1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include <xf86drm.h>
31
32 #include "anv_private.h"
33 #include "anv_measure.h"
34
35 #include "genxml/gen8_pack.h"
36 #include "genxml/genX_bits.h"
37 #include "perf/intel_perf.h"
38
39 #include "util/debug.h"
40 #include "util/perf/u_trace.h"
41
42 /** \file anv_batch_chain.c
43 *
44 * This file contains functions related to anv_cmd_buffer as a data
45 * structure. This involves everything required to create and destroy
46 * the actual batch buffers as well as link them together and handle
47 * relocations and surface state. It specifically does *not* contain any
48 * handling of actual vkCmd calls beyond vkCmdExecuteCommands.
49 */
50
51 /*-----------------------------------------------------------------------*
52 * Functions related to anv_reloc_list
53 *-----------------------------------------------------------------------*/
54
55 VkResult
anv_reloc_list_init(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc)56 anv_reloc_list_init(struct anv_reloc_list *list,
57 const VkAllocationCallbacks *alloc)
58 {
59 memset(list, 0, sizeof(*list));
60 return VK_SUCCESS;
61 }
62
63 static VkResult
anv_reloc_list_init_clone(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc,const struct anv_reloc_list * other_list)64 anv_reloc_list_init_clone(struct anv_reloc_list *list,
65 const VkAllocationCallbacks *alloc,
66 const struct anv_reloc_list *other_list)
67 {
68 list->num_relocs = other_list->num_relocs;
69 list->array_length = other_list->array_length;
70
71 if (list->num_relocs > 0) {
72 list->relocs =
73 vk_alloc(alloc, list->array_length * sizeof(*list->relocs), 8,
74 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
75 if (list->relocs == NULL)
76 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
77
78 list->reloc_bos =
79 vk_alloc(alloc, list->array_length * sizeof(*list->reloc_bos), 8,
80 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
81 if (list->reloc_bos == NULL) {
82 vk_free(alloc, list->relocs);
83 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
84 }
85
86 memcpy(list->relocs, other_list->relocs,
87 list->array_length * sizeof(*list->relocs));
88 memcpy(list->reloc_bos, other_list->reloc_bos,
89 list->array_length * sizeof(*list->reloc_bos));
90 } else {
91 list->relocs = NULL;
92 list->reloc_bos = NULL;
93 }
94
95 list->dep_words = other_list->dep_words;
96
97 if (list->dep_words > 0) {
98 list->deps =
99 vk_alloc(alloc, list->dep_words * sizeof(BITSET_WORD), 8,
100 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
101 memcpy(list->deps, other_list->deps,
102 list->dep_words * sizeof(BITSET_WORD));
103 } else {
104 list->deps = NULL;
105 }
106
107 return VK_SUCCESS;
108 }
109
110 void
anv_reloc_list_finish(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc)111 anv_reloc_list_finish(struct anv_reloc_list *list,
112 const VkAllocationCallbacks *alloc)
113 {
114 vk_free(alloc, list->relocs);
115 vk_free(alloc, list->reloc_bos);
116 vk_free(alloc, list->deps);
117 }
118
119 static VkResult
anv_reloc_list_grow(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc,size_t num_additional_relocs)120 anv_reloc_list_grow(struct anv_reloc_list *list,
121 const VkAllocationCallbacks *alloc,
122 size_t num_additional_relocs)
123 {
124 if (list->num_relocs + num_additional_relocs <= list->array_length)
125 return VK_SUCCESS;
126
127 size_t new_length = MAX2(16, list->array_length * 2);
128 while (new_length < list->num_relocs + num_additional_relocs)
129 new_length *= 2;
130
131 struct drm_i915_gem_relocation_entry *new_relocs =
132 vk_realloc(alloc, list->relocs,
133 new_length * sizeof(*list->relocs), 8,
134 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
135 if (new_relocs == NULL)
136 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
137 list->relocs = new_relocs;
138
139 struct anv_bo **new_reloc_bos =
140 vk_realloc(alloc, list->reloc_bos,
141 new_length * sizeof(*list->reloc_bos), 8,
142 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
143 if (new_reloc_bos == NULL)
144 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
145 list->reloc_bos = new_reloc_bos;
146
147 list->array_length = new_length;
148
149 return VK_SUCCESS;
150 }
151
152 static VkResult
anv_reloc_list_grow_deps(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc,uint32_t min_num_words)153 anv_reloc_list_grow_deps(struct anv_reloc_list *list,
154 const VkAllocationCallbacks *alloc,
155 uint32_t min_num_words)
156 {
157 if (min_num_words <= list->dep_words)
158 return VK_SUCCESS;
159
160 uint32_t new_length = MAX2(32, list->dep_words * 2);
161 while (new_length < min_num_words)
162 new_length *= 2;
163
164 BITSET_WORD *new_deps =
165 vk_realloc(alloc, list->deps, new_length * sizeof(BITSET_WORD), 8,
166 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
167 if (new_deps == NULL)
168 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
169 list->deps = new_deps;
170
171 /* Zero out the new data */
172 memset(list->deps + list->dep_words, 0,
173 (new_length - list->dep_words) * sizeof(BITSET_WORD));
174 list->dep_words = new_length;
175
176 return VK_SUCCESS;
177 }
178
179 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
180
181 VkResult
anv_reloc_list_add_bo(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc,struct anv_bo * target_bo)182 anv_reloc_list_add_bo(struct anv_reloc_list *list,
183 const VkAllocationCallbacks *alloc,
184 struct anv_bo *target_bo)
185 {
186 assert(!target_bo->is_wrapper);
187 assert(anv_bo_is_pinned(target_bo));
188
189 uint32_t idx = target_bo->gem_handle;
190 VkResult result = anv_reloc_list_grow_deps(list, alloc,
191 (idx / BITSET_WORDBITS) + 1);
192 if (unlikely(result != VK_SUCCESS))
193 return result;
194
195 BITSET_SET(list->deps, idx);
196
197 return VK_SUCCESS;
198 }
199
200 VkResult
anv_reloc_list_add(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc,uint32_t offset,struct anv_bo * target_bo,uint32_t delta,uint64_t * address_u64_out)201 anv_reloc_list_add(struct anv_reloc_list *list,
202 const VkAllocationCallbacks *alloc,
203 uint32_t offset, struct anv_bo *target_bo, uint32_t delta,
204 uint64_t *address_u64_out)
205 {
206 struct drm_i915_gem_relocation_entry *entry;
207 int index;
208
209 struct anv_bo *unwrapped_target_bo = anv_bo_unwrap(target_bo);
210 uint64_t target_bo_offset = READ_ONCE(unwrapped_target_bo->offset);
211 if (address_u64_out)
212 *address_u64_out = target_bo_offset + delta;
213
214 assert(unwrapped_target_bo->gem_handle > 0);
215 assert(unwrapped_target_bo->refcount > 0);
216
217 if (anv_bo_is_pinned(unwrapped_target_bo))
218 return anv_reloc_list_add_bo(list, alloc, unwrapped_target_bo);
219
220 VkResult result = anv_reloc_list_grow(list, alloc, 1);
221 if (result != VK_SUCCESS)
222 return result;
223
224 /* XXX: Can we use I915_EXEC_HANDLE_LUT? */
225 index = list->num_relocs++;
226 list->reloc_bos[index] = target_bo;
227 entry = &list->relocs[index];
228 entry->target_handle = -1; /* See also anv_cmd_buffer_process_relocs() */
229 entry->delta = delta;
230 entry->offset = offset;
231 entry->presumed_offset = target_bo_offset;
232 entry->read_domains = 0;
233 entry->write_domain = 0;
234 VG(VALGRIND_CHECK_MEM_IS_DEFINED(entry, sizeof(*entry)));
235
236 return VK_SUCCESS;
237 }
238
239 static void
anv_reloc_list_clear(struct anv_reloc_list * list)240 anv_reloc_list_clear(struct anv_reloc_list *list)
241 {
242 list->num_relocs = 0;
243 if (list->dep_words > 0)
244 memset(list->deps, 0, list->dep_words * sizeof(BITSET_WORD));
245 }
246
247 static VkResult
anv_reloc_list_append(struct anv_reloc_list * list,const VkAllocationCallbacks * alloc,struct anv_reloc_list * other,uint32_t offset)248 anv_reloc_list_append(struct anv_reloc_list *list,
249 const VkAllocationCallbacks *alloc,
250 struct anv_reloc_list *other, uint32_t offset)
251 {
252 VkResult result = anv_reloc_list_grow(list, alloc, other->num_relocs);
253 if (result != VK_SUCCESS)
254 return result;
255
256 if (other->num_relocs > 0) {
257 memcpy(&list->relocs[list->num_relocs], &other->relocs[0],
258 other->num_relocs * sizeof(other->relocs[0]));
259 memcpy(&list->reloc_bos[list->num_relocs], &other->reloc_bos[0],
260 other->num_relocs * sizeof(other->reloc_bos[0]));
261
262 for (uint32_t i = 0; i < other->num_relocs; i++)
263 list->relocs[i + list->num_relocs].offset += offset;
264
265 list->num_relocs += other->num_relocs;
266 }
267
268 anv_reloc_list_grow_deps(list, alloc, other->dep_words);
269 for (uint32_t w = 0; w < other->dep_words; w++)
270 list->deps[w] |= other->deps[w];
271
272 return VK_SUCCESS;
273 }
274
275 /*-----------------------------------------------------------------------*
276 * Functions related to anv_batch
277 *-----------------------------------------------------------------------*/
278
279 void *
anv_batch_emit_dwords(struct anv_batch * batch,int num_dwords)280 anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords)
281 {
282 if (batch->next + num_dwords * 4 > batch->end) {
283 VkResult result = batch->extend_cb(batch, batch->user_data);
284 if (result != VK_SUCCESS) {
285 anv_batch_set_error(batch, result);
286 return NULL;
287 }
288 }
289
290 void *p = batch->next;
291
292 batch->next += num_dwords * 4;
293 assert(batch->next <= batch->end);
294
295 return p;
296 }
297
298 struct anv_address
anv_batch_address(struct anv_batch * batch,void * batch_location)299 anv_batch_address(struct anv_batch *batch, void *batch_location)
300 {
301 assert(batch->start <= batch_location);
302
303 /* Allow a jump at the current location of the batch. */
304 assert(batch->next >= batch_location);
305
306 return anv_address_add(batch->start_addr, batch_location - batch->start);
307 }
308
309 void
anv_batch_emit_batch(struct anv_batch * batch,struct anv_batch * other)310 anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other)
311 {
312 uint32_t size, offset;
313
314 size = other->next - other->start;
315 assert(size % 4 == 0);
316
317 if (batch->next + size > batch->end) {
318 VkResult result = batch->extend_cb(batch, batch->user_data);
319 if (result != VK_SUCCESS) {
320 anv_batch_set_error(batch, result);
321 return;
322 }
323 }
324
325 assert(batch->next + size <= batch->end);
326
327 VG(VALGRIND_CHECK_MEM_IS_DEFINED(other->start, size));
328 memcpy(batch->next, other->start, size);
329
330 offset = batch->next - batch->start;
331 VkResult result = anv_reloc_list_append(batch->relocs, batch->alloc,
332 other->relocs, offset);
333 if (result != VK_SUCCESS) {
334 anv_batch_set_error(batch, result);
335 return;
336 }
337
338 batch->next += size;
339 }
340
341 /*-----------------------------------------------------------------------*
342 * Functions related to anv_batch_bo
343 *-----------------------------------------------------------------------*/
344
345 static VkResult
anv_batch_bo_create(struct anv_cmd_buffer * cmd_buffer,uint32_t size,struct anv_batch_bo ** bbo_out)346 anv_batch_bo_create(struct anv_cmd_buffer *cmd_buffer,
347 uint32_t size,
348 struct anv_batch_bo **bbo_out)
349 {
350 VkResult result;
351
352 struct anv_batch_bo *bbo = vk_zalloc(&cmd_buffer->vk.pool->alloc, sizeof(*bbo),
353 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
354 if (bbo == NULL)
355 return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
356
357 result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
358 size, &bbo->bo);
359 if (result != VK_SUCCESS)
360 goto fail_alloc;
361
362 result = anv_reloc_list_init(&bbo->relocs, &cmd_buffer->vk.pool->alloc);
363 if (result != VK_SUCCESS)
364 goto fail_bo_alloc;
365
366 *bbo_out = bbo;
367
368 return VK_SUCCESS;
369
370 fail_bo_alloc:
371 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
372 fail_alloc:
373 vk_free(&cmd_buffer->vk.pool->alloc, bbo);
374
375 return result;
376 }
377
378 static VkResult
anv_batch_bo_clone(struct anv_cmd_buffer * cmd_buffer,const struct anv_batch_bo * other_bbo,struct anv_batch_bo ** bbo_out)379 anv_batch_bo_clone(struct anv_cmd_buffer *cmd_buffer,
380 const struct anv_batch_bo *other_bbo,
381 struct anv_batch_bo **bbo_out)
382 {
383 VkResult result;
384
385 struct anv_batch_bo *bbo = vk_alloc(&cmd_buffer->vk.pool->alloc, sizeof(*bbo),
386 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
