2102 }
2103
__input_unregister_device(struct input_dev * dev)2104 static void __input_unregister_device(struct input_dev *dev)
2105 {
2106 struct input_handle *handle, *next;
2107
2108 input_disconnect_device(dev);
2109
2110 mutex_lock(&input_mutex);
2111
2112 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2113 handle->handler->disconnect(handle);
2114 WARN_ON(!list_empty(&dev->h_list));
2115
2116 del_timer_sync(&dev->timer);
2117 list_del_init(&dev->node);
2118
2119 input_wakeup_procfs_readers();
2120
2121 mutex_unlock(&input_mutex);
2122
2123 device_del(&dev->dev);
2124 }
2125
devm_input_device_unregister(struct device * dev,void * res)2126 static void devm_input_device_unregister(struct device *dev, void *res)
2127 {
2128 struct input_devres *devres = res;
2129 struct input_dev *input = devres->input;
2130
2131 dev_dbg(dev, "%s: unregistering device %s\n",
2132 __func__, dev_name(&input->dev));
2133 __input_unregister_device(input);
2134 }
2135
2136 /**
2137 * input_enable_softrepeat - enable software autorepeat
2138 * @dev: input device
2139 * @delay: repeat delay
2140 * @period: repeat period
2141 *
2142 * Enable software autorepeat on the input device.
2143 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2144 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2145 {
2146 dev->timer.function = input_repeat_key;
2147 dev->rep[REP_DELAY] = delay;
2148 dev->rep[REP_PERIOD] = period;
2149 }
2150 EXPORT_SYMBOL(input_enable_softrepeat);
2151
2152 /**
2153 * input_register_device - register device with input core
2154 * @dev: device to be registered
2155 *
2156 * This function registers device with input core. The device must be
2157 * allocated with input_allocate_device() and all it's capabilities
2158 * set up before registering.
2159 * If function fails the device must be freed with input_free_device().
2160 * Once device has been successfully registered it can be unregistered
2161 * with input_unregister_device(); input_free_device() should not be
2162 * called in this case.
2163 *
2164 * Note that this function is also used to register managed input devices
2165 * (ones allocated with devm_input_allocate_device()). Such managed input
2166 * devices need not be explicitly unregistered or freed, their tear down
2167 * is controlled by the devres infrastructure. It is also worth noting
2168 * that tear down of managed input devices is internally a 2-step process:
2169 * registered managed input device is first unregistered, but stays in
2170 * memory and can still handle input_event() calls (although events will
2171 * not be delivered anywhere). The freeing of managed input device will
2172 * happen later, when devres stack is unwound to the point where device
2173 * allocation was made.
2174 */
input_register_device(struct input_dev * dev)2175 int input_register_device(struct input_dev *dev)
2176 {
2177 struct input_devres *devres = NULL;
2178 struct input_handler *handler;
2179 unsigned int packet_size;
2180 const char *path;
2181 int error;
2182
2183 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2184 dev_err(&dev->dev,
2185 "Absolute device without dev->absinfo, refusing to register\n");
2186 return -EINVAL;
2187 }
2188
2189 if (dev->devres_managed) {
2190 devres = devres_alloc(devm_input_device_unregister,
2191 sizeof(*devres), GFP_KERNEL);
2192 if (!devres)
2193 return -ENOMEM;
2194
2195 devres->input = dev;
2196 }
2197
2198 /* Every input device generates EV_SYN/SYN_REPORT events. */
2199 __set_bit(EV_SYN, dev->evbit);
2200
2201 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2202 __clear_bit(KEY_RESERVED, dev->keybit);
2203
2204 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2205 input_cleanse_bitmasks(dev);
2206
2207 packet_size = input_estimate_events_per_packet(dev);
2208 if (dev->hint_events_per_packet < packet_size)
2209 dev->hint_events_per_packet = packet_size;
2210
2211 dev->max_vals = dev->hint_events_per_packet + 2;
2212 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2213 if (!dev->vals) {
2214 error = -ENOMEM;
2215 goto err_devres_free;
2216 }
2217
2218 /*
2219 * If delay and period are pre-set by the driver, then autorepeating
2220 * is handled by the driver itself and we don't do it in input.c.
