• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_dct4_f32.c
4  * Description:  Processing function of DCT4 & IDCT4 F32
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/transform_functions.h"
30 
31 /**
32   @ingroup groupTransforms
33  */
34 
35 /**
36   @defgroup DCT4_IDCT4 DCT Type IV Functions
37 
38   Representation of signals by minimum number of values is important for storage and transmission.
39   The possibility of large discontinuity between the beginning and end of a period of a signal
40   in DFT can be avoided by extending the signal so that it is even-symmetric.
41   Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the
42   spectrum and is very widely used in signal and image coding applications.
43   The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions.
44   DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular.
45 
46   DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal.
47   Reordering of the input data makes the computation of DCT just a problem of
48   computing the DFT of a real signal with a few additional operations.
49   This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations.
50 
51   DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used.
52   DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing.
53   DCT2 implementation can be described in the following steps:
54   - Re-ordering input
55   - Calculating Real FFT
56   - Multiplication of weights and Real FFT output and getting real part from the product.
57 
58   This process is explained by the block diagram below:
59   \image html DCT4.gif "Discrete Cosine Transform - type-IV"
60 
61   @par           Algorithm
62                    The N-point type-IV DCT is defined as a real, linear transformation by the formula:
63                    \image html DCT4Equation.gif
64                    where <code>k = 0, 1, 2, ..., N-1</code>
65   @par
66                    Its inverse is defined as follows:
67                    \image html IDCT4Equation.gif
68                    where <code>n = 0, 1, 2, ..., N-1</code>
69   @par
70                    The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N).
71                    The symmetry of the transform matrix indicates that the fast algorithms for the forward
72                    and inverse transform computation are identical.
73                    Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both.
74 
75   @par           Lengths supported by the transform:
76                    As DCT4 internally uses Real FFT, it supports all the lengths 128, 512, 2048 and 8192.
77                    The library provides separate functions for Q15, Q31, and floating-point data types.
78 
79   @par           Instance Structure
80                    The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure.
81                    A separate instance structure must be defined for each transform.
82                    There are separate instance structure declarations for each of the 3 supported data types.
83 
84   @par           Initialization Functions
85                    There is also an associated initialization function for each data type.
86                    The initialization function performs the following operations:
87                    - Sets the values of the internal structure fields.
88                    - Initializes Real FFT as its process function is used internally in DCT4, by calling \ref arm_rfft_init_f32().
89   @par
90                    Use of the initialization function is optional.
91                    However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
92                    To place an instance structure into a const data section, the instance structure must be manually initialized.
93                    Manually initialize the instance structure as follows:
94   <pre>
95       arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
96       arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
97       arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
98   </pre>
99                    where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4;
100                    \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>;
101                    \c pTwiddle points to the twiddle factor table;
102                    \c pCosFactor points to the cosFactor table;
103                    \c pRfft points to the real FFT instance;
104                    \c pCfft points to the complex FFT instance;
105                    The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32()
106                    and arm_rfft_f32() respectively for details regarding static initialization.
107 
108   @par           Fixed-Point Behavior
109                    Care must be taken when using the fixed-point versions of the DCT4 transform functions.
110                    In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
111                    Refer to the function specific documentation below for usage guidelines.
112  */
113 
114  /**
115   @addtogroup DCT4_IDCT4
116   @{
117  */
118 
119 /**
120   @brief         Processing function for the floating-point DCT4/IDCT4.
121   @param[in]     S             points to an instance of the floating-point DCT4/IDCT4 structure
122   @param[in]     pState        points to state buffer
123   @param[in,out] pInlineBuffer points to the in-place input and output buffer
124   @return        none
125  */
126 
arm_dct4_f32(const arm_dct4_instance_f32 * S,float32_t * pState,float32_t * pInlineBuffer)127 void arm_dct4_f32(
128   const arm_dct4_instance_f32 * S,
129         float32_t * pState,
130         float32_t * pInlineBuffer)
131 {
132   const float32_t *weights = S->pTwiddle;              /* Pointer to the Weights table */
133   const float32_t *cosFact = S->pCosFactor;            /* Pointer to the cos factors table */
134         float32_t *pS1, *pS2, *pbuff;                  /* Temporary pointers for input buffer and pState buffer */
135         float32_t in;                                  /* Temporary variable */
136         uint32_t i;                                    /* Loop counter */
137 
138 
139   /* DCT4 computation involves DCT2 (which is calculated using RFFT)
140    * along with some pre-processing and post-processing.