387 if (bbo == NULL)
388 return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
389
390 result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
391 other_bbo->bo->size, &bbo->bo);
392 if (result != VK_SUCCESS)
393 goto fail_alloc;
394
395 result = anv_reloc_list_init_clone(&bbo->relocs, &cmd_buffer->vk.pool->alloc,
396 &other_bbo->relocs);
397 if (result != VK_SUCCESS)
398 goto fail_bo_alloc;
399
400 bbo->length = other_bbo->length;
401 memcpy(bbo->bo->map, other_bbo->bo->map, other_bbo->length);
402 *bbo_out = bbo;
403
404 return VK_SUCCESS;
405
406 fail_bo_alloc:
407 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
408 fail_alloc:
409 vk_free(&cmd_buffer->vk.pool->alloc, bbo);
410
411 return result;
412 }
413
414 static void
anv_batch_bo_start(struct anv_batch_bo * bbo,struct anv_batch * batch,size_t batch_padding)415 anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch,
416 size_t batch_padding)
417 {
418 anv_batch_set_storage(batch, (struct anv_address) { .bo = bbo->bo, },
419 bbo->bo->map, bbo->bo->size - batch_padding);
420 batch->relocs = &bbo->relocs;
421 anv_reloc_list_clear(&bbo->relocs);
422 }
423
424 static void
anv_batch_bo_continue(struct anv_batch_bo * bbo,struct anv_batch * batch,size_t batch_padding)425 anv_batch_bo_continue(struct anv_batch_bo *bbo, struct anv_batch *batch,
426 size_t batch_padding)
427 {
428 batch->start_addr = (struct anv_address) { .bo = bbo->bo, };
429 batch->start = bbo->bo->map;
430 batch->next = bbo->bo->map + bbo->length;
431 batch->end = bbo->bo->map + bbo->bo->size - batch_padding;
432 batch->relocs = &bbo->relocs;
433 }
434
435 static void
anv_batch_bo_finish(struct anv_batch_bo * bbo,struct anv_batch * batch)436 anv_batch_bo_finish(struct anv_batch_bo *bbo, struct anv_batch *batch)
437 {
438 assert(batch->start == bbo->bo->map);
439 bbo->length = batch->next - batch->start;
440 VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->start, bbo->length));
441 }
442
443 static VkResult
anv_batch_bo_grow(struct anv_cmd_buffer * cmd_buffer,struct anv_batch_bo * bbo,struct anv_batch * batch,size_t additional,size_t batch_padding)444 anv_batch_bo_grow(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *bbo,
445 struct anv_batch *batch, size_t additional,
446 size_t batch_padding)
447 {
448 assert(batch->start == bbo->bo->map);
449 bbo->length = batch->next - batch->start;
450
451 size_t new_size = bbo->bo->size;
452 while (new_size <= bbo->length + additional + batch_padding)
453 new_size *= 2;
454
455 if (new_size == bbo->bo->size)
456 return VK_SUCCESS;
457
458 struct anv_bo *new_bo;
459 VkResult result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
460 new_size, &new_bo);
461 if (result != VK_SUCCESS)
462 return result;
463
464 memcpy(new_bo->map, bbo->bo->map, bbo->length);
465
466 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
467
468 bbo->bo = new_bo;
469 anv_batch_bo_continue(bbo, batch, batch_padding);
470
471 return VK_SUCCESS;
472 }
473
474 static void
anv_batch_bo_link(struct anv_cmd_buffer * cmd_buffer,struct anv_batch_bo * prev_bbo,struct anv_batch_bo * next_bbo,uint32_t next_bbo_offset)475 anv_batch_bo_link(struct anv_cmd_buffer *cmd_buffer,
476 struct anv_batch_bo *prev_bbo,
477 struct anv_batch_bo *next_bbo,
478 uint32_t next_bbo_offset)
479 {
480 const uint32_t bb_start_offset =
481 prev_bbo->length - GFX8_MI_BATCH_BUFFER_START_length * 4;
482 ASSERTED const uint32_t *bb_start = prev_bbo->bo->map + bb_start_offset;
483
484 /* Make sure we're looking at a MI_BATCH_BUFFER_START */
485 assert(((*bb_start >> 29) & 0x07) == 0);
486 assert(((*bb_start >> 23) & 0x3f) == 49);
487
488 if (anv_use_relocations(cmd_buffer->device->physical)) {
489 uint32_t reloc_idx = prev_bbo->relocs.num_relocs - 1;
490 assert(prev_bbo->relocs.relocs[reloc_idx].offset == bb_start_offset + 4);
491
492 prev_bbo->relocs.reloc_bos[reloc_idx] = next_bbo->bo;
493 prev_bbo->relocs.relocs[reloc_idx].delta = next_bbo_offset;
494
495 /* Use a bogus presumed offset to force a relocation */
496 prev_bbo->relocs.relocs[reloc_idx].presumed_offset = -1;
497 } else {
498 assert(anv_bo_is_pinned(prev_bbo->bo));
499 assert(anv_bo_is_pinned(next_bbo->bo));
500
501 write_reloc(cmd_buffer->device,
502 prev_bbo->bo->map + bb_start_offset + 4,
503 next_bbo->bo->offset + next_bbo_offset, true);
504 }
505 }
506
507 static void
anv_batch_bo_destroy(struct anv_batch_bo * bbo,struct anv_cmd_buffer * cmd_buffer)508 anv_batch_bo_destroy(struct anv_batch_bo *bbo,
509 struct anv_cmd_buffer *cmd_buffer)
510 {
511 anv_reloc_list_finish(&bbo->relocs, &cmd_buffer->vk.pool->alloc);
512 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, bbo->bo);
513 vk_free(&cmd_buffer->vk.pool->alloc, bbo);
514 }
515
516 static VkResult
anv_batch_bo_list_clone(const struct list_head * list,struct anv_cmd_buffer * cmd_buffer,struct list_head * new_list)517 anv_batch_bo_list_clone(const struct list_head *list,
518 struct anv_cmd_buffer *cmd_buffer,
519 struct list_head *new_list)
520 {
521 VkResult result = VK_SUCCESS;
522
523 list_inithead(new_list);
524
525 struct anv_batch_bo *prev_bbo = NULL;
526 list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
527 struct anv_batch_bo *new_bbo = NULL;
528 result = anv_batch_bo_clone(cmd_buffer, bbo, &new_bbo);
529 if (result != VK_SUCCESS)
530 break;
531 list_addtail(&new_bbo->link, new_list);
532
533 if (prev_bbo)
534 anv_batch_bo_link(cmd_buffer, prev_bbo, new_bbo, 0);
535
536 prev_bbo = new_bbo;
537 }
538
539 if (result != VK_SUCCESS) {
540 list_for_each_entry_safe(struct anv_batch_bo, bbo, new_list, link) {
541 list_del(&bbo->link);
542 anv_batch_bo_destroy(bbo, cmd_buffer);
543 }
544 }
545
546 return result;
547 }
548
549 /*-----------------------------------------------------------------------*
550 * Functions related to anv_batch_bo
551 *-----------------------------------------------------------------------*/
552
553 static struct anv_batch_bo *
anv_cmd_buffer_current_batch_bo(struct anv_cmd_buffer * cmd_buffer)554 anv_cmd_buffer_current_batch_bo(struct anv_cmd_buffer *cmd_buffer)
555 {
556 return list_entry(cmd_buffer->batch_bos.prev, struct anv_batch_bo, link);
557 }
558
559 struct anv_address
anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer * cmd_buffer)560 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer)
561 {
562 struct anv_state_pool *pool = anv_binding_table_pool(cmd_buffer->device);
563 struct anv_state *bt_block = u_vector_head(&cmd_buffer->bt_block_states);
564 return (struct anv_address) {
565 .bo = pool->block_pool.bo,
566 .offset = bt_block->offset - pool->start_offset,
567 };
568 }
569
570 static void
emit_batch_buffer_start(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset)571 emit_batch_buffer_start(struct anv_cmd_buffer *cmd_buffer,
572 struct anv_bo *bo, uint32_t offset)
573 {
574 /* In gfx8+ the address field grew to two dwords to accommodate 48 bit
575 * offsets. The high 16 bits are in the last dword, so we can use the gfx8
576 * version in either case, as long as we set the instruction length in the
577 * header accordingly. This means that we always emit three dwords here
578 * and all the padding and adjustment we do in this file works for all
579 * gens.
580 */
581
582 #define GFX7_MI_BATCH_BUFFER_START_length 2
583 #define GFX7_MI_BATCH_BUFFER_START_length_bias 2
584
585 const uint32_t gfx7_length =
586 GFX7_MI_BATCH_BUFFER_START_length - GFX7_MI_BATCH_BUFFER_START_length_bias;
587 const uint32_t gfx8_length =
588 GFX8_MI_BATCH_BUFFER_START_length - GFX8_MI_BATCH_BUFFER_START_length_bias;
589
590 anv_batch_emit(&cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_START, bbs) {
591 bbs.DWordLength = cmd_buffer->device->info.ver < 8 ?
592 gfx7_length : gfx8_length;
593 bbs.SecondLevelBatchBuffer = Firstlevelbatch;
594 bbs.AddressSpaceIndicator = ASI_PPGTT;
595 bbs.BatchBufferStartAddress = (struct anv_address) { bo, offset };
596 }
597 }
598
599 static void
cmd_buffer_chain_to_batch_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_batch_bo * bbo)600 cmd_buffer_chain_to_batch_bo(struct anv_cmd_buffer *cmd_buffer,
601 struct anv_batch_bo *bbo)
602 {
603 struct anv_batch *batch = &cmd_buffer->batch;
604 struct anv_batch_bo *current_bbo =
605 anv_cmd_buffer_current_batch_bo(cmd_buffer);
606
607 /* We set the end of the batch a little short so we would be sure we
608 * have room for the chaining command. Since we're about to emit the
609 * chaining command, let's set it back where it should go.
610 */
611 batch->end += GFX8_MI_BATCH_BUFFER_START_length * 4;
612 assert(batch->end == current_bbo->bo->map + current_bbo->bo->size);
613
614 emit_batch_buffer_start(cmd_buffer, bbo->bo, 0);
615
616 anv_batch_bo_finish(current_bbo, batch);
617 }
618
619 static void
anv_cmd_buffer_record_chain_submit(struct anv_cmd_buffer * cmd_buffer_from,struct anv_cmd_buffer * cmd_buffer_to)620 anv_cmd_buffer_record_chain_submit(struct anv_cmd_buffer *cmd_buffer_from,
621 struct anv_cmd_buffer *cmd_buffer_to)
622 {
623 assert(!anv_use_relocations(cmd_buffer_from->device->physical));
624
625 uint32_t *bb_start = cmd_buffer_from->batch_end;
626
627 struct anv_batch_bo *last_bbo =
628 list_last_entry(&cmd_buffer_from->batch_bos, struct anv_batch_bo, link);
629 struct anv_batch_bo *first_bbo =
630 list_first_entry(&cmd_buffer_to->batch_bos, struct anv_batch_bo, link);
631
632 struct GFX8_MI_BATCH_BUFFER_START gen_bb_start = {
633 __anv_cmd_header(GFX8_MI_BATCH_BUFFER_START),
634 .SecondLevelBatchBuffer = Firstlevelbatch,
635 .AddressSpaceIndicator = ASI_PPGTT,
636 .BatchBufferStartAddress = (struct anv_address) { first_bbo->bo, 0 },
637 };
638 struct anv_batch local_batch = {
639 .start = last_bbo->bo->map,
640 .end = last_bbo->bo->map + last_bbo->bo->size,
641 .relocs = &last_bbo->relocs,
642 .alloc = &cmd_buffer_from->vk.pool->alloc,
643 };
644
645 __anv_cmd_pack(GFX8_MI_BATCH_BUFFER_START)(&local_batch, bb_start, &gen_bb_start);
646
647 last_bbo->chained = true;
648 }
649
650 static void
anv_cmd_buffer_record_end_submit(struct anv_cmd_buffer * cmd_buffer)651 anv_cmd_buffer_record_end_submit(struct anv_cmd_buffer *cmd_buffer)
652 {
653 assert(!anv_use_relocations(cmd_buffer->device->physical));
654
655 struct anv_batch_bo *last_bbo =
656 list_last_entry(&cmd_buffer->batch_bos, struct anv_batch_bo, link);
657 last_bbo->chained = false;
658
659 uint32_t *batch = cmd_buffer->batch_end;
660 anv_pack_struct(batch, GFX8_MI_BATCH_BUFFER_END,
661 __anv_cmd_header(GFX8_MI_BATCH_BUFFER_END));
662 }
663
664 static VkResult
anv_cmd_buffer_chain_batch(struct anv_batch * batch,void * _data)665 anv_cmd_buffer_chain_batch(struct anv_batch *batch, void *_data)
666 {
667 struct anv_cmd_buffer *cmd_buffer = _data;
668 struct anv_batch_bo *new_bbo = NULL;
669 /* Cap reallocation to chunk. */
670 uint32_t alloc_size = MIN2(cmd_buffer->total_batch_size,
671 ANV_MAX_CMD_BUFFER_BATCH_SIZE);
672
673 VkResult result = anv_batch_bo_create(cmd_buffer, alloc_size, &new_bbo);
674 if (result != VK_SUCCESS)
675 return result;
676
677 cmd_buffer->total_batch_size += alloc_size;
678
679 struct anv_batch_bo **seen_bbo = u_vector_add(&cmd_buffer->seen_bbos);
680 if (seen_bbo == NULL) {
681 anv_batch_bo_destroy(new_bbo, cmd_buffer);
682 return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
683 }
684 *seen_bbo = new_bbo;
685
686 cmd_buffer_chain_to_batch_bo(cmd_buffer, new_bbo);
687
688 list_addtail(&new_bbo->link, &cmd_buffer->batch_bos);
689
690 anv_batch_bo_start(new_bbo, batch, GFX8_MI_BATCH_BUFFER_START_length * 4);
691
692 return VK_SUCCESS;
693 }
694
695 static VkResult
anv_cmd_buffer_grow_batch(struct anv_batch * batch,void * _data)696 anv_cmd_buffer_grow_batch(struct anv_batch *batch, void *_data)
697 {
698 struct anv_cmd_buffer *cmd_buffer = _data;
699 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
700
701 anv_batch_bo_grow(cmd_buffer, bbo, &cmd_buffer->batch, 4096,
702 GFX8_MI_BATCH_BUFFER_START_length * 4);
703
704 return VK_SUCCESS;
705 }
706
707 /** Allocate a binding table
708 *
709 * This function allocates a binding table. This is a bit more complicated
710 * than one would think due to a combination of Vulkan driver design and some
711 * unfortunate hardware restrictions.