2221 */
2222 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2223 input_enable_softrepeat(dev, 250, 33);
2224
2225 if (!dev->getkeycode)
2226 dev->getkeycode = input_default_getkeycode;
2227
2228 if (!dev->setkeycode)
2229 dev->setkeycode = input_default_setkeycode;
2230
2231 if (dev->poller)
2232 input_dev_poller_finalize(dev->poller);
2233
2234 error = device_add(&dev->dev);
2235 if (error)
2236 goto err_free_vals;
2237
2238 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2239 pr_info("%s as %s\n",
2240 dev->name ? dev->name : "Unspecified device",
2241 path ? path : "N/A");
2242 kfree(path);
2243
2244 error = mutex_lock_interruptible(&input_mutex);
2245 if (error)
2246 goto err_device_del;
2247
2248 list_add_tail(&dev->node, &input_dev_list);
2249
2250 list_for_each_entry(handler, &input_handler_list, node)
2251 input_attach_handler(dev, handler);
2252
2253 input_wakeup_procfs_readers();
2254
2255 mutex_unlock(&input_mutex);
2256
2257 if (dev->devres_managed) {
2258 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2259 __func__, dev_name(&dev->dev));
2260 devres_add(dev->dev.parent, devres);
2261 }
2262 return 0;
2263
2264 err_device_del:
2265 device_del(&dev->dev);
2266 err_free_vals:
2267 kfree(dev->vals);
2268 dev->vals = NULL;
2269 err_devres_free:
2270 devres_free(devres);
2271 return error;
2272 }
2273 EXPORT_SYMBOL(input_register_device);
2274
2275 /**
2276 * input_unregister_device - unregister previously registered device
2277 * @dev: device to be unregistered
2278 *
2279 * This function unregisters an input device. Once device is unregistered
2280 * the caller should not try to access it as it may get freed at any moment.
2281 */
input_unregister_device(struct input_dev * dev)2282 void input_unregister_device(struct input_dev *dev)
2283 {
2284 if (dev->devres_managed) {
2285 WARN_ON(devres_destroy(dev->dev.parent,
2286 devm_input_device_unregister,
2287 devm_input_device_match,
2288 dev));
2289 __input_unregister_device(dev);
2290 /*
2291 * We do not do input_put_device() here because it will be done
2292 * when 2nd devres fires up.
2293 */
2294 } else {
2295 __input_unregister_device(dev);
2296 input_put_device(dev);
2297 }
2298 }
2299 EXPORT_SYMBOL(input_unregister_device);
2300
2301 /**
2302 * input_register_handler - register a new input handler
2303 * @handler: handler to be registered
2304 *
2305 * This function registers a new input handler (interface) for input
2306 * devices in the system and attaches it to all input devices that
2307 * are compatible with the handler.
2308 */
input_register_handler(struct input_handler * handler)2309 int input_register_handler(struct input_handler *handler)
2310 {
2311 struct input_dev *dev;
2312 int error;
2313
2314 error = mutex_lock_interruptible(&input_mutex);
2315 if (error)
2316 return error;
2317
2318 INIT_LIST_HEAD(&handler->h_list);
2319
2320 list_add_tail(&handler->node, &input_handler_list);
2321
2322 list_for_each_entry(dev, &input_dev_list, node)
2323 input_attach_handler(dev, handler);
2324
2325 input_wakeup_procfs_readers();
2326
2327 mutex_unlock(&input_mutex);
2328 return 0;
2329 }
2330 EXPORT_SYMBOL(input_register_handler);
2331
2332 /**
2333 * input_unregister_handler - unregisters an input handler
2334 * @handler: handler to be unregistered
2335 *
2336 * This function disconnects a handler from its input devices and
2337 * removes it from lists of known handlers.
2338 */
input_unregister_handler(struct input_handler * handler)2339 void input_unregister_handler(struct input_handler *handler)
2340 {
2341 struct input_handle *handle, *next;
2342
2343 mutex_lock(&input_mutex);
2344
2345 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2346 handler->disconnect(handle);
2347 WARN_ON(!list_empty(&handler->h_list));
2348
2349 list_del_init(&handler->node);
2350
2351 input_wakeup_procfs_readers();
2352
2353 mutex_unlock(&input_mutex);
2354 }
2355 EXPORT_SYMBOL(input_unregister_handler);
2356
2357 /**
2358 * input_handler_for_each_handle - handle iterator
2359 * @handler: input handler to iterate
2360 * @data: data for the callback
2361 * @fn: function to be called for each handle
2362 *
2363 * Iterate over @bus's list of devices, and call @fn for each, passing
2364 * it @data and stop when @fn returns a non-zero value. The function is
2365 * using RCU to traverse the list and therefore may be using in atomic
2366 * contexts. The @fn callback is invoked from RCU critical section and
2367 * thus must not sleep.
2368 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2369 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2370 int (*fn)(struct input_handle *, void *))
2371 {
2372 struct input_handle *handle;
2373 int retval = 0;
2374
2375 rcu_read_lock();
2376
2377 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2378 retval = fn(handle, data);
2379 if (retval)
2380 break;
2381 }
2382
2383 rcu_read_unlock();
2384
2385 return retval;
2386 }
2387 EXPORT_SYMBOL(input_handler_for_each_handle);
2388
2389 /**
2390 * input_register_handle - register a new input handle
2391 * @handle: handle to register
2392 *
2393 * This function puts a new input handle onto device's
2394 * and handler's lists so that events can flow through
2395 * it once it is opened using input_open_device().