141    * Computational procedure is explained as follows:
142    * (a) Pre-processing involves multiplying input with cos factor,
143    *     r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
144    *              where,
145    *                 r(n) -- output of preprocessing
146    *                 u(n) -- input to preprocessing(actual Source buffer)
147    * (b) Calculation of DCT2 using FFT is divided into three steps:
148    *                  Step1: Re-ordering of even and odd elements of input.
149    *                  Step2: Calculating FFT of the re-ordered input.
150    *                  Step3: Taking the real part of the product of FFT output and weights.
151    * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
152    *                   Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
153    *                        where,
154    *                           Y4 -- DCT4 output,   Y2 -- DCT2 output
155    * (d) Multiplying the output with the normalizing factor sqrt(2/N).
156    */
157 
158   /*-------- Pre-processing ------------*/
159   /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
160   arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N);
161   arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N);
162 
163   /* ----------------------------------------------------------------
164    * Step1: Re-ordering of even and odd elements as
165    *             pState[i] =  pInlineBuffer[2*i] and
166    *             pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
167    ---------------------------------------------------------------------*/
168 
169   /* pS1 initialized to pState */
170   pS1 = pState;
171 
172   /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
173   pS2 = pState + (S->N - 1U);
174 
175   /* pbuff initialized to input buffer */
176   pbuff = pInlineBuffer;
177 
178 
179 #if defined (ARM_MATH_LOOPUNROLL)
180 
181   /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
182   i = S->Nby2 >> 2U;
183 
184   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
185    ** a second loop below computes the remaining 1 to 3 samples. */
186   do
187   {
188     /* Re-ordering of even and odd elements */
189     /* pState[i] =  pInlineBuffer[2*i] */
190     *pS1++ = *pbuff++;
191     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
192     *pS2-- = *pbuff++;
193 
194     *pS1++ = *pbuff++;
195     *pS2-- = *pbuff++;
196 
197     *pS1++ = *pbuff++;
198     *pS2-- = *pbuff++;
199 
200     *pS1++ = *pbuff++;
201     *pS2-- = *pbuff++;
202 
203     /* Decrement loop counter */
204     i--;
205   } while (i > 0U);
206 
207   /* pbuff initialized to input buffer */
208   pbuff = pInlineBuffer;
209 
210   /* pS1 initialized to pState */
211   pS1 = pState;
212 
213   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
214   i = S->N >> 2U;
215 
216   /* Processing with loop unrolling 4 times as N is always multiple of 4.
217    * Compute 4 outputs at a time */
218   do
219   {
220     /* Writing the re-ordered output back to inplace input buffer */
221     *pbuff++ = *pS1++;
222     *pbuff++ = *pS1++;
223     *pbuff++ = *pS1++;
224     *pbuff++ = *pS1++;
225 
226     /* Decrement the loop counter */
227     i--;
228   } while (i > 0U);
229 
230 
231   /* ---------------------------------------------------------
232    *     Step2: Calculate RFFT for N-point input
233    * ---------------------------------------------------------- */
234   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
235   arm_rfft_f32 (S->pRfft, pInlineBuffer, pState);
236 
237   /*----------------------------------------------------------------------
238    *  Step3: Multiply the FFT output with the weights.