712 *
713 * The 3DSTATE_BINDING_TABLE_POINTERS_* packets only have a 16-bit field for
714 * the binding table pointer which means that all binding tables need to live
715 * in the bottom 64k of surface state base address. The way the GL driver has
716 * classically dealt with this restriction is to emit all surface states
717 * on-the-fly into the batch and have a batch buffer smaller than 64k. This
718 * isn't really an option in Vulkan for a couple of reasons:
719 *
720 * 1) In Vulkan, we have growing (or chaining) batches so surface states have
721 * to live in their own buffer and we have to be able to re-emit
722 * STATE_BASE_ADDRESS as needed which requires a full pipeline stall. In
723 * order to avoid emitting STATE_BASE_ADDRESS any more often than needed
724 * (it's not that hard to hit 64k of just binding tables), we allocate
725 * surface state objects up-front when VkImageView is created. In order
726 * for this to work, surface state objects need to be allocated from a
727 * global buffer.
728 *
729 * 2) We tried to design the surface state system in such a way that it's
730 * already ready for bindless texturing. The way bindless texturing works
731 * on our hardware is that you have a big pool of surface state objects
732 * (with its own state base address) and the bindless handles are simply
733 * offsets into that pool. With the architecture we chose, we already
734 * have that pool and it's exactly the same pool that we use for regular
735 * surface states so we should already be ready for bindless.
736 *
737 * 3) For render targets, we need to be able to fill out the surface states
738 * later in vkBeginRenderPass so that we can assign clear colors
739 * correctly. One way to do this would be to just create the surface
740 * state data and then repeatedly copy it into the surface state BO every
741 * time we have to re-emit STATE_BASE_ADDRESS. While this works, it's
742 * rather annoying and just being able to allocate them up-front and
743 * re-use them for the entire render pass.
744 *
745 * While none of these are technically blockers for emitting state on the fly
746 * like we do in GL, the ability to have a single surface state pool is
747 * simplifies things greatly. Unfortunately, it comes at a cost...
748 *
749 * Because of the 64k limitation of 3DSTATE_BINDING_TABLE_POINTERS_*, we can't
750 * place the binding tables just anywhere in surface state base address.
751 * Because 64k isn't a whole lot of space, we can't simply restrict the
752 * surface state buffer to 64k, we have to be more clever. The solution we've
753 * chosen is to have a block pool with a maximum size of 2G that starts at
754 * zero and grows in both directions. All surface states are allocated from
755 * the top of the pool (positive offsets) and we allocate blocks (< 64k) of
756 * binding tables from the bottom of the pool (negative offsets). Every time
757 * we allocate a new binding table block, we set surface state base address to
758 * point to the bottom of the binding table block. This way all of the
759 * binding tables in the block are in the bottom 64k of surface state base
760 * address. When we fill out the binding table, we add the distance between
761 * the bottom of our binding table block and zero of the block pool to the
762 * surface state offsets so that they are correct relative to out new surface
763 * state base address at the bottom of the binding table block.
764 *
765 * \see adjust_relocations_from_block_pool()
766 * \see adjust_relocations_too_block_pool()
767 *
768 * \param[in] entries The number of surface state entries the binding
769 * table should be able to hold.
770 *
771 * \param[out] state_offset The offset surface surface state base address
772 * where the surface states live. This must be
773 * added to the surface state offset when it is
774 * written into the binding table entry.
775 *
776 * \return An anv_state representing the binding table
777 */
778 struct anv_state
anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer * cmd_buffer,uint32_t entries,uint32_t * state_offset)779 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
780 uint32_t entries, uint32_t *state_offset)
781 {
782 struct anv_state *bt_block = u_vector_head(&cmd_buffer->bt_block_states);
783
784 uint32_t bt_size = align_u32(entries * 4, 32);
785
786 struct anv_state state = cmd_buffer->bt_next;
787 if (bt_size > state.alloc_size)
788 return (struct anv_state) { 0 };
789
790 state.alloc_size = bt_size;
791 cmd_buffer->bt_next.offset += bt_size;
792 cmd_buffer->bt_next.map += bt_size;
793 cmd_buffer->bt_next.alloc_size -= bt_size;
794
795 if (cmd_buffer->device->info.verx10 >= 125) {
796 /* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to change the binding
797 * table address independently from surface state base address. We no
798 * longer need any sort of offsetting.
799 */
800 *state_offset = 0;
801 } else {
802 assert(bt_block->offset < 0);
803 *state_offset = -bt_block->offset;
804 }
805
806 return state;
807 }
808
809 struct anv_state
anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer * cmd_buffer)810 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer)
811 {
812 struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
813 return anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
814 isl_dev->ss.size, isl_dev->ss.align);
815 }
816
817 struct anv_state
anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer * cmd_buffer,uint32_t size,uint32_t alignment)818 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
819 uint32_t size, uint32_t alignment)
820 {
821 return anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream,
822 size, alignment);
823 }
824
825 VkResult
anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer * cmd_buffer)826 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer)
827 {
828 struct anv_state *bt_block = u_vector_add(&cmd_buffer->bt_block_states);
829 if (bt_block == NULL) {
830 anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY);
831 return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
832 }
833
834 *bt_block = anv_binding_table_pool_alloc(cmd_buffer->device);
835
836 /* The bt_next state is a rolling state (we update it as we suballocate
837 * from it) which is relative to the start of the binding table block.
838 */
839 cmd_buffer->bt_next = *bt_block;
840 cmd_buffer->bt_next.offset = 0;
841
842 return VK_SUCCESS;
843 }
844
845 VkResult
anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer * cmd_buffer)846 anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
847 {
848 struct anv_batch_bo *batch_bo = NULL;
849 VkResult result;
850
851 list_inithead(&cmd_buffer->batch_bos);
852
853 cmd_buffer->total_batch_size = ANV_MIN_CMD_BUFFER_BATCH_SIZE;
854
855 result = anv_batch_bo_create(cmd_buffer,
856 cmd_buffer->total_batch_size,
857 &batch_bo);
858 if (result != VK_SUCCESS)
859 return result;
860
861 list_addtail(&batch_bo->link, &cmd_buffer->batch_bos);
862
863 cmd_buffer->batch.alloc = &cmd_buffer->vk.pool->alloc;
864 cmd_buffer->batch.user_data = cmd_buffer;
865
866 if (cmd_buffer->device->can_chain_batches) {
867 cmd_buffer->batch.extend_cb = anv_cmd_buffer_chain_batch;
868 } else {
869 cmd_buffer->batch.extend_cb = anv_cmd_buffer_grow_batch;
870 }
871
872 anv_batch_bo_start(batch_bo, &cmd_buffer->batch,
873 GFX8_MI_BATCH_BUFFER_START_length * 4);
874
875 int success = u_vector_init_pow2(&cmd_buffer->seen_bbos, 8,
876 sizeof(struct anv_bo *));
877 if (!success)
878 goto fail_batch_bo;
879
880 *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) = batch_bo;
881
882 success = u_vector_init(&cmd_buffer->bt_block_states, 8,
883 sizeof(struct anv_state));
884 if (!success)
885 goto fail_seen_bbos;
886
887 result = anv_reloc_list_init(&cmd_buffer->surface_relocs,
888 &cmd_buffer->vk.pool->alloc);
889 if (result != VK_SUCCESS)
890 goto fail_bt_blocks;
891 cmd_buffer->last_ss_pool_center = 0;
892
893 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
894 if (result != VK_SUCCESS)
895 goto fail_bt_blocks;
896
897 return VK_SUCCESS;
898
899 fail_bt_blocks:
900 u_vector_finish(&cmd_buffer->bt_block_states);
901 fail_seen_bbos:
902 u_vector_finish(&cmd_buffer->seen_bbos);
903 fail_batch_bo:
904 anv_batch_bo_destroy(batch_bo, cmd_buffer);
905
906 return result;
907 }
908
909 void
anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer * cmd_buffer)910 anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
911 {
912 struct anv_state *bt_block;
913 u_vector_foreach(bt_block, &cmd_buffer->bt_block_states)
914 anv_binding_table_pool_free(cmd_buffer->device, *bt_block);
915 u_vector_finish(&cmd_buffer->bt_block_states);
916
917 anv_reloc_list_finish(&cmd_buffer->surface_relocs, &cmd_buffer->vk.pool->alloc);
918
919 u_vector_finish(&cmd_buffer->seen_bbos);
920
921 /* Destroy all of the batch buffers */
922 list_for_each_entry_safe(struct anv_batch_bo, bbo,
923 &cmd_buffer->batch_bos, link) {
924 list_del(&bbo->link);
925 anv_batch_bo_destroy(bbo, cmd_buffer);
926 }
927 }
928
929 void
anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer * cmd_buffer)930 anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
931 {
932 /* Delete all but the first batch bo */
933 assert(!list_is_empty(&cmd_buffer->batch_bos));
934 while (cmd_buffer->batch_bos.next != cmd_buffer->batch_bos.prev) {
935 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
936 list_del(&bbo->link);
937 anv_batch_bo_destroy(bbo, cmd_buffer);
938 }
939 assert(!list_is_empty(&cmd_buffer->batch_bos));
940
941 anv_batch_bo_start(anv_cmd_buffer_current_batch_bo(cmd_buffer),
942 &cmd_buffer->batch,
943 GFX8_MI_BATCH_BUFFER_START_length * 4);
944
945 while (u_vector_length(&cmd_buffer->bt_block_states) > 1) {
946 struct anv_state *bt_block = u_vector_remove(&cmd_buffer->bt_block_states);
947 anv_binding_table_pool_free(cmd_buffer->device, *bt_block);
948 }
949 assert(u_vector_length(&cmd_buffer->bt_block_states) == 1);
950 cmd_buffer->bt_next = *(struct anv_state *)u_vector_head(&cmd_buffer->bt_block_states);
951 cmd_buffer->bt_next.offset = 0;
952
953 anv_reloc_list_clear(&cmd_buffer->surface_relocs);
954 cmd_buffer->last_ss_pool_center = 0;
955
956 /* Reset the list of seen buffers */
957 cmd_buffer->seen_bbos.head = 0;
958 cmd_buffer->seen_bbos.tail = 0;
959
960 struct anv_batch_bo *first_bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
961
962 *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) = first_bbo;
963
964
965 assert(!cmd_buffer->device->can_chain_batches ||
966 first_bbo->bo->size == ANV_MIN_CMD_BUFFER_BATCH_SIZE);
967 cmd_buffer->total_batch_size = first_bbo->bo->size;
968 }
969
970 void
anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer * cmd_buffer)971 anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer)
972 {
973 struct anv_batch_bo *batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
974
975 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
976 /* When we start a batch buffer, we subtract a certain amount of
977 * padding from the end to ensure that we always have room to emit a
978 * BATCH_BUFFER_START to chain to the next BO. We need to remove
979 * that padding before we end the batch; otherwise, we may end up
980 * with our BATCH_BUFFER_END in another BO.
981 */
982 cmd_buffer->batch.end += GFX8_MI_BATCH_BUFFER_START_length * 4;
983 assert(cmd_buffer->batch.start == batch_bo->bo->map);
984 assert(cmd_buffer->batch.end == batch_bo->bo->map + batch_bo->bo->size);
985
986 /* Save end instruction location to override it later. */
987 cmd_buffer->batch_end = cmd_buffer->batch.next;
988
989 /* If we can chain this command buffer to another one, leave some place
990 * for the jump instruction.
991 */
992 batch_bo->chained = anv_cmd_buffer_is_chainable(cmd_buffer);
993 if (batch_bo->chained)
994 emit_batch_buffer_start(cmd_buffer, batch_bo->bo, 0);
995 else
996 anv_batch_emit(&cmd_buffer->batch, GFX8_MI_BATCH_BUFFER_END, bbe);
997
998 /* Round batch up to an even number of dwords. */
999 if ((cmd_buffer->batch.next - cmd_buffer->batch.start) & 4)
1000 anv_batch_emit(&cmd_buffer->batch, GFX8_MI_NOOP, noop);
1001
1002 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_PRIMARY;
1003 } else {
1004 assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1005 /* If this is a secondary command buffer, we need to determine the
1006 * mode in which it will be executed with vkExecuteCommands. We
1007 * determine this statically here so that this stays in sync with the
1008 * actual ExecuteCommands implementation.