2396 *
2397 * This function is supposed to be called from handler's
2398 * connect() method.
2399 */
input_register_handle(struct input_handle * handle)2400 int input_register_handle(struct input_handle *handle)
2401 {
2402 struct input_handler *handler = handle->handler;
2403 struct input_dev *dev = handle->dev;
2404 int error;
2405
2406 /*
2407 * We take dev->mutex here to prevent race with
2408 * input_release_device().
2409 */
2410 error = mutex_lock_interruptible(&dev->mutex);
2411 if (error)
2412 return error;
2413
2414 /*
2415 * Filters go to the head of the list, normal handlers
2416 * to the tail.
2417 */
2418 if (handler->filter)
2419 list_add_rcu(&handle->d_node, &dev->h_list);
2420 else
2421 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2422
2423 mutex_unlock(&dev->mutex);
2424
2425 /*
2426 * Since we are supposed to be called from ->connect()
2427 * which is mutually exclusive with ->disconnect()
2428 * we can't be racing with input_unregister_handle()
2429 * and so separate lock is not needed here.
2430 */
2431 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2432
2433 if (handler->start)
2434 handler->start(handle);
2435
2436 return 0;
2437 }
2438 EXPORT_SYMBOL(input_register_handle);
2439
2440 /**
2441 * input_unregister_handle - unregister an input handle
2442 * @handle: handle to unregister
2443 *
2444 * This function removes input handle from device's
2445 * and handler's lists.
2446 *
2447 * This function is supposed to be called from handler's
2448 * disconnect() method.
2449 */
input_unregister_handle(struct input_handle * handle)2450 void input_unregister_handle(struct input_handle *handle)
2451 {
2452 struct input_dev *dev = handle->dev;
2453
2454 list_del_rcu(&handle->h_node);
2455
2456 /*
2457 * Take dev->mutex to prevent race with input_release_device().
2458 */
2459 mutex_lock(&dev->mutex);
2460 list_del_rcu(&handle->d_node);
2461 mutex_unlock(&dev->mutex);
2462
2463 synchronize_rcu();
2464 }
2465 EXPORT_SYMBOL(input_unregister_handle);
2466
2467 /**
2468 * input_get_new_minor - allocates a new input minor number
2469 * @legacy_base: beginning or the legacy range to be searched
2470 * @legacy_num: size of legacy range
2471 * @allow_dynamic: whether we can also take ID from the dynamic range
2472 *
2473 * This function allocates a new device minor for from input major namespace.
2474 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2475 * parameters and whether ID can be allocated from dynamic range if there are
2476 * no free IDs in legacy range.
2477 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2478 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2479 bool allow_dynamic)
2480 {
2481 /*
2482 * This function should be called from input handler's ->connect()
2483 * methods, which are serialized with input_mutex, so no additional
2484 * locking is needed here.
2485 */
2486 if (legacy_base >= 0) {
2487 int minor = ida_simple_get(&input_ida,
2488 legacy_base,
2489 legacy_base + legacy_num,
2490 GFP_KERNEL);
2491 if (minor >= 0 || !allow_dynamic)
2492 return minor;
2493 }
2494
2495 return ida_simple_get(&input_ida,
2496 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2497 GFP_KERNEL);
2498 }
2499 EXPORT_SYMBOL(input_get_new_minor);
2500
2501 /**
2502 * input_free_minor - release previously allocated minor
2503 * @minor: minor to be released
2504 *
2505 * This function releases previously allocated input minor so that it can be
2506 * reused later.
2507 */
input_free_minor(unsigned int minor)2508 void input_free_minor(unsigned int minor)
2509 {
2510 ida_simple_remove(&input_ida, minor);
2511 }
2512 EXPORT_SYMBOL(input_free_minor);
2513
input_init(void)2514 static int __init input_init(void)
2515 {
2516 int err;
2517
2518 err = class_register(&input_class);
2519 if (err) {
2520 pr_err("unable to register input_dev class\n");
2521 return err;
2522 }
2523
2524 err = input_proc_init();
2525 if (err)
2526 goto fail1;
2527
2528 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2529 INPUT_MAX_CHAR_DEVICES, "input");
2530 if (err) {
2531 pr_err("unable to register char major %d", INPUT_MAJOR);
2532 goto fail2;
2533 }
2534
2535 return 0;
2536
2537 fail2: input_proc_exit();
2538 fail1: class_unregister(&input_class);
2539 return err;
2540 }
2541
input_exit(void)2542 static void __exit input_exit(void)
2543 {
2544 input_proc_exit();
2545 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2546 INPUT_MAX_CHAR_DEVICES);
2547 class_unregister(&input_class);
2548 }
2549
2550 subsys_initcall(input_init);
2551 module_exit(input_exit);
2552