239    *----------------------------------------------------------------------*/
240   arm_cmplx_mult_cmplx_f32 (pState, weights, pState, S->N);
241 
242   /* ----------- Post-processing ---------- */
243   /* DCT-IV can be obtained from DCT-II by the equation,
244    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
245    *       Hence, Y4(0) = Y2(0)/2  */
246   /* Getting only real part from the output and Converting to DCT-IV */
247 
248   /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
249   i = (S->N - 1U) >> 2U;
250 
251   /* pbuff initialized to input buffer. */
252   pbuff = pInlineBuffer;
253 
254   /* pS1 initialized to pState */
255   pS1 = pState;
256 
257   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
258   in = *pS1++ * (float32_t) 0.5;
259   /* input buffer acts as inplace, so output values are stored in the input itself. */
260   *pbuff++ = in;
261 
262   /* pState pointer is incremented twice as the real values are located alternatively in the array */
263   pS1++;
264 
265   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
266    ** a second loop below computes the remaining 1 to 3 samples. */
267   do
268   {
269     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
270     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
271     in = *pS1++ - in;
272     *pbuff++ = in;
273     /* points to the next real value */
274     pS1++;
275 
276     in = *pS1++ - in;
277     *pbuff++ = in;
278     pS1++;
279 
280     in = *pS1++ - in;
281     *pbuff++ = in;
282     pS1++;
283 
284     in = *pS1++ - in;
285     *pbuff++ = in;
286     pS1++;
287 
288     /* Decrement the loop counter */
289     i--;
290   } while (i > 0U);
291 
292   /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
293    ** No loop unrolling is used. */
294   i = (S->N - 1U) % 0x4U;
295 
296   while (i > 0U)
297   {
298     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
299     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
300     in = *pS1++ - in;
301     *pbuff++ = in;
302 
303     /* points to the next real value */
304     pS1++;
305 
306     /* Decrement the loop counter */
307     i--;
308   }
309 
310 
311   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
312 
313   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
314   i = S->N >> 2U;
315 
316   /* pbuff initialized to the pInlineBuffer(now contains the output values) */
317   pbuff = pInlineBuffer;
318 
319   /* Processing with loop unrolling 4 times as N is always multiple of 4.  Compute 4 outputs at a time */
320   do
321   {
322     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
323     in = *pbuff;
324     *pbuff++ = in * S->normalize;
325 
326     in = *pbuff;
327     *pbuff++ = in * S->normalize;
328 
329     in = *pbuff;
330     *pbuff++ = in * S->normalize;
331 
332     in = *pbuff;
333     *pbuff++ = in * S->normalize;
334 
335     /* Decrement the loop counter */
336     i--;
337   } while (i > 0U);
338 
339 
340 #else
341 
342   /* Initializing the loop counter to N/2 */
343   i = S->Nby2;
344 
345   do
346   {
347     /* Re-ordering of even and odd elements */
348     /* pState[i] =  pInlineBuffer[2*i] */
349     *pS1++ = *pbuff++;
350     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
351     *pS2-- = *pbuff++;
352 
353     /* Decrement the loop counter */
354     i--;
355   } while (i > 0U);
356 
357   /* pbuff initialized to input buffer */
358   pbuff = pInlineBuffer;
359 
360   /* pS1 initialized to pState */
361   pS1 = pState;
362 
363   /* Initializing the loop counter */
364   i = S->N;
365 
366   do
367   {
368     /* Writing the re-ordered output back to inplace input buffer */
369     *pbuff++ = *pS1++;
370 
371     /* Decrement the loop counter */
372     i--;
373   } while (i > 0U);
374 
375 
376   /* ---------------------------------------------------------
377    *     Step2: Calculate RFFT for N-point input
378    * ---------------------------------------------------------- */
379   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
380   arm_rfft_f32 (S->pRfft, pInlineBuffer, pState);
381 
382   /*----------------------------------------------------------------------
383    *  Step3: Multiply the FFT output with the weights.
384    *----------------------------------------------------------------------*/
385   arm_cmplx_mult_cmplx_f32 (pState, weights, pState, S->N);
386 
387   /* ----------- Post-processing ---------- */
388   /* DCT-IV can be obtained from DCT-II by the equation,
389    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
390    *       Hence, Y4(0) = Y2(0)/2  */
391   /* Getting only real part from the output and Converting to DCT-IV */
392 
393   /* pbuff initialized to input buffer. */
394   pbuff = pInlineBuffer;
395 
396   /* pS1 initialized to pState */
397   pS1 = pState;
398 
399   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
400   in = *pS1++ * (float32_t) 0.5;
401   /* input buffer acts as inplace, so output values are stored in the input itself. */
402   *pbuff++ = in;
403 
404   /* pState pointer is incremented twice as the real values are located alternatively in the array */
405   pS1++;
406 
407   /* Initializing the loop counter */
408   i = (S->N - 1U);
409 
410   do
411   {
412     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
413     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
414     in = *pS1++ - in;
415     *pbuff++ = in;
416 
417     /* points to the next real value */
418     pS1++;
419 
420     /* Decrement loop counter */
421     i--;
422   } while (i > 0U);
423 
424   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
425 
426   /* Initializing loop counter */
427   i = S->N;
428 
429   /* pbuff initialized to the pInlineBuffer (now contains the output values) */
430   pbuff = pInlineBuffer;
431 
432   do
433   {
434     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
435     in = *pbuff;
436     *pbuff++ = in * S->normalize;
437 
438     /* Decrement loop counter */
439     i--;
440   } while (i > 0U);
441 
442 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
443 
444 }
445 
446 /**
447   @} end of DCT4_IDCT4 group
448  */
449