1009 */
1010 const uint32_t length = cmd_buffer->batch.next - cmd_buffer->batch.start;
1011 if (!cmd_buffer->device->can_chain_batches) {
1012 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT;
1013 } else if (cmd_buffer->device->physical->use_call_secondary) {
1014 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN;
1015 /* If the secondary command buffer begins & ends in the same BO and
1016 * its length is less than the length of CS prefetch, add some NOOPs
1017 * instructions so the last MI_BATCH_BUFFER_START is outside the CS
1018 * prefetch.
1019 */
1020 if (cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) {
1021 const struct intel_device_info *devinfo = &cmd_buffer->device->info;
1022 /* Careful to have everything in signed integer. */
1023 int32_t prefetch_len = devinfo->cs_prefetch_size;
1024 int32_t batch_len =
1025 cmd_buffer->batch.next - cmd_buffer->batch.start;
1026
1027 for (int32_t i = 0; i < (prefetch_len - batch_len); i += 4)
1028 anv_batch_emit(&cmd_buffer->batch, GFX8_MI_NOOP, noop);
1029 }
1030
1031 void *jump_addr =
1032 anv_batch_emitn(&cmd_buffer->batch,
1033 GFX8_MI_BATCH_BUFFER_START_length,
1034 GFX8_MI_BATCH_BUFFER_START,
1035 .AddressSpaceIndicator = ASI_PPGTT,
1036 .SecondLevelBatchBuffer = Firstlevelbatch) +
1037 (GFX8_MI_BATCH_BUFFER_START_BatchBufferStartAddress_start / 8);
1038 cmd_buffer->return_addr = anv_batch_address(&cmd_buffer->batch, jump_addr);
1039
1040 /* The emit above may have caused us to chain batch buffers which
1041 * would mean that batch_bo is no longer valid.
1042 */
1043 batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
1044 } else if ((cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) &&
1045 (length < ANV_MIN_CMD_BUFFER_BATCH_SIZE / 2)) {
1046 /* If the secondary has exactly one batch buffer in its list *and*
1047 * that batch buffer is less than half of the maximum size, we're
1048 * probably better of simply copying it into our batch.
1049 */
1050 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_EMIT;
1051 } else if (!(cmd_buffer->usage_flags &
1052 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
1053 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CHAIN;
1054
1055 /* In order to chain, we need this command buffer to contain an
1056 * MI_BATCH_BUFFER_START which will jump back to the calling batch.
1057 * It doesn't matter where it points now so long as has a valid
1058 * relocation. We'll adjust it later as part of the chaining
1059 * process.
1060 *
1061 * We set the end of the batch a little short so we would be sure we
1062 * have room for the chaining command. Since we're about to emit the
1063 * chaining command, let's set it back where it should go.
1064 */
1065 cmd_buffer->batch.end += GFX8_MI_BATCH_BUFFER_START_length * 4;
1066 assert(cmd_buffer->batch.start == batch_bo->bo->map);
1067 assert(cmd_buffer->batch.end == batch_bo->bo->map + batch_bo->bo->size);
1068
1069 emit_batch_buffer_start(cmd_buffer, batch_bo->bo, 0);
1070 assert(cmd_buffer->batch.start == batch_bo->bo->map);
1071 } else {
1072 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN;
1073 }
1074 }
1075
1076 anv_batch_bo_finish(batch_bo, &cmd_buffer->batch);
1077 }
1078
1079 static VkResult
anv_cmd_buffer_add_seen_bbos(struct anv_cmd_buffer * cmd_buffer,struct list_head * list)1080 anv_cmd_buffer_add_seen_bbos(struct anv_cmd_buffer *cmd_buffer,
1081 struct list_head *list)
1082 {
1083 list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
1084 struct anv_batch_bo **bbo_ptr = u_vector_add(&cmd_buffer->seen_bbos);
1085 if (bbo_ptr == NULL)
1086 return vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY);
1087
1088 *bbo_ptr = bbo;
1089 }
1090
1091 return VK_SUCCESS;
1092 }
1093
1094 void
anv_cmd_buffer_add_secondary(struct anv_cmd_buffer * primary,struct anv_cmd_buffer * secondary)1095 anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1096 struct anv_cmd_buffer *secondary)
1097 {
1098 anv_measure_add_secondary(primary, secondary);
1099 switch (secondary->exec_mode) {
1100 case ANV_CMD_BUFFER_EXEC_MODE_EMIT:
1101 anv_batch_emit_batch(&primary->batch, &secondary->batch);
1102 break;
1103 case ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT: {
1104 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(primary);
1105 unsigned length = secondary->batch.end - secondary->batch.start;
1106 anv_batch_bo_grow(primary, bbo, &primary->batch, length,
1107 GFX8_MI_BATCH_BUFFER_START_length * 4);
1108 anv_batch_emit_batch(&primary->batch, &secondary->batch);
1109 break;
1110 }
1111 case ANV_CMD_BUFFER_EXEC_MODE_CHAIN: {
1112 struct anv_batch_bo *first_bbo =
1113 list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link);
1114 struct anv_batch_bo *last_bbo =
1115 list_last_entry(&secondary->batch_bos, struct anv_batch_bo, link);
1116
1117 emit_batch_buffer_start(primary, first_bbo->bo, 0);
1118
1119 struct anv_batch_bo *this_bbo = anv_cmd_buffer_current_batch_bo(primary);
1120 assert(primary->batch.start == this_bbo->bo->map);
1121 uint32_t offset = primary->batch.next - primary->batch.start;
1122
1123 /* Make the tail of the secondary point back to right after the
1124 * MI_BATCH_BUFFER_START in the primary batch.
1125 */
1126 anv_batch_bo_link(primary, last_bbo, this_bbo, offset);
1127
1128 anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos);
1129 break;
1130 }
1131 case ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN: {
1132 struct list_head copy_list;
1133 VkResult result = anv_batch_bo_list_clone(&secondary->batch_bos,
1134 secondary,
1135 ©_list);
1136 if (result != VK_SUCCESS)
1137 return; /* FIXME */
1138
1139 anv_cmd_buffer_add_seen_bbos(primary, ©_list);
1140
1141 struct anv_batch_bo *first_bbo =
1142 list_first_entry(©_list, struct anv_batch_bo, link);
1143 struct anv_batch_bo *last_bbo =
1144 list_last_entry(©_list, struct anv_batch_bo, link);
1145
1146 cmd_buffer_chain_to_batch_bo(primary, first_bbo);
1147
1148 list_splicetail(©_list, &primary->batch_bos);
1149
1150 anv_batch_bo_continue(last_bbo, &primary->batch,
1151 GFX8_MI_BATCH_BUFFER_START_length * 4);
1152 break;
1153 }
1154 case ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN: {
1155 struct anv_batch_bo *first_bbo =
1156 list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link);
1157
1158 uint64_t *write_return_addr =
1159 anv_batch_emitn(&primary->batch,
1160 GFX8_MI_STORE_DATA_IMM_length + 1 /* QWord write */,
1161 GFX8_MI_STORE_DATA_IMM,
1162 .Address = secondary->return_addr)
1163 + (GFX8_MI_STORE_DATA_IMM_ImmediateData_start / 8);
1164
1165 emit_batch_buffer_start(primary, first_bbo->bo, 0);
1166
1167 *write_return_addr =
1168 anv_address_physical(anv_batch_address(&primary->batch,
1169 primary->batch.next));
1170
1171 anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos);
1172 break;
1173 }
1174 default:
1175 assert(!"Invalid execution mode");
1176 }
1177
1178 anv_reloc_list_append(&primary->surface_relocs, &primary->vk.pool->alloc,
1179 &secondary->surface_relocs, 0);
1180 }
1181
1182 struct anv_execbuf {
1183 struct drm_i915_gem_execbuffer2 execbuf;
1184
1185 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
1186
1187 struct drm_i915_gem_exec_object2 * objects;
1188 uint32_t bo_count;
1189 struct anv_bo ** bos;
1190
1191 /* Allocated length of the 'objects' and 'bos' arrays */
1192 uint32_t array_length;
1193
1194 uint32_t syncobj_count;
1195 uint32_t syncobj_array_length;
1196 struct drm_i915_gem_exec_fence * syncobjs;
1197 uint64_t * syncobj_values;
1198
1199 /* List of relocations for surface states, only used with platforms not
1200 * using softpin.
1201 */
1202 void * surface_states_relocs;
1203
1204 uint32_t cmd_buffer_count;
1205 struct anv_query_pool *perf_query_pool;
1206
1207 /* Indicates whether any of the command buffers have relocations. This
1208 * doesn't not necessarily mean we'll need the kernel to process them. It
1209 * might be that a previous execbuf has already placed things in the VMA
1210 * and we can make i915 skip the relocations.
1211 */
1212 bool has_relocs;
1213
1214 const VkAllocationCallbacks * alloc;
1215 VkSystemAllocationScope alloc_scope;
1216
1217 int perf_query_pass;
1218 };
1219
1220 static void
anv_execbuf_init(struct anv_execbuf * exec)1221 anv_execbuf_init(struct anv_execbuf *exec)
1222 {
1223 memset(exec, 0, sizeof(*exec));
1224 }
1225
1226 static void
anv_execbuf_finish(struct anv_execbuf * exec)1227 anv_execbuf_finish(struct anv_execbuf *exec)
1228 {
1229 vk_free(exec->alloc, exec->syncobjs);
1230 vk_free(exec->alloc, exec->syncobj_values);
1231 vk_free(exec->alloc, exec->surface_states_relocs);
1232 vk_free(exec->alloc, exec->objects);
1233 vk_free(exec->alloc, exec->bos);
1234 }
1235
1236 static void
anv_execbuf_add_ext(struct anv_execbuf * exec,uint32_t ext_name,struct i915_user_extension * ext)1237 anv_execbuf_add_ext(struct anv_execbuf *exec,
1238 uint32_t ext_name,
1239 struct i915_user_extension *ext)
1240 {
1241 __u64 *iter = &exec->execbuf.cliprects_ptr;
1242
1243 exec->execbuf.flags |= I915_EXEC_USE_EXTENSIONS;
1244
1245 while (*iter != 0) {
1246 iter = (__u64 *) &((struct i915_user_extension *)(uintptr_t)*iter)->next_extension;
1247 }
1248
1249 ext->name = ext_name;
1250
1251 *iter = (uintptr_t) ext;
1252 }
1253
1254 static VkResult
1255 anv_execbuf_add_bo_bitset(struct anv_device *device,
1256 struct anv_execbuf *exec,
1257 uint32_t dep_words,
1258 BITSET_WORD *deps,
1259 uint32_t extra_flags);
1260
1261 static VkResult
anv_execbuf_add_bo(struct anv_device * device,struct anv_execbuf * exec,struct anv_bo * bo,struct anv_reloc_list * relocs,uint32_t extra_flags)1262 anv_execbuf_add_bo(struct anv_device *device,
1263 struct anv_execbuf *exec,
1264 struct anv_bo *bo,
1265 struct anv_reloc_list *relocs,
1266 uint32_t extra_flags)
1267 {
1268 struct drm_i915_gem_exec_object2 *obj = NULL;
1269
1270 bo = anv_bo_unwrap(bo);
1271
1272 if (bo->exec_obj_index < exec->bo_count &&
1273 exec->bos[bo->exec_obj_index] == bo)
1274 obj = &exec->objects[bo->exec_obj_index];
1275
1276 if (obj == NULL) {
1277 /* We've never seen this one before. Add it to the list and assign
1278 * an id that we can use later.
1279 */
1280 if (exec->bo_count >= exec->array_length) {
1281 uint32_t new_len = exec->objects ? exec->array_length * 2 : 64;
1282
1283 struct drm_i915_gem_exec_object2 *new_objects =
1284 vk_alloc(exec->alloc, new_len * sizeof(*new_objects), 8, exec->alloc_scope);
1285 if (new_objects == NULL)
1286 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1287
1288 struct anv_bo **new_bos =
1289 vk_alloc(exec->alloc, new_len * sizeof(*new_bos), 8, exec->alloc_scope);
1290 if (new_bos == NULL) {
1291 vk_free(exec->alloc, new_objects);
1292 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1293 }
1294
1295 if (exec->objects) {
1296 memcpy(new_objects, exec->objects,
1297 exec->bo_count * sizeof(*new_objects));
1298 memcpy(new_bos, exec->bos,
1299 exec->bo_count * sizeof(*new_bos));
1300 }
1301
1302 vk_free(exec->alloc, exec->objects);
1303 vk_free(exec->alloc, exec->bos);
1304
1305 exec->objects = new_objects;
1306 exec->bos = new_bos;
1307 exec->array_length = new_len;
1308 }
1309
1310 assert(exec->bo_count < exec->array_length);
1311
1312 bo->exec_obj_index = exec->bo_count++;
1313 obj = &exec->objects[bo->exec_obj_index];
1314 exec->bos[bo->exec_obj_index] = bo;
1315
1316 obj->handle = bo->gem_handle;
1317 obj->relocation_count = 0;
1318 obj->relocs_ptr = 0;
1319 obj->alignment = 0;
1320 obj->offset = bo->offset;
1321 obj->flags = bo->flags | extra_flags;
1322 obj->rsvd1 = 0;
1323 obj->rsvd2 = 0;
1324 }
1325
1326 if (extra_flags & EXEC_OBJECT_WRITE) {
1327 obj->flags |= EXEC_OBJECT_WRITE;
1328 obj->flags &= ~EXEC_OBJECT_ASYNC;
1329 }
1330
1331 if (relocs != NULL) {
1332 assert(obj->relocation_count == 0);
1333
1334 if (relocs->num_relocs > 0) {
1335 /* This is the first time we've ever seen a list of relocations for
1336 * this BO. Go ahead and set the relocations and then walk the list
1337 * of relocations and add them all.
1338 */
1339 exec->has_relocs = true;
1340 obj->relocation_count = relocs->num_relocs;
1341 obj->relocs_ptr = (uintptr_t) relocs->relocs;
1342
1343 for (size_t i = 0; i < relocs->num_relocs; i++) {
1344 VkResult result;
1345
1346 /* A quick sanity check on relocations */
1347 assert(relocs->relocs[i].offset < bo->size);
1348 result = anv_execbuf_add_bo(device, exec, relocs->reloc_bos[i],
1349 NULL, extra_flags);
1350 if (result != VK_SUCCESS)
1351 return result;
1352 }
1353 }
1354
1355 return anv_execbuf_add_bo_bitset(device, exec, relocs->dep_words,
1356 relocs->deps, extra_flags);
1357 }
1358
1359 return VK_SUCCESS;
1360 }
1361
1362 /* Add BO dependencies to execbuf */
1363 static VkResult
anv_execbuf_add_bo_bitset(struct anv_device * device,struct anv_execbuf * exec,uint32_t dep_words,BITSET_WORD * deps,uint32_t extra_flags)1364 anv_execbuf_add_bo_bitset(struct anv_device *device,
1365 struct anv_execbuf *exec,
1366 uint32_t dep_words,
1367 BITSET_WORD *deps,
1368 uint32_t extra_flags)
1369 {
1370 for (uint32_t w = 0; w < dep_words; w++) {
1371 BITSET_WORD mask = deps[w];
1372 while (mask) {
1373 int i = u_bit_scan(&mask);
1374 uint32_t gem_handle = w * BITSET_WORDBITS + i;
1375 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1376 assert(bo->refcount > 0);
1377 VkResult result =
1378 anv_execbuf_add_bo(device, exec, bo, NULL, extra_flags);
1379 if (result != VK_SUCCESS)
1380 return result;
1381 }
1382 }
1383
1384 return VK_SUCCESS;
1385 }
1386
1387 static void
anv_cmd_buffer_process_relocs(struct anv_cmd_buffer * cmd_buffer,struct anv_reloc_list * list)1388 anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
1389 struct anv_reloc_list *list)
1390 {
1391 for (size_t i = 0; i < list->num_relocs; i++) {
1392 list->relocs[i].target_handle =
1393 anv_bo_unwrap(list->reloc_bos[i])->exec_obj_index;
1394 }
1395 }
1396
1397 static void
adjust_relocations_from_state_pool(struct anv_state_pool * pool,struct anv_reloc_list * relocs,uint32_t last_pool_center_bo_offset)1398 adjust_relocations_from_state_pool(struct anv_state_pool *pool,
1399 struct anv_reloc_list *relocs,
1400 uint32_t last_pool_center_bo_offset)
1401 {
1402 assert(last_pool_center_bo_offset <= pool->block_pool.center_bo_offset);
1403 uint32_t delta = pool->block_pool.center_bo_offset - last_pool_center_bo_offset;
1404
1405 for (size_t i = 0; i < relocs->num_relocs; i++) {
1406 /* All of the relocations from this block pool to other BO's should
1407 * have been emitted relative to the surface block pool center. We
1408 * need to add the center offset to make them relative to the
1409 * beginning of the actual GEM bo.
1410 */
1411 relocs->relocs[i].offset += delta;
1412 }
1413 }
1414
1415 static void
adjust_relocations_to_state_pool(struct anv_state_pool * pool,struct anv_bo * from_bo,struct anv_reloc_list * relocs,uint32_t last_pool_center_bo_offset)1416 adjust_relocations_to_state_pool(struct anv_state_pool *pool,
1417 struct anv_bo *from_bo,
1418 struct anv_reloc_list *relocs,
1419 uint32_t last_pool_center_bo_offset)
1420 {
1421 assert(!from_bo->is_wrapper);
1422 assert(last_pool_center_bo_offset <= pool->block_pool.center_bo_offset);
1423 uint32_t delta = pool->block_pool.center_bo_offset - last_pool_center_bo_offset;
1424
1425 /* When we initially emit relocations into a block pool, we don't
1426 * actually know what the final center_bo_offset will be so we just emit
1427 * it as if center_bo_offset == 0. Now that we know what the center
1428 * offset is, we need to walk the list of relocations and adjust any
1429 * relocations that point to the pool bo with the correct offset.
1430 */
1431 for (size_t i = 0; i < relocs->num_relocs; i++) {
1432 if (relocs->reloc_bos[i] == pool->block_pool.bo) {
1433 /* Adjust the delta value in the relocation to correctly
1434 * correspond to the new delta. Initially, this value may have
1435 * been negative (if treated as unsigned), but we trust in
1436 * uint32_t roll-over to fix that for us at this point.
1437 */
1438 relocs->relocs[i].delta += delta;
1439
1440 /* Since the delta has changed, we need to update the actual
1441 * relocated value with the new presumed value. This function
1442 * should only be called on batch buffers, so we know it isn't in
1443 * use by the GPU at the moment.
1444 */
1445 assert(relocs->relocs[i].offset < from_bo->size);
1446 write_reloc(pool->block_pool.device,
1447 from_bo->map + relocs->relocs[i].offset,
1448 relocs->relocs[i].presumed_offset +
1449 relocs->relocs[i].delta, false);
1450 }
1451 }
1452 }
1453
1454 static void
anv_reloc_list_apply(struct anv_device * device,struct anv_reloc_list * list,struct anv_bo * bo,bool always_relocate)1455 anv_reloc_list_apply(struct anv_device *device,
1456 struct anv_reloc_list *list,
1457 struct anv_bo *bo,
1458 bool always_relocate)
1459 {
1460 bo = anv_bo_unwrap(bo);
1461
1462 for (size_t i = 0; i < list->num_relocs; i++) {
1463 struct anv_bo *target_bo = anv_bo_unwrap(list->reloc_bos[i]);
1464 if (list->relocs[i].presumed_offset == target_bo->offset &&
1465 !always_relocate)
1466 continue;
1467
1468 void *p = bo->map + list->relocs[i].offset;
1469 write_reloc(device, p, target_bo->offset + list->relocs[i].delta, true);
1470 list->relocs[i].presumed_offset = target_bo->offset;
1471 }
1472 }
1473
1474 /**
1475 * This function applies the relocation for a command buffer and writes the
1476 * actual addresses into the buffers as per what we were told by the kernel on
1477 * the previous execbuf2 call. This should be safe to do because, for each
1478 * relocated address, we have two cases:
1479 *
1480 * 1) The target BO is inactive (as seen by the kernel). In this case, it is
1481 * not in use by the GPU so updating the address is 100% ok. It won't be
1482 * in-use by the GPU (from our context) again until the next execbuf2
1483 * happens. If the kernel decides to move it in the next execbuf2, it
1484 * will have to do the relocations itself, but that's ok because it should
1485 * have all of the information needed to do so.
1486 *
1487 * 2) The target BO is active (as seen by the kernel). In this case, it
1488 * hasn't moved since the last execbuffer2 call because GTT shuffling
1489 * *only* happens when the BO is idle. (From our perspective, it only
1490 * happens inside the execbuffer2 ioctl, but the shuffling may be
1491 * triggered by another ioctl, with full-ppgtt this is limited to only
1492 * execbuffer2 ioctls on the same context, or memory pressure.) Since the
1493 * target BO hasn't moved, our anv_bo::offset exactly matches the BO's GTT
1494 * address and the relocated value we are writing into the BO will be the
1495 * same as the value that is already there.
1496 *
1497 * There is also a possibility that the target BO is active but the exact
1498 * RENDER_SURFACE_STATE object we are writing the relocation into isn't in
1499 * use. In this case, the address currently in the RENDER_SURFACE_STATE
1500 * may be stale but it's still safe to write the relocation because that
1501 * particular RENDER_SURFACE_STATE object isn't in-use by the GPU and
1502 * won't be until the next execbuf2 call.
1503 *
1504 * By doing relocations on the CPU, we can tell the kernel that it doesn't
1505 * need to bother. We want to do this because the surface state buffer is
1506 * used by every command buffer so, if the kernel does the relocations, it
1507 * will always be busy and the kernel will always stall. This is also
1508 * probably the fastest mechanism for doing relocations since the kernel would
1509 * have to make a full copy of all the relocations lists.
1510 */
1511 static bool
execbuf_can_skip_relocations(struct anv_execbuf * exec)1512 execbuf_can_skip_relocations(struct anv_execbuf *exec)
1513 {
1514 if (!exec->has_relocs)
1515 return true;
1516
1517 static int userspace_relocs = -1;
1518 if (userspace_relocs < 0)
1519 userspace_relocs = env_var_as_boolean("ANV_USERSPACE_RELOCS", true);
1520 if (!userspace_relocs)
1521 return false;
1522
1523 /* First, we have to check to see whether or not we can even do the
1524 * relocation. New buffers which have never been submitted to the kernel
1525 * don't have a valid offset so we need to let the kernel do relocations so
1526 * that we can get offsets for them. On future execbuf2 calls, those
1527 * buffers will have offsets and we will be able to skip relocating.
1528 * Invalid offsets are indicated by anv_bo::offset == (uint64_t)-1.
1529 */
1530 for (uint32_t i = 0; i < exec->bo_count; i++) {
1531 assert(!exec->bos[i]->is_wrapper);
1532 if (exec->bos[i]->offset == (uint64_t)-1)
1533 return false;
1534 }
1535
1536 return true;
1537 }
1538
1539 static void
relocate_cmd_buffer(struct anv_cmd_buffer * cmd_buffer,struct anv_execbuf * exec)1540 relocate_cmd_buffer(struct anv_cmd_buffer *cmd_buffer,
1541 struct anv_execbuf *exec)
1542 {
1543 /* Since surface states are shared between command buffers and we don't
1544 * know what order they will be submitted to the kernel, we don't know
1545 * what address is actually written in the surface state object at any
1546 * given time. The only option is to always relocate them.
1547 */
1548 struct anv_bo *surface_state_bo =
1549 anv_bo_unwrap(cmd_buffer->device->surface_state_pool.block_pool.bo);
1550 anv_reloc_list_apply(cmd_buffer->device, &cmd_buffer->surface_relocs,
1551 surface_state_bo,
1552 true /* always relocate surface states */);
1553
1554 /* Since we own all of the batch buffers, we know what values are stored
1555 * in the relocated addresses and only have to update them if the offsets
1556 * have changed.
1557 */
1558 struct anv_batch_bo **bbo;
1559 u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1560 anv_reloc_list_apply(cmd_buffer->device,
1561 &(*bbo)->relocs, (*bbo)->bo, false);
1562 }
1563
1564 for (uint32_t i = 0; i < exec->bo_count; i++)
1565 exec->objects[i].offset = exec->bos[i]->offset;
1566 }
1567
1568 static void
reset_cmd_buffer_surface_offsets(struct anv_cmd_buffer * cmd_buffer)1569 reset_cmd_buffer_surface_offsets(struct anv_cmd_buffer *cmd_buffer)
1570 {
1571 /* In the case where we fall back to doing kernel relocations, we need to
1572 * ensure that the relocation list is valid. All relocations on the batch
1573 * buffers are already valid and kept up-to-date. Since surface states are
1574 * shared between command buffers and we don't know what order they will be
1575 * submitted to the kernel, we don't know what address is actually written
1576 * in the surface state object at any given time. The only option is to set
1577 * a bogus presumed offset and let the kernel relocate them.
1578 */
1579 for (size_t i = 0; i < cmd_buffer->surface_relocs.num_relocs; i++)
1580 cmd_buffer->surface_relocs.relocs[i].presumed_offset = -1;
1581 }
1582
1583 static VkResult
anv_execbuf_add_syncobj(struct anv_device * device,struct anv_execbuf * exec,uint32_t syncobj,uint32_t flags,uint64_t timeline_value)1584 anv_execbuf_add_syncobj(struct anv_device *device,
1585 struct anv_execbuf *exec,
1586 uint32_t syncobj,
1587 uint32_t flags,
1588 uint64_t timeline_value)
1589 {
1590 if (exec->syncobj_count >= exec->syncobj_array_length) {
1591 uint32_t new_len = MAX2(exec->syncobj_array_length * 2, 16);
1592
1593 struct drm_i915_gem_exec_fence *new_syncobjs =
1594 vk_alloc(exec->alloc, new_len * sizeof(*new_syncobjs),
1595 8, exec->alloc_scope);
1596 if (!new_syncobjs)
1597 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1598
1599 if (exec->syncobjs)
1600 typed_memcpy(new_syncobjs, exec->syncobjs, exec->syncobj_count);
1601
1602 exec->syncobjs = new_syncobjs;
1603
1604 if (exec->syncobj_values) {
1605 uint64_t *new_syncobj_values =
1606 vk_alloc(exec->alloc, new_len * sizeof(*new_syncobj_values),
1607 8, exec->alloc_scope);
1608 if (!new_syncobj_values)
1609 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1610
1611 typed_memcpy(new_syncobj_values, exec->syncobj_values,
1612 exec->syncobj_count);
1613
1614 exec->syncobj_values = new_syncobj_values;
1615 }
1616
1617 exec->syncobj_array_length = new_len;
1618 }
1619
1620 if (timeline_value && !exec->syncobj_values) {
1621 exec->syncobj_values =
1622 vk_zalloc(exec->alloc, exec->syncobj_array_length *
1623 sizeof(*exec->syncobj_values),
1624 8, exec->alloc_scope);
1625 if (!exec->syncobj_values)
1626 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1627 }
1628
1629 exec->syncobjs[exec->syncobj_count] = (struct drm_i915_gem_exec_fence) {
1630 .handle = syncobj,
1631 .flags = flags,
1632 };
1633 if (timeline_value)
1634 exec->syncobj_values[exec->syncobj_count] = timeline_value;
1635
1636 exec->syncobj_count++;
1637
1638 return VK_SUCCESS;
1639 }
1640
1641 static VkResult
anv_execbuf_add_sync(struct anv_device * device,struct anv_execbuf * execbuf,struct vk_sync * sync,bool is_signal,uint64_t value)1642 anv_execbuf_add_sync(struct anv_device *device,
1643 struct anv_execbuf *execbuf,
1644 struct vk_sync *sync,
1645 bool is_signal,
1646 uint64_t value)
1647 {
1648 /* It's illegal to signal a timeline with value 0 because that's never
1649 * higher than the current value. A timeline wait on value 0 is always
1650 * trivial because 0 <= uint64_t always.
1651 */
1652 if ((sync->flags & VK_SYNC_IS_TIMELINE) && value == 0)
1653 return VK_SUCCESS;
1654
1655 if (vk_sync_is_anv_bo_sync(sync)) {
1656 struct anv_bo_sync *bo_sync =
1657 container_of(sync, struct anv_bo_sync, sync);
1658
1659 assert(is_signal == (bo_sync->state == ANV_BO_SYNC_STATE_RESET));
1660
1661 return anv_execbuf_add_bo(device, execbuf, bo_sync->bo, NULL,
1662 is_signal ? EXEC_OBJECT_WRITE : 0);
1663 } else if (vk_sync_type_is_drm_syncobj(sync->type)) {
1664 struct vk_drm_syncobj *syncobj = vk_sync_as_drm_syncobj(sync);
1665
1666 if (!(sync->flags & VK_SYNC_IS_TIMELINE))
1667 value = 0;
1668
1669 return anv_execbuf_add_syncobj(device, execbuf, syncobj->syncobj,
1670 is_signal ? I915_EXEC_FENCE_SIGNAL :
1671 I915_EXEC_FENCE_WAIT,
1672 value);
1673 }
1674
1675 unreachable("Invalid sync type");
1676 }
1677
1678 static VkResult
setup_execbuf_for_cmd_buffer(struct anv_execbuf * execbuf,struct anv_cmd_buffer * cmd_buffer)1679 setup_execbuf_for_cmd_buffer(struct anv_execbuf *execbuf,
1680 struct anv_cmd_buffer *cmd_buffer)
1681 {
1682 struct anv_state_pool *ss_pool =
1683 &cmd_buffer->device->surface_state_pool;
1684
1685 adjust_relocations_from_state_pool(ss_pool, &cmd_buffer->surface_relocs,
1686 cmd_buffer->last_ss_pool_center);
1687 VkResult result;
1688 if (anv_use_relocations(cmd_buffer->device->physical)) {
1689 /* Since we aren't in the softpin case, all of our STATE_BASE_ADDRESS BOs
1690 * will get added automatically by processing relocations on the batch
1691 * buffer. We have to add the surface state BO manually because it has
1692 * relocations of its own that we need to be sure are processed.
1693 */
1694 result = anv_execbuf_add_bo(cmd_buffer->device, execbuf,
1695 ss_pool->block_pool.bo,
1696 &cmd_buffer->surface_relocs, 0);
1697 if (result != VK_SUCCESS)
1698 return result;
1699 } else {
1700 /* Add surface dependencies (BOs) to the execbuf */
1701 anv_execbuf_add_bo_bitset(cmd_buffer->device, execbuf,
1702 cmd_buffer->surface_relocs.dep_words,
1703 cmd_buffer->surface_relocs.deps, 0);
1704 }
1705
1706 /* First, we walk over all of the bos we've seen and add them and their
1707 * relocations to the validate list.
1708 */
1709 struct anv_batch_bo **bbo;
1710 u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1711 adjust_relocations_to_state_pool(ss_pool, (*bbo)->bo, &(*bbo)->relocs,
1712 cmd_buffer->last_ss_pool_center);
1713
1714 result = anv_execbuf_add_bo(cmd_buffer->device, execbuf,
1715 (*bbo)->bo, &(*bbo)->relocs, 0);
1716 if (result != VK_SUCCESS)
1717 return result;
1718 }
1719
1720 /* Now that we've adjusted all of the surface state relocations, we need to
1721 * record the surface state pool center so future executions of the command
1722 * buffer can adjust correctly.
1723 */
1724 cmd_buffer->last_ss_pool_center = ss_pool->block_pool.center_bo_offset;
1725
1726 return VK_SUCCESS;
1727 }
1728
1729 static void
chain_command_buffers(struct anv_cmd_buffer ** cmd_buffers,uint32_t num_cmd_buffers)1730 chain_command_buffers(struct anv_cmd_buffer **cmd_buffers,
1731 uint32_t num_cmd_buffers)
1732 {
1733 if (!anv_cmd_buffer_is_chainable(cmd_buffers[0])) {
1734 assert(num_cmd_buffers == 1);
1735 return;
1736 }
1737
1738 /* Chain the N-1 first batch buffers */
1739 for (uint32_t i = 0; i < (num_cmd_buffers - 1); i++)
1740 anv_cmd_buffer_record_chain_submit(cmd_buffers[i], cmd_buffers[i + 1]);
1741
1742 /* Put an end to the last one */
1743 anv_cmd_buffer_record_end_submit(cmd_buffers[num_cmd_buffers - 1]);
1744 }
1745
1746 static VkResult
setup_execbuf_for_cmd_buffers(struct anv_execbuf * execbuf,struct anv_queue * queue,struct anv_cmd_buffer ** cmd_buffers,uint32_t num_cmd_buffers)1747 setup_execbuf_for_cmd_buffers(struct anv_execbuf *execbuf,
1748 struct anv_queue *queue,
1749 struct anv_cmd_buffer **cmd_buffers,
1750 uint32_t num_cmd_buffers)
1751 {
1752 struct anv_device *device = queue->device;
1753 struct anv_state_pool *ss_pool = &device->surface_state_pool;
1754 VkResult result;
1755
1756 /* Edit the tail of the command buffers to chain them all together if they
1757 * can be.
1758 */
1759 chain_command_buffers(cmd_buffers, num_cmd_buffers);
1760
1761 for (uint32_t i = 0; i < num_cmd_buffers; i++) {
1762 anv_measure_submit(cmd_buffers[i]);
1763 result = setup_execbuf_for_cmd_buffer(execbuf, cmd_buffers[i]);
1764 if (result != VK_SUCCESS)
1765 return result;
1766 }
1767
1768 /* Add all the global BOs to the object list for softpin case. */
1769 if (!anv_use_relocations(device->physical)) {
1770 anv_block_pool_foreach_bo(bo, &ss_pool->block_pool) {
1771 result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0);
1772 if (result != VK_SUCCESS)
1773 return result;
1774 }
1775
1776 struct anv_block_pool *pool;
1777 pool = &device->dynamic_state_pool.block_pool;
1778 anv_block_pool_foreach_bo(bo, pool) {
1779 result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0);
1780 if (result != VK_SUCCESS)
1781 return result;
1782 }
1783
1784 pool = &device->general_state_pool.block_pool;
1785 anv_block_pool_foreach_bo(bo, pool) {
1786 result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0);
1787 if (result != VK_SUCCESS)
1788 return result;
1789 }
1790
1791 pool = &device->instruction_state_pool.block_pool;
1792 anv_block_pool_foreach_bo(bo, pool) {
1793 result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0);
1794 if (result != VK_SUCCESS)
1795 return result;
1796 }
1797
1798 pool = &device->binding_table_pool.block_pool;
1799 anv_block_pool_foreach_bo(bo, pool) {
1800 result = anv_execbuf_add_bo(device, execbuf, bo, NULL, 0);
1801 if (result != VK_SUCCESS)
1802 return result;
1803 }
1804
1805 /* Add the BOs for all user allocated memory objects because we can't
1806 * track after binding updates of VK_EXT_descriptor_indexing.
1807 */
1808 list_for_each_entry(struct anv_device_memory, mem,
1809 &device->memory_objects, link) {
1810 result = anv_execbuf_add_bo(device, execbuf, mem->bo, NULL, 0);
1811 if (result != VK_SUCCESS)
1812 return result;
1813 }
1814 } else {
1815 /* We do not support chaining primary command buffers without
1816 * softpin.
1817 */
1818 assert(num_cmd_buffers == 1);
1819 }
1820
1821 bool no_reloc = true;
1822 if (execbuf->has_relocs) {
1823 no_reloc = execbuf_can_skip_relocations(execbuf);
1824 if (no_reloc) {
1825 /* If we were able to successfully relocate everything, tell the
1826 * kernel that it can skip doing relocations. The requirement for
1827 * using NO_RELOC is:
1828 *
1829 * 1) The addresses written in the objects must match the
1830 * corresponding reloc.presumed_offset which in turn must match
1831 * the corresponding execobject.offset.
1832 *
1833 * 2) To avoid stalling, execobject.offset should match the current
1834 * address of that object within the active context.
1835 *
1836 * In order to satisfy all of the invariants that make userspace
1837 * relocations to be safe (see relocate_cmd_buffer()), we need to
1838 * further ensure that the addresses we use match those used by the
1839 * kernel for the most recent execbuf2.
1840 *
1841 * The kernel may still choose to do relocations anyway if something
1842 * has moved in the GTT. In this case, the relocation list still
1843 * needs to be valid. All relocations on the batch buffers are
1844 * already valid and kept up-to-date. For surface state relocations,
1845 * by applying the relocations in relocate_cmd_buffer, we ensured
1846 * that the address in the RENDER_SURFACE_STATE matches
1847 * presumed_offset, so it should be safe for the kernel to relocate
1848 * them as needed.
1849 */
1850 for (uint32_t i = 0; i < num_cmd_buffers; i++) {
1851 relocate_cmd_buffer(cmd_buffers[i], execbuf);
1852
1853 anv_reloc_list_apply(device, &cmd_buffers[i]->surface_relocs,
1854 device->surface_state_pool.block_pool.bo,
1855 true /* always relocate surface states */);
1856 }
1857 } else {
1858 /* In the case where we fall back to doing kernel relocations, we
1859 * need to ensure that the relocation list is valid. All relocations
1860 * on the batch buffers are already valid and kept up-to-date. Since
1861 * surface states are shared between command buffers and we don't
1862 * know what order they will be submitted to the kernel, we don't
1863 * know what address is actually written in the surface state object
1864 * at any given time. The only option is to set a bogus presumed
1865 * offset and let the kernel relocate them.
1866 */
1867 for (uint32_t i = 0; i < num_cmd_buffers; i++)
1868 reset_cmd_buffer_surface_offsets(cmd_buffers[i]);
1869 }
1870 }
1871
1872 struct anv_batch_bo *first_batch_bo =
1873 list_first_entry(&cmd_buffers[0]->batch_bos, struct anv_batch_bo, link);
1874
1875 /* The kernel requires that the last entry in the validation list be the
1876 * batch buffer to execute. We can simply swap the element
1877 * corresponding to the first batch_bo in the chain with the last
1878 * element in the list.
1879 */
1880 if (first_batch_bo->bo->exec_obj_index != execbuf->bo_count - 1) {
1881 uint32_t idx = first_batch_bo->bo->exec_obj_index;
1882 uint32_t last_idx = execbuf->bo_count - 1;
1883
1884 struct drm_i915_gem_exec_object2 tmp_obj = execbuf->objects[idx];
1885 assert(execbuf->bos[idx] == first_batch_bo->bo);
1886
1887 execbuf->objects[idx] = execbuf->objects[last_idx];
1888 execbuf->bos[idx] = execbuf->bos[last_idx];
1889 execbuf->bos[idx]->exec_obj_index = idx;
1890
1891 execbuf->objects[last_idx] = tmp_obj;
1892 execbuf->bos[last_idx] = first_batch_bo->bo;
1893 first_batch_bo->bo->exec_obj_index = last_idx;
1894 }
1895
1896 /* If we are pinning our BOs, we shouldn't have to relocate anything */
1897 if (!anv_use_relocations(device->physical))
1898 assert(!execbuf->has_relocs);
1899
1900 /* Now we go through and fixup all of the relocation lists to point to the
1901 * correct indices in the object array (I915_EXEC_HANDLE_LUT). We have to
1902 * do this after we reorder the list above as some of the indices may have
1903 * changed.
1904 */
1905 struct anv_batch_bo **bbo;
1906 if (execbuf->has_relocs) {
1907 assert(num_cmd_buffers == 1);
1908 u_vector_foreach(bbo, &cmd_buffers[0]->seen_bbos)
1909 anv_cmd_buffer_process_relocs(cmd_buffers[0], &(*bbo)->relocs);
1910
1911 anv_cmd_buffer_process_relocs(cmd_buffers[0], &cmd_buffers[0]->surface_relocs);
1912 }
1913
1914 if (device->physical->memory.need_clflush) {
1915 __builtin_ia32_mfence();
1916 for (uint32_t i = 0; i < num_cmd_buffers; i++) {
1917 u_vector_foreach(bbo, &cmd_buffers[i]->seen_bbos) {
1918 for (uint32_t l = 0; l < (*bbo)->length; l += CACHELINE_SIZE)
1919 __builtin_ia32_clflush((*bbo)->bo->map + l);
1920 }
1921 }
1922 }
1923
1924 struct anv_batch *batch = &cmd_buffers[0]->batch;
1925 execbuf->execbuf = (struct drm_i915_gem_execbuffer2) {
1926 .buffers_ptr = (uintptr_t) execbuf->objects,
1927 .buffer_count = execbuf->bo_count,
1928 .batch_start_offset = 0,
1929 /* On platforms that cannot chain batch buffers because of the i915
1930 * command parser, we have to provide the batch length. Everywhere else
1931 * we'll chain batches so no point in passing a length.
1932 */
1933 .batch_len = device->can_chain_batches ? 0 : batch->next - batch->start,
1934 .cliprects_ptr = 0,
1935 .num_cliprects = 0,
1936 .DR1 = 0,
1937 .DR4 = 0,
1938 .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags | (no_reloc ? I915_EXEC_NO_RELOC : 0),
1939 .rsvd1 = device->context_id,
1940 .rsvd2 = 0,
1941 };
1942
1943 return VK_SUCCESS;
1944 }
1945
1946 static VkResult
setup_empty_execbuf(struct anv_execbuf * execbuf,struct anv_queue * queue)1947 setup_empty_execbuf(struct anv_execbuf *execbuf, struct anv_queue *queue)
1948 {
1949 struct anv_device *device = queue->device;
1950 VkResult result = anv_execbuf_add_bo(device, execbuf,
1951 device->trivial_batch_bo,
1952 NULL, 0);
1953 if (result != VK_SUCCESS)
1954 return result;
1955
1956 execbuf->execbuf = (struct drm_i915_gem_execbuffer2) {
1957 .buffers_ptr = (uintptr_t) execbuf->objects,
1958 .buffer_count = execbuf->bo_count,
1959 .batch_start_offset = 0,
1960 .batch_len = 8, /* GFX7_MI_BATCH_BUFFER_END and NOOP */
1961 .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags | I915_EXEC_NO_RELOC,
1962 .rsvd1 = device->context_id,
1963 .rsvd2 = 0,
1964 };
1965
1966 return VK_SUCCESS;
1967 }
1968
1969 static VkResult
setup_utrace_execbuf(struct anv_execbuf * execbuf,struct anv_queue * queue,struct anv_utrace_flush_copy * flush)1970 setup_utrace_execbuf(struct anv_execbuf *execbuf, struct anv_queue *queue,
1971 struct anv_utrace_flush_copy *flush)
1972 {
1973 struct anv_device *device = queue->device;
1974 VkResult result = anv_execbuf_add_bo(device, execbuf,
1975 flush->batch_bo,
1976 &flush->relocs, 0);
1977 if (result != VK_SUCCESS)
1978 return result;
1979
1980 result = anv_execbuf_add_sync(device, execbuf, flush->sync,
1981 true /* is_signal */, 0 /* value */);
1982 if (result != VK_SUCCESS)
1983 return result;
1984
1985 if (flush->batch_bo->exec_obj_index != execbuf->bo_count - 1) {
1986 uint32_t idx = flush->batch_bo->exec_obj_index;
1987 uint32_t last_idx = execbuf->bo_count - 1;
1988
1989 struct drm_i915_gem_exec_object2 tmp_obj = execbuf->objects[idx];
1990 assert(execbuf->bos[idx] == flush->batch_bo);
1991
1992 execbuf->objects[idx] = execbuf->objects[last_idx];
1993 execbuf->bos[idx] = execbuf->bos[last_idx];
1994 execbuf->bos[idx]->exec_obj_index = idx;
1995
1996 execbuf->objects[last_idx] = tmp_obj;
1997 execbuf->bos[last_idx] = flush->batch_bo;
1998 flush->batch_bo->exec_obj_index = last_idx;
1999 }
2000
2001 if (device->physical->memory.need_clflush)
2002 intel_flush_range(flush->batch_bo->map, flush->batch_bo->size);
2003
2004 execbuf->execbuf = (struct drm_i915_gem_execbuffer2) {
2005 .buffers_ptr = (uintptr_t) execbuf->objects,
2006 .buffer_count = execbuf->bo_count,
2007 .batch_start_offset = 0,
2008 .batch_len = flush->batch.next - flush->batch.start,
2009 .flags = I915_EXEC_HANDLE_LUT | I915_EXEC_FENCE_ARRAY | queue->exec_flags |
2010 (execbuf->has_relocs ? 0 : I915_EXEC_NO_RELOC),
2011 .rsvd1 = device->context_id,
2012 .rsvd2 = 0,
2013 .num_cliprects = execbuf->syncobj_count,
2014 .cliprects_ptr = (uintptr_t)execbuf->syncobjs,
2015 };
2016
2017 return VK_SUCCESS;
2018 }
2019
2020 static VkResult
anv_queue_exec_utrace_locked(struct anv_queue * queue,struct anv_utrace_flush_copy * flush)2021 anv_queue_exec_utrace_locked(struct anv_queue *queue,
2022 struct anv_utrace_flush_copy *flush)
2023 {
2024 assert(flush->batch_bo);
2025
2026 struct anv_device *device = queue->device;
2027 struct anv_execbuf execbuf;
2028 anv_execbuf_init(&execbuf);
2029 execbuf.alloc = &device->vk.alloc;
2030 execbuf.alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE;
2031
2032 VkResult result = setup_utrace_execbuf(&execbuf, queue, flush);
2033 if (result != VK_SUCCESS)
2034 goto error;
2035
2036 int ret = queue->device->info.no_hw ? 0 :
2037 anv_gem_execbuffer(queue->device, &execbuf.execbuf);
2038 if (ret)
2039 result = vk_queue_set_lost(&queue->vk, "execbuf2 failed: %m");
2040
2041 struct drm_i915_gem_exec_object2 *objects = execbuf.objects;
2042 for (uint32_t k = 0; k < execbuf.bo_count; k++) {
2043 if (anv_bo_is_pinned(execbuf.bos[k]))
2044 assert(execbuf.bos[k]->offset == objects[k].offset);
2045 execbuf.bos[k]->offset = objects[k].offset;
2046 }
2047
2048 error:
2049 anv_execbuf_finish(&execbuf);
2050
2051 return result;
2052 }
2053
2054 /* We lock around execbuf for three main reasons:
2055 *
2056 * 1) When a block pool is resized, we create a new gem handle with a
2057 * different size and, in the case of surface states, possibly a different
2058 * center offset but we re-use the same anv_bo struct when we do so. If
2059 * this happens in the middle of setting up an execbuf, we could end up
2060 * with our list of BOs out of sync with our list of gem handles.
2061 *
2062 * 2) The algorithm we use for building the list of unique buffers isn't
2063 * thread-safe. While the client is supposed to synchronize around
2064 * QueueSubmit, this would be extremely difficult to debug if it ever came
2065 * up in the wild due to a broken app. It's better to play it safe and
2066 * just lock around QueueSubmit.
2067 *
2068 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
2069 * userspace. Due to the fact that the surface state buffer is shared
2070 * between batches, we can't afford to have that happen from multiple
2071 * threads at the same time. Even though the user is supposed to ensure
2072 * this doesn't happen, we play it safe as in (2) above.
2073 *
2074 * Since the only other things that ever take the device lock such as block
2075 * pool resize only rarely happen, this will almost never be contended so
2076 * taking a lock isn't really an expensive operation in this case.
2077 */
2078 static VkResult
anv_queue_exec_locked(struct anv_queue * queue,uint32_t wait_count,const struct vk_sync_wait * waits,uint32_t cmd_buffer_count,struct anv_cmd_buffer ** cmd_buffers,uint32_t signal_count,const struct vk_sync_signal * signals,struct anv_query_pool * perf_query_pool,uint32_t perf_query_pass)2079 anv_queue_exec_locked(struct anv_queue *queue,
2080 uint32_t wait_count,
2081 const struct vk_sync_wait *waits,
2082 uint32_t cmd_buffer_count,
2083 struct anv_cmd_buffer **cmd_buffers,
2084 uint32_t signal_count,
2085 const struct vk_sync_signal *signals,
2086 struct anv_query_pool *perf_query_pool,
2087 uint32_t perf_query_pass)
2088 {
2089 struct anv_device *device = queue->device;
2090 struct anv_utrace_flush_copy *utrace_flush_data = NULL;
2091 struct anv_execbuf execbuf;
2092 anv_execbuf_init(&execbuf);
2093 execbuf.alloc = &queue->device->vk.alloc;
2094 execbuf.alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE;
2095 execbuf.perf_query_pass = perf_query_pass;
2096
2097 /* Flush the trace points first, they need to be moved */
2098 VkResult result =
2099 anv_device_utrace_flush_cmd_buffers(queue,
2100 cmd_buffer_count,
2101 cmd_buffers,
2102 &utrace_flush_data);
2103 if (result != VK_SUCCESS)
2104 goto error;
2105
2106 if (utrace_flush_data && !utrace_flush_data->batch_bo) {
2107 result = anv_execbuf_add_sync(device, &execbuf,
2108 utrace_flush_data->sync,
2109 true /* is_signal */,
2110 0);
2111 if (result != VK_SUCCESS)
2112 goto error;
2113
2114 utrace_flush_data = NULL;
2115 }
2116
2117 /* Always add the workaround BO as it includes a driver identifier for the
2118 * error_state.
2119 */
2120 result =
2121 anv_execbuf_add_bo(device, &execbuf, device->workaround_bo, NULL, 0);
2122 if (result != VK_SUCCESS)
2123 goto error;
2124
2125 for (uint32_t i = 0; i < wait_count; i++) {
2126 result = anv_execbuf_add_sync(device, &execbuf,
2127 waits[i].sync,
2128 false /* is_signal */,
2129 waits[i].wait_value);
2130 if (result != VK_SUCCESS)
2131 goto error;
2132 }
2133
2134 for (uint32_t i = 0; i < signal_count; i++) {
2135 result = anv_execbuf_add_sync(device, &execbuf,
2136 signals[i].sync,
2137 true /* is_signal */,
2138 signals[i].signal_value);
2139 if (result != VK_SUCCESS)
2140 goto error;
2141 }
2142
2143 if (queue->sync) {
2144 result = anv_execbuf_add_sync(device, &execbuf,
2145 queue->sync,
2146 true /* is_signal */,
2147 0 /* signal_value */);
2148 if (result != VK_SUCCESS)
2149 goto error;
2150 }
2151
2152 if (cmd_buffer_count) {
2153 result = setup_execbuf_for_cmd_buffers(&execbuf, queue,
2154 cmd_buffers,
2155 cmd_buffer_count);
2156 } else {
2157 result = setup_empty_execbuf(&execbuf, queue);
2158 }
2159
2160 if (result != VK_SUCCESS)
2161 goto error;
2162
2163 const bool has_perf_query =
2164 perf_query_pool && perf_query_pass >= 0 && cmd_buffer_count;
2165
2166 if (INTEL_DEBUG(DEBUG_SUBMIT)) {
2167 fprintf(stderr, "Batch offset=0x%x len=0x%x on queue 0\n",
2168 execbuf.execbuf.batch_start_offset, execbuf.execbuf.batch_len);
2169 for (uint32_t i = 0; i < execbuf.bo_count; i++) {
2170 const struct anv_bo *bo = execbuf.bos[i];
2171
2172 fprintf(stderr, " BO: addr=0x%016"PRIx64"-0x%016"PRIx64" size=0x%010"PRIx64
2173 " handle=%05u name=%s\n",
2174 bo->offset, bo->offset + bo->size - 1, bo->size, bo->gem_handle, bo->name);
2175 }
2176 }
2177
2178 if (INTEL_DEBUG(DEBUG_BATCH)) {
2179 fprintf(stderr, "Batch on queue %d\n", (int)(queue - device->queues));
2180 if (cmd_buffer_count) {
2181 if (has_perf_query) {
2182 struct anv_bo *pass_batch_bo = perf_query_pool->bo;
2183 uint64_t pass_batch_offset =
2184 khr_perf_query_preamble_offset(perf_query_pool, perf_query_pass);
2185
2186 intel_print_batch(&device->decoder_ctx,
2187 pass_batch_bo->map + pass_batch_offset, 64,
2188 pass_batch_bo->offset + pass_batch_offset, false);
2189 }
2190
2191 for (uint32_t i = 0; i < cmd_buffer_count; i++) {
2192 struct anv_batch_bo **bo =
2193 u_vector_tail(&cmd_buffers[i]->seen_bbos);
2194 device->cmd_buffer_being_decoded = cmd_buffers[i];
2195 intel_print_batch(&device->decoder_ctx, (*bo)->bo->map,
2196 (*bo)->bo->size, (*bo)->bo->offset, false);
2197 device->cmd_buffer_being_decoded = NULL;
2198 }
2199 } else {
2200 intel_print_batch(&device->decoder_ctx,
2201 device->trivial_batch_bo->map,
2202 device->trivial_batch_bo->size,
2203 device->trivial_batch_bo->offset, false);
2204 }
2205 }
2206
2207 if (execbuf.syncobj_values) {
2208 execbuf.timeline_fences.fence_count = execbuf.syncobj_count;
2209 execbuf.timeline_fences.handles_ptr = (uintptr_t)execbuf.syncobjs;
2210 execbuf.timeline_fences.values_ptr = (uintptr_t)execbuf.syncobj_values;
2211 anv_execbuf_add_ext(&execbuf,
2212 DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES,
2213 &execbuf.timeline_fences.base);
2214 } else if (execbuf.syncobjs) {
2215 execbuf.execbuf.flags |= I915_EXEC_FENCE_ARRAY;
2216 execbuf.execbuf.num_cliprects = execbuf.syncobj_count;
2217 execbuf.execbuf.cliprects_ptr = (uintptr_t)execbuf.syncobjs;
2218 }
2219
2220 if (has_perf_query) {
2221 assert(perf_query_pass < perf_query_pool->n_passes);
2222 struct intel_perf_query_info *query_info =
2223 perf_query_pool->pass_query[perf_query_pass];
2224
2225 /* Some performance queries just the pipeline statistic HW, no need for
2226 * OA in that case, so no need to reconfigure.
2227 */
2228 if (!INTEL_DEBUG(DEBUG_NO_OACONFIG) &&
2229 (query_info->kind == INTEL_PERF_QUERY_TYPE_OA ||
2230 query_info->kind == INTEL_PERF_QUERY_TYPE_RAW)) {
2231 int ret = intel_ioctl(device->perf_fd, I915_PERF_IOCTL_CONFIG,
2232 (void *)(uintptr_t) query_info->oa_metrics_set_id);
2233 if (ret < 0) {
2234 result = vk_device_set_lost(&device->vk,
2235 "i915-perf config failed: %s",
2236 strerror(errno));
2237 }
2238 }
2239
2240 struct anv_bo *pass_batch_bo = perf_query_pool->bo;
2241
2242 struct drm_i915_gem_exec_object2 query_pass_object = {
2243 .handle = pass_batch_bo->gem_handle,
2244 .offset = pass_batch_bo->offset,
2245 .flags = pass_batch_bo->flags,
2246 };
2247 struct drm_i915_gem_execbuffer2 query_pass_execbuf = {
2248 .buffers_ptr = (uintptr_t) &query_pass_object,
2249 .buffer_count = 1,
2250 .batch_start_offset = khr_perf_query_preamble_offset(perf_query_pool,
2251 perf_query_pass),
2252 .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags,
2253 .rsvd1 = device->context_id,
2254 };
2255
2256 int ret = queue->device->info.no_hw ? 0 :
2257 anv_gem_execbuffer(queue->device, &query_pass_execbuf);
2258 if (ret)
2259 result = vk_queue_set_lost(&queue->vk, "execbuf2 failed: %m");
2260 }
2261
2262 int ret = queue->device->info.no_hw ? 0 :
2263 anv_gem_execbuffer(queue->device, &execbuf.execbuf);
2264 if (ret)
2265 result = vk_queue_set_lost(&queue->vk, "execbuf2 failed: %m");
2266
2267 if (queue->sync) {
2268 VkResult result = vk_sync_wait(&device->vk,
2269 queue->sync, 0,
2270 VK_SYNC_WAIT_COMPLETE,
2271 UINT64_MAX);
2272 if (result != VK_SUCCESS)
2273 result = vk_queue_set_lost(&queue->vk, "sync wait failed");
2274 }
2275
2276 struct drm_i915_gem_exec_object2 *objects = execbuf.objects;
2277 for (uint32_t k = 0; k < execbuf.bo_count; k++) {
2278 if (anv_bo_is_pinned(execbuf.bos[k]))
2279 assert(execbuf.bos[k]->offset == objects[k].offset);
2280 execbuf.bos[k]->offset = objects[k].offset;
2281 }
2282
2283 error:
2284 anv_execbuf_finish(&execbuf);
2285
2286 if (result == VK_SUCCESS && utrace_flush_data)
2287 result = anv_queue_exec_utrace_locked(queue, utrace_flush_data);
2288
2289 return result;
2290 }
2291
2292 static inline bool
can_chain_query_pools(struct anv_query_pool * p1,struct anv_query_pool * p2)2293 can_chain_query_pools(struct anv_query_pool *p1, struct anv_query_pool *p2)
2294 {
2295 return (!p1 || !p2 || p1 == p2);
2296 }
2297
2298 static VkResult
anv_queue_submit_locked(struct anv_queue * queue,struct vk_queue_submit * submit)2299 anv_queue_submit_locked(struct anv_queue *queue,
2300 struct vk_queue_submit *submit)
2301 {
2302 VkResult result;
2303
2304 if (submit->command_buffer_count == 0) {
2305 result = anv_queue_exec_locked(queue, submit->wait_count, submit->waits,
2306 0 /* cmd_buffer_count */,
2307 NULL /* cmd_buffers */,
2308 submit->signal_count, submit->signals,
2309 NULL /* perf_query_pool */,
2310 0 /* perf_query_pass */);
2311 if (result != VK_SUCCESS)
2312 return result;
2313 } else {
2314 /* Everything's easier if we don't have to bother with container_of() */
2315 STATIC_ASSERT(offsetof(struct anv_cmd_buffer, vk) == 0);
2316 struct vk_command_buffer **vk_cmd_buffers = submit->command_buffers;
2317 struct anv_cmd_buffer **cmd_buffers = (void *)vk_cmd_buffers;
2318 uint32_t start = 0;
2319 uint32_t end = submit->command_buffer_count;
2320 struct anv_query_pool *perf_query_pool =
2321 cmd_buffers[start]->perf_query_pool;
2322 for (uint32_t n = 0; n < end; n++) {
2323 bool can_chain = false;
2324 uint32_t next = n + 1;
2325 /* Can we chain the last buffer into the next one? */
2326 if (next < end &&
2327 anv_cmd_buffer_is_chainable(cmd_buffers[next]) &&
2328 can_chain_query_pools
2329 (cmd_buffers[next]->perf_query_pool, perf_query_pool)) {
2330 can_chain = true;
2331 perf_query_pool =
2332 perf_query_pool ? perf_query_pool :
2333 cmd_buffers[next]->perf_query_pool;
2334 }
2335 if (!can_chain) {
2336 /* The next buffer cannot be chained, or we have reached the
2337 * last buffer, submit what have been chained so far.
2338 */
2339 VkResult result =
2340 anv_queue_exec_locked(queue,
2341 start == 0 ? submit->wait_count : 0,
2342 start == 0 ? submit->waits : NULL,
2343 next - start, &cmd_buffers[start],
2344 next == end ? submit->signal_count : 0,
2345 next == end ? submit->signals : NULL,
2346 perf_query_pool,
2347 submit->perf_pass_index);
2348 if (result != VK_SUCCESS)
2349 return result;
2350 if (next < end) {
2351 start = next;
2352 perf_query_pool = cmd_buffers[start]->perf_query_pool;
2353 }
2354 }
2355 }
2356 }
2357 for (uint32_t i = 0; i < submit->signal_count; i++) {
2358 if (!vk_sync_is_anv_bo_sync(submit->signals[i].sync))
2359 continue;
2360
2361 struct anv_bo_sync *bo_sync =
2362 container_of(submit->signals[i].sync, struct anv_bo_sync, sync);
2363
2364 /* Once the execbuf has returned, we need to set the fence state to
2365 * SUBMITTED. We can't do this before calling execbuf because
2366 * anv_GetFenceStatus does take the global device lock before checking
2367 * fence->state.
2368 *
2369 * We set the fence state to SUBMITTED regardless of whether or not the
2370 * execbuf succeeds because we need to ensure that vkWaitForFences() and
2371 * vkGetFenceStatus() return a valid result (VK_ERROR_DEVICE_LOST or
2372 * VK_SUCCESS) in a finite amount of time even if execbuf fails.
2373 */
2374 assert(bo_sync->state == ANV_BO_SYNC_STATE_RESET);
2375 bo_sync->state = ANV_BO_SYNC_STATE_SUBMITTED;
2376 }
2377
2378 pthread_cond_broadcast(&queue->device->queue_submit);
2379
2380 return VK_SUCCESS;
2381 }
2382
2383 VkResult
anv_queue_submit(struct vk_queue * vk_queue,struct vk_queue_submit * submit)2384 anv_queue_submit(struct vk_queue *vk_queue,
2385 struct vk_queue_submit *submit)
2386 {
2387 struct anv_queue *queue = container_of(vk_queue, struct anv_queue, vk);
2388 struct anv_device *device = queue->device;
2389 VkResult result;
2390
2391 if (queue->device->info.no_hw) {
2392 for (uint32_t i = 0; i < submit->signal_count; i++) {
2393 result = vk_sync_signal(&device->vk,
2394 submit->signals[i].sync,
2395 submit->signals[i].signal_value);
2396 if (result != VK_SUCCESS)
2397 return vk_queue_set_lost(&queue->vk, "vk_sync_signal failed");
2398 }
2399 return VK_SUCCESS;
2400 }
2401
2402 uint64_t start_ts = intel_ds_begin_submit(queue->ds);
2403
2404 pthread_mutex_lock(&device->mutex);
2405 result = anv_queue_submit_locked(queue, submit);
2406 /* Take submission ID under lock */
2407 pthread_mutex_unlock(&device->mutex);
2408
2409 intel_ds_end_submit(queue->ds, start_ts);
2410
2411 return result;
2412 }
2413
2414 VkResult
anv_queue_submit_simple_batch(struct anv_queue * queue,struct anv_batch * batch)2415 anv_queue_submit_simple_batch(struct anv_queue *queue,
2416 struct anv_batch *batch)
2417 {
2418 struct anv_device *device = queue->device;
2419 VkResult result = VK_SUCCESS;
2420 int err;
2421
2422 if (queue->device->info.no_hw)
2423 return VK_SUCCESS;
2424
2425 /* This is only used by device init so we can assume the queue is empty and
2426 * we aren't fighting with a submit thread.
2427 */
2428 assert(vk_queue_is_empty(&queue->vk));
2429
2430 uint32_t batch_size = align_u32(batch->next - batch->start, 8);
2431
2432 struct anv_bo *batch_bo = NULL;
2433 result = anv_bo_pool_alloc(&device->batch_bo_pool, batch_size, &batch_bo);
2434 if (result != VK_SUCCESS)
2435 return result;
2436
2437 memcpy(batch_bo->map, batch->start, batch_size);
2438 if (device->physical->memory.need_clflush)
2439 intel_flush_range(batch_bo->map, batch_size);
2440
2441 struct anv_execbuf execbuf;
2442 anv_execbuf_init(&execbuf);
2443 execbuf.alloc = &queue->device->vk.alloc;
2444 execbuf.alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE;
2445
2446 result = anv_execbuf_add_bo(device, &execbuf, batch_bo, NULL, 0);
2447 if (result != VK_SUCCESS)
2448 goto fail;
2449
2450 if (INTEL_DEBUG(DEBUG_BATCH)) {
2451 intel_print_batch(&device->decoder_ctx,
2452 batch_bo->map,
2453 batch_bo->size,
2454 batch_bo->offset, false);
2455 }
2456
2457 execbuf.execbuf = (struct drm_i915_gem_execbuffer2) {
2458 .buffers_ptr = (uintptr_t) execbuf.objects,
2459 .buffer_count = execbuf.bo_count,
2460 .batch_start_offset = 0,
2461 .batch_len = batch_size,
2462 .flags = I915_EXEC_HANDLE_LUT | queue->exec_flags | I915_EXEC_NO_RELOC,
2463 .rsvd1 = device->context_id,
2464 .rsvd2 = 0,
2465 };
2466
2467 err = anv_gem_execbuffer(device, &execbuf.execbuf);
2468 if (err) {
2469 result = vk_device_set_lost(&device->vk, "anv_gem_execbuffer failed: %m");
2470 goto fail;
2471 }
2472
2473 result = anv_device_wait(device, batch_bo, INT64_MAX);
2474 if (result != VK_SUCCESS) {
2475 result = vk_device_set_lost(&device->vk,
2476 "anv_device_wait failed: %m");
2477 goto fail;
2478 }
2479
2480 fail:
2481 anv_execbuf_finish(&execbuf);
2482 anv_bo_pool_free(&device->batch_bo_pool, batch_bo);
2483
2484 return result;
2485 }
